net/core: use ntohs for skb->protocol
[zen-stable.git] / net / core / dev.c
blobe85cc5fa3c4ee1a5fd247ddf7463a405950610dd
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
135 #include "net-sysfs.h"
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 static inline void rps_lock(struct softnet_data *sd)
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
218 static inline void rps_unlock(struct softnet_data *sd)
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
228 struct net *net = dev_net(dev);
230 ASSERT_RTNL();
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
244 static void unlist_netdevice(struct net_device *dev)
246 ASSERT_RTNL();
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
257 * Our notifier list
260 static RAW_NOTIFIER_HEAD(netdev_chain);
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 #ifdef CONFIG_LOCKDEP
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 int i;
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
328 int i;
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 int i;
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 #endif
354 /*******************************************************************************
356 Protocol management and registration routines
358 *******************************************************************************/
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
389 void dev_add_pack(struct packet_type *pt)
391 int hash;
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
400 spin_unlock_bh(&ptype_lock);
402 EXPORT_SYMBOL(dev_add_pack);
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
417 void __dev_remove_pack(struct packet_type *pt)
419 struct list_head *head;
420 struct packet_type *pt1;
422 spin_lock_bh(&ptype_lock);
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
440 EXPORT_SYMBOL(__dev_remove_pack);
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
454 void dev_remove_pack(struct packet_type *pt)
456 __dev_remove_pack(pt);
458 synchronize_net();
460 EXPORT_SYMBOL(dev_remove_pack);
462 /******************************************************************************
464 Device Boot-time Settings Routines
466 *******************************************************************************/
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
482 struct netdev_boot_setup *s;
483 int i;
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
507 int netdev_boot_setup_check(struct net_device *dev)
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
522 return 0;
524 EXPORT_SYMBOL(netdev_boot_setup_check);
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
537 unsigned long netdev_boot_base(const char *prefix, int unit)
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
543 sprintf(name, "%s%d", prefix, unit);
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
559 * Saves at boot time configured settings for any netdevice.
561 int __init netdev_boot_setup(char *str)
563 int ints[5];
564 struct ifmap map;
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
585 __setup("netdev=", netdev_boot_setup);
587 /*******************************************************************************
589 Device Interface Subroutines
591 *******************************************************************************/
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
615 return NULL;
617 EXPORT_SYMBOL(__dev_get_by_name);
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
641 return NULL;
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
659 struct net_device *dev;
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
668 EXPORT_SYMBOL(dev_get_by_name);
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
692 return NULL;
694 EXPORT_SYMBOL(__dev_get_by_index);
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
717 return NULL;
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
735 struct net_device *dev;
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
744 EXPORT_SYMBOL(dev_get_by_index);
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
763 struct net_device *dev;
765 ASSERT_RTNL();
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
772 return NULL;
774 EXPORT_SYMBOL(dev_getbyhwaddr);
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
778 struct net_device *dev;
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
785 return NULL;
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
791 struct net_device *dev, *ret = NULL;
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
800 rcu_read_unlock();
801 return ret;
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
806 * dev_get_by_flags_rcu - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. Must be called inside
813 * rcu_read_lock(), and result refcount is unchanged.
816 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
817 unsigned short mask)
819 struct net_device *dev, *ret;
821 ret = NULL;
822 for_each_netdev_rcu(net, dev) {
823 if (((dev->flags ^ if_flags) & mask) == 0) {
824 ret = dev;
825 break;
828 return ret;
830 EXPORT_SYMBOL(dev_get_by_flags_rcu);
833 * dev_valid_name - check if name is okay for network device
834 * @name: name string
836 * Network device names need to be valid file names to
837 * to allow sysfs to work. We also disallow any kind of
838 * whitespace.
840 int dev_valid_name(const char *name)
842 if (*name == '\0')
843 return 0;
844 if (strlen(name) >= IFNAMSIZ)
845 return 0;
846 if (!strcmp(name, ".") || !strcmp(name, ".."))
847 return 0;
849 while (*name) {
850 if (*name == '/' || isspace(*name))
851 return 0;
852 name++;
854 return 1;
856 EXPORT_SYMBOL(dev_valid_name);
859 * __dev_alloc_name - allocate a name for a device
860 * @net: network namespace to allocate the device name in
861 * @name: name format string
862 * @buf: scratch buffer and result name string
864 * Passed a format string - eg "lt%d" it will try and find a suitable
865 * id. It scans list of devices to build up a free map, then chooses
866 * the first empty slot. The caller must hold the dev_base or rtnl lock
867 * while allocating the name and adding the device in order to avoid
868 * duplicates.
869 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
870 * Returns the number of the unit assigned or a negative errno code.
873 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
875 int i = 0;
876 const char *p;
877 const int max_netdevices = 8*PAGE_SIZE;
878 unsigned long *inuse;
879 struct net_device *d;
881 p = strnchr(name, IFNAMSIZ-1, '%');
882 if (p) {
884 * Verify the string as this thing may have come from
885 * the user. There must be either one "%d" and no other "%"
886 * characters.
888 if (p[1] != 'd' || strchr(p + 2, '%'))
889 return -EINVAL;
891 /* Use one page as a bit array of possible slots */
892 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
893 if (!inuse)
894 return -ENOMEM;
896 for_each_netdev(net, d) {
897 if (!sscanf(d->name, name, &i))
898 continue;
899 if (i < 0 || i >= max_netdevices)
900 continue;
902 /* avoid cases where sscanf is not exact inverse of printf */
903 snprintf(buf, IFNAMSIZ, name, i);
904 if (!strncmp(buf, d->name, IFNAMSIZ))
905 set_bit(i, inuse);
908 i = find_first_zero_bit(inuse, max_netdevices);
909 free_page((unsigned long) inuse);
912 if (buf != name)
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!__dev_get_by_name(net, buf))
915 return i;
917 /* It is possible to run out of possible slots
918 * when the name is long and there isn't enough space left
919 * for the digits, or if all bits are used.
921 return -ENFILE;
925 * dev_alloc_name - allocate a name for a device
926 * @dev: device
927 * @name: name format string
929 * Passed a format string - eg "lt%d" it will try and find a suitable
930 * id. It scans list of devices to build up a free map, then chooses
931 * the first empty slot. The caller must hold the dev_base or rtnl lock
932 * while allocating the name and adding the device in order to avoid
933 * duplicates.
934 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
935 * Returns the number of the unit assigned or a negative errno code.
938 int dev_alloc_name(struct net_device *dev, const char *name)
940 char buf[IFNAMSIZ];
941 struct net *net;
942 int ret;
944 BUG_ON(!dev_net(dev));
945 net = dev_net(dev);
946 ret = __dev_alloc_name(net, name, buf);
947 if (ret >= 0)
948 strlcpy(dev->name, buf, IFNAMSIZ);
949 return ret;
951 EXPORT_SYMBOL(dev_alloc_name);
953 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
955 struct net *net;
957 BUG_ON(!dev_net(dev));
958 net = dev_net(dev);
960 if (!dev_valid_name(name))
961 return -EINVAL;
963 if (fmt && strchr(name, '%'))
964 return dev_alloc_name(dev, name);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (dev->name != name)
968 strlcpy(dev->name, name, IFNAMSIZ);
970 return 0;
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
981 int dev_change_name(struct net_device *dev, const char *newname)
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
998 memcpy(oldname, dev->name, IFNAMSIZ);
1000 err = dev_get_valid_name(dev, newname, 1);
1001 if (err < 0)
1002 return err;
1004 rollback:
1005 ret = device_rename(&dev->dev, dev->name);
1006 if (ret) {
1007 memcpy(dev->name, oldname, IFNAMSIZ);
1008 return ret;
1011 write_lock_bh(&dev_base_lock);
1012 hlist_del(&dev->name_hlist);
1013 write_unlock_bh(&dev_base_lock);
1015 synchronize_rcu();
1017 write_lock_bh(&dev_base_lock);
1018 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1019 write_unlock_bh(&dev_base_lock);
1021 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1022 ret = notifier_to_errno(ret);
1024 if (ret) {
1025 /* err >= 0 after dev_alloc_name() or stores the first errno */
1026 if (err >= 0) {
1027 err = ret;
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1029 goto rollback;
1030 } else {
1031 printk(KERN_ERR
1032 "%s: name change rollback failed: %d.\n",
1033 dev->name, ret);
1037 return err;
1041 * dev_set_alias - change ifalias of a device
1042 * @dev: device
1043 * @alias: name up to IFALIASZ
1044 * @len: limit of bytes to copy from info
1046 * Set ifalias for a device,
1048 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1050 ASSERT_RTNL();
1052 if (len >= IFALIASZ)
1053 return -EINVAL;
1055 if (!len) {
1056 if (dev->ifalias) {
1057 kfree(dev->ifalias);
1058 dev->ifalias = NULL;
1060 return 0;
1063 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1064 if (!dev->ifalias)
1065 return -ENOMEM;
1067 strlcpy(dev->ifalias, alias, len+1);
1068 return len;
1073 * netdev_features_change - device changes features
1074 * @dev: device to cause notification
1076 * Called to indicate a device has changed features.
1078 void netdev_features_change(struct net_device *dev)
1080 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1082 EXPORT_SYMBOL(netdev_features_change);
1085 * netdev_state_change - device changes state
1086 * @dev: device to cause notification
1088 * Called to indicate a device has changed state. This function calls
1089 * the notifier chains for netdev_chain and sends a NEWLINK message
1090 * to the routing socket.
1092 void netdev_state_change(struct net_device *dev)
1094 if (dev->flags & IFF_UP) {
1095 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1096 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1099 EXPORT_SYMBOL(netdev_state_change);
1101 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1103 return call_netdevice_notifiers(event, dev);
1105 EXPORT_SYMBOL(netdev_bonding_change);
1108 * dev_load - load a network module
1109 * @net: the applicable net namespace
1110 * @name: name of interface
1112 * If a network interface is not present and the process has suitable
1113 * privileges this function loads the module. If module loading is not
1114 * available in this kernel then it becomes a nop.
1117 void dev_load(struct net *net, const char *name)
1119 struct net_device *dev;
1121 rcu_read_lock();
1122 dev = dev_get_by_name_rcu(net, name);
1123 rcu_read_unlock();
1125 if (!dev && capable(CAP_NET_ADMIN))
1126 request_module("%s", name);
1128 EXPORT_SYMBOL(dev_load);
1130 static int __dev_open(struct net_device *dev)
1132 const struct net_device_ops *ops = dev->netdev_ops;
1133 int ret;
1135 ASSERT_RTNL();
1138 * Is it even present?
1140 if (!netif_device_present(dev))
1141 return -ENODEV;
1143 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1144 ret = notifier_to_errno(ret);
1145 if (ret)
1146 return ret;
1149 * Call device private open method
1151 set_bit(__LINK_STATE_START, &dev->state);
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1160 * If it went open OK then:
1163 if (ret)
1164 clear_bit(__LINK_STATE_START, &dev->state);
1165 else {
1167 * Set the flags.
1169 dev->flags |= IFF_UP;
1172 * Enable NET_DMA
1174 net_dmaengine_get();
1177 * Initialize multicasting status
1179 dev_set_rx_mode(dev);
1182 * Wakeup transmit queue engine
1184 dev_activate(dev);
1187 return ret;
1191 * dev_open - prepare an interface for use.
1192 * @dev: device to open
1194 * Takes a device from down to up state. The device's private open
1195 * function is invoked and then the multicast lists are loaded. Finally
1196 * the device is moved into the up state and a %NETDEV_UP message is
1197 * sent to the netdev notifier chain.
1199 * Calling this function on an active interface is a nop. On a failure
1200 * a negative errno code is returned.
1202 int dev_open(struct net_device *dev)
1204 int ret;
1207 * Is it already up?
1209 if (dev->flags & IFF_UP)
1210 return 0;
1213 * Open device
1215 ret = __dev_open(dev);
1216 if (ret < 0)
1217 return ret;
1220 * ... and announce new interface.
1222 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1223 call_netdevice_notifiers(NETDEV_UP, dev);
1225 return ret;
1227 EXPORT_SYMBOL(dev_open);
1229 static int __dev_close(struct net_device *dev)
1231 const struct net_device_ops *ops = dev->netdev_ops;
1233 ASSERT_RTNL();
1234 might_sleep();
1237 * Tell people we are going down, so that they can
1238 * prepare to death, when device is still operating.
1240 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1242 clear_bit(__LINK_STATE_START, &dev->state);
1244 /* Synchronize to scheduled poll. We cannot touch poll list,
1245 * it can be even on different cpu. So just clear netif_running().
1247 * dev->stop() will invoke napi_disable() on all of it's
1248 * napi_struct instances on this device.
1250 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1252 dev_deactivate(dev);
1255 * Call the device specific close. This cannot fail.
1256 * Only if device is UP
1258 * We allow it to be called even after a DETACH hot-plug
1259 * event.
1261 if (ops->ndo_stop)
1262 ops->ndo_stop(dev);
1265 * Device is now down.
1268 dev->flags &= ~IFF_UP;
1271 * Shutdown NET_DMA
1273 net_dmaengine_put();
1275 return 0;
1279 * dev_close - shutdown an interface.
1280 * @dev: device to shutdown
1282 * This function moves an active device into down state. A
1283 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1284 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1285 * chain.
1287 int dev_close(struct net_device *dev)
1289 if (!(dev->flags & IFF_UP))
1290 return 0;
1292 __dev_close(dev);
1295 * Tell people we are down
1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1298 call_netdevice_notifiers(NETDEV_DOWN, dev);
1300 return 0;
1302 EXPORT_SYMBOL(dev_close);
1306 * dev_disable_lro - disable Large Receive Offload on a device
1307 * @dev: device
1309 * Disable Large Receive Offload (LRO) on a net device. Must be
1310 * called under RTNL. This is needed if received packets may be
1311 * forwarded to another interface.
1313 void dev_disable_lro(struct net_device *dev)
1315 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1316 dev->ethtool_ops->set_flags) {
1317 u32 flags = dev->ethtool_ops->get_flags(dev);
1318 if (flags & ETH_FLAG_LRO) {
1319 flags &= ~ETH_FLAG_LRO;
1320 dev->ethtool_ops->set_flags(dev, flags);
1323 WARN_ON(dev->features & NETIF_F_LRO);
1325 EXPORT_SYMBOL(dev_disable_lro);
1328 static int dev_boot_phase = 1;
1331 * Device change register/unregister. These are not inline or static
1332 * as we export them to the world.
