5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
49 #define EXTENT_MERGE_SIZE 5
51 static mode_t
udf_convert_permissions(struct fileEntry
*);
52 static int udf_update_inode(struct inode
*, int);
53 static void udf_fill_inode(struct inode
*, struct buffer_head
*);
54 static int udf_sync_inode(struct inode
*inode
);
55 static int udf_alloc_i_data(struct inode
*inode
, size_t size
);
56 static struct buffer_head
*inode_getblk(struct inode
*, sector_t
, int *,
58 static int8_t udf_insert_aext(struct inode
*, struct extent_position
,
59 struct kernel_lb_addr
, uint32_t);
60 static void udf_split_extents(struct inode
*, int *, int, int,
61 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
62 static void udf_prealloc_extents(struct inode
*, int, int,
63 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
64 static void udf_merge_extents(struct inode
*,
65 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
66 static void udf_update_extents(struct inode
*,
67 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int, int,
68 struct extent_position
*);
69 static int udf_get_block(struct inode
*, sector_t
, struct buffer_head
*, int);
72 void udf_evict_inode(struct inode
*inode
)
74 struct udf_inode_info
*iinfo
= UDF_I(inode
);
77 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
79 udf_setsize(inode
, 0);
80 udf_update_inode(inode
, IS_SYNC(inode
));
82 truncate_inode_pages(&inode
->i_data
, 0);
83 invalidate_inode_buffers(inode
);
85 if (iinfo
->i_alloc_type
!= ICBTAG_FLAG_AD_IN_ICB
&&
86 inode
->i_size
!= iinfo
->i_lenExtents
) {
87 udf_warn(inode
->i_sb
, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
88 inode
->i_ino
, inode
->i_mode
,
89 (unsigned long long)inode
->i_size
,
90 (unsigned long long)iinfo
->i_lenExtents
);
92 kfree(iinfo
->i_ext
.i_data
);
93 iinfo
->i_ext
.i_data
= NULL
;
95 udf_free_inode(inode
);
99 static int udf_writepage(struct page
*page
, struct writeback_control
*wbc
)
101 return block_write_full_page(page
, udf_get_block
, wbc
);
104 static int udf_readpage(struct file
*file
, struct page
*page
)
106 return mpage_readpage(page
, udf_get_block
);
109 static int udf_readpages(struct file
*file
, struct address_space
*mapping
,
110 struct list_head
*pages
, unsigned nr_pages
)
112 return mpage_readpages(mapping
, pages
, nr_pages
, udf_get_block
);
115 static int udf_write_begin(struct file
*file
, struct address_space
*mapping
,
116 loff_t pos
, unsigned len
, unsigned flags
,
117 struct page
**pagep
, void **fsdata
)
121 ret
= block_write_begin(mapping
, pos
, len
, flags
, pagep
, udf_get_block
);
123 struct inode
*inode
= mapping
->host
;
124 struct udf_inode_info
*iinfo
= UDF_I(inode
);
125 loff_t isize
= inode
->i_size
;
127 if (pos
+ len
> isize
) {
128 truncate_pagecache(inode
, pos
+ len
, isize
);
129 if (iinfo
->i_alloc_type
!= ICBTAG_FLAG_AD_IN_ICB
) {
130 down_write(&iinfo
->i_data_sem
);
131 udf_truncate_extents(inode
);
132 up_write(&iinfo
->i_data_sem
);
140 static sector_t
udf_bmap(struct address_space
*mapping
, sector_t block
)
142 return generic_block_bmap(mapping
, block
, udf_get_block
);
145 const struct address_space_operations udf_aops
= {
146 .readpage
= udf_readpage
,
147 .readpages
= udf_readpages
,
148 .writepage
= udf_writepage
,
149 .write_begin
= udf_write_begin
,
150 .write_end
= generic_write_end
,
154 int udf_expand_file_adinicb(struct inode
*inode
)
158 struct udf_inode_info
*iinfo
= UDF_I(inode
);
160 struct writeback_control udf_wbc
= {
161 .sync_mode
= WB_SYNC_NONE
,
165 if (!iinfo
->i_lenAlloc
) {
166 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
167 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_SHORT
;
169 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_LONG
;
170 /* from now on we have normal address_space methods */
171 inode
->i_data
.a_ops
= &udf_aops
;
172 mark_inode_dirty(inode
);
176 page
= find_or_create_page(inode
->i_mapping
, 0, GFP_NOFS
);
180 if (!PageUptodate(page
)) {
182 memset(kaddr
+ iinfo
->i_lenAlloc
, 0x00,
183 PAGE_CACHE_SIZE
- iinfo
->i_lenAlloc
);
184 memcpy(kaddr
, iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
,
186 flush_dcache_page(page
);
187 SetPageUptodate(page
);
190 memset(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
, 0x00,
192 iinfo
->i_lenAlloc
= 0;
193 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
194 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_SHORT
;
196 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_LONG
;
197 /* from now on we have normal address_space methods */
198 inode
->i_data
.a_ops
= &udf_aops
;
199 err
= inode
->i_data
.a_ops
->writepage(page
, &udf_wbc
);
201 /* Restore everything back so that we don't lose data... */
204 memcpy(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
, kaddr
,
208 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_IN_ICB
;
209 inode
->i_data
.a_ops
= &udf_adinicb_aops
;
211 page_cache_release(page
);
212 mark_inode_dirty(inode
);
217 struct buffer_head
*udf_expand_dir_adinicb(struct inode
*inode
, int *block
,
221 struct buffer_head
*dbh
= NULL
;
222 struct kernel_lb_addr eloc
;
224 struct extent_position epos
;
226 struct udf_fileident_bh sfibh
, dfibh
;
227 loff_t f_pos
= udf_ext0_offset(inode
);
228 int size
= udf_ext0_offset(inode
) + inode
->i_size
;
229 struct fileIdentDesc cfi
, *sfi
, *dfi
;
230 struct udf_inode_info
*iinfo
= UDF_I(inode
);
232 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
233 alloctype
= ICBTAG_FLAG_AD_SHORT
;
235 alloctype
= ICBTAG_FLAG_AD_LONG
;
237 if (!inode
->i_size
) {
238 iinfo
->i_alloc_type
= alloctype
;
239 mark_inode_dirty(inode
);
243 /* alloc block, and copy data to it */
244 *block
= udf_new_block(inode
->i_sb
, inode
,
245 iinfo
->i_location
.partitionReferenceNum
,
246 iinfo
->i_location
.logicalBlockNum
, err
);
249 newblock
= udf_get_pblock(inode
->i_sb
, *block
,
250 iinfo
->i_location
.partitionReferenceNum
,
254 dbh
= udf_tgetblk(inode
->i_sb
, newblock
);
258 memset(dbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
259 set_buffer_uptodate(dbh
);
261 mark_buffer_dirty_inode(dbh
, inode
);
263 sfibh
.soffset
= sfibh
.eoffset
=
264 f_pos
& (inode
->i_sb
->s_blocksize
- 1);
265 sfibh
.sbh
= sfibh
.ebh
= NULL
;
266 dfibh
.soffset
= dfibh
.eoffset
= 0;
267 dfibh
.sbh
= dfibh
.ebh
= dbh
;
268 while (f_pos
< size
) {
269 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_IN_ICB
;
270 sfi
= udf_fileident_read(inode
, &f_pos
, &sfibh
, &cfi
, NULL
,
276 iinfo
->i_alloc_type
= alloctype
;
277 sfi
->descTag
.tagLocation
= cpu_to_le32(*block
);
278 dfibh
.soffset
= dfibh
.eoffset
;
279 dfibh
.eoffset
+= (sfibh
.eoffset
- sfibh
.soffset
);
280 dfi
= (struct fileIdentDesc
*)(dbh
->b_data
+ dfibh
.soffset
);
281 if (udf_write_fi(inode
, sfi
, dfi
, &dfibh
, sfi
->impUse
,
283 le16_to_cpu(sfi
->lengthOfImpUse
))) {
284 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_IN_ICB
;
289 mark_buffer_dirty_inode(dbh
, inode
);
291 memset(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
, 0,
293 iinfo
->i_lenAlloc
= 0;
294 eloc
.logicalBlockNum
= *block
;
295 eloc
.partitionReferenceNum
=
296 iinfo
->i_location
.partitionReferenceNum
;
297 iinfo