1336 * register_netdevice_notifier - register a network notifier block
1337 * @nb: notifier
1339 * Register a notifier to be called when network device events occur.
1340 * The notifier passed is linked into the kernel structures and must
1341 * not be reused until it has been unregistered. A negative errno code
1342 * is returned on a failure.
1344 * When registered all registration and up events are replayed
1345 * to the new notifier to allow device to have a race free
1346 * view of the network device list.
1349 int register_netdevice_notifier(struct notifier_block *nb)
1351 struct net_device *dev;
1352 struct net_device *last;
1353 struct net *net;
1354 int err;
1356 rtnl_lock();
1357 err = raw_notifier_chain_register(&netdev_chain, nb);
1358 if (err)
1359 goto unlock;
1360 if (dev_boot_phase)
1361 goto unlock;
1362 for_each_net(net) {
1363 for_each_netdev(net, dev) {
1364 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1365 err = notifier_to_errno(err);
1366 if (err)
1367 goto rollback;
1369 if (!(dev->flags & IFF_UP))
1370 continue;
1372 nb->notifier_call(nb, NETDEV_UP, dev);
1376 unlock:
1377 rtnl_unlock();
1378 return err;
1380 rollback:
1381 last = dev;
1382 for_each_net(net) {
1383 for_each_netdev(net, dev) {
1384 if (dev == last)
1385 break;
1387 if (dev->flags & IFF_UP) {
1388 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1389 nb->notifier_call(nb, NETDEV_DOWN, dev);
1391 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1392 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1396 raw_notifier_chain_unregister(&netdev_chain, nb);
1397 goto unlock;
1399 EXPORT_SYMBOL(register_netdevice_notifier);
1402 * unregister_netdevice_notifier - unregister a network notifier block
1403 * @nb: notifier
1405 * Unregister a notifier previously registered by
1406 * register_netdevice_notifier(). The notifier is unlinked into the
1407 * kernel structures and may then be reused. A negative errno code
1408 * is returned on a failure.
1411 int unregister_netdevice_notifier(struct notifier_block *nb)
1413 int err;
1415 rtnl_lock();
1416 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1417 rtnl_unlock();
1418 return err;
1420 EXPORT_SYMBOL(unregister_netdevice_notifier);
1423 * call_netdevice_notifiers - call all network notifier blocks
1424 * @val: value passed unmodified to notifier function
1425 * @dev: net_device pointer passed unmodified to notifier function
1427 * Call all network notifier blocks. Parameters and return value
1428 * are as for raw_notifier_call_chain().
1431 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1433 ASSERT_RTNL();
1434 return raw_notifier_call_chain(&netdev_chain, val, dev);
1437 /* When > 0 there are consumers of rx skb time stamps */
1438 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1440 void net_enable_timestamp(void)
1442 atomic_inc(&netstamp_needed);
1444 EXPORT_SYMBOL(net_enable_timestamp);
1446 void net_disable_timestamp(void)
1448 atomic_dec(&netstamp_needed);
1450 EXPORT_SYMBOL(net_disable_timestamp);
1452 static inline void net_timestamp_set(struct sk_buff *skb)
1454 if (atomic_read(&netstamp_needed))
1455 __net_timestamp(skb);
1456 else
1457 skb->tstamp.tv64 = 0;
1460 static inline void net_timestamp_check(struct sk_buff *skb)
1462 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1463 __net_timestamp(skb);
1467 * dev_forward_skb - loopback an skb to another netif
1469 * @dev: destination network device
1470 * @skb: buffer to forward
1472 * return values:
1473 * NET_RX_SUCCESS (no congestion)
1474 * NET_RX_DROP (packet was dropped, but freed)
1476 * dev_forward_skb can be used for injecting an skb from the
1477 * start_xmit function of one device into the receive queue
1478 * of another device.
1480 * The receiving device may be in another namespace, so
1481 * we have to clear all information in the skb that could
1482 * impact namespace isolation.
1484 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1486 skb_orphan(skb);
1488 if (!(dev->flags & IFF_UP) ||
1489 (skb->len > (dev->mtu + dev->hard_header_len))) {
1490 kfree_skb(skb);
1491 return NET_RX_DROP;
1493 skb_set_dev(skb, dev);
1494 skb->tstamp.tv64 = 0;
1495 skb->pkt_type = PACKET_HOST;
1496 skb->protocol = eth_type_trans(skb, dev);
1497 return netif_rx(skb);
1499 EXPORT_SYMBOL_GPL(dev_forward_skb);
1502 * Support routine. Sends outgoing frames to any network
1503 * taps currently in use.
1506 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1508 struct packet_type *ptype;
1510 #ifdef CONFIG_NET_CLS_ACT
1511 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1512 net_timestamp_set(skb);
1513 #else
1514 net_timestamp_set(skb);
1515 #endif
1517 rcu_read_lock();
1518 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1519 /* Never send packets back to the socket
1520 * they originated from - MvS (miquels@drinkel.ow.org)
1522 if ((ptype->dev == dev || !ptype->dev) &&
1523 (ptype->af_packet_priv == NULL ||
1524 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1525 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1526 if (!skb2)
1527 break;
1529 /* skb->nh should be correctly
1530 set by sender, so that the second statement is
1531 just protection against buggy protocols.
1533 skb_reset_mac_header(skb2);
1535 if (skb_network_header(skb2) < skb2->data ||
1536 skb2->network_header > skb2->tail) {
1537 if (net_ratelimit())
1538 printk(KERN_CRIT "protocol %04x is "
1539 "buggy, dev %s\n",
1540 ntohs(skb2->protocol),
1541 dev->name);
1542 skb_reset_network_header(skb2);
1545 skb2->transport_header = skb2->network_header;
1546 skb2->pkt_type = PACKET_OUTGOING;
1547 ptype->func(skb2, skb->dev, ptype, skb->dev);
1550 rcu_read_unlock();
1554 static inline void __netif_reschedule(struct Qdisc *q)
1556 struct softnet_data *sd;
1557 unsigned long flags;
1559 local_irq_save(flags);
1560 sd = &__get_cpu_var(softnet_data);
1561 q->next_sched = NULL;
1562 *sd->output_queue_tailp = q;
1563 sd->output_queue_tailp = &q->next_sched;
1564 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1565 local_irq_restore(flags);
1568 void __netif_schedule(struct Qdisc *q)
1570 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1571 __netif_reschedule(q);
1573 EXPORT_SYMBOL(__netif_schedule);
1575 void dev_kfree_skb_irq(struct sk_buff *skb)
1577 if (!skb->destructor)
1578 dev_kfree_skb(skb);
1579 else if (atomic_dec_and_test(&skb->users)) {
1580 struct softnet_data *sd;
1581 unsigned long flags;
1583 local_irq_save(flags);
1584 sd = &__get_cpu_var(softnet_data);
1585 skb->next = sd->completion_queue;
1586 sd->completion_queue = skb;
1587 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1588 local_irq_restore(flags);
1591 EXPORT_SYMBOL(dev_kfree_skb_irq);
1593 void dev_kfree_skb_any(struct sk_buff *skb)
1595 if (in_irq() || irqs_disabled())
1596 dev_kfree_skb_irq(skb);
1597 else
1598 dev_kfree_skb(skb);
1600 EXPORT_SYMBOL(dev_kfree_skb_any);
1604 * netif_device_detach - mark device as removed
1605 * @dev: network device
1607 * Mark device as removed from system and therefore no longer available.
1609 void netif_device_detach(struct net_device *dev)
1611 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1612 netif_running(dev)) {
1613 netif_tx_stop_all_queues(dev);
1616 EXPORT_SYMBOL(netif_device_detach);
1619 * netif_device_attach - mark device as attached
1620 * @dev: network device
1622 * Mark device as attached from system and restart if needed.
1624 void netif_device_attach(struct net_device *dev)
1626 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1627 netif_running(dev)) {
1628 netif_tx_wake_all_queues(dev);
1629 __netdev_watchdog_up(dev);
1632 EXPORT_SYMBOL(netif_device_attach);
1634 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1636 return ((features & NETIF_F_GEN_CSUM) ||
1637 ((features & NETIF_F_IP_CSUM) &&
1638 protocol == htons(ETH_P_IP)) ||
1639 ((features & NETIF_F_IPV6_CSUM) &&
1640 protocol == htons(ETH_P_IPV6)) ||
1641 ((features & NETIF_F_FCOE_CRC) &&
1642 protocol == htons(ETH_P_FCOE)));
1645 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1647 if (can_checksum_protocol(dev->features, skb->protocol))
1648 return true;
1650 if (skb->protocol == htons(ETH_P_8021Q)) {
1651 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1652 if (can_checksum_protocol(dev->features & dev->vlan_features,
1653 veh->h_vlan_encapsulated_proto))
1654 return true;
1657 return false;
1661 * skb_dev_set -- assign a new device to a buffer
1662 * @skb: buffer for the new device
1663 * @dev: network device
1665 * If an skb is owned by a device already, we have to reset
1666 * all data private to the namespace a device belongs to
1667 * before assigning it a new device.
1669 #ifdef CONFIG_NET_NS
1670 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1672 skb_dst_drop(skb);
1673 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1674 secpath_reset(skb);
1675 nf_reset(skb);
1676 skb_init_secmark(skb);
1677 skb->mark = 0;
1678 skb->priority = 0;
1679 skb->nf_trace = 0;
1680 skb->ipvs_property = 0;
1681 #ifdef CONFIG_NET_SCHED
1682 skb->tc_index = 0;
1683 #endif
1685 skb->dev = dev;
1687 EXPORT_SYMBOL(skb_set_dev);
1688 #endif /* CONFIG_NET_NS */
1691 * Invalidate hardware checksum when packet is to be mangled, and
1692 * complete checksum manually on outgoing path.
1694 int skb_checksum_help(struct sk_buff *skb)
1696 __wsum csum;
1697 int ret = 0, offset;
1699 if (skb->ip_summed == CHECKSUM_COMPLETE)
1700 goto out_set_summed;
1702 if (unlikely(skb_shinfo(skb)->gso_size)) {
1703 /* Let GSO fix up the checksum. */
1704 goto out_set_summed;
1707 offset = skb->csum_start - skb_headroom(skb);
1708 BUG_ON(offset >= skb_headlen(skb));
1709 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1711 offset += skb->csum_offset;
1712 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1714 if (skb_cloned(skb) &&
1715 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1716 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1717 if (ret)
1718 goto out;
1721 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1722 out_set_summed:
1723 skb->ip_summed = CHECKSUM_NONE;
1724 out:
1725 return ret;
1727 EXPORT_SYMBOL(skb_checksum_help);
1730 * skb_gso_segment - Perform segmentation on skb.
1731 * @skb: buffer to segment
1732 * @features: features for the output path (see dev->features)
1734 * This function segments the given skb and returns a list of segments.
1736 * It may return NULL if the skb requires no segmentation. This is
1737 * only possible when GSO is used for verifying header integrity.
1739 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1741 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1742 struct packet_type *ptype;
1743 __be16 type = skb->protocol;
1744 int err;
1746 skb_reset_mac_header(skb);
1747 skb->mac_len = skb->network_header - skb->mac_header;
1748 __skb_pull(skb, skb->mac_len);
1750 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1751 struct net_device *dev = skb->dev;
1752 struct ethtool_drvinfo info = {};
1754 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1755 dev->ethtool_ops->get_drvinfo(dev, &info);
1757 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1758 "ip_summed=%d",
1759 info.driver, dev ? dev->features : 0L,
1760 skb->sk ? skb->sk->sk_route_caps : 0L,
1761 skb->len, skb->data_len, skb->ip_summed);
1763 if (skb_header_cloned(skb) &&
1764 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1765 return ERR_PTR(err);
1768 rcu_read_lock();
1769 list_for_each_entry_rcu(ptype,
1770 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1771 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1772 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1773 err = ptype->gso_send_check(skb);
1774 segs = ERR_PTR(err);
1775 if (err || skb_gso_ok(skb, features))
1776 break;
1777 __skb_push(skb, (skb->data -
1778 skb_network_header(skb)));
1780 segs = ptype->gso_segment(skb, features);
1781 break;
1784 rcu_read_unlock();
1786 __skb_push(skb, skb->data - skb_mac_header(skb));
1788 return segs;
1790 EXPORT_SYMBOL(skb_gso_segment);
1792 /* Take action when hardware reception checksum errors are detected. */
1793 #ifdef CONFIG_BUG
1794 void netdev_rx_csum_fault(struct net_device *dev)
1796 if (net_ratelimit()) {
1797 printk(KERN_ERR "%s: hw csum failure.\n",
1798 dev ? dev->name : "<unknown>");
1799 dump_stack();
1802 EXPORT_SYMBOL(netdev_rx_csum_fault);
1803 #endif
1805 /* Actually, we should eliminate this check as soon as we know, that:
1806 * 1. IOMMU is present and allows to map all the memory.
1807 * 2. No high memory really exists on this machine.
1810 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1812 #ifdef CONFIG_HIGHMEM
1813 int i;
1814 if (!(dev->features & NETIF_F_HIGHDMA)) {
1815 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1816 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1817 return 1;
1820 if (PCI_DMA_BUS_IS_PHYS) {
1821 struct device *pdev = dev->dev.parent;
1823 if (!pdev)
1824 return 0;
1825 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1826 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1827 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1828 return 1;
1831 #endif
1832 return 0;
1835 struct dev_gso_cb {
1836 void (*destructor)(struct sk_buff *skb);
1839 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1841 static void dev_gso_skb_destructor(struct sk_buff *skb)
1843 struct dev_gso_cb *cb;
1845 do {
1846 struct sk_buff *nskb = skb->next;
1848 skb->next = nskb->next;
1849 nskb->next = NULL;
1850 kfree_skb(nskb);
1851 } while (skb->next);
1853 cb = DEV_GSO_CB(skb);
1854 if (cb->destructor)
1855 cb->destructor(skb);
1859 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1860 * @skb: buffer to segment
1862 * This function segments the given skb and stores the list of segments
1863 * in skb->next.
1865 static int dev_gso_segment(struct sk_buff *skb)
1867 struct net_device *dev = skb->dev;
1868 struct sk_buff *segs;
1869 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1870 NETIF_F_SG : 0);
1872 segs = skb_gso_segment(skb, features);
1874 /* Verifying header integrity only. */
1875 if (!segs)
1876 return 0;
1878 if (IS_ERR(segs))
1879 return PTR_ERR(segs);
1881 skb->next = segs;
1882 DEV_GSO_CB(skb)->destructor = skb->destructor;
1883 skb->destructor = dev_gso_skb_destructor;
1885 return 0;
1889 * Try to orphan skb early, right before transmission by the device.