->i_lenExtents
= inode
->i_size
;
299 epos
.block
= iinfo
->i_location
;
300 epos
.offset
= udf_file_entry_alloc_offset(inode
);
301 udf_add_aext(inode
, &epos
, &eloc
, inode
->i_size
, 0);
305 mark_inode_dirty(inode
);
309 static int udf_get_block(struct inode
*inode
, sector_t block
,
310 struct buffer_head
*bh_result
, int create
)
313 struct buffer_head
*bh
;
315 struct udf_inode_info
*iinfo
;
318 phys
= udf_block_map(inode
, block
);
320 map_bh(bh_result
, inode
->i_sb
, phys
);
327 iinfo
= UDF_I(inode
);
329 down_write(&iinfo
->i_data_sem
);
330 if (block
== iinfo
->i_next_alloc_block
+ 1) {
331 iinfo
->i_next_alloc_block
++;
332 iinfo
->i_next_alloc_goal
++;
337 bh
= inode_getblk(inode
, block
, &err
, &phys
, &new);
344 set_buffer_new(bh_result
);
345 map_bh(bh_result
, inode
->i_sb
, phys
);
348 up_write(&iinfo
->i_data_sem
);
352 static struct buffer_head
*udf_getblk(struct inode
*inode
, long block
,
353 int create
, int *err
)
355 struct buffer_head
*bh
;
356 struct buffer_head dummy
;
359 dummy
.b_blocknr
= -1000;
360 *err
= udf_get_block(inode
, block
, &dummy
, create
);
361 if (!*err
&& buffer_mapped(&dummy
)) {
362 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
363 if (buffer_new(&dummy
)) {
365 memset(bh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
366 set_buffer_uptodate(bh
);
368 mark_buffer_dirty_inode(bh
, inode
);
376 /* Extend the file by 'blocks' blocks, return the number of extents added */
377 static int udf_do_extend_file(struct inode
*inode
,
378 struct extent_position
*last_pos
,
379 struct kernel_long_ad
*last_ext
,
383 int count
= 0, fake
= !(last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
384 struct super_block
*sb
= inode
->i_sb
;
385 struct kernel_lb_addr prealloc_loc
= {};
386 int prealloc_len
= 0;
387 struct udf_inode_info
*iinfo
;
390 /* The previous extent is fake and we should not extend by anything
391 * - there's nothing to do... */
395 iinfo
= UDF_I(inode
);
396 /* Round the last extent up to a multiple of block size */
397 if (last_ext
->extLength
& (sb
->s_blocksize
- 1)) {
398 last_ext
->extLength
=
399 (last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) |
400 (((last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
401 sb
->s_blocksize
- 1) & ~(sb
->s_blocksize
- 1));
402 iinfo
->i_lenExtents
=
403 (iinfo
->i_lenExtents
+ sb
->s_blocksize
- 1) &
404 ~(sb
->s_blocksize
- 1);
407 /* Last extent are just preallocated blocks? */
408 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) ==
409 EXT_NOT_RECORDED_ALLOCATED
) {
410 /* Save the extent so that we can reattach it to the end */
411 prealloc_loc
= last_ext
->extLocation
;
412 prealloc_len
= last_ext
->extLength
;
413 /* Mark the extent as a hole */
414 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
415 (last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
416 last_ext
->extLocation
.logicalBlockNum
= 0;
417 last_ext
->extLocation
.partitionReferenceNum
= 0;
420 /* Can we merge with the previous extent? */
421 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) ==
422 EXT_NOT_RECORDED_NOT_ALLOCATED
) {
423 add
= ((1 << 30) - sb
->s_blocksize
-
424 (last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
)) >>
425 sb
->s_blocksize_bits
;
429 last_ext
->extLength
+= add
<< sb
->s_blocksize_bits
;
433 udf_add_aext(inode
, last_pos
, &last_ext
->extLocation
,
434 last_ext
->extLength
, 1);
437 udf_write_aext(inode
, last_pos
, &last_ext
->extLocation
,
438 last_ext
->extLength
, 1);
440 /* Managed to do everything necessary? */
444 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
445 last_ext
->extLocation
.logicalBlockNum
= 0;
446 last_ext
->extLocation
.partitionReferenceNum
= 0;
447 add
= (1 << (30-sb
->s_blocksize_bits
)) - 1;
448 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
449 (add
<< sb
->s_blocksize_bits
);
451 /* Create enough extents to cover the whole hole */
452 while (blocks
> add
) {
454 err
= udf_add_aext(inode
, last_pos
, &last_ext
->extLocation
,
455 last_ext
->extLength
, 1);
461 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
462 (blocks
<< sb
->s_blocksize_bits
);
463 err
= udf_add_aext(inode
, last_pos
, &last_ext
->extLocation
,
464 last_ext
->extLength
, 1);
471 /* Do we have some preallocated blocks saved? */
473 err
= udf_add_aext(inode
, last_pos
, &prealloc_loc
,
477 last_ext
->extLocation
= prealloc_loc
;
478 last_ext
->extLength
= prealloc_len
;
482 /* last_pos should point to the last written extent... */
483 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
484 last_pos
->offset
-= sizeof(struct short_ad
);
485 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
486 last_pos
->offset
-= sizeof(struct long_ad
);
493 static int udf_extend_file(struct inode
*inode
, loff_t newsize
)
496 struct extent_position epos
;
497 struct kernel_lb_addr eloc
;
500 struct super_block
*sb
= inode
->i_sb
;
501 sector_t first_block
= newsize
>> sb
->s_blocksize_bits
, offset
;
503 struct udf_inode_info
*iinfo
= UDF_I(inode
);
504 struct kernel_long_ad extent
;
507 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
508 adsize
= sizeof(struct short_ad
);
509 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
510 adsize
= sizeof(struct long_ad
);
514 etype
= inode_bmap(inode
, first_block
, &epos
, &eloc
, &elen
, &offset
);
516 /* File has extent covering the new size (could happen when extending
517 * inside a block)? */
520 if (newsize
& (sb
->s_blocksize
- 1))
522 /* Extended file just to the boundary of the last file block? */
526 /* Truncate is extending the file by 'offset' blocks */
527 if ((!epos
.bh
&& epos
.offset
== udf_file_entry_alloc_offset(inode
)) ||
528 (epos
.bh
&& epos
.offset
== sizeof(struct allocExtDesc
))) {
529 /* File has no extents at all or has empty last
530 * indirect extent! Create a fake extent... */
531 extent
.extLocation
.logicalBlockNum
= 0;
532 extent
.extLocation
.partitionReferenceNum
= 0;
533 extent
.extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
;
535 epos
.offset
-= adsize
;
536 etype
= udf_next_aext(inode
, &epos
, &extent
.extLocation
,
537 &extent
.extLength
, 0);
538 extent
.extLength
|= etype
<< 30;
540 err
= udf_do_extend_file(inode
, &epos
, &extent
, offset
);
544 iinfo
->i_lenExtents
= newsize
;
550 static struct buffer_head
*inode_getblk(struct inode
*inode
, sector_t block
,
551 int *err
, sector_t
*phys
, int *new)
553 static sector_t last_block
;
554 struct buffer_head
*result
= NULL
;
555 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
];
556 struct extent_position prev_epos
, cur_epos
, next_epos
;
557 int count
= 0, startnum
= 0, endnum
= 0;
558 uint32_t elen
= 0, tmpelen
;
559 struct kernel_lb_addr eloc
, tmpeloc
;
561 loff_t lbcount
= 0, b_off
= 0;
562 uint32_t newblocknum
, newblock
;
565 struct udf_inode_info
*iinfo
= UDF_I(inode
);
566 int goal
= 0, pgoal
= iinfo
->i_location
.logicalBlockNum
;
569 prev_epos
.offset
= udf_file_entry_alloc_offset(inode
);
570 prev_epos
.block
= iinfo
->i_location
;
572 cur_epos
= next_epos
= prev_epos
;
573 b_off
= (loff_t
)block
<< inode
->i_sb
->s_blocksize_bits
;
575 /* find the extent which contains the block we are looking for.
576 alternate between laarr[0] and laarr[1] for locations of the
577 current extent, and the previous extent */
579 if (prev_epos
.bh
!= cur_epos
.bh
) {
580 brelse(prev_epos
.bh
);
582 prev_epos
.bh
= cur_epos
.bh
;
584 if (cur_epos
.bh
!= next_epos
.bh
) {
586 get_bh(next_epos
.bh
);
587 cur_epos
.bh
= next_epos
.bh
;
592 prev_epos
.block
= cur_epos
.block
;
593 cur_epos
.block
= next_epos
.block
;
595 prev_epos
.offset
= cur_epos
.offset
;
596 cur_epos
.offset
= next_epos
.offset
;
598 etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 1);
604 laarr
[c
].extLength
= (etype
<< 30) | elen
;
605 laarr
[c
].extLocation
= eloc
;
607 if (etype
!= (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
608 pgoal
= eloc
.logicalBlockNum
+
609 ((elen
+ inode
->i_sb
->s_blocksize
- 1) >>
610 inode
->i_sb
->s_blocksize_bits
);
613 } while (lbcount
+ elen
<= b_off
);
616 offset
= b_off
>> inode
->i_sb
->s_blocksize_bits
;
618 * Move prev_epos and cur_epos into indirect extent if we are at
621 udf_next_aext(inode
, &prev_epos
, &tmpeloc
, &tmpelen
, 0);
622 udf_next_aext(inode
, &cur_epos
, &tmpeloc
, &tmpelen
, 0);
624 /* if the extent is allocated and recorded, return the block
625 if the extent is not a multiple of the blocksize, round up */
627 if (etype
== (EXT_RECORDED_ALLOCATED
>> 30)) {
628 if (elen
& (inode
->i_sb
->s_blocksize
- 1)) {
629 elen
= EXT_RECORDED_ALLOCATED
|
630 ((elen
+ inode
->i_sb
->s_blocksize
- 1) &
631 ~(inode
->i_sb
->s_blocksize
- 1));
632 udf_write_aext(inode
, &cur_epos
, &eloc
, elen
, 1);
634 brelse(prev_epos
.bh
);
636 brelse(next_epos
.bh
);
637 newblock
= udf_get_lb_pblock(inode
->i_sb
, &eloc
, offset
);
643 /* Are we beyond EOF? */
652 /* Create a fake extent when there's not one */
653 memset(&laarr
[0].extLocation
, 0x00,
654 sizeof(struct kernel_lb_addr
));
655 laarr
[0].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
;
656 /* Will udf_do_extend_file() create real extent from
658 startnum
= (offset
> 0);
660 /* Create extents for the hole between EOF and offset */
661 ret
= udf_do_extend_file(inode
, &prev_epos
, laarr
, offset
);
663 brelse(prev_epos
.bh
);
665 brelse(next_epos
.bh
);
672 /* We are not covered by a preallocated extent? */
673 if ((laarr
[0].extLength
& UDF_EXTENT_FLAG_MASK
) !=
674 EXT_NOT_RECORDED_ALLOCATED
) {
675 /* Is there any real extent? - otherwise we overwrite
679 laarr
[c
].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
680 inode
->i_sb
->s_blocksize
;
681 memset(&laarr
[c
].extLocation
, 0x00,
682 sizeof(struct kernel_lb_addr
));
689 endnum
= startnum
= ((count
> 2) ? 2 : count
);
691 /* if the current extent is in position 0,
692 swap it with the previous */
693 if (!c
&& count
!= 1) {
700 /* if the current block is located in an extent,
701 read the next extent */
702 etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 0);
704 laarr
[c
+ 1].extLength
= (etype
<< 30) | elen
;
705 laarr
[c
+ 1].extLocation
= eloc
;
713 /* if the current extent is not recorded but allocated, get the
714 * block in the extent corresponding to the requested block */
715 if ((laarr
[c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30))
716 newblocknum
= laarr
[c
].extLocation
.logicalBlockNum
+ offset
;
717 else { /* otherwise, allocate a new block */
718 if (iinfo
->i_next_alloc_block
== block
)
719 goal
= iinfo
->i_next_alloc_goal
;
722 if (!(goal
= pgoal
)) /* XXX: what was intended here? */
723 goal
= iinfo
->i_location
.logicalBlockNum
+ 1;
726 newblocknum
= udf_new_block(inode
->i_sb
, inode
,
727 iinfo
->i_location
.partitionReferenceNum
,
730 brelse(prev_epos
.bh
);
734 iinfo
->i_lenExtents
+= inode
->i_sb
->s_blocksize
;
737 /* if the extent the requsted block is located in contains multiple
738 * blocks, split the extent into at most three extents. blocks prior
739 * to requested block, requested block, and blocks after requested
741 udf_split_extents(inode
, &c
, offset
, newblocknum
, laarr
, &endnum
);
743 #ifdef UDF_PREALLOCATE
744 /* We preallocate blocks only for regular files. It also makes sense
745 * for directories but there's a problem when to drop the
746 * preallocation. We might use some delayed work for that but I feel
747 * it's overengineering for a filesystem like UDF. */
748 if (S_ISREG(inode
->i_mode
))
749 udf_prealloc_extents(inode
, c
, lastblock
, laarr
, &endnum
);
752 /* merge any continuous blocks in laarr */
753 udf_merge_extents(inode
, laarr
, &endnum
);
755 /* write back the new extents, inserting new extents if the new number
756 * of extents is greater than the old number, and deleting extents if
757 * the new number of extents is less than the old number */
758 udf_update_extents(inode
, laarr
, startnum
, endnum
, &prev_epos
);
760 brelse(prev_epos
.bh
);
762 newblock
= udf_get_pblock(inode
->i_sb
, newblocknum
,
763 iinfo
->i_location
.partitionReferenceNum
, 0);
769 iinfo
->i_next_alloc_block
= block
;
770 iinfo
->i_next_alloc_goal
= newblocknum
;
771 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
774 udf_sync_inode(inode
);
776 mark_inode_dirty(inode
);
781 static void udf_split_extents(struct inode
*inode
, int *c
, int offset
,
783 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
786 unsigned long blocksize
= inode
->i_sb
->s_blocksize
;
787 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
789 if ((laarr
[*c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30) ||
790 (laarr
[*c
].extLength
>> 30) ==
791 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
793 int blen
= ((laarr
[curr
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
794 blocksize
- 1) >> blocksize_bits
;
795 int8_t etype
= (laarr
[curr
].extLength
>> 30);
799 else if (!offset
|| blen
== offset
+ 1) {
800 laarr
[curr
+ 2] = laarr
[curr
+ 1];
801 laarr
[curr
+ 1] = laarr
[curr
];
803 laarr
[curr
+ 3] = laarr
[curr
+ 1];
804 laarr
[curr
+ 2] = laarr
[curr
+ 1] = laarr
[curr
];
808 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
809 udf_free_blocks(inode
->i_sb
, inode
,
810 &laarr
[curr
].extLocation
,
812 laarr
[curr
].extLength
=
813 EXT_NOT_RECORDED_NOT_ALLOCATED
|
814 (offset
<< blocksize_bits
);
815 laarr
[curr
].extLocation
.logicalBlockNum
= 0;
816 laarr
[curr
].extLocation
.
817 partitionReferenceNum
= 0;
819 laarr
[curr
].extLength
= (etype
<< 30) |
820 (offset
<< blocksize_bits
);
826 laarr
[curr
].extLocation
.logicalBlockNum
= newblocknum
;
827 if (etype
== (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
828 laarr
[curr
].extLocation
.partitionReferenceNum
=
829 UDF_I(inode
)->i_location
.partitionReferenceNum
;
830 laarr
[curr
].extLength
= EXT_RECORDED_ALLOCATED
|
834 if (blen
!= offset
+ 1) {
835 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30))
836 laarr
[curr
].extLocation
.logicalBlockNum
+=
838 laarr
[curr
].extLength
= (etype
<< 30) |
839 ((blen
- (offset
+ 1)) << blocksize_bits
);
846 static void udf_prealloc_extents(struct inode
*inode
, int c
, int lastblock
,
847 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
850 int start
, length
= 0, currlength
= 0, i
;
852 if (*endnum
>= (c
+ 1)) {
858 if ((laarr
[c
+ 1].extLength
>> 30) ==
859 (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
861 length
= currlength
=
862 (((laarr
[c
+ 1].extLength
&
863 UDF_EXTENT_LENGTH_MASK
) +
864 inode
->i_sb
->s_blocksize
- 1) >>
865 inode
->i_sb
->s_blocksize_bits
);
870 for (i
= start
+ 1; i
<= *endnum
; i
++) {
873 length
+= UDF_DEFAULT_PREALLOC_BLOCKS
;
874 } else if ((laarr
[i
].extLength
>> 30) ==
875 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
876 length
+= (((laarr
[i
].extLength
&
877 UDF_EXTENT_LENGTH_MASK
) +
878 inode
->i_sb
->s_blocksize
- 1) >>
879 inode
->i_sb
->s_blocksize_bits
);
885 int next
= laarr
[start
].extLocation
.logicalBlockNum
+
886 (((laarr
[start
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
887 inode
->i_sb
->s_blocksize
- 1) >>
888 inode
->i_sb
->s_blocksize_bits
);
889 int numalloc
= udf_prealloc_blocks(inode
->i_sb
, inode
,
890 laarr
[start
].extLocation
.partitionReferenceNum
,
891 next
, (UDF_DEFAULT_PREALLOC_BLOCKS
> length
?
892 length
: UDF_DEFAULT_PREALLOC_BLOCKS
) -
895 if (start
== (c
+ 1))
896 laarr
[start
].extLength
+=
898 inode
->i_sb
->s_blocksize_bits
);
900 memmove(&laarr
[c
+ 2], &laarr
[c
+ 1],
901 sizeof(struct long_ad
) * (*endnum
- (c
+ 1)));
903 laarr
[c
+ 1].extLocation
.logicalBlockNum
= next
;
904 laarr
[c
+ 1].extLocation
.partitionReferenceNum
=
905 laarr
[c
].extLocation
.