1890 * We cannot orphan skb if tx timestamp is requested, since
1891 * drivers need to call skb_tstamp_tx() to send the timestamp.
1893 static inline void skb_orphan_try(struct sk_buff *skb)
1895 if (!skb_tx(skb)->flags)
1896 skb_orphan(skb);
1900 * Returns true if either:
1901 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1902 * 2. skb is fragmented and the device does not support SG, or if
1903 * at least one of fragments is in highmem and device does not
1904 * support DMA from it.
1906 static inline int skb_needs_linearize(struct sk_buff *skb,
1907 struct net_device *dev)
1909 return skb_is_nonlinear(skb) &&
1910 ((skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1911 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1912 illegal_highdma(dev, skb))));
1915 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1916 struct netdev_queue *txq)
1918 const struct net_device_ops *ops = dev->netdev_ops;
1919 int rc = NETDEV_TX_OK;
1921 if (likely(!skb->next)) {
1922 if (!list_empty(&ptype_all))
1923 dev_queue_xmit_nit(skb, dev);
1926 * If device doesnt need skb->dst, release it right now while
1927 * its hot in this cpu cache
1929 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1930 skb_dst_drop(skb);
1932 skb_orphan_try(skb);
1934 if (netif_needs_gso(dev, skb)) {
1935 if (unlikely(dev_gso_segment(skb)))
1936 goto out_kfree_skb;
1937 if (skb->next)
1938 goto gso;
1939 } else {
1940 if (skb_needs_linearize(skb, dev) &&
1941 __skb_linearize(skb))
1942 goto out_kfree_skb;
1944 /* If packet is not checksummed and device does not
1945 * support checksumming for this protocol, complete
1946 * checksumming here.
1948 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1949 skb_set_transport_header(skb, skb->csum_start -
1950 skb_headroom(skb));
1951 if (!dev_can_checksum(dev, skb) &&
1952 skb_checksum_help(skb))
1953 goto out_kfree_skb;
1957 rc = ops->ndo_start_xmit(skb, dev);
1958 if (rc == NETDEV_TX_OK)
1959 txq_trans_update(txq);
1960 return rc;
1963 gso:
1964 do {
1965 struct sk_buff *nskb = skb->next;
1967 skb->next = nskb->next;
1968 nskb->next = NULL;
1971 * If device doesnt need nskb->dst, release it right now while
1972 * its hot in this cpu cache
1974 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1975 skb_dst_drop(nskb);
1977 rc = ops->ndo_start_xmit(nskb, dev);
1978 if (unlikely(rc != NETDEV_TX_OK)) {
1979 if (rc & ~NETDEV_TX_MASK)
1980 goto out_kfree_gso_skb;
1981 nskb->next = skb->next;
1982 skb->next = nskb;
1983 return rc;
1985 txq_trans_update(txq);
1986 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1987 return NETDEV_TX_BUSY;
1988 } while (skb->next);
1990 out_kfree_gso_skb:
1991 if (likely(skb->next == NULL))
1992 skb->destructor = DEV_GSO_CB(skb)->destructor;
1993 out_kfree_skb:
1994 kfree_skb(skb);
1995 return rc;
1998 static u32 hashrnd __read_mostly;
2000 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2002 u32 hash;
2004 if (skb_rx_queue_recorded(skb)) {
2005 hash = skb_get_rx_queue(skb);
2006 while (unlikely(hash >= dev->real_num_tx_queues))
2007 hash -= dev->real_num_tx_queues;
2008 return hash;
2011 if (skb->sk && skb->sk->sk_hash)
2012 hash = skb->sk->sk_hash;
2013 else
2014 hash = (__force u16) skb->protocol;
2016 hash = jhash_1word(hash, hashrnd);
2018 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2020 EXPORT_SYMBOL(skb_tx_hash);
2022 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2024 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2025 if (net_ratelimit()) {
2026 pr_warning("%s selects TX queue %d, but "
2027 "real number of TX queues is %d\n",
2028 dev->name, queue_index, dev->real_num_tx_queues);
2030 return 0;
2032 return queue_index;
2035 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2036 struct sk_buff *skb)
2038 u16 queue_index;
2039 struct sock *sk = skb->sk;
2041 if (sk_tx_queue_recorded(sk)) {
2042 queue_index = sk_tx_queue_get(sk);
2043 } else {
2044 const struct net_device_ops *ops = dev->netdev_ops;
2046 if (ops->ndo_select_queue) {
2047 queue_index = ops->ndo_select_queue(dev, skb);
2048 queue_index = dev_cap_txqueue(dev, queue_index);
2049 } else {
2050 queue_index = 0;
2051 if (dev->real_num_tx_queues > 1)
2052 queue_index = skb_tx_hash(dev, skb);
2054 if (sk) {
2055 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2057 if (dst && skb_dst(skb) == dst)
2058 sk_tx_queue_set(sk, queue_index);
2063 skb_set_queue_mapping(skb, queue_index);
2064 return netdev_get_tx_queue(dev, queue_index);
2067 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2068 struct net_device *dev,
2069 struct netdev_queue *txq)
2071 spinlock_t *root_lock = qdisc_lock(q);
2072 bool contended = qdisc_is_running(q);
2073 int rc;
2076 * Heuristic to force contended enqueues to serialize on a
2077 * separate lock before trying to get qdisc main lock.
2078 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2079 * and dequeue packets faster.
2081 if (unlikely(contended))
2082 spin_lock(&q->busylock);
2084 spin_lock(root_lock);
2085 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2086 kfree_skb(skb);
2087 rc = NET_XMIT_DROP;
2088 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2089 qdisc_run_begin(q)) {
2091 * This is a work-conserving queue; there are no old skbs
2092 * waiting to be sent out; and the qdisc is not running -
2093 * xmit the skb directly.
2095 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2096 skb_dst_force(skb);
2097 __qdisc_update_bstats(q, skb->len);
2098 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2099 if (unlikely(contended)) {
2100 spin_unlock(&q->busylock);
2101 contended = false;
2103 __qdisc_run(q);
2104 } else
2105 qdisc_run_end(q);
2107 rc = NET_XMIT_SUCCESS;
2108 } else {
2109 skb_dst_force(skb);
2110 rc = qdisc_enqueue_root(skb, q);
2111 if (qdisc_run_begin(q)) {
2112 if (unlikely(contended)) {
2113 spin_unlock(&q->busylock);
2114 contended = false;
2116 __qdisc_run(q);
2119 spin_unlock(root_lock);
2120 if (unlikely(contended))
2121 spin_unlock(&q->busylock);
2122 return rc;
2126 * dev_queue_xmit - transmit a buffer
2127 * @skb: buffer to transmit
2129 * Queue a buffer for transmission to a network device. The caller must
2130 * have set the device and priority and built the buffer before calling
2131 * this function. The function can be called from an interrupt.
2133 * A negative errno code is returned on a failure. A success does not
2134 * guarantee the frame will be transmitted as it may be dropped due
2135 * to congestion or traffic shaping.
2137 * -----------------------------------------------------------------------------------
2138 * I notice this method can also return errors from the queue disciplines,
2139 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2140 * be positive.
2142 * Regardless of the return value, the skb is consumed, so it is currently
2143 * difficult to retry a send to this method. (You can bump the ref count
2144 * before sending to hold a reference for retry if you are careful.)
2146 * When calling this method, interrupts MUST be enabled. This is because
2147 * the BH enable code must have IRQs enabled so that it will not deadlock.
2148 * --BLG
2150 int dev_queue_xmit(struct sk_buff *skb)
2152 struct net_device *dev = skb->dev;
2153 struct netdev_queue *txq;
2154 struct Qdisc *q;
2155 int rc = -ENOMEM;
2157 /* Disable soft irqs for various locks below. Also
2158 * stops preemption for RCU.
2160 rcu_read_lock_bh();
2162 txq = dev_pick_tx(dev, skb);
2163 q = rcu_dereference_bh(txq->qdisc);
2165 #ifdef CONFIG_NET_CLS_ACT
2166 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2167 #endif
2168 if (q->enqueue) {
2169 rc = __dev_xmit_skb(skb, q, dev, txq);
2170 goto out;
2173 /* The device has no queue. Common case for software devices:
2174 loopback, all the sorts of tunnels...
2176 Really, it is unlikely that netif_tx_lock protection is necessary
2177 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2178 counters.)
2179 However, it is possible, that they rely on protection
2180 made by us here.
2182 Check this and shot the lock. It is not prone from deadlocks.
2183 Either shot noqueue qdisc, it is even simpler 8)
2185 if (dev->flags & IFF_UP) {
2186 int cpu = smp_processor_id(); /* ok because BHs are off */
2188 if (txq->xmit_lock_owner != cpu) {
2190 HARD_TX_LOCK(dev, txq, cpu);
2192 if (!netif_tx_queue_stopped(txq)) {
2193 rc = dev_hard_start_xmit(skb, dev, txq);
2194 if (dev_xmit_complete(rc)) {
2195 HARD_TX_UNLOCK(dev, txq);
2196 goto out;
2199 HARD_TX_UNLOCK(dev, txq);
2200 if (net_ratelimit())
2201 printk(KERN_CRIT "Virtual device %s asks to "
2202 "queue packet!\n", dev->name);
2203 } else {
2204 /* Recursion is detected! It is possible,
2205 * unfortunately */
2206 if (net_ratelimit())
2207 printk(KERN_CRIT "Dead loop on virtual device "
2208 "%s, fix it urgently!\n", dev->name);
2212 rc = -ENETDOWN;
2213 rcu_read_unlock_bh();
2215 kfree_skb(skb);
2216 return rc;
2217 out:
2218 rcu_read_unlock_bh();
2219 return rc;
2221 EXPORT_SYMBOL(dev_queue_xmit);
2224 /*=======================================================================
2225 Receiver routines
2226 =======================================================================*/
2228 int netdev_max_backlog __read_mostly = 1000;
2229 int netdev_tstamp_prequeue __read_mostly = 1;
2230 int netdev_budget __read_mostly = 300;
2231 int weight_p __read_mostly = 64; /* old backlog weight */
2233 /* Called with irq disabled */
2234 static inline void ____napi_schedule(struct softnet_data *sd,
2235 struct napi_struct *napi)
2237 list_add_tail(&napi->poll_list, &sd->poll_list);
2238 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2241 #ifdef CONFIG_RPS
2243 /* One global table that all flow-based protocols share. */
2244 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2245 EXPORT_SYMBOL(rps_sock_flow_table);
2248 * get_rps_cpu is called from netif_receive_skb and returns the target
2249 * CPU from the RPS map of the receiving queue for a given skb.
2250 * rcu_read_lock must be held on entry.
2252 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2253 struct rps_dev_flow **rflowp)
2255 struct ipv6hdr *ip6;
2256 struct iphdr *ip;
2257 struct netdev_rx_queue *rxqueue;
2258 struct rps_map *map;
2259 struct rps_dev_flow_table *flow_table;
2260 struct rps_sock_flow_table *sock_flow_table;
2261 int cpu = -1;
2262 u8 ip_proto;
2263 u16 tcpu;
2264 u32 addr1, addr2, ihl;
2265 union {
2266 u32 v32;
2267 u16 v16[2];
2268 } ports;
2270 if (skb_rx_queue_recorded(skb)) {
2271 u16 index = skb_get_rx_queue(skb);
2272 if (unlikely(index >= dev->num_rx_queues)) {
2273 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2274 "on queue %u, but number of RX queues is %u\n",
2275 dev->name, index, dev->num_rx_queues);
2276 goto done;
2278 rxqueue = dev->_rx + index;
2279 } else
2280 rxqueue = dev->_rx;
2282 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2283 goto done;
2285 if (skb->rxhash)
2286 goto got_hash; /* Skip hash computation on packet header */
2288 switch (skb->protocol) {
2289 case __constant_htons(ETH_P_IP):
2290 if (!pskb_may_pull(skb, sizeof(*ip)))
2291 goto done;
2293 ip = (struct iphdr *) skb->data;
2294 ip_proto = ip->protocol;
2295 addr1 = (__force u32) ip->saddr;
2296 addr2 = (__force u32) ip->daddr;
2297 ihl = ip->ihl;
2298 break;
2299 case __constant_htons(ETH_P_IPV6):
2300 if (!pskb_may_pull(skb, sizeof(*ip6)))
2301 goto done;
2303 ip6 = (struct ipv6hdr *) skb->data;
2304 ip_proto = ip6->nexthdr;
2305 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2306 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2307 ihl = (40 >> 2);
2308 break;
2309 default:
2310 goto done;
2312 switch (ip_proto) {
2313 case IPPROTO_TCP:
2314 case IPPROTO_UDP:
2315 case IPPROTO_DCCP:
2316 case IPPROTO_ESP:
2317 case IPPROTO_AH:
2318 case IPPROTO_SCTP:
2319 case IPPROTO_UDPLITE:
2320 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2321 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2322 if (ports.v16[1] < ports.v16[0])
2323 swap(ports.v16[0], ports.v16[1]);
2324 break;
2326 default:
2327 ports.v32 = 0;
2328 break;
2331 /* get a consistent hash (same value on both flow directions) */
2332 if (addr2 < addr1)
2333 swap(addr1, addr2);
2334 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2335 if (!skb->rxhash)
2336 skb->rxhash = 1;
2338 got_hash:
2339 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2340 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2341 if (flow_table && sock_flow_table) {
2342 u16 next_cpu;
2343 struct rps_dev_flow *rflow;
2345 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2346 tcpu = rflow->cpu;
2348 next_cpu = sock_flow_table->ents[skb->rxhash &
2349 sock_flow_table->mask];
2352 * If the desired CPU (where last recvmsg was done) is
2353 * different from current CPU (one in the rx-queue flow
2354 * table entry), switch if one of the following holds:
2355 * - Current CPU is unset (equal to RPS_NO_CPU).
2356 * - Current CPU is offline.
2357 * - The current CPU's queue tail has advanced beyond the
2358 * last packet that was enqueued using this table entry.
2359 * This guarantees that all previous packets for the flow
2360 * have been dequeued, thus preserving in order delivery.