906 partitionReferenceNum
;
907 laarr
[c
+ 1].extLength
=
908 EXT_NOT_RECORDED_ALLOCATED
|
910 inode
->i_sb
->s_blocksize_bits
);
914 for (i
= start
+ 1; numalloc
&& i
< *endnum
; i
++) {
915 int elen
= ((laarr
[i
].extLength
&
916 UDF_EXTENT_LENGTH_MASK
) +
917 inode
->i_sb
->s_blocksize
- 1) >>
918 inode
->i_sb
->s_blocksize_bits
;
920 if (elen
> numalloc
) {
921 laarr
[i
].extLength
-=
923 inode
->i_sb
->s_blocksize_bits
);
927 if (*endnum
> (i
+ 1))
930 sizeof(struct long_ad
) *
931 (*endnum
- (i
+ 1)));
936 UDF_I(inode
)->i_lenExtents
+=
937 numalloc
<< inode
->i_sb
->s_blocksize_bits
;
942 static void udf_merge_extents(struct inode
*inode
,
943 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
947 unsigned long blocksize
= inode
->i_sb
->s_blocksize
;
948 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
950 for (i
= 0; i
< (*endnum
- 1); i
++) {
951 struct kernel_long_ad
*li
/*l[i]*/ = &laarr
[i
];
952 struct kernel_long_ad
*lip1
/*l[i plus 1]*/ = &laarr
[i
+ 1];
954 if (((li
->extLength
>> 30) == (lip1
->extLength
>> 30)) &&
955 (((li
->extLength
>> 30) ==
956 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) ||
957 ((lip1
->extLocation
.logicalBlockNum
-
958 li
->extLocation
.logicalBlockNum
) ==
959 (((li
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
960 blocksize
- 1) >> blocksize_bits
)))) {
962 if (((li
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
963 (lip1
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
964 blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
965 lip1
->extLength
= (lip1
->extLength
-
967 UDF_EXTENT_LENGTH_MASK
) +
968 UDF_EXTENT_LENGTH_MASK
) &
970 li
->extLength
= (li
->extLength
&
971 UDF_EXTENT_FLAG_MASK
) +
972 (UDF_EXTENT_LENGTH_MASK
+ 1) -
974 lip1
->extLocation
.logicalBlockNum
=
975 li
->extLocation
.logicalBlockNum
+
977 UDF_EXTENT_LENGTH_MASK
) >>
980 li
->extLength
= lip1
->extLength
+
982 UDF_EXTENT_LENGTH_MASK
) +
983 blocksize
- 1) & ~(blocksize
- 1));
984 if (*endnum
> (i
+ 2))
985 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
986 sizeof(struct long_ad
) *
987 (*endnum
- (i
+ 2)));
991 } else if (((li
->extLength
>> 30) ==
992 (EXT_NOT_RECORDED_ALLOCATED
>> 30)) &&
993 ((lip1
->extLength
>> 30) ==
994 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))) {
995 udf_free_blocks(inode
->i_sb
, inode
, &li
->extLocation
, 0,
997 UDF_EXTENT_LENGTH_MASK
) +
998 blocksize
- 1) >> blocksize_bits
);
999 li
->extLocation
.logicalBlockNum
= 0;
1000 li
->extLocation
.partitionReferenceNum
= 0;
1002 if (((li
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1003 (lip1
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1004 blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
1005 lip1
->extLength
= (lip1
->extLength
-
1007 UDF_EXTENT_LENGTH_MASK
) +
1008 UDF_EXTENT_LENGTH_MASK
) &
1010 li
->extLength
= (li
->extLength
&
1011 UDF_EXTENT_FLAG_MASK
) +
1012 (UDF_EXTENT_LENGTH_MASK
+ 1) -
1015 li
->extLength
= lip1
->extLength
+
1017 UDF_EXTENT_LENGTH_MASK
) +
1018 blocksize
- 1) & ~(blocksize
- 1));
1019 if (*endnum
> (i
+ 2))
1020 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
1021 sizeof(struct long_ad
) *
1022 (*endnum
- (i
+ 2)));
1026 } else if ((li
->extLength
>> 30) ==
1027 (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
1028 udf_free_blocks(inode
->i_sb
, inode
,
1029 &li
->extLocation
, 0,
1031 UDF_EXTENT_LENGTH_MASK
) +
1032 blocksize
- 1) >> blocksize_bits
);
1033 li
->extLocation
.logicalBlockNum
= 0;
1034 li
->extLocation
.partitionReferenceNum
= 0;
1035 li
->extLength
= (li
->extLength
&
1036 UDF_EXTENT_LENGTH_MASK
) |
1037 EXT_NOT_RECORDED_NOT_ALLOCATED
;
1042 static void udf_update_extents(struct inode
*inode
,
1043 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
1044 int startnum
, int endnum
,
1045 struct extent_position
*epos
)
1048 struct kernel_lb_addr tmploc
;
1051 if (startnum
> endnum
) {
1052 for (i
= 0; i
< (startnum
- endnum
); i
++)
1053 udf_delete_aext(inode
, *epos
, laarr
[i
].extLocation
,
1054 laarr
[i
].extLength
);
1055 } else if (startnum
< endnum
) {
1056 for (i
= 0; i
< (endnum
- startnum
); i
++) {
1057 udf_insert_aext(inode
, *epos
, laarr
[i
].extLocation
,
1058 laarr
[i
].extLength
);
1059 udf_next_aext(inode
, epos
, &laarr
[i
].extLocation
,
1060 &laarr
[i
].extLength
, 1);
1065 for (i
= start
; i
< endnum
; i
++) {
1066 udf_next_aext(inode
, epos
, &tmploc
, &tmplen
, 0);
1067 udf_write_aext(inode
, epos
, &laarr
[i
].extLocation
,
1068 laarr
[i
].extLength
, 1);
1072 struct buffer_head
*udf_bread(struct inode
*inode
, int block
,
1073 int create
, int *err
)
1075 struct buffer_head
*bh
= NULL
;
1077 bh
= udf_getblk(inode
, block
, create
, err
);
1081 if (buffer_uptodate(bh
))
1084 ll_rw_block(READ
, 1, &bh
);
1087 if (buffer_uptodate(bh
))
1095 int udf_setsize(struct inode
*inode
, loff_t newsize
)
1098 struct udf_inode_info
*iinfo
;
1099 int bsize
= 1 << inode
->i_blkbits
;
1101 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1102 S_ISLNK(inode
->i_mode
)))
1104 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1107 iinfo
= UDF_I(inode
);
1108 if (newsize
> inode
->i_size
) {
1109 down_write(&iinfo
->i_data_sem
);
1110 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
) {
1112 (udf_file_entry_alloc_offset(inode
) + newsize
)) {
1113 err
= udf_expand_file_adinicb(inode
);
1115 up_write(&iinfo
->i_data_sem
);
1119 iinfo
->i_lenAlloc
= newsize
;
1121 err
= udf_extend_file(inode
, newsize
);
1123 up_write(&iinfo
->i_data_sem
);
1126 truncate_setsize(inode
, newsize
);
1127 up_write(&iinfo
->i_data_sem
);
1129 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
) {
1130 down_write(&iinfo
->i_data_sem
);
1131 memset(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
+ newsize
,
1132 0x00, bsize
- newsize
-
1133 udf_file_entry_alloc_offset(inode
));
1134 iinfo
->i_lenAlloc
= newsize
;
1135 truncate_setsize(inode
, newsize
);
1136 up_write(&iinfo
->i_data_sem
);
1139 err
= block_truncate_page(inode
->i_mapping
, newsize
,
1143 down_write(&iinfo
->i_data_sem
);
1144 truncate_setsize(inode
, newsize
);
1145 udf_truncate_extents(inode
);
1146 up_write(&iinfo
->i_data_sem
);
1149 inode
->i_mtime
= inode
->i_ctime
= current_fs_time(inode
->i_sb
);
1151 udf_sync_inode(inode
);
1153 mark_inode_dirty(inode
);
1157 static void __udf_read_inode(struct inode
*inode
)
1159 struct buffer_head
*bh
= NULL
;
1160 struct fileEntry
*fe
;
1162 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1165 * Set defaults, but the inode is still incomplete!