2362 if (unlikely(tcpu != next_cpu) &&
2363 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2364 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2365 rflow->last_qtail)) >= 0)) {
2366 tcpu = rflow->cpu = next_cpu;
2367 if (tcpu != RPS_NO_CPU)
2368 rflow->last_qtail = per_cpu(softnet_data,
2369 tcpu).input_queue_head;
2371 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2372 *rflowp = rflow;
2373 cpu = tcpu;
2374 goto done;
2378 map = rcu_dereference(rxqueue->rps_map);
2379 if (map) {
2380 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2382 if (cpu_online(tcpu)) {
2383 cpu = tcpu;
2384 goto done;
2388 done:
2389 return cpu;
2392 /* Called from hardirq (IPI) context */
2393 static void rps_trigger_softirq(void *data)
2395 struct softnet_data *sd = data;
2397 ____napi_schedule(sd, &sd->backlog);
2398 sd->received_rps++;
2401 #endif /* CONFIG_RPS */
2404 * Check if this softnet_data structure is another cpu one
2405 * If yes, queue it to our IPI list and return 1
2406 * If no, return 0
2408 static int rps_ipi_queued(struct softnet_data *sd)
2410 #ifdef CONFIG_RPS
2411 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2413 if (sd != mysd) {
2414 sd->rps_ipi_next = mysd->rps_ipi_list;
2415 mysd->rps_ipi_list = sd;
2417 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2418 return 1;
2420 #endif /* CONFIG_RPS */
2421 return 0;
2425 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2426 * queue (may be a remote CPU queue).
2428 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2429 unsigned int *qtail)
2431 struct softnet_data *sd;
2432 unsigned long flags;
2434 sd = &per_cpu(softnet_data, cpu);
2436 local_irq_save(flags);
2438 rps_lock(sd);
2439 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2440 if (skb_queue_len(&sd->input_pkt_queue)) {
2441 enqueue:
2442 __skb_queue_tail(&sd->input_pkt_queue, skb);
2443 input_queue_tail_incr_save(sd, qtail);
2444 rps_unlock(sd);
2445 local_irq_restore(flags);
2446 return NET_RX_SUCCESS;
2449 /* Schedule NAPI for backlog device
2450 * We can use non atomic operation since we own the queue lock
2452 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2453 if (!rps_ipi_queued(sd))
2454 ____napi_schedule(sd, &sd->backlog);
2456 goto enqueue;
2459 sd->dropped++;
2460 rps_unlock(sd);
2462 local_irq_restore(flags);
2464 kfree_skb(skb);
2465 return NET_RX_DROP;
2469 * netif_rx - post buffer to the network code
2470 * @skb: buffer to post
2472 * This function receives a packet from a device driver and queues it for
2473 * the upper (protocol) levels to process. It always succeeds. The buffer
2474 * may be dropped during processing for congestion control or by the
2475 * protocol layers.
2477 * return values:
2478 * NET_RX_SUCCESS (no congestion)
2479 * NET_RX_DROP (packet was dropped)
2483 int netif_rx(struct sk_buff *skb)
2485 int ret;
2487 /* if netpoll wants it, pretend we never saw it */
2488 if (netpoll_rx(skb))
2489 return NET_RX_DROP;
2491 if (netdev_tstamp_prequeue)
2492 net_timestamp_check(skb);
2494 #ifdef CONFIG_RPS
2496 struct rps_dev_flow voidflow, *rflow = &voidflow;
2497 int cpu;
2499 rcu_read_lock();
2501 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2502 if (cpu < 0)
2503 cpu = smp_processor_id();
2505 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2507 rcu_read_unlock();
2509 #else
2511 unsigned int qtail;
2512 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2513 put_cpu();
2515 #endif
2516 return ret;
2518 EXPORT_SYMBOL(netif_rx);
2520 int netif_rx_ni(struct sk_buff *skb)
2522 int err;
2524 preempt_disable();
2525 err = netif_rx(skb);
2526 if (local_softirq_pending())
2527 do_softirq();
2528 preempt_enable();
2530 return err;
2532 EXPORT_SYMBOL(netif_rx_ni);
2534 static void net_tx_action(struct softirq_action *h)
2536 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2538 if (sd->completion_queue) {
2539 struct sk_buff *clist;
2541 local_irq_disable();
2542 clist = sd->completion_queue;
2543 sd->completion_queue = NULL;
2544 local_irq_enable();
2546 while (clist) {
2547 struct sk_buff *skb = clist;
2548 clist = clist->next;
2550 WARN_ON(atomic_read(&skb->users));
2551 __kfree_skb(skb);
2555 if (sd->output_queue) {
2556 struct Qdisc *head;
2558 local_irq_disable();
2559 head = sd->output_queue;
2560 sd->output_queue = NULL;
2561 sd->output_queue_tailp = &sd->output_queue;
2562 local_irq_enable();
2564 while (head) {
2565 struct Qdisc *q = head;
2566 spinlock_t *root_lock;
2568 head = head->next_sched;
2570 root_lock = qdisc_lock(q);
2571 if (spin_trylock(root_lock)) {
2572 smp_mb__before_clear_bit();
2573 clear_bit(__QDISC_STATE_SCHED,
2574 &q->state);
2575 qdisc_run(q);
2576 spin_unlock(root_lock);
2577 } else {
2578 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2579 &q->state)) {
2580 __netif_reschedule(q);
2581 } else {
2582 smp_mb__before_clear_bit();
2583 clear_bit(__QDISC_STATE_SCHED,
2584 &q->state);
2591 static inline int deliver_skb(struct sk_buff *skb,
2592 struct packet_type *pt_prev,
2593 struct net_device *orig_dev)
2595 atomic_inc(&skb->users);
2596 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2599 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2600 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2601 /* This hook is defined here for ATM LANE */
2602 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2603 unsigned char *addr) __read_mostly;
2604 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2605 #endif
2607 #ifdef CONFIG_NET_CLS_ACT
2608 /* TODO: Maybe we should just force sch_ingress to be compiled in
2609 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2610 * a compare and 2 stores extra right now if we dont have it on
2611 * but have CONFIG_NET_CLS_ACT
2612 * NOTE: This doesnt stop any functionality; if you dont have
2613 * the ingress scheduler, you just cant add policies on ingress.
2616 static int ing_filter(struct sk_buff *skb)
2618 struct net_device *dev = skb->dev;
2619 u32 ttl = G_TC_RTTL(skb->tc_verd);
2620 struct netdev_queue *rxq;
2621 int result = TC_ACT_OK;
2622 struct Qdisc *q;
2624 if (MAX_RED_LOOP < ttl++) {
2625 printk(KERN_WARNING
2626 "Redir loop detected Dropping packet (%d->%d)\n",
2627 skb->skb_iif, dev->ifindex);
2628 return TC_ACT_SHOT;
2631 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2632 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2634 rxq = &dev->rx_queue;
2636 q = rxq->qdisc;
2637 if (q != &noop_qdisc) {
2638 spin_lock(qdisc_lock(q));
2639 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2640 result = qdisc_enqueue_root(skb, q);
2641 spin_unlock(qdisc_lock(q));
2644 return result;
2647 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2648 struct packet_type **pt_prev,
2649 int *ret, struct net_device *orig_dev)
2651 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2652 goto out;
2654 if (*pt_prev) {
2655 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2656 *pt_prev = NULL;
2659 switch (ing_filter(skb)) {
2660 case TC_ACT_SHOT:
2661 case TC_ACT_STOLEN:
2662 kfree_skb(skb);
2663 return NULL;
2666 out:
2667 skb->tc_verd = 0;
2668 return skb;
2670 #endif
2673 * netif_nit_deliver - deliver received packets to network taps
2674 * @skb: buffer
2676 * This function is used to deliver incoming packets to network
2677 * taps. It should be used when the normal netif_receive_skb path
2678 * is bypassed, for example because of VLAN acceleration.
2680 void netif_nit_deliver(struct sk_buff *skb)
2682 struct packet_type *ptype;
2684 if (list_empty(&ptype_all))
2685 return;
2687 skb_reset_network_header(skb);
2688 skb_reset_transport_header(skb);
2689 skb->mac_len = skb->network_header - skb->mac_header;
2691 rcu_read_lock();
2692 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2693 if (!ptype->dev || ptype->dev == skb->dev)
2694 deliver_skb(skb, ptype, skb->dev);
2696 rcu_read_unlock();
2700 * netdev_rx_handler_register - register receive handler
2701 * @dev: device to register a handler for
2702 * @rx_handler: receive handler to register
2703 * @rx_handler_data: data pointer that is used by rx handler
2705 * Register a receive hander for a device. This handler will then be
2706 * called from __netif_receive_skb. A negative errno code is returned
2707 * on a failure.
2709 * The caller must hold the rtnl_mutex.
2711 int netdev_rx_handler_register(struct net_device *dev,
2712 rx_handler_func_t *rx_handler,
2713 void *rx_handler_data)
2715 ASSERT_RTNL();
2717 if (dev->rx_handler)
2718 return -EBUSY;
2720 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2721 rcu_assign_pointer(dev->rx_handler, rx_handler);
2723 return 0;
2725 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2728 * netdev_rx_handler_unregister - unregister receive handler
2729 * @dev: device to unregister a handler from
2731 * Unregister a receive hander from a device.
2733 * The caller must hold the rtnl_mutex.
2735 void netdev_rx_handler_unregister(struct net_device *dev)
2738 ASSERT_RTNL();
2739 rcu_assign_pointer(dev->rx_handler, NULL);
2740 rcu_assign_pointer(dev->rx_handler_data, NULL);
2742 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2744 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2745 struct net_device *master)
2747 if (skb->pkt_type == PACKET_HOST) {
2748 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2750 memcpy(dest, master->dev_addr, ETH_ALEN);
2754 /* On bonding slaves other than the currently active slave, suppress
2755 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2756 * ARP on active-backup slaves with arp_validate enabled.
2758 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2760 struct net_device *dev = skb->dev;
2762 if (master->priv_flags & IFF_MASTER_ARPMON)
2763 dev->last_rx = jiffies;
2765 if ((master->priv_flags & IFF_MASTER_ALB) &&
2766 (master->priv_flags & IFF_BRIDGE_PORT)) {
2767 /* Do address unmangle. The local destination address
2768 * will be always the one master has. Provides the right
2769 * functionality in a bridge.
2771 skb_bond_set_mac_by_master(skb, master);
2774 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2775 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2776 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2777 return 0;
2779 if (master->priv_flags & IFF_MASTER_ALB) {
2780 if (skb->pkt_type != PACKET_BROADCAST &&
2781 skb->pkt_type != PACKET_MULTICAST)
2782 return 0;
2784 if (master->priv_flags & IFF_MASTER_8023AD &&
2785 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2786 return 0;
2788 return 1;
2790 return 0;
2792 EXPORT_SYMBOL(__skb_bond_should_drop);
2794 static int __netif_receive_skb(struct sk_buff *skb)
2796 struct packet_type *ptype, *pt_prev;
2797 rx_handler_func_t *rx_handler;
2798 struct net_device *orig_dev;
2799 struct net_device *master;
2800 struct net_device *null_or_orig;
2801 struct net_device *orig_or_bond;
2802 int ret = NET_RX_DROP;
2803 __be16 type;
2805 if (!netdev_tstamp_prequeue)
2806 net_timestamp_check(skb);
2808 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2809 return NET_RX_SUCCESS;
2811 /* if we've gotten here through NAPI, check netpoll */
2812 if (netpoll_receive_skb(skb))
2813 return NET_RX_DROP;
2815 if (!skb->skb_iif)
2816 skb->skb_iif = skb->dev->ifindex;
2819 * bonding note: skbs received on inactive slaves should only
2820 * be delivered to pkt handlers that are exact matches. Also
2821 * the deliver_no_wcard flag will be set. If packet handlers
2822 * are sensitive to duplicate packets these skbs will need to
2823 * be dropped at the handler. The vlan accel path may have
2824 * already set the deliver_no_wcard flag.
2826 null_or_orig = NULL;
2827 orig_dev = skb->dev;
2828 master = ACCESS_ONCE(orig_dev->master);
2829 if (skb->deliver_no_wcard)
2830 null_or_orig = orig_dev;
2831 else if (master) {
2832 if (skb_bond_should_drop(skb, master)) {
2833 skb->deliver_no_wcard = 1;
2834 null_or_orig = orig_dev; /* deliver only exact match */
2835 } else
2836 skb->dev = master;
2839 __this_cpu_inc(softnet_data.processed);
2840 skb_reset_network_header(skb);
2841 skb_reset_transport_header(skb);
2842 skb->mac_len = skb->network_header - skb->mac_header;
2844 pt_prev = NULL;
2846 rcu_read_lock();
2848 #ifdef CONFIG_NET_CLS_ACT
2849 if (skb->tc_verd & TC_NCLS) {
2850 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2851 goto ncls;
2853 #endif
2855 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2856 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2857 ptype->dev == orig_dev) {
2858 if (pt_prev)
2859 ret = deliver_skb(skb, pt_prev, orig_dev);
2860 pt_prev = ptype;
2864 #ifdef CONFIG_NET_CLS_ACT
2865 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2866 if (!skb)
2867 goto out;
2868 ncls:
2869 #endif
2871 /* Handle special case of bridge or macvlan */
2872 rx_handler = rcu_dereference(skb->dev->rx_handler);
2873 if (rx_handler) {
2874 if (pt_prev) {
2875 ret = deliver_skb(skb, pt_prev, orig_dev);
2876 pt_prev = NULL;
2878 skb = rx_handler(skb);
2879 if (!skb)
2880 goto out;
2884 * Make sure frames received on VLAN interfaces stacked on
2885 * bonding interfaces still make their way to any base bonding
2886 * device that may have registered for a specific ptype. The
2887 * handler may have to adjust skb->dev and orig_dev.
2889 orig_or_bond = orig_dev;
2890 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2891 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2892 orig_or_bond = vlan_dev_real_dev(skb->dev);
2895 type = skb->protocol;
2896 list_for_each_entry_rcu(ptype,
2897 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2898 if (ptype->type == type && (ptype->dev == null_or_orig ||
2899 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2900 ptype->dev == orig_or_bond)) {
2901 if (pt_prev)
2902 ret = deliver_skb(skb, pt_prev, orig_dev);
2903 pt_prev = ptype;
2907 if (pt_prev) {
2908 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2909 } else {
2910 kfree_skb(skb);
2911 /* Jamal, now you will not able to escape explaining
2912 * me how you were going to use this. :-)
2914 ret = NET_RX_DROP;
2917 out:
2918 rcu_read_unlock();
2919 return ret;
2923 * netif_receive_skb - process receive buffer from network
2924 * @skb: buffer to process
2926 * netif_receive_skb() is the main receive data processing function.
2927 * It always succeeds. The buffer may be dropped during processing
2928 * for congestion control or by the protocol layers.