1166 * Note: get_new_inode() sets the following on a new inode:
1169 * i_flags = sb->s_flags
1171 * clean_inode(): zero fills and sets
1176 bh
= udf_read_ptagged(inode
->i_sb
, &iinfo
->i_location
, 0, &ident
);
1178 udf_err(inode
->i_sb
, "(ino %ld) failed !bh\n", inode
->i_ino
);
1179 make_bad_inode(inode
);
1183 if (ident
!= TAG_IDENT_FE
&& ident
!= TAG_IDENT_EFE
&&
1184 ident
!= TAG_IDENT_USE
) {
1185 udf_err(inode
->i_sb
, "(ino %ld) failed ident=%d\n",
1186 inode
->i_ino
, ident
);
1188 make_bad_inode(inode
);
1192 fe
= (struct fileEntry
*)bh
->b_data
;
1194 if (fe
->icbTag
.strategyType
== cpu_to_le16(4096)) {
1195 struct buffer_head
*ibh
;
1197 ibh
= udf_read_ptagged(inode
->i_sb
, &iinfo
->i_location
, 1,
1199 if (ident
== TAG_IDENT_IE
&& ibh
) {
1200 struct buffer_head
*nbh
= NULL
;
1201 struct kernel_lb_addr loc
;
1202 struct indirectEntry
*ie
;
1204 ie
= (struct indirectEntry
*)ibh
->b_data
;
1205 loc
= lelb_to_cpu(ie
->indirectICB
.extLocation
);
1207 if (ie
->indirectICB
.extLength
&&
1208 (nbh
= udf_read_ptagged(inode
->i_sb
, &loc
, 0,
1210 if (ident
== TAG_IDENT_FE
||
1211 ident
== TAG_IDENT_EFE
) {
1212 memcpy(&iinfo
->i_location
,
1214 sizeof(struct kernel_lb_addr
));
1218 __udf_read_inode(inode
);
1225 } else if (fe
->icbTag
.strategyType
!= cpu_to_le16(4)) {
1226 udf_err(inode
->i_sb
, "unsupported strategy type: %d\n",
1227 le16_to_cpu(fe
->icbTag
.strategyType
));
1229 make_bad_inode(inode
);
1232 udf_fill_inode(inode
, bh
);
1237 static void udf_fill_inode(struct inode
*inode
, struct buffer_head
*bh
)
1239 struct fileEntry
*fe
;
1240 struct extendedFileEntry
*efe
;
1242 struct udf_sb_info
*sbi
= UDF_SB(inode
->i_sb
);
1243 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1244 unsigned int link_count
;
1246 fe
= (struct fileEntry
*)bh
->b_data
;
1247 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1249 if (fe
->icbTag
.strategyType
== cpu_to_le16(4))
1250 iinfo
->i_strat4096
= 0;
1251 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1252 iinfo
->i_strat4096
= 1;
1254 iinfo
->i_alloc_type
= le16_to_cpu(fe
->icbTag
.flags
) &
1255 ICBTAG_FLAG_AD_MASK
;
1256 iinfo
->i_unique
= 0;
1257 iinfo
->i_lenEAttr
= 0;
1258 iinfo
->i_lenExtents
= 0;
1259 iinfo
->i_lenAlloc
= 0;
1260 iinfo
->i_next_alloc_block
= 0;
1261 iinfo
->i_next_alloc_goal
= 0;
1262 if (fe
->descTag
.tagIdent
== cpu_to_le16(TAG_IDENT_EFE
)) {
1265 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
-
1266 sizeof(struct extendedFileEntry
))) {
1267 make_bad_inode(inode
);
1270 memcpy(iinfo
->i_ext
.i_data
,
1271 bh
->b_data
+ sizeof(struct extendedFileEntry
),
1272 inode
->i_sb
->s_blocksize
-
1273 sizeof(struct extendedFileEntry
));
1274 } else if (fe
->descTag
.tagIdent
== cpu_to_le16(TAG_IDENT_FE
)) {
1277 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
-
1278 sizeof(struct fileEntry
))) {
1279 make_bad_inode(inode
);
1282 memcpy(iinfo
->i_ext
.i_data
,
1283 bh
->b_data
+ sizeof(struct fileEntry
),
1284 inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
));
1285 } else if (fe
->descTag
.tagIdent
== cpu_to_le16(TAG_IDENT_USE
)) {
1288 iinfo
->i_lenAlloc
= le32_to_cpu(
1289 ((struct unallocSpaceEntry
*)bh
->b_data
)->
1291 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
-
1292 sizeof(struct unallocSpaceEntry
))) {
1293 make_bad_inode(inode
);
1296 memcpy(iinfo
->i_ext
.i_data
,
1297 bh
->b_data
+ sizeof(struct unallocSpaceEntry
),
1298 inode
->i_sb
->s_blocksize
-
1299 sizeof(struct unallocSpaceEntry
));
1303 read_lock(&sbi
->s_cred_lock
);
1304 inode
->i_uid
= le32_to_cpu(fe
->uid
);
1305 if (inode
->i_uid
== -1 ||
1306 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_IGNORE
) ||
1307 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_SET
))
1308 inode
->i_uid
= UDF_SB(inode
->i_sb
)->s_uid
;
1310 inode
->i_gid
= le32_to_cpu(fe
->gid
);
1311 if (inode
->i_gid
== -1 ||
1312 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_IGNORE
) ||
1313 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_SET
))
1314 inode
->i_gid
= UDF_SB(inode
->i_sb
)->s_gid
;
1316 if (fe
->icbTag
.fileType
!= ICBTAG_FILE_TYPE_DIRECTORY
&&
1317 sbi
->s_fmode
!= UDF_INVALID_MODE
)
1318 inode
->i_mode
= sbi
->s_fmode
;
1319 else if (fe
->icbTag
.fileType
== ICBTAG_FILE_TYPE_DIRECTORY
&&
1320 sbi
->s_dmode
!= UDF_INVALID_MODE
)
1321 inode
->i_mode
= sbi
->s_dmode
;
1323 inode
->i_mode
= udf_convert_permissions(fe
);
1324 inode
->i_mode
&= ~sbi
->s_umask
;
1325 read_unlock(&sbi
->s_cred_lock
);
1327 link_count
= le16_to_cpu(fe
->fileLinkCount
);
1330 set_nlink(inode
, link_count
);
1332 inode
->i_size
= le64_to_cpu(fe
->informationLength
);
1333 iinfo
->i_lenExtents
= inode
->i_size
;
1335 if (iinfo
->i_efe
== 0) {
1336 inode
->i_blocks
= le64_to_cpu(fe
->logicalBlocksRecorded
) <<
1337 (inode
->i_sb
->s_blocksize_bits
- 9);
1339 if (!udf_disk_stamp_to_time(&inode
->i_atime
, fe
->accessTime
))
1340 inode
->i_atime
= sbi
->s_record_time
;
1342 if (!udf_disk_stamp_to_time(&inode
->i_mtime
,
1343 fe
->modificationTime
))
1344 inode
->i_mtime
= sbi
->s_record_time
;
1346 if (!udf_disk_stamp_to_time(&inode
->i_ctime
, fe
->attrTime
))
1347 inode
->i_ctime
= sbi
->s_record_time
;
1349 iinfo
->i_unique
= le64_to_cpu(fe
->uniqueID
);
1350 iinfo
->i_lenEAttr
= le32_to_cpu(fe
->lengthExtendedAttr
);
1351 iinfo
->i_lenAlloc
= le32_to_cpu(fe
->lengthAllocDescs
);
1352 offset
= sizeof(struct fileEntry
) + iinfo
->i_lenEAttr
;
1354 inode
->i_blocks
= le64_to_cpu(efe
->logicalBlocksRecorded
) <<
1355 (inode
->i_sb
->s_blocksize_bits
- 9);
1357 if (!udf_disk_stamp_to_time(&inode
->i_atime
, efe
->accessTime
))
1358 inode
->i_atime
= sbi
->s_record_time
;
1360 if (!udf_disk_stamp_to_time(&inode
->i_mtime
,
1361 efe
->modificationTime
))
1362 inode
->i_mtime
= sbi
->s_record_time
;
1364 if (!udf_disk_stamp_to_time(&iinfo
->i_crtime
, efe
->createTime
))
1365 iinfo
->i_crtime
= sbi
->s_record_time
;
1367 if (!udf_disk_stamp_to_time(&inode
->i_ctime
, efe
->attrTime
))
1368 inode
->i_ctime
= sbi
->s_record_time
;
1370 iinfo
->i_unique
= le64_to_cpu(efe
->uniqueID
);
1371 iinfo
->i_lenEAttr
= le32_to_cpu(efe
->lengthExtendedAttr
);
1372 iinfo
->i_lenAlloc
= le32_to_cpu(efe
->lengthAllocDescs
);
1373 offset
= sizeof(struct extendedFileEntry
) +
1377 switch (fe
->icbTag
.fileType
) {
1378 case ICBTAG_FILE_TYPE_DIRECTORY
:
1379 inode
->i_op
= &udf_dir_inode_operations
;
1380 inode
->i_fop
= &udf_dir_operations
;
1381 inode
->i_mode
|= S_IFDIR
;
1384 case ICBTAG_FILE_TYPE_REALTIME
:
1385 case ICBTAG_FILE_TYPE_REGULAR
:
1386 case ICBTAG_FILE_TYPE_UNDEF
:
1387 case ICBTAG_FILE_TYPE_VAT20
:
1388 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
)
1389 inode
->i_data
.a_ops
= &udf_adinicb_aops
;
1391 inode
->i_data
.a_ops
= &udf_aops
;
1392 inode
->i_op
= &udf_file_inode_operations
;
1393 inode
->i_fop
= &udf_file_operations
;
1394 inode
->i_mode
|= S_IFREG
;
1396 case ICBTAG_FILE_TYPE_BLOCK
:
1397 inode
->i_mode
|= S_IFBLK
;
1399 case ICBTAG_FILE_TYPE_CHAR
:
1400 inode
->i_mode
|= S_IFCHR
;
1402 case ICBTAG_FILE_TYPE_FIFO
:
1403 init_special_inode(inode
, inode
->i_mode
| S_IFIFO
, 0);
1405 case ICBTAG_FILE_TYPE_SOCKET
:
1406 init_special_inode(inode
, inode
->i_mode
| S_IFSOCK
, 0);
1408 case ICBTAG_FILE_TYPE_SYMLINK
:
1409 inode
->i_data
.a_ops
= &udf_symlink_aops
;
1410 inode
->i_op
= &udf_symlink_inode_operations
;
1411 inode
->i_mode
= S_IFLNK
| S_IRWXUGO
;
1413 case ICBTAG_FILE_TYPE_MAIN
:
1414 udf_debug("METADATA FILE-----\n");
1416 case ICBTAG_FILE_TYPE_MIRROR
:
1417 udf_debug("METADATA MIRROR FILE-----\n");
1419 case ICBTAG_FILE_TYPE_BITMAP
:
1420 udf_debug("METADATA BITMAP FILE-----\n");
1423 udf_err(inode
->i_sb
, "(ino %ld) failed unknown file type=%d\n",
1424 inode
->i_ino
, fe
->icbTag
.fileType
);
1425 make_bad_inode(inode
);
1428 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1429 struct deviceSpec
*dsea
=
1430 (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1432 init_special_inode(inode
, inode
->i_mode
,
1433 MKDEV(le32_to_cpu(dsea
->majorDeviceIdent
),
1434 le32_to_cpu(dsea
->minorDeviceIdent
)));
1435 /* Developer ID ??? */
1437 make_bad_inode(inode
);
1441 static int udf_alloc_i_data(struct inode
*inode
, size_t size
)
1443 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1444 iinfo
->i_ext
.i_data
= kmalloc(size
, GFP_KERNEL
);
1446 if (!iinfo
->i_ext
.i_data
) {
1447 udf_err(inode
->i_sb
, "(ino %ld) no free memory\n",
1455 static mode_t
udf_convert_permissions(struct fileEntry
*fe
)
1458 uint32_t permissions
;
1461 permissions
= le32_to_cpu(fe
->permissions
);
1462 flags
= le16_to_cpu(fe
->icbTag
.flags
);
1464 mode
= ((permissions
) & S_IRWXO
) |
1465 ((permissions
>> 2) & S_IRWXG
) |
1466 ((permissions
>> 4) & S_IRWXU
) |
1467 ((flags
& ICBTAG_FLAG_SETUID
) ? S_ISUID
: 0) |
1468 ((flags
& ICBTAG_FLAG_SETGID
) ? S_ISGID
: 0) |
1469 ((flags
& ICBTAG_FLAG_STICKY
) ? S_ISVTX
: 0);
1474 int udf_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1476 return udf_update_inode(inode
, wbc
->sync_mode
== WB_SYNC_ALL
);
1479 static int udf_sync_inode(struct inode
*inode
)
1481 return udf_update_inode(inode
, 1);
1484 static int udf_update_inode(struct inode
*inode
, int do_sync
)
1486 struct buffer_head
*bh
= NULL
;
1487 struct fileEntry
*fe
;
1488 struct extendedFileEntry
*efe
;
1493 struct udf_sb_info
*sbi
= UDF_SB(inode
->i_sb
);
1494 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
1495 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1497 bh
= udf_tgetblk(inode
->i_sb
,
1498 udf_get_lb_pblock(inode
->i_sb
, &iinfo
->i_location
, 0));
1500 udf_debug("getblk failure\n");
1505 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1506 fe
= (struct fileEntry
*)bh
->b_data
;
1507 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1510 struct unallocSpaceEntry
*use
=
1511 (struct unallocSpaceEntry
*)bh
->b_data
;
1513 use
->lengthAllocDescs
= cpu_to_le32(iinfo
->i_lenAlloc
);
1514 memcpy(bh
->b_data
+ sizeof(struct unallocSpaceEntry
),
1515 iinfo
->i_ext
.i_data
, inode
->i_sb
->s_blocksize
-
1516 sizeof(struct unallocSpaceEntry
));
1517 use
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_USE
);
1518 use
->descTag
.tagLocation
=
1519 cpu_to_le32(iinfo
->i_location
.logicalBlockNum
);
1520 crclen
= sizeof(struct unallocSpaceEntry
) +
1521 iinfo
->i_lenAlloc
- sizeof(struct tag
);
1522 use
->descTag
.descCRCLength
= cpu_to_le16(crclen
);
1523 use
->descTag
.descCRC
= cpu_to_le16(crc_itu_t(0, (char *)use
+
1526 use
->descTag
.tagChecksum
= udf_tag_checksum(&use
->descTag
);
1531 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_FORGET
))
1532 fe
->uid
= cpu_to_le32(-1);
1534 fe
->uid
= cpu_to_le32(inode
->i_uid
);
1536 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_FORGET
))
1537 fe
->gid
= cpu_to_le32(-1);
1539 fe
->gid
= cpu_to_le32(inode
->i_gid
);
1541 udfperms
= ((inode
->i_mode
& S_IRWXO
)) |
1542 ((inode
->i_mode
& S_IRWXG
) << 2) |
1543 ((inode
->i_mode
& S_IRWXU
) << 4);
1545 udfperms
|= (le32_to_cpu(fe
->permissions
) &
1546 (FE_PERM_O_DELETE
| FE_PERM_O_CHATTR
|
1547 FE_PERM_G_DELETE
| FE_PERM_G_CHATTR
|
1548 FE_PERM_U_DELETE
| FE_PERM_U_CHATTR
));
1549 fe
->permissions
= cpu_to_le32(udfperms
);
1551 if (S_ISDIR(inode
->i_mode
))
1552 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
- 1);
1554 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
);
1556 fe
->informationLength
= cpu_to_le64(inode
->i_size
);
1558 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1560 struct deviceSpec
*dsea
=
1561 (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1563 dsea
= (struct deviceSpec
*)
1564 udf_add_extendedattr(inode
,
1565 sizeof(struct deviceSpec
) +
1566 sizeof(struct regid
), 12, 0x3);
1567 dsea
->attrType
= cpu_to_le32(12);
1568 dsea
->attrSubtype
= 1;
1569 dsea
->attrLength
= cpu_to_le32(
1570 sizeof(struct deviceSpec
) +
1571 sizeof(struct regid
));
1572 dsea
->impUseLength
= cpu_to_le32(sizeof(struct regid
));
1574 eid
= (struct regid
*)dsea
->impUse
;
1575 memset(eid
, 0, sizeof(struct regid
));
1576 strcpy(eid
->ident
, UDF_ID_DEVELOPER
);
1577 eid
->identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1578 eid
->identSuffix
[1] = UDF_OS_ID_LINUX
;
1579 dsea
->majorDeviceIdent
= cpu_to_le32(imajor(inode
));
1580 dsea
->minorDeviceIdent
= cpu_to_le32(iminor(inode
));
1583 if (iinfo
->i_efe
== 0) {
1584 memcpy(bh
->b_data
+ sizeof(struct fileEntry
),
1585 iinfo
->i_ext
.i_data
,
1586 inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
));
1587 fe
->logicalBlocksRecorded
= cpu_to_le64(
1588 (inode
->i_blocks
+ (1 << (blocksize_bits
- 9)) - 1) >>
1589 (blocksize_bits
- 9));
1591 udf_time_to_disk_stamp(&fe
->accessTime
, inode
->i_atime
);
1592 udf_time_to_disk_stamp(&fe
->modificationTime
, inode
->i_mtime
);
1593 udf_time_to_disk_stamp(&fe
->attrTime
, inode
->i_ctime
);
1594 memset(&(fe
->impIdent
), 0, sizeof(struct regid
));
1595 strcpy(fe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1596 fe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1597 fe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1598 fe
->uniqueID
= cpu_to_le64(iinfo
->i_unique
);
1599 fe
->lengthExtendedAttr
= cpu_to_le32(iinfo
->i_lenEAttr
);
1600 fe
->lengthAllocDescs
= cpu_to_le32(iinfo
->i_lenAlloc
);
1601 fe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_FE
);
1602 crclen
= sizeof(struct fileEntry
);
1604 memcpy(bh
->b_data
+ sizeof(struct extendedFileEntry
),
1605 iinfo
->i_ext
.i_data
,
1606 inode
->i_sb
->s_blocksize
-
1607 sizeof(struct extendedFileEntry
));
1608 efe
->objectSize
= cpu_to_le64(inode
->i_size
);
1609 efe
->logicalBlocksRecorded
= cpu_to_le64(
1610 (inode
->i_blocks
+ (1 << (blocksize_bits
- 9)) - 1) >>
1611 (blocksize_bits
- 9));
1613 if (iinfo
->i_crtime
.tv_sec
> inode
->i_atime
.tv_sec
||
1614 (iinfo
->i_crtime
.tv_sec
== inode
->i_atime
.tv_sec
&&
1615 iinfo
->i_crtime
.tv_nsec
> inode
->i_atime
.tv_nsec
))
1616 iinfo
->i_crtime
= inode
->i_atime
;
1618 if (iinfo
->i_crtime
.tv_sec
> inode
->i_mtime
.tv_sec
||
1619 (iinfo
->i_crtime
.tv_sec
== inode
->i_mtime
.tv_sec
&&
1620 iinfo
->i_crtime
.tv_nsec
> inode
->i_mtime
.tv_nsec
))
1621 iinfo
->i_crtime
= inode
->i_mtime
;
1623 if (iinfo
->i_crtime
.tv_sec
> inode
->i_ctime
.tv_sec
||
1624 (iinfo
->i_crtime
.tv_sec
== inode
->i_ctime
.tv_sec
&&
1625 iinfo
->i_crtime
.tv_nsec
> inode
->i_ctime
.tv_nsec
))
1626 iinfo
->i_crtime
= inode
->i_ctime
;
1628 udf_time_to_disk_stamp(&efe
->accessTime
, inode
->i_atime
);
1629 udf_time_to_disk_stamp(&efe
->modificationTime
, inode
->i_mtime
);