2930 * This function may only be called from softirq context and interrupts
2931 * should be enabled.
2933 * Return values (usually ignored):
2934 * NET_RX_SUCCESS: no congestion
2935 * NET_RX_DROP: packet was dropped
2937 int netif_receive_skb(struct sk_buff *skb)
2939 if (netdev_tstamp_prequeue)
2940 net_timestamp_check(skb);
2942 #ifdef CONFIG_RPS
2944 struct rps_dev_flow voidflow, *rflow = &voidflow;
2945 int cpu, ret;
2947 rcu_read_lock();
2949 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2951 if (cpu >= 0) {
2952 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2953 rcu_read_unlock();
2954 } else {
2955 rcu_read_unlock();
2956 ret = __netif_receive_skb(skb);
2959 return ret;
2961 #else
2962 return __netif_receive_skb(skb);
2963 #endif
2965 EXPORT_SYMBOL(netif_receive_skb);
2967 /* Network device is going away, flush any packets still pending
2968 * Called with irqs disabled.
2970 static void flush_backlog(void *arg)
2972 struct net_device *dev = arg;
2973 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2974 struct sk_buff *skb, *tmp;
2976 rps_lock(sd);
2977 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2978 if (skb->dev == dev) {
2979 __skb_unlink(skb, &sd->input_pkt_queue);
2980 kfree_skb(skb);
2981 input_queue_head_incr(sd);
2984 rps_unlock(sd);
2986 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
2987 if (skb->dev == dev) {
2988 __skb_unlink(skb, &sd->process_queue);
2989 kfree_skb(skb);
2990 input_queue_head_incr(sd);
2995 static int napi_gro_complete(struct sk_buff *skb)
2997 struct packet_type *ptype;
2998 __be16 type = skb->protocol;
2999 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3000 int err = -ENOENT;
3002 if (NAPI_GRO_CB(skb)->count == 1) {
3003 skb_shinfo(skb)->gso_size = 0;
3004 goto out;
3007 rcu_read_lock();
3008 list_for_each_entry_rcu(ptype, head, list) {
3009 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3010 continue;
3012 err = ptype->gro_complete(skb);
3013 break;
3015 rcu_read_unlock();
3017 if (err) {
3018 WARN_ON(&ptype->list == head);
3019 kfree_skb(skb);
3020 return NET_RX_SUCCESS;
3023 out:
3024 return netif_receive_skb(skb);
3027 static void napi_gro_flush(struct napi_struct *napi)
3029 struct sk_buff *skb, *next;
3031 for (skb = napi->gro_list; skb; skb = next) {
3032 next = skb->next;
3033 skb->next = NULL;
3034 napi_gro_complete(skb);
3037 napi->gro_count = 0;
3038 napi->gro_list = NULL;
3041 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3043 struct sk_buff **pp = NULL;
3044 struct packet_type *ptype;
3045 __be16 type = skb->protocol;
3046 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3047 int same_flow;
3048 int mac_len;
3049 enum gro_result ret;
3051 if (!(skb->dev->features & NETIF_F_GRO))
3052 goto normal;
3054 if (skb_is_gso(skb) || skb_has_frags(skb))
3055 goto normal;
3057 rcu_read_lock();
3058 list_for_each_entry_rcu(ptype, head, list) {
3059 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3060 continue;
3062 skb_set_network_header(skb, skb_gro_offset(skb));
3063 mac_len = skb->network_header - skb->mac_header;
3064 skb->mac_len = mac_len;
3065 NAPI_GRO_CB(skb)->same_flow = 0;
3066 NAPI_GRO_CB(skb)->flush = 0;
3067 NAPI_GRO_CB(skb)->free = 0;
3069 pp = ptype->gro_receive(&napi->gro_list, skb);
3070 break;
3072 rcu_read_unlock();
3074 if (&ptype->list == head)
3075 goto normal;
3077 same_flow = NAPI_GRO_CB(skb)->same_flow;
3078 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3080 if (pp) {
3081 struct sk_buff *nskb = *pp;
3083 *pp = nskb->next;
3084 nskb->next = NULL;
3085 napi_gro_complete(nskb);
3086 napi->gro_count--;
3089 if (same_flow)
3090 goto ok;
3092 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3093 goto normal;
3095 napi->gro_count++;
3096 NAPI_GRO_CB(skb)->count = 1;
3097 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3098 skb->next = napi->gro_list;
3099 napi->gro_list = skb;
3100 ret = GRO_HELD;
3102 pull:
3103 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3104 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3106 BUG_ON(skb->end - skb->tail < grow);
3108 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3110 skb->tail += grow;
3111 skb->data_len -= grow;
3113 skb_shinfo(skb)->frags[0].page_offset += grow;
3114 skb_shinfo(skb)->frags[0].size -= grow;
3116 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3117 put_page(skb_shinfo(skb)->frags[0].page);
3118 memmove(skb_shinfo(skb)->frags,
3119 skb_shinfo(skb)->frags + 1,
3120 --skb_shinfo(skb)->nr_frags);
3125 return ret;
3127 normal:
3128 ret = GRO_NORMAL;
3129 goto pull;
3131 EXPORT_SYMBOL(dev_gro_receive);
3133 static gro_result_t
3134 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3136 struct sk_buff *p;
3138 if (netpoll_rx_on(skb))
3139 return GRO_NORMAL;
3141 for (p = napi->gro_list; p; p = p->next) {
3142 NAPI_GRO_CB(p)->same_flow =
3143 (p->dev == skb->dev) &&
3144 !compare_ether_header(skb_mac_header(p),
3145 skb_gro_mac_header(skb));
3146 NAPI_GRO_CB(p)->flush = 0;
3149 return dev_gro_receive(napi, skb);
3152 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3154 switch (ret) {
3155 case GRO_NORMAL:
3156 if (netif_receive_skb(skb))
3157 ret = GRO_DROP;
3158 break;
3160 case GRO_DROP:
3161 case GRO_MERGED_FREE:
3162 kfree_skb(skb);
3163 break;
3165 case GRO_HELD:
3166 case GRO_MERGED:
3167 break;
3170 return ret;
3172 EXPORT_SYMBOL(napi_skb_finish);
3174 void skb_gro_reset_offset(struct sk_buff *skb)
3176 NAPI_GRO_CB(skb)->data_offset = 0;
3177 NAPI_GRO_CB(skb)->frag0 = NULL;
3178 NAPI_GRO_CB(skb)->frag0_len = 0;
3180 if (skb->mac_header == skb->tail &&
3181 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3182 NAPI_GRO_CB(skb)->frag0 =
3183 page_address(skb_shinfo(skb)->frags[0].page) +
3184 skb_shinfo(skb)->frags[0].page_offset;
3185 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3188 EXPORT_SYMBOL(skb_gro_reset_offset);
3190 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3192 skb_gro_reset_offset(skb);
3194 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3196 EXPORT_SYMBOL(napi_gro_receive);
3198 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3200 __skb_pull(skb, skb_headlen(skb));
3201 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3203 napi->skb = skb;
3205 EXPORT_SYMBOL(napi_reuse_skb);
3207 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3209 struct sk_buff *skb = napi->skb;
3211 if (!skb) {
3212 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3213 if (skb)
3214 napi->skb = skb;
3216 return skb;
3218 EXPORT_SYMBOL(napi_get_frags);
3220 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3221 gro_result_t ret)
3223 switch (ret) {
3224 case GRO_NORMAL:
3225 case GRO_HELD:
3226 skb->protocol = eth_type_trans(skb, skb->dev);
3228 if (ret == GRO_HELD)
3229 skb_gro_pull(skb, -ETH_HLEN);
3230 else if (netif_receive_skb(skb))
3231 ret = GRO_DROP;
3232 break;
3234 case GRO_DROP:
3235 case GRO_MERGED_FREE:
3236 napi_reuse_skb(napi, skb);
3237 break;
3239 case GRO_MERGED:
3240 break;
3243 return ret;
3245 EXPORT_SYMBOL(napi_frags_finish);
3247 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3249 struct sk_buff *skb = napi->skb;
3250 struct ethhdr *eth;
3251 unsigned int hlen;
3252 unsigned int off;
3254 napi->skb = NULL;
3256 skb_reset_mac_header(skb);
3257 skb_gro_reset_offset(skb);
3259 off = skb_gro_offset(skb);
3260 hlen = off + sizeof(*eth);
3261 eth = skb_gro_header_fast(skb, off);
3262 if (skb_gro_header_hard(skb, hlen)) {
3263 eth = skb_gro_header_slow(skb, hlen, off);
3264 if (unlikely(!eth)) {
3265 napi_reuse_skb(napi, skb);
3266 skb = NULL;
3267 goto out;
3271 skb_gro_pull(skb, sizeof(*eth));
3274 * This works because the only protocols we care about don't require
3275 * special handling. We'll fix it up properly at the end.
3277 skb->protocol = eth->h_proto;
3279 out:
3280 return skb;
3282 EXPORT_SYMBOL(napi_frags_skb);
3284 gro_result_t napi_gro_frags(struct napi_struct *napi)
3286 struct sk_buff *skb = napi_frags_skb(napi);
3288 if (!skb)
3289 return GRO_DROP;
3291 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3293 EXPORT_SYMBOL(napi_gro_frags);
3296 * net_rps_action sends any pending IPI's for rps.
3297 * Note: called with local irq disabled, but exits with local irq enabled.
3299 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3301 #ifdef CONFIG_RPS
3302 struct softnet_data *remsd = sd->rps_ipi_list;
3304 if (remsd) {
3305 sd->rps_ipi_list = NULL;
3307 local_irq_enable();
3309 /* Send pending IPI's to kick RPS processing on remote cpus. */
3310 while (remsd) {
3311 struct softnet_data *next = remsd->rps_ipi_next;
3313 if (cpu_online(remsd->cpu))
3314 __smp_call_function_single(remsd->cpu,
3315 &remsd->csd, 0);
3316 remsd = next;
3318 } else
3319 #endif
3320 local_irq_enable();
3323 static int process_backlog(struct napi_struct *napi, int quota)
3325 int work = 0;
3326 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3328 #ifdef CONFIG_RPS
3329 /* Check if we have pending ipi, its better to send them now,
3330 * not waiting net_rx_action() end.
3332 if (sd->rps_ipi_list) {
3333 local_irq_disable();
3334 net_rps_action_and_irq_enable(sd);
3336 #endif
3337 napi->weight = weight_p;
3338 local_irq_disable();
3339 while (work < quota) {
3340 struct sk_buff *skb;
3341 unsigned int qlen;
3343 while ((skb = __skb_dequeue(&sd->process_queue))) {
3344 local_irq_enable();
3345 __netif_receive_skb(skb);
3346 local_irq_disable();
3347 input_queue_head_incr(sd);
3348 if (++work >= quota) {
3349 local_irq_enable();
3350 return work;
3354 rps_lock(sd);
3355 qlen = skb_queue_len(&sd->input_pkt_queue);
3356 if (qlen)
3357 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3358 &sd->process_queue);
3360 if (qlen < quota - work) {
3362 * Inline a custom version of __napi_complete().
3363 * only current cpu owns and manipulates this napi,
3364 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3365 * we can use a plain write instead of clear_bit(),
3366 * and we dont need an smp_mb() memory barrier.
3368 list_del(&napi->poll_list);
3369 napi->state = 0;
3371 quota = work + qlen;
3373 rps_unlock(sd);
3375 local_irq_enable();
3377 return work;
3381 * __napi_schedule - schedule for receive
3382 * @n: entry to schedule
3384 * The entry's receive function will be scheduled to run
3386 void __napi_schedule(struct napi_struct *n)
3388 unsigned long flags;
3390 local_irq_save(flags);
3391 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3392 local_irq_restore(flags);
3394 EXPORT_SYMBOL(__napi_schedule);
3396 void __napi_complete(struct napi_struct *n)
3398 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3399 BUG_ON(n->gro_list);
3401 list_del(&n->poll_list);
3402 smp_mb__before_clear_bit();
3403 clear_bit(NAPI_STATE_SCHED, &n->state);
3405 EXPORT_SYMBOL(__napi_complete);
3407 void napi_complete(struct napi_struct *n)
3409 unsigned long flags;
3412 * don't let napi dequeue from the cpu poll list
3413 * just in case its running on a different cpu
3415 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3416 return;
3418 napi_gro_flush(n);
3419 local_irq_save(flags);
3420 __napi_complete(n);
3421 local_irq_restore(flags);
3423 EXPORT_SYMBOL(napi_complete);
3425 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3426 int (*poll)(struct napi_struct *, int), int weight)
3428 INIT_LIST_HEAD(&napi->poll_list);
3429 napi->gro_count = 0;
3430 napi->gro_list = NULL;
3431 napi->skb = NULL;
3432 napi->poll = poll;
3433 napi->weight = weight;
3434 list_add(&napi->dev_list, &dev->napi_list);
3435 napi->dev = dev;
3436 #ifdef CONFIG_NETPOLL
3437 spin_lock_init(&napi->poll_lock);
3438 napi->poll_owner = -1;
3439 #endif
3440 set_bit(NAPI_STATE_SCHED, &napi->state);
3442 EXPORT_SYMBOL(netif_napi_add);
3444 void netif_napi_del(struct napi_struct *napi)
3446 struct sk_buff *skb, *next;
3448 list_del_init(&napi->dev_list);
3449 napi_free_frags(napi);
3451 for (skb = napi->gro_list; skb; skb = next) {
3452 next = skb->next;
3453 skb->next = NULL;
3454 kfree_skb(skb);
3457 napi->gro_list = NULL;
3458 napi->gro_count = 0;
3460 EXPORT_SYMBOL(netif_napi_del);
3462 static void net_rx_action(struct softirq_action *h)
3464 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3465 unsigned long time_limit = jiffies + 2;
3466 int budget = netdev_budget;
3467 void *have;
3469 local_irq_disable();
3471 while (!list_empty(&sd->poll_list)) {
3472 struct napi_struct *n;
3473 int work, weight;
3475 /* If softirq window is exhuasted then punt.
3476 * Allow this to run for 2 jiffies since which will allow
3477 * an average latency of 1.5/HZ.
3479 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3480 goto softnet_break;
3482 local_irq_enable();
3484 /* Even though interrupts have been re-enabled, this
3485 * access is safe because interrupts can only add new
3486 * entries to the tail of this list, and only ->poll()
3487 * calls can remove this head entry from the list.