1630 udf_time_to_disk_stamp(&efe
->createTime
, iinfo
->i_crtime
);
1631 udf_time_to_disk_stamp(&efe
->attrTime
, inode
->i_ctime
);
1633 memset(&(efe
->impIdent
), 0, sizeof(struct regid
));
1634 strcpy(efe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1635 efe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1636 efe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1637 efe
->uniqueID
= cpu_to_le64(iinfo
->i_unique
);
1638 efe
->lengthExtendedAttr
= cpu_to_le32(iinfo
->i_lenEAttr
);
1639 efe
->lengthAllocDescs
= cpu_to_le32(iinfo
->i_lenAlloc
);
1640 efe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_EFE
);
1641 crclen
= sizeof(struct extendedFileEntry
);
1643 if (iinfo
->i_strat4096
) {
1644 fe
->icbTag
.strategyType
= cpu_to_le16(4096);
1645 fe
->icbTag
.strategyParameter
= cpu_to_le16(1);
1646 fe
->icbTag
.numEntries
= cpu_to_le16(2);
1648 fe
->icbTag
.strategyType
= cpu_to_le16(4);
1649 fe
->icbTag
.numEntries
= cpu_to_le16(1);
1652 if (S_ISDIR(inode
->i_mode
))
1653 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_DIRECTORY
;
1654 else if (S_ISREG(inode
->i_mode
))
1655 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_REGULAR
;
1656 else if (S_ISLNK(inode
->i_mode
))
1657 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SYMLINK
;
1658 else if (S_ISBLK(inode
->i_mode
))
1659 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_BLOCK
;
1660 else if (S_ISCHR(inode
->i_mode
))
1661 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_CHAR
;
1662 else if (S_ISFIFO(inode
->i_mode
))
1663 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_FIFO
;
1664 else if (S_ISSOCK(inode
->i_mode
))
1665 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SOCKET
;
1667 icbflags
= iinfo
->i_alloc_type
|
1668 ((inode
->i_mode
& S_ISUID
) ? ICBTAG_FLAG_SETUID
: 0) |
1669 ((inode
->i_mode
& S_ISGID
) ? ICBTAG_FLAG_SETGID
: 0) |
1670 ((inode
->i_mode
& S_ISVTX
) ? ICBTAG_FLAG_STICKY
: 0) |
1671 (le16_to_cpu(fe
->icbTag
.flags
) &
1672 ~(ICBTAG_FLAG_AD_MASK
| ICBTAG_FLAG_SETUID
|
1673 ICBTAG_FLAG_SETGID
| ICBTAG_FLAG_STICKY
));
1675 fe
->icbTag
.flags
= cpu_to_le16(icbflags
);
1676 if (sbi
->s_udfrev
>= 0x0200)
1677 fe
->descTag
.descVersion
= cpu_to_le16(3);
1679 fe
->descTag
.descVersion
= cpu_to_le16(2);
1680 fe
->descTag
.tagSerialNum
= cpu_to_le16(sbi
->s_serial_number
);
1681 fe
->descTag
.tagLocation
= cpu_to_le32(
1682 iinfo
->i_location
.logicalBlockNum
);
1683 crclen
+= iinfo
->i_lenEAttr
+ iinfo
->i_lenAlloc
- sizeof(struct tag
);
1684 fe
->descTag
.descCRCLength
= cpu_to_le16(crclen
);
1685 fe
->descTag
.descCRC
= cpu_to_le16(crc_itu_t(0, (char *)fe
+ sizeof(struct tag
),
1687 fe
->descTag
.tagChecksum
= udf_tag_checksum(&fe
->descTag
);
1690 set_buffer_uptodate(bh
);
1693 /* write the data blocks */
1694 mark_buffer_dirty(bh
);
1696 sync_dirty_buffer(bh
);
1697 if (buffer_write_io_error(bh
)) {
1698 udf_warn(inode
->i_sb
, "IO error syncing udf inode [%08lx]\n",
1708 struct inode
*udf_iget(struct super_block
*sb
, struct kernel_lb_addr
*ino
)
1710 unsigned long block
= udf_get_lb_pblock(sb
, ino
, 0);
1711 struct inode
*inode
= iget_locked(sb
, block
);
1716 if (inode
->i_state
& I_NEW
) {
1717 memcpy(&UDF_I(inode
)->i_location
, ino
, sizeof(struct kernel_lb_addr
));
1718 __udf_read_inode(inode
);
1719 unlock_new_inode(inode
);
1722 if (is_bad_inode(inode
))
1725 if (ino
->logicalBlockNum
>= UDF_SB(sb
)->
1726 s_partmaps
[ino
->partitionReferenceNum
].s_partition_len
) {
1727 udf_debug("block=%d, partition=%d out of range\n",
1728 ino
->logicalBlockNum
, ino
->partitionReferenceNum
);
1729 make_bad_inode(inode
);
1740 int udf_add_aext(struct inode
*inode
, struct extent_position
*epos
,
1741 struct kernel_lb_addr
*eloc
, uint32_t elen
, int inc
)
1744 struct short_ad
*sad
= NULL
;
1745 struct long_ad
*lad
= NULL
;
1746 struct allocExtDesc
*aed
;
1748 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1751 ptr
= iinfo
->i_ext
.i_data
+ epos
->offset
-
1752 udf_file_entry_alloc_offset(inode
) +
1755 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1757 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
1758 adsize
= sizeof(struct short_ad
);
1759 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
1760 adsize
= sizeof(struct long_ad
);
1764 if (epos
->offset
+ (2 * adsize
) > inode
->i_sb
->s_blocksize
) {
1765 unsigned char *sptr
, *dptr
;
1766 struct buffer_head
*nbh
;
1768 struct kernel_lb_addr obloc
= epos
->block
;
1770 epos
->block
.logicalBlockNum
= udf_new_block(inode
->i_sb
, NULL
,
1771 obloc
.partitionReferenceNum
,
1772 obloc
.logicalBlockNum
, &err
);
1773 if (!epos
->block
.logicalBlockNum
)
1775 nbh
= udf_tgetblk(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
,
1781 memset(nbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
1782 set_buffer_uptodate(nbh
);
1784 mark_buffer_dirty_inode(nbh
, inode
);
1786 aed
= (struct allocExtDesc
*)(nbh
->b_data
);
1787 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
))
1788 aed
->previousAllocExtLocation
=
1789 cpu_to_le32(obloc
.logicalBlockNum
);
1790 if (epos
->offset
+ adsize
> inode
->i_sb
->s_blocksize
) {
1791 loffset
= epos
->offset
;
1792 aed
->lengthAllocDescs
= cpu_to_le32(adsize
);
1793 sptr
= ptr
- adsize
;
1794 dptr
= nbh
->b_data
+ sizeof(struct allocExtDesc
);
1795 memcpy(dptr
, sptr
, adsize
);
1796 epos
->offset
= sizeof(struct allocExtDesc
) + adsize
;
1798 loffset
= epos
->offset
+ adsize
;
1799 aed
->lengthAllocDescs
= cpu_to_le32(0);
1801 epos
->offset
= sizeof(struct allocExtDesc
);
1804 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1805 le32_add_cpu(&aed
->lengthAllocDescs
, adsize
);
1807 iinfo
->i_lenAlloc
+= adsize
;
1808 mark_inode_dirty(inode
);
1811 if (UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0200)
1812 udf_new_tag(nbh
->b_data
, TAG_IDENT_AED
, 3, 1,
1813 epos
->block
.logicalBlockNum
, sizeof(struct tag
));
1815 udf_new_tag(nbh
->b_data
, TAG_IDENT_AED
, 2, 1,
1816 epos
->block
.logicalBlockNum
, sizeof(struct tag
));
1817 switch (iinfo
->i_alloc_type
) {
1818 case ICBTAG_FLAG_AD_SHORT
:
1819 sad
= (struct short_ad
*)sptr
;
1820 sad
->extLength
= cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS
|
1821 inode
->i_sb
->s_blocksize
);
1823 cpu_to_le32(epos
->block
.logicalBlockNum
);
1825 case ICBTAG_FLAG_AD_LONG
:
1826 lad
= (struct long_ad
*)sptr
;
1827 lad
->extLength
= cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS
|
1828 inode
->i_sb
->s_blocksize
);
1829 lad
->extLocation
= cpu_to_lelb(epos
->block
);
1830 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
1834 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1835 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
1836 udf_update_tag(epos
->bh
->b_data
, loffset
);
1838 udf_update_tag(epos
->bh
->b_data
,
1839 sizeof(struct allocExtDesc
));
1840 mark_buffer_dirty_inode(epos
->bh
, inode
);
1843 mark_inode_dirty(inode
);
1848 udf_write_aext(inode
, epos
, eloc
, elen
, inc
);
1851 iinfo
->i_lenAlloc
+= adsize
;
1852 mark_inode_dirty(inode
);
1854 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1855 le32_add_cpu(&aed
->lengthAllocDescs
, adsize
);
1856 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1857 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
1858 udf_update_tag(epos
->bh