3489 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3491 have = netpoll_poll_lock(n);
3493 weight = n->weight;
3495 /* This NAPI_STATE_SCHED test is for avoiding a race
3496 * with netpoll's poll_napi(). Only the entity which
3497 * obtains the lock and sees NAPI_STATE_SCHED set will
3498 * actually make the ->poll() call. Therefore we avoid
3499 * accidently calling ->poll() when NAPI is not scheduled.
3501 work = 0;
3502 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3503 work = n->poll(n, weight);
3504 trace_napi_poll(n);
3507 WARN_ON_ONCE(work > weight);
3509 budget -= work;
3511 local_irq_disable();
3513 /* Drivers must not modify the NAPI state if they
3514 * consume the entire weight. In such cases this code
3515 * still "owns" the NAPI instance and therefore can
3516 * move the instance around on the list at-will.
3518 if (unlikely(work == weight)) {
3519 if (unlikely(napi_disable_pending(n))) {
3520 local_irq_enable();
3521 napi_complete(n);
3522 local_irq_disable();
3523 } else
3524 list_move_tail(&n->poll_list, &sd->poll_list);
3527 netpoll_poll_unlock(have);
3529 out:
3530 net_rps_action_and_irq_enable(sd);
3532 #ifdef CONFIG_NET_DMA
3534 * There may not be any more sk_buffs coming right now, so push
3535 * any pending DMA copies to hardware
3537 dma_issue_pending_all();
3538 #endif
3540 return;
3542 softnet_break:
3543 sd->time_squeeze++;
3544 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3545 goto out;
3548 static gifconf_func_t *gifconf_list[NPROTO];
3551 * register_gifconf - register a SIOCGIF handler
3552 * @family: Address family
3553 * @gifconf: Function handler
3555 * Register protocol dependent address dumping routines. The handler
3556 * that is passed must not be freed or reused until it has been replaced
3557 * by another handler.
3559 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3561 if (family >= NPROTO)
3562 return -EINVAL;
3563 gifconf_list[family] = gifconf;
3564 return 0;
3566 EXPORT_SYMBOL(register_gifconf);
3570 * Map an interface index to its name (SIOCGIFNAME)
3574 * We need this ioctl for efficient implementation of the
3575 * if_indextoname() function required by the IPv6 API. Without
3576 * it, we would have to search all the interfaces to find a
3577 * match. --pb
3580 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3582 struct net_device *dev;
3583 struct ifreq ifr;
3586 * Fetch the caller's info block.
3589 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3590 return -EFAULT;
3592 rcu_read_lock();
3593 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3594 if (!dev) {
3595 rcu_read_unlock();
3596 return -ENODEV;
3599 strcpy(ifr.ifr_name, dev->name);
3600 rcu_read_unlock();
3602 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3603 return -EFAULT;
3604 return 0;
3608 * Perform a SIOCGIFCONF call. This structure will change
3609 * size eventually, and there is nothing I can do about it.
3610 * Thus we will need a 'compatibility mode'.
3613 static int dev_ifconf(struct net *net, char __user *arg)
3615 struct ifconf ifc;
3616 struct net_device *dev;
3617 char __user *pos;
3618 int len;
3619 int total;
3620 int i;
3623 * Fetch the caller's info block.
3626 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3627 return -EFAULT;
3629 pos = ifc.ifc_buf;
3630 len = ifc.ifc_len;
3633 * Loop over the interfaces, and write an info block for each.
3636 total = 0;
3637 for_each_netdev(net, dev) {
3638 for (i = 0; i < NPROTO; i++) {
3639 if (gifconf_list[i]) {
3640 int done;
3641 if (!pos)
3642 done = gifconf_list[i](dev, NULL, 0);
3643 else
3644 done = gifconf_list[i](dev, pos + total,
3645 len - total);
3646 if (done < 0)
3647 return -EFAULT;
3648 total += done;
3654 * All done. Write the updated control block back to the caller.
3656 ifc.ifc_len = total;
3659 * Both BSD and Solaris return 0 here, so we do too.
3661 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3664 #ifdef CONFIG_PROC_FS
3666 * This is invoked by the /proc filesystem handler to display a device
3667 * in detail.
3669 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3670 __acquires(RCU)
3672 struct net *net = seq_file_net(seq);
3673 loff_t off;
3674 struct net_device *dev;
3676 rcu_read_lock();
3677 if (!*pos)
3678 return SEQ_START_TOKEN;
3680 off = 1;
3681 for_each_netdev_rcu(net, dev)
3682 if (off++ == *pos)
3683 return dev;
3685 return NULL;
3688 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3690 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3691 first_net_device(seq_file_net(seq)) :
3692 next_net_device((struct net_device *)v);
3694 ++*pos;
3695 return rcu_dereference(dev);
3698 void dev_seq_stop(struct seq_file *seq, void *v)
3699 __releases(RCU)
3701 rcu_read_unlock();
3704 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3706 const struct rtnl_link_stats64 *stats = dev_get_stats(dev);
3708 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3709 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3710 dev->name, stats->rx_bytes, stats->rx_packets,
3711 stats->rx_errors,
3712 stats->rx_dropped + stats->rx_missed_errors,
3713 stats->rx_fifo_errors,
3714 stats->rx_length_errors + stats->rx_over_errors +
3715 stats->rx_crc_errors + stats->rx_frame_errors,
3716 stats->rx_compressed, stats->multicast,
3717 stats->tx_bytes, stats->tx_packets,
3718 stats->tx_errors, stats->tx_dropped,
3719 stats->tx_fifo_errors, stats->collisions,
3720 stats->tx_carrier_errors +
3721 stats->tx_aborted_errors +
3722 stats->tx_window_errors +
3723 stats->tx_heartbeat_errors,
3724 stats->tx_compressed);
3728 * Called from the PROCfs module. This now uses the new arbitrary sized
3729 * /proc/net interface to create /proc/net/dev
3731 static int dev_seq_show(struct seq_file *seq, void *v)
3733 if (v == SEQ_START_TOKEN)
3734 seq_puts(seq, "Inter-| Receive "
3735 " | Transmit\n"
3736 " face |bytes packets errs drop fifo frame "
3737 "compressed multicast|bytes packets errs "
3738 "drop fifo colls carrier compressed\n");
3739 else
3740 dev_seq_printf_stats(seq, v);
3741 return 0;
3744 static struct softnet_data *softnet_get_online(loff_t *pos)
3746 struct softnet_data *sd = NULL;
3748 while (*pos < nr_cpu_ids)
3749 if (cpu_online(*pos)) {
3750 sd = &per_cpu(softnet_data, *pos);
3751 break;
3752 } else
3753 ++*pos;
3754 return sd;
3757 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3759 return softnet_get_online(pos);
3762 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3764 ++*pos;
3765 return softnet_get_online(pos);
3768 static void softnet_seq_stop(struct seq_file *seq, void *v)
3772 static int softnet_seq_show(struct seq_file *seq, void *v)
3774 struct softnet_data *sd = v;
3776 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3777 sd->processed, sd->dropped, sd->time_squeeze, 0,
3778 0, 0, 0, 0, /* was fastroute */
3779 sd->cpu_collision, sd->received_rps);
3780 return 0;
3783 static const struct seq_operations dev_seq_ops = {
3784 .start = dev_seq_start,
3785 .next = dev_seq_next,
3786 .stop = dev_seq_stop,
3787 .show = dev_seq_show,
3790 static int dev_seq_open(struct inode *inode, struct file *file)
3792 return seq_open_net(inode, file, &dev_seq_ops,
3793 sizeof(struct seq_net_private));
3796 static const struct file_operations dev_seq_fops = {
3797 .owner = THIS_MODULE,
3798 .open = dev_seq_open,
3799 .read = seq_read,
3800 .llseek = seq_lseek,
3801 .release = seq_release_net,
3804 static const struct seq_operations softnet_seq_ops = {
3805 .start = softnet_seq_start,
3806 .next = softnet_seq_next,
3807 .stop = softnet_seq_stop,
3808 .show = softnet_seq_show,
3811 static int softnet_seq_open(struct inode *inode, struct file *file)
3813 return seq_open(file, &softnet_seq_ops);
3816 static const struct file_operations softnet_seq_fops = {
3817 .owner = THIS_MODULE,
3818 .open = softnet_seq_open,
3819 .read = seq_read,
3820 .llseek = seq_lseek,
3821 .release = seq_release,
3824 static void *ptype_get_idx(loff_t pos)
3826 struct packet_type *pt = NULL;
3827 loff_t i = 0;
3828 int t;
3830 list_for_each_entry_rcu(pt, &ptype_all, list) {
3831 if (i == pos)
3832 return pt;
3833 ++i;
3836 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3837 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3838 if (i == pos)
3839 return pt;
3840 ++i;
3843 return NULL;
3846 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3847 __acquires(RCU)
3849 rcu_read_lock();
3850 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3853 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3855 struct packet_type *pt;
3856 struct list_head *nxt;
3857 int hash;
3859 ++*pos;
3860 if (v == SEQ_START_TOKEN)
3861 return ptype_get_idx(0);
3863 pt = v;
3864 nxt = pt->list.next;
3865 if (pt->type == htons(ETH_P_ALL)) {
3866 if (nxt != &ptype_all)
3867 goto found;
3868 hash = 0;
3869 nxt = ptype_base[0].next;
3870 } else
3871 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3873 while (nxt == &ptype_base[hash]) {
3874 if (++hash >= PTYPE_HASH_SIZE)
3875 return NULL;
3876 nxt = ptype_base[hash].next;
3878 found:
3879 return list_entry(nxt, struct packet_type, list);
3882 static void ptype_seq_stop(struct seq_file *seq, void *v)
3883 __releases(RCU)
3885 rcu_read_unlock();
3888 static int ptype_seq_show(struct seq_file *seq, void *v)
3890 struct packet_type *pt = v;
3892 if (v == SEQ_START_TOKEN)
3893 seq_puts(seq, "Type Device Function\n");
3894 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3895 if (pt->type == htons(ETH_P_ALL))
3896 seq_puts(seq, "ALL ");
3897 else
3898 seq_printf(seq, "%04x", ntohs(pt->type));
3900 seq_printf(seq, " %-8s %pF\n",
3901 pt->dev ? pt->dev->name : "", pt->func);
3904 return 0;
3907 static const struct seq_operations ptype_seq_ops = {
3908 .start = ptype_seq_start,
3909 .next = ptype_seq_next,
3910 .stop = ptype_seq_stop,
3911 .show = ptype_seq_show,
3914 static int ptype_seq_open(struct inode *inode, struct file *file)
3916 return seq_open_net(inode, file, &ptype_seq_ops,
3917 sizeof(struct seq_net_private));
3920 static const struct file_operations ptype_seq_fops = {
3921 .owner = THIS_MODULE,
3922 .open = ptype_seq_open,
3923 .read = seq_read,
3924 .llseek = seq_lseek,
3925 .release = seq_release_net,
3929 static int __net_init dev_proc_net_init(struct net *net)
3931 int rc = -ENOMEM;
3933 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3934 goto out;
3935 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3936 goto out_dev;
3937 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3938 goto out_softnet;
3940 if (wext_proc_init(net))
3941 goto out_ptype;
3942 rc = 0;
3943 out:
3944 return rc;
3945 out_ptype:
3946 proc_net_remove(net, "ptype");
3947 out_softnet:
3948 proc_net_remove(net, "softnet_stat");
3949 out_dev:
3950 proc_net_remove(net, "dev");
3951 goto out;
3954 static void __net_exit dev_proc_net_exit(struct net *net)
3956 wext_proc_exit(net);
3958 proc_net_remove(net, "ptype");
3959 proc_net_remove(net, "softnet_stat");
3960 proc_net_remove(net, "dev");
3963 static struct pernet_operations __net_initdata dev_proc_ops = {
3964 .init = dev_proc_net_init,
3965 .exit = dev_proc_net_exit,
3968 static int __init dev_proc_init(void)
3970 return register_pernet_subsys(&dev_proc_ops);
3972 #else
3973 #define dev_proc_init() 0
3974 #endif /* CONFIG_PROC_FS */
3978 * netdev_set_master - set up master/slave pair
3979 * @slave: slave device
3980 * @master: new master device
3982 * Changes the master device of the slave. Pass %NULL to break the
3983 * bonding. The caller must hold the RTNL semaphore. On a failure
3984 * a negative errno code is returned. On success the reference counts
3985 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3986 * function returns zero.
3988 int netdev_set_master(struct net_device *slave, struct net_device *master)
3990 struct net_device *old = slave->master;
3992 ASSERT_RTNL();
3994 if (master) {
3995 if (old)
3996 return -EBUSY;
3997 dev_hold(master);
4000 slave->master = master;
4002 if (old) {
4003 synchronize_net();
4004 dev_put(old);
4006 if (master)
4007 slave->flags |= IFF_SLAVE;
4008 else
4009 slave->flags &= ~IFF_SLAVE;
4011 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4012 return 0;
4014 EXPORT_SYMBOL(netdev_set_master);
4016 static void dev_change_rx_flags(struct net_device *dev, int flags)
4018 const struct net_device_ops *ops = dev->netdev_ops;
4020 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4021 ops->ndo_change_rx_flags(dev, flags);
4024 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4026 unsigned short old_flags = dev->flags;
4027 uid_t uid;
4028 gid_t gid;
4030 ASSERT_RTNL();
4032 dev->flags |= IFF_PROMISC;
4033 dev->promiscuity += inc;
4034 if (dev->promiscuity == 0) {
4036 * Avoid overflow.
4037 * If inc causes overflow, untouch promisc and return error.
4039 if (inc < 0)
4040 dev->flags &= ~IFF_PROMISC;
4041 else {
4042 dev->promiscuity -= inc;
4043 printk(KERN_WARNING "%s: promiscuity touches roof, "
4044 "set promiscuity failed, promiscuity feature "
4045 "of device might be broken.\n", dev->name);
4046 return -EOVERFLOW;
4049 if (dev->flags != old_flags) {
4050 printk(KERN_INFO "device %s %s promiscuous mode\n",
4051 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4052 "left");
4053 if (audit_enabled) {
4054 current_uid_gid(&uid, &gid);
4055 audit_log(current->audit_context, GFP_ATOMIC,
4056 AUDIT_ANOM_PROMISCUOUS,
4057 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4058 dev->name, (dev->flags & IFF_PROMISC),
4059 (old_flags & IFF_PROMISC),
4060 audit_get_loginuid(current),
4061 uid, gid,
4062 audit_get_sessionid(current));
4065 dev_change_rx_flags(dev, IFF_PROMISC);
4067 return 0;
4071 * dev_set_promiscuity - update promiscuity count on a device
4072 * @dev: device
4073 * @inc: modifier
4075 * Add or remove promiscuity from a device. While the count in the device
4076 * remains above zero the interface remains promiscuous. Once it hits zero
4077 * the device reverts back to normal filtering operation. A negative inc
4078 * value is used to drop promiscuity on the device.
4079 * Return 0 if successful or a negative errno code on error.
4081 int dev_set_promiscuity(struct net_device *dev, int inc)
4083 unsigned short old_flags = dev->flags;
4084 int err;
4086 err = __dev_set_promiscuity(dev, inc);
4087 if (err < 0)
4088 return err;
4089 if (dev->flags != old_flags)
4090 dev_set_rx_mode(dev);
4091 return err;
4093 EXPORT_SYMBOL(dev_set_promiscuity);
4096 * dev_set_allmulti - update allmulti count on a device
4097 * @dev: device
4098 * @inc: modifier
4100 * Add or remove reception of all multicast frames to a device. While the
4101 * count in the device remains above zero the interface remains listening
4102 * to all interfaces. Once it hits zero the device reverts back to normal
4103 * filtering operation. A negative @inc value is used to drop the counter
4104 * when releasing a resource needing all multicasts.
4105 * Return 0 if successful or a negative errno code on error.
4108 int dev_set_allmulti(struct net_device *dev, int inc)
4110 unsigned short old_flags = dev->flags;
4112 ASSERT_RTNL();
4114 dev->flags |= IFF_ALLMULTI;
4115 dev->allmulti += inc;
4116 if (dev->allmulti == 0) {
4118 * Avoid overflow.
4119 * If inc causes overflow, untouch allmulti and return error.
4121 if (inc < 0)
4122 dev->flags &= ~IFF_ALLMULTI;
4123 else {
4124 dev->allmulti -= inc;
4125 printk(KERN_WARNING "%s: allmulti touches roof, "
4126 "set allmulti failed, allmulti feature of "
4127 "device might be broken.\n", dev->name);
4128 return -EOVERFLOW;
4131 if (dev->flags ^ old_flags) {
4132 dev_change_rx_flags(dev, IFF_ALLMULTI);
4133 dev_set_rx_mode(dev);
4135 return 0;
4137 EXPORT_SYMBOL(dev_set_allmulti);
4140 * Upload unicast and multicast address lists to device and
4141 * configure RX filtering. When the device doesn't support unicast
4142 * filtering it is put in promiscuous mode while unicast addresses
4143 * are present.
4145 void __dev_set_rx_mode(struct net_device *dev)
4147 const struct net_device_ops *ops = dev->netdev_ops;
4149 /* dev_open will call this function so the list will stay sane. */
4150 if (!(dev->flags&IFF_UP))
4151 return;
4153 if (!netif_device_present(dev))
4154 return;
4156 if (ops->ndo_set_rx_mode)
4157 ops->ndo_set_rx_mode(dev);
4158 else {
4159 /* Unicast addresses changes may only happen under the rtnl,
4160 * therefore calling __dev_set_promiscuity here is safe.
4162 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4163 __dev_set_promiscuity(dev, 1);
4164 dev->uc_promisc = 1;
4165 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4166 __dev_set_promiscuity(dev, -1);
4167 dev->uc_promisc = 0;
4170 if (ops->ndo_set_multicast_list)
4171 ops->ndo_set_multicast_list(dev);
4175 void dev_set_rx_mode(struct net_device *dev)
4177 netif_addr_lock_bh(dev);
4178 __dev_set_rx_mode(dev);
4179 netif_addr_unlock_bh(dev);
4183 * dev_get_flags - get flags reported to userspace
4184 * @dev: device
4186 * Get the combination of flag bits exported through APIs to userspace.
4188 unsigned dev_get_flags(const struct net_device *dev)
4190 unsigned flags;
4192 flags = (dev->flags & ~(IFF_PROMISC |
4193 IFF_ALLMULTI |
4194 IFF_RUNNING |
4195 IFF_LOWER_UP |
4196 IFF_DORMANT)) |
4197 (dev->gflags & (IFF_PROMISC |
4198 IFF_ALLMULTI));
4200 if (netif_running(dev)) {
4201 if (netif_oper_up(dev))
4202 flags |= IFF_RUNNING;
4203 if (netif_carrier_ok(dev))
4204 flags |= IFF_LOWER_UP;
4205 if (netif_dormant(dev))
4206 flags |= IFF_DORMANT;
4209 return flags;
4211 EXPORT_SYMBOL(dev_get_flags);
4213 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4215 int old_flags = dev->flags;
4216 int ret;
4218 ASSERT_RTNL();
4221 * Set the flags on our device.
4224 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4225 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4226 IFF_AUTOMEDIA)) |
4227 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4228 IFF_ALLMULTI));
4231 * Load in the correct multicast list now the flags have changed.
4234 if ((old_flags ^ flags) & IFF_MULTICAST)
4235 dev_change_rx_flags(dev, IFF_MULTICAST);
4237 dev_set_rx_mode(dev);
4240 * Have we downed the interface. We handle IFF_UP ourselves
4241 * according to user attempts to set it, rather than blindly
4242 * setting it.
4245 ret = 0;
4246 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4247 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4249 if (!ret)
4250 dev_set_rx_mode(dev);
4253 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4254 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4256 dev->gflags ^= IFF_PROMISC;
4257 dev_set_promiscuity(dev, inc);
4260 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4261 is important. Some (broken) drivers set IFF_PROMISC, when
4262 IFF_ALLMULTI is requested not asking us and not reporting.
4264 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4265 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4267 dev->gflags ^= IFF_ALLMULTI;
4268 dev_set_allmulti(dev, inc);
4271 return ret;
4274 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4276 unsigned int changes = dev->flags ^ old_flags;
4278 if (changes & IFF_UP) {
4279 if (dev->flags & IFF_UP)
4280 call_netdevice_notifiers(NETDEV_UP, dev);
4281 else
4282 call_netdevice_notifiers(NETDEV_DOWN, dev);
4285 if (dev->flags & IFF_UP &&
4286 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4287 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4291 * dev_change_flags - change device settings
4292 * @dev: device
4293 * @flags: device state flags
4295 * Change settings on device based state flags. The flags are
4296 * in the userspace exported format.
4298 int dev_change_flags(struct net_device *dev, unsigned flags)
4300 int ret, changes;
4301 int old_flags = dev->flags;
4303 ret = __dev_change_flags(dev, flags);
4304 if (ret < 0)
4305 return ret;
4307 changes = old_flags ^ dev->flags;
4308 if (changes)
4309 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4311 __dev_notify_flags(dev, old_flags);
4312 return ret;
4314 EXPORT_SYMBOL(dev_change_flags);
4317 * dev_set_mtu - Change maximum transfer unit
4318 * @dev: device
4319 * @new_mtu: new transfer unit
4321 * Change the maximum transfer size of the network device.
4323 int dev_set_mtu(struct net_device *dev, int new_mtu)
4325 const struct net_device_ops *ops = dev->netdev_ops;
4326 int err;
4328 if (new_mtu == dev->mtu)
4329 return 0;
4331 /* MTU must be positive. */
4332 if (new_mtu < 0)
4333 return -EINVAL;
4335 if (!netif_device_present(dev))
4336 return -ENODEV;
4338 err = 0;
4339 if (ops->ndo_change_mtu)
4340 err = ops->ndo_change_mtu(dev, new_mtu);
4341 else
4342 dev->mtu = new_mtu;
4344 if (!err && dev->flags & IFF_UP)
4345 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4346 return err;
4348 EXPORT_SYMBOL(dev_set_mtu);
4351 * dev_set_mac_address - Change Media Access Control Address
4352 * @dev: device
4353 * @sa: new address
4355 * Change the hardware (MAC) address of the device
4357 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4359 const struct net_device_ops *ops = dev->netdev_ops;
4360 int err;
4362 if (!ops->ndo_set_mac_address)
4363 return -EOPNOTSUPP;
4364 if (sa->sa_family != dev->type)
4365 return -EINVAL;
4366 if (!netif_device_present(dev))
4367 return -ENODEV;
4368 err = ops->ndo_set_mac_address(dev, sa);
4369 if (!err)
4370 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4371 return err;
4373 EXPORT_SYMBOL(dev_set_mac_address);
4376 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4378 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4380 int err;
4381 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4383 if (!dev)
4384 return -ENODEV;
4386 switch (cmd) {
4387 case SIOCGIFFLAGS: /* Get interface flags */
4388 ifr->ifr_flags = (short) dev_get_flags(dev);
4389 return 0;
4391 case SIOCGIFMETRIC: /* Get the metric on the interface
4392 (currently unused) */
4393 ifr->ifr_metric = 0;
4394 return 0;
4396 case SIOCGIFMTU: /* Get the MTU of a device */
4397 ifr->ifr_mtu = dev->mtu;
4398 return 0;
4400 case SIOCGIFHWADDR:
4401 if (!dev->addr_len)
4402 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4403 else
4404 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4405 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4406 ifr->ifr_hwaddr.sa_family = dev->type;
4407 return 0;
4409 case SIOCGIFSLAVE:
4410 err = -EINVAL;
4411 break;
4413 case SIOCGIFMAP:
4414 ifr->ifr_map.mem_start = dev->mem_start;
4415 ifr->ifr_map.mem_end = dev->mem_end;
4416 ifr->ifr_map.base_addr = dev->base_addr;
4417 ifr->ifr_map.irq = dev->irq;
4418 ifr->ifr_map.dma = dev->dma;
4419 ifr->ifr_map.port = dev->if_port;
4420 return 0;
4422 case SIOCGIFINDEX:
4423 ifr->ifr_ifindex = dev->ifindex;
4424 return 0;
4426 case SIOCGIFTXQLEN:
4427 ifr->ifr_qlen = dev->tx_queue_len;
4428 return 0;
4430 default:
4431 /* dev_ioctl() should ensure this case
4432 * is never reached
4434 WARN_ON(1);
4435 err = -EINVAL;
4436 break;
4439 return err;
4443 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4445 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4447 int err;
4448 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4449 const struct net_device_ops *ops;
4451 if (!dev)
4452 return -ENODEV;
4454 ops = dev->netdev_ops;
4456 switch (cmd) {
4457 case SIOCSIFFLAGS: /* Set interface flags */
4458 return dev_change_flags(dev, ifr->ifr_flags);
4460 case SIOCSIFMETRIC: /* Set the metric on the interface
4461 (currently unused) */
4462 return -EOPNOTSUPP;
4464 case SIOCSIFMTU: /* Set the MTU of a device */
4465 return dev_set_mtu(dev, ifr->ifr_mtu);
4467 case SIOCSIFHWADDR:
4468 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4470 case SIOCSIFHWBROADCAST:
4471 if (ifr->ifr_hwaddr.sa_family != dev->type)
4472 return -EINVAL;
4473 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4474 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4475 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4476 return 0;
4478 case SIOCSIFMAP:
4479 if (ops->ndo_set_config) {
4480 if (!netif_device_present(dev))
4481 return -ENODEV;
4482 return ops->ndo_set_config(dev, &ifr->ifr_map);
4484 return -EOPNOTSUPP;
4486 case SIOCADDMULTI:
4487 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4488 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4489 return -EINVAL;
4490 if (!netif_device_present(dev))
4491 return -ENODEV;
4492 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4494 case SIOCDELMULTI:
4495 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4496 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4497 return -EINVAL;
4498 if (!netif_device_present(dev))
4499 return -ENODEV;
4500 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4502 case SIOCSIFTXQLEN:
4503 if (ifr->ifr_qlen < 0)
4504 return -EINVAL;
4505 dev->tx_queue_len = ifr->ifr_qlen;
4506 return 0;
4508 case SIOCSIFNAME:
4509 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4510 return dev_change_name(dev, ifr->ifr_newname);
4513 * Unknown or private ioctl
4515 default:
4516 if ((cmd >= SIOCDEVPRIVATE &&
4517 cmd <= SIOCDEVPRIVATE + 15) ||
4518 cmd == SIOCBONDENSLAVE ||
4519 cmd == SIOCBONDRELEASE ||
4520 cmd == SIOCBONDSETHWADDR ||
4521 cmd == SIOCBONDSLAVEINFOQUERY ||
4522 cmd == SIOCBONDINFOQUERY ||
4523 cmd == SIOCBONDCHANGEACTIVE ||
4524 cmd == SIOCGMIIPHY ||
4525 cmd == SIOCGMIIREG ||
4526 cmd == SIOCSMIIREG ||
4527 cmd == SIOCBRADDIF ||
4528 cmd == SIOCBRDELIF ||
4529 cmd == SIOCSHWTSTAMP ||
4530 cmd == SIOCWANDEV) {
4531 err = -EOPNOTSUPP;
4532 if (ops->ndo_do_ioctl) {
4533 if (netif_device_present(dev))
4534 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4535 else
4536 err = -ENODEV;
4538 } else
4539 err = -EINVAL;
4542 return err;
4546 * This function handles all "interface"-type I/O control requests. The actual
4547 * 'doing' part of this is dev_ifsioc above.
4551 * dev_ioctl - network device ioctl
4552 * @net: the applicable net namespace
4553 * @cmd: command to issue
4554 * @arg: pointer to a struct ifreq in user space
4556 * Issue ioctl functions to devices. This is normally called by the
4557 * user space syscall interfaces but can sometimes be useful for
4558 * other purposes. The return value is the return from the syscall if
4559 * positive or a negative errno code on error.
4562 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4564 struct ifreq ifr;
4565 int ret;
4566 char *colon;
4568 /* One special case: SIOCGIFCONF takes ifconf argument
4569 and requires shared lock, because it sleeps writing
4570 to user space.
4573 if (cmd == SIOCGIFCONF) {
4574 rtnl_lock();
4575 ret = dev_ifconf(net, (char __user *) arg);
4576 rtnl_unlock();
4577 return ret;
4579 if (cmd == SIOCGIFNAME)
4580 return dev_ifname(net, (struct ifreq __user *)arg);
4582 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4583 return -EFAULT;
4585 ifr.ifr_name[IFNAMSIZ-1] = 0;
4587 colon = strchr(ifr.ifr_name, ':');
4588 if (colon)
4589 *colon = 0;
4592 * See which interface the caller is talking about.
4595 switch (cmd) {
4597 * These ioctl calls:
4598 * - can be done by all.
4599 * - atomic and do not require locking.