->b_data
,
1859 epos
->offset
+ (inc
? 0 : adsize
));
1861 udf_update_tag(epos
->bh
->b_data
,
1862 sizeof(struct allocExtDesc
));
1863 mark_buffer_dirty_inode(epos
->bh
, inode
);
1869 void udf_write_aext(struct inode
*inode
, struct extent_position
*epos
,
1870 struct kernel_lb_addr
*eloc
, uint32_t elen
, int inc
)
1874 struct short_ad
*sad
;
1875 struct long_ad
*lad
;
1876 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1879 ptr
= iinfo
->i_ext
.i_data
+ epos
->offset
-
1880 udf_file_entry_alloc_offset(inode
) +
1883 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1885 switch (iinfo
->i_alloc_type
) {
1886 case ICBTAG_FLAG_AD_SHORT
:
1887 sad
= (struct short_ad
*)ptr
;
1888 sad
->extLength
= cpu_to_le32(elen
);
1889 sad
->extPosition
= cpu_to_le32(eloc
->logicalBlockNum
);
1890 adsize
= sizeof(struct short_ad
);
1892 case ICBTAG_FLAG_AD_LONG
:
1893 lad
= (struct long_ad
*)ptr
;
1894 lad
->extLength
= cpu_to_le32(elen
);
1895 lad
->extLocation
= cpu_to_lelb(*eloc
);
1896 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
1897 adsize
= sizeof(struct long_ad
);
1904 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1905 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201) {
1906 struct allocExtDesc
*aed
=
1907 (struct allocExtDesc
*)epos
->bh
->b_data
;
1908 udf_update_tag(epos
->bh
->b_data
,
1909 le32_to_cpu(aed
->lengthAllocDescs
) +
1910 sizeof(struct allocExtDesc
));
1912 mark_buffer_dirty_inode(epos
->bh
, inode
);
1914 mark_inode_dirty(inode
);
1918 epos
->offset
+= adsize
;
1921 int8_t udf_next_aext(struct inode
*inode
, struct extent_position
*epos
,
1922 struct kernel_lb_addr
*eloc
, uint32_t *elen
, int inc
)
1926 while ((etype
= udf_current_aext(inode
, epos
, eloc
, elen
, inc
)) ==
1927 (EXT_NEXT_EXTENT_ALLOCDECS
>> 30)) {
1929 epos
->block
= *eloc
;
1930 epos
->offset
= sizeof(struct allocExtDesc
);
1932 block
= udf_get_lb_pblock(inode
->i_sb
, &epos
->block
, 0);
1933 epos
->bh
= udf_tread(inode
->i_sb
, block
);
1935 udf_debug("reading block %d failed!\n", block
);
1943 int8_t udf_current_aext(struct inode
*inode
, struct extent_position
*epos
,
1944 struct kernel_lb_addr
*eloc
, uint32_t *elen
, int inc
)
1949 struct short_ad
*sad
;
1950 struct long_ad
*lad
;
1951 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1955 epos
->offset
= udf_file_entry_alloc_offset(inode
);
1956 ptr
= iinfo
->i_ext
.i_data
+ epos
->offset
-
1957 udf_file_entry_alloc_offset(inode
) +
1959 alen
= udf_file_entry_alloc_offset(inode
) +
1963 epos
->offset
= sizeof(struct allocExtDesc
);
1964 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1965 alen
= sizeof(struct allocExtDesc
) +
1966 le32_to_cpu(((struct allocExtDesc
*)epos
->bh
->b_data
)->
1970 switch (iinfo
->i_alloc_type
) {
1971 case ICBTAG_FLAG_AD_SHORT
:
1972 sad
= udf_get_fileshortad(ptr
, alen
, &epos
->offset
, inc
);
1975 etype
= le32_to_cpu(sad
->extLength
) >> 30;
1976 eloc
->logicalBlockNum
= le32_to_cpu(sad
->extPosition
);
1977 eloc
->partitionReferenceNum
=
1978 iinfo
->i_location
.partitionReferenceNum
;
1979 *elen
= le32_to_cpu(sad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
1981 case ICBTAG_FLAG_AD_LONG
:
1982 lad
= udf_get_filelongad(ptr
, alen
, &epos
->offset
, inc
);
1985 etype
= le32_to_cpu(lad
->extLength
) >> 30;
1986 *eloc
= lelb_to_cpu(lad
->extLocation
);
1987 *elen
= le32_to_cpu(lad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
1990 udf_debug("alloc_type = %d unsupported\n", iinfo
->i_alloc_type
);
1997 static int8_t udf_insert_aext(struct inode
*inode
, struct extent_position epos
,
1998 struct kernel_lb_addr neloc
, uint32_t nelen
)
2000 struct kernel_lb_addr oeloc
;
2007 while ((etype
= udf_next_aext(inode
, &epos
, &oeloc
, &oelen
, 0)) != -1) {
2008 udf_write_aext(inode
, &epos
, &neloc
, nelen
, 1);
2010 nelen
= (etype
<< 30) | oelen
;
2012 udf_add_aext(inode
, &epos
, &neloc
, nelen
, 1);
2015 return (nelen
>> 30);
2018 int8_t udf_delete_aext(struct inode
*inode
, struct extent_position epos
,
2019 struct kernel_lb_addr eloc
, uint32_t elen
)
2021 struct extent_position oepos
;
2024 struct allocExtDesc
*aed
;
2025 struct udf_inode_info
*iinfo
;
2032 iinfo
= UDF_I(inode
);
2033 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
2034 adsize
= sizeof(struct short_ad
);
2035 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
2036 adsize
= sizeof(struct long_ad
);
2041 if (udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1) == -1)
2044 while ((etype
= udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1)) != -1) {
2045 udf_write_aext(inode
, &oepos
, &eloc
, (etype
<< 30) | elen
, 1);
2046 if (oepos
.bh
!= epos
.bh
) {
2047 oepos
.block
= epos
.block
;
2051 oepos
.offset
= epos
.offset
- adsize
;
2054 memset(&eloc
, 0x00, sizeof(struct kernel_lb_addr
));
2057 if (epos
.bh
!= oepos
.bh
) {
2058 udf_free_blocks(inode
->i_sb
, inode
, &epos
.block
, 0, 1);
2059 udf_write_aext(inode
, &oepos
, &eloc
, elen
, 1);
2060 udf_write_aext(inode
, &oepos
, &eloc
, elen
, 1);
2062 iinfo
->i_lenAlloc
-= (adsize
* 2);
2063 mark_inode_dirty(inode
);
2065 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
2066 le32_add_cpu(&aed
->lengthAllocDescs
, -(2 * adsize
));
2067 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
2068 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
2069 udf_update_tag(oepos
.bh
->b_data
,
2070 oepos
.offset
- (2 * adsize
));
2072 udf_update_tag(oepos
.bh
->b_data
,
2073 sizeof(struct allocExtDesc
));
2074 mark_buffer_dirty_inode(oepos
.bh
, inode
);
2077 udf_write_aext(inode
, &oepos
, &eloc
, elen
, 1);
2079 iinfo
->i_lenAlloc
-= adsize
;
2080 mark_inode_dirty(inode
);
2082 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
2083 le32_add_cpu(&aed
->lengthAllocDescs
, -adsize
);
2084 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
2085 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
2086 udf_update_tag(oepos
.bh
->b_data
,
2087 epos
.offset
- adsize
);
2089 udf_update_tag(oepos
.bh
->b_data
,
2090 sizeof(struct allocExtDesc
));
2091 mark_buffer_dirty_inode(oepos
.bh
, inode
);
2098 return (elen
>> 30);
2101 int8_t inode_bmap(struct inode
*inode
, sector_t block
,
2102 struct extent_position
*pos
, struct kernel_lb_addr
*eloc
,
2103 uint32_t *elen
, sector_t
*offset
)
2105 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
2106 loff_t lbcount
= 0, bcount
=
2107 (loff_t
) block
<< blocksize_bits
;
2109 struct udf_inode_info
*iinfo
;
2111 iinfo
= UDF_I(inode
);
2113 pos
->block
= iinfo
->i_location
;
2118 etype
= udf_next_aext(inode
, pos
, eloc
, elen
, 1);
2120 *offset
= (bcount
- lbcount
) >> blocksize_bits
;
2121 iinfo
->i_lenExtents
= lbcount
;
2125 } while (lbcount
<= bcount
);
2127 *offset
= (bcount
+ *elen
- lbcount
) >> blocksize_bits
;
2132 long udf_block_map(struct inode
*inode
, sector_t block
)
2134 struct kernel_lb_addr eloc
;
2137 struct extent_position epos
= {};
2140 down_read(&UDF_I(inode
)->i_data_sem
);
2142 if (inode_bmap(inode
, block
, &epos
, &eloc
, &elen
, &offset
) ==
2143 (EXT_RECORDED_ALLOCATED
>> 30))
2144 ret
= udf_get_lb_pblock(inode
->i_sb
, &eloc
, offset
);
2148 up_read(&UDF_I(inode
)->i_data_sem
);
2151 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_VARCONV
))
2152 return udf_fixed_to_variable(ret
);