4600 * - return a value
4602 case SIOCGIFFLAGS:
4603 case SIOCGIFMETRIC:
4604 case SIOCGIFMTU:
4605 case SIOCGIFHWADDR:
4606 case SIOCGIFSLAVE:
4607 case SIOCGIFMAP:
4608 case SIOCGIFINDEX:
4609 case SIOCGIFTXQLEN:
4610 dev_load(net, ifr.ifr_name);
4611 rcu_read_lock();
4612 ret = dev_ifsioc_locked(net, &ifr, cmd);
4613 rcu_read_unlock();
4614 if (!ret) {
4615 if (colon)
4616 *colon = ':';
4617 if (copy_to_user(arg, &ifr,
4618 sizeof(struct ifreq)))
4619 ret = -EFAULT;
4621 return ret;
4623 case SIOCETHTOOL:
4624 dev_load(net, ifr.ifr_name);
4625 rtnl_lock();
4626 ret = dev_ethtool(net, &ifr);
4627 rtnl_unlock();
4628 if (!ret) {
4629 if (colon)
4630 *colon = ':';
4631 if (copy_to_user(arg, &ifr,
4632 sizeof(struct ifreq)))
4633 ret = -EFAULT;
4635 return ret;
4638 * These ioctl calls:
4639 * - require superuser power.
4640 * - require strict serialization.
4641 * - return a value
4643 case SIOCGMIIPHY:
4644 case SIOCGMIIREG:
4645 case SIOCSIFNAME:
4646 if (!capable(CAP_NET_ADMIN))
4647 return -EPERM;
4648 dev_load(net, ifr.ifr_name);
4649 rtnl_lock();
4650 ret = dev_ifsioc(net, &ifr, cmd);
4651 rtnl_unlock();
4652 if (!ret) {
4653 if (colon)
4654 *colon = ':';
4655 if (copy_to_user(arg, &ifr,
4656 sizeof(struct ifreq)))
4657 ret = -EFAULT;
4659 return ret;
4662 * These ioctl calls:
4663 * - require superuser power.
4664 * - require strict serialization.
4665 * - do not return a value
4667 case SIOCSIFFLAGS:
4668 case SIOCSIFMETRIC:
4669 case SIOCSIFMTU:
4670 case SIOCSIFMAP:
4671 case SIOCSIFHWADDR:
4672 case SIOCSIFSLAVE:
4673 case SIOCADDMULTI:
4674 case SIOCDELMULTI:
4675 case SIOCSIFHWBROADCAST:
4676 case SIOCSIFTXQLEN:
4677 case SIOCSMIIREG:
4678 case SIOCBONDENSLAVE:
4679 case SIOCBONDRELEASE:
4680 case SIOCBONDSETHWADDR:
4681 case SIOCBONDCHANGEACTIVE:
4682 case SIOCBRADDIF:
4683 case SIOCBRDELIF:
4684 case SIOCSHWTSTAMP:
4685 if (!capable(CAP_NET_ADMIN))
4686 return -EPERM;
4687 /* fall through */
4688 case SIOCBONDSLAVEINFOQUERY:
4689 case SIOCBONDINFOQUERY:
4690 dev_load(net, ifr.ifr_name);
4691 rtnl_lock();
4692 ret = dev_ifsioc(net, &ifr, cmd);
4693 rtnl_unlock();
4694 return ret;
4696 case SIOCGIFMEM:
4697 /* Get the per device memory space. We can add this but
4698 * currently do not support it */
4699 case SIOCSIFMEM:
4700 /* Set the per device memory buffer space.
4701 * Not applicable in our case */
4702 case SIOCSIFLINK:
4703 return -EINVAL;
4706 * Unknown or private ioctl.
4708 default:
4709 if (cmd == SIOCWANDEV ||
4710 (cmd >= SIOCDEVPRIVATE &&
4711 cmd <= SIOCDEVPRIVATE + 15)) {
4712 dev_load(net, ifr.ifr_name);
4713 rtnl_lock();
4714 ret = dev_ifsioc(net, &ifr, cmd);
4715 rtnl_unlock();
4716 if (!ret && copy_to_user(arg, &ifr,
4717 sizeof(struct ifreq)))
4718 ret = -EFAULT;
4719 return ret;
4721 /* Take care of Wireless Extensions */
4722 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4723 return wext_handle_ioctl(net, &ifr, cmd, arg);
4724 return -EINVAL;
4730 * dev_new_index - allocate an ifindex
4731 * @net: the applicable net namespace
4733 * Returns a suitable unique value for a new device interface
4734 * number. The caller must hold the rtnl semaphore or the
4735 * dev_base_lock to be sure it remains unique.
4737 static int dev_new_index(struct net *net)
4739 static int ifindex;
4740 for (;;) {
4741 if (++ifindex <= 0)
4742 ifindex = 1;
4743 if (!__dev_get_by_index(net, ifindex))
4744 return ifindex;
4748 /* Delayed registration/unregisteration */
4749 static LIST_HEAD(net_todo_list);
4751 static void net_set_todo(struct net_device *dev)
4753 list_add_tail(&dev->todo_list, &net_todo_list);
4756 static void rollback_registered_many(struct list_head *head)
4758 struct net_device *dev, *tmp;
4760 BUG_ON(dev_boot_phase);
4761 ASSERT_RTNL();
4763 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4764 /* Some devices call without registering
4765 * for initialization unwind. Remove those
4766 * devices and proceed with the remaining.
4768 if (dev->reg_state == NETREG_UNINITIALIZED) {
4769 pr_debug("unregister_netdevice: device %s/%p never "
4770 "was registered\n", dev->name, dev);
4772 WARN_ON(1);
4773 list_del(&dev->unreg_list);
4774 continue;
4777 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4779 /* If device is running, close it first. */
4780 dev_close(dev);
4782 /* And unlink it from device chain. */
4783 unlist_netdevice(dev);
4785 dev->reg_state = NETREG_UNREGISTERING;
4788 synchronize_net();
4790 list_for_each_entry(dev, head, unreg_list) {
4791 /* Shutdown queueing discipline. */
4792 dev_shutdown(dev);
4795 /* Notify protocols, that we are about to destroy
4796 this device. They should clean all the things.
4798 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4800 if (!dev->rtnl_link_ops ||
4801 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4802 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4805 * Flush the unicast and multicast chains
4807 dev_uc_flush(dev);
4808 dev_mc_flush(dev);
4810 if (dev->netdev_ops->ndo_uninit)
4811 dev->netdev_ops->ndo_uninit(dev);
4813 /* Notifier chain MUST detach us from master device. */
4814 WARN_ON(dev->master);
4816 /* Remove entries from kobject tree */
4817 netdev_unregister_kobject(dev);
4820 /* Process any work delayed until the end of the batch */
4821 dev = list_first_entry(head, struct net_device, unreg_list);
4822 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4824 synchronize_net();
4826 list_for_each_entry(dev, head, unreg_list)
4827 dev_put(dev);
4830 static void rollback_registered(struct net_device *dev)
4832 LIST_HEAD(single);
4834 list_add(&dev->unreg_list, &single);
4835 rollback_registered_many(&single);
4838 static void __netdev_init_queue_locks_one(struct net_device *dev,
4839 struct netdev_queue *dev_queue,
4840 void *_unused)
4842 spin_lock_init(&dev_queue->_xmit_lock);
4843 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4844 dev_queue->xmit_lock_owner = -1;
4847 static void netdev_init_queue_locks(struct net_device *dev)
4849 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4850 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4853 unsigned long netdev_fix_features(unsigned long features, const char *name)
4855 /* Fix illegal SG+CSUM combinations. */
4856 if ((features & NETIF_F_SG) &&
4857 !(features & NETIF_F_ALL_CSUM)) {
4858 if (name)
4859 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4860 "checksum feature.\n", name);
4861 features &= ~NETIF_F_SG;
4864 /* TSO requires that SG is present as well. */
4865 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4866 if (name)
4867 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4868 "SG feature.\n", name);
4869 features &= ~NETIF_F_TSO;
4872 if (features & NETIF_F_UFO) {
4873 if (!(features & NETIF_F_GEN_CSUM)) {
4874 if (name)
4875 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4876 "since no NETIF_F_HW_CSUM feature.\n",
4877 name);
4878 features &= ~NETIF_F_UFO;
4881 if (!(features & NETIF_F_SG)) {
4882 if (name)
4883 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4884 "since no NETIF_F_SG feature.\n", name);
4885 features &= ~NETIF_F_UFO;
4889 return features;
4891 EXPORT_SYMBOL(netdev_fix_features);
4894 * netif_stacked_transfer_operstate - transfer operstate
4895 * @rootdev: the root or lower level device to transfer state from
4896 * @dev: the device to transfer operstate to
4898 * Transfer operational state from root to device. This is normally
4899 * called when a stacking relationship exists between the root
4900 * device and the device(a leaf device).
4902 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4903 struct net_device *dev)
4905 if (rootdev->operstate == IF_OPER_DORMANT)
4906 netif_dormant_on(dev);
4907 else
4908 netif_dormant_off(dev);
4910 if (netif_carrier_ok(rootdev)) {
4911 if (!netif_carrier_ok(dev))
4912 netif_carrier_on(dev);
4913 } else {
4914 if (netif_carrier_ok(dev))
4915 netif_carrier_off(dev);
4918 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4921 * register_netdevice - register a network device
4922 * @dev: device to register
4924 * Take a completed network device structure and add it to the kernel
4925 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4926 * chain. 0 is returned on success. A negative errno code is returned
4927 * on a failure to set up the device, or if the name is a duplicate.
4929 * Callers must hold the rtnl semaphore. You may want
4930 * register_netdev() instead of this.
4932 * BUGS:
4933 * The locking appears insufficient to guarantee two parallel registers
4934 * will not get the same name.
4937 int register_netdevice(struct net_device *dev)
4939 int ret;
4940 struct net *net = dev_net(dev);
4942 BUG_ON(dev_boot_phase);
4943 ASSERT_RTNL();
4945 might_sleep();
4947 /* When net_device's are persistent, this will be fatal. */
4948 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4949 BUG_ON(!net);
4951 spin_lock_init(&dev->addr_list_lock);
4952 netdev_set_addr_lockdep_class(dev);
4953 netdev_init_queue_locks(dev);
4955 dev->iflink = -1;
4957 #ifdef CONFIG_RPS
4958 if (!dev->num_rx_queues) {
4960 * Allocate a single RX queue if driver never called
4961 * alloc_netdev_mq
4964 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4965 if (!dev->_rx) {
4966 ret = -ENOMEM;
4967 goto out;
4970 dev->_rx->first = dev->_rx;
4971 atomic_set(&dev->_rx->count, 1);
4972 dev->num_rx_queues = 1;
4974 #endif
4975 /* Init, if this function is available */
4976 if (dev->netdev_ops->ndo_init) {
4977 ret = dev->netdev_ops->ndo_init(dev);
4978 if (ret) {
4979 if (ret > 0)
4980 ret = -EIO;
4981 goto out;
4985 ret = dev_get_valid_name(dev, dev->name, 0);
4986 if (ret)
4987 goto err_uninit;
4989 dev->ifindex = dev_new_index(net);
4990 if (dev->iflink == -1)
4991 dev->iflink = dev->ifindex;
4993 /* Fix illegal checksum combinations */
4994 if ((dev->features & NETIF_F_HW_CSUM) &&
4995 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4996 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4997 dev->name);
4998 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5001 if ((dev->features & NETIF_F_NO_CSUM) &&
5002 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5003 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5004 dev->name);
5005 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5008 dev->features = netdev_fix_features(dev->features, dev->name);
5010 /* Enable software GSO if SG is supported. */
5011 if (dev->features & NETIF_F_SG)
5012 dev->features |= NETIF_F_GSO;
5014 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5015 ret = notifier_to_errno(ret);
5016 if (ret)
5017 goto err_uninit;
5019 ret = netdev_register_kobject(dev);
5020 if (ret)
5021 goto err_uninit;
5022 dev->reg_state = NETREG_REGISTERED;
5025 * Default initial state at registry is that the
5026 * device is present.
5029 set_bit(__LINK_STATE_PRESENT, &dev->state);
5031 dev_init_scheduler(dev);
5032 dev_hold(dev);
5033 list_netdevice(dev);
5035 /* Notify protocols, that a new device appeared. */
5036 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5037 ret = notifier_to_errno(ret);
5038 if (ret) {
5039 rollback_registered(dev);
5040 dev->reg_state = NETREG_UNREGISTERED;
5043 * Prevent userspace races by waiting until the network
5044 * device is fully setup before sending notifications.
5046 if (!dev->rtnl_link_ops ||
5047 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5048 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5050 out:
5051 return ret;
5053 err_uninit:
5054 if (dev->netdev_ops->ndo_uninit)
5055 dev->netdev_ops->ndo_uninit(dev);
5056 goto out;
5058 EXPORT_SYMBOL(register_netdevice);
5061 * init_dummy_netdev - init a dummy network device for NAPI
5062 * @dev: device to init
5064 * This takes a network device structure and initialize the minimum
5065 * amount of fields so it can be used to schedule NAPI polls without
5066 * registering a full blown interface. This is to be used by drivers
5067 * that need to tie several hardware interfaces to a single NAPI
5068 * poll scheduler due to HW limitations.
5070 int init_dummy_netdev(struct net_device *dev)
5072 /* Clear everything. Note we don't initialize spinlocks
5073 * are they aren't supposed to be taken by any of the
5074 * NAPI code and this dummy netdev is supposed to be
5075 * only ever used for NAPI polls
5077 memset(dev, 0, sizeof(struct net_device));
5079 /* make sure we BUG if trying to hit standard
5080 * register/unregister code path
5082 dev->reg_state = NETREG_DUMMY;
5084 /* initialize the ref count */
5085 atomic_set(&dev->refcnt, 1);
5087 /* NAPI wants this */
5088 INIT_LIST_HEAD(&dev->napi_list);
5090 /* a dummy interface is started by default */
5091 set_bit(__LINK_STATE_PRESENT, &dev->state);
5092 set_bit(__LINK_STATE_START, &dev->state);
5094 return 0;
5096 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5100 * register_netdev - register a network device
5101 * @dev: device to register
5103 * Take a completed network device structure and add it to the kernel
5104 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5105 * chain. 0 is returned on success. A negative errno code is returned
5106 * on a failure to set up the device, or if the name is a duplicate.
5108 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5109 * and expands the device name if you passed a format string to
5110 * alloc_netdev.
5112 int register_netdev(struct net_device *dev)
5114 int err;
5116 rtnl_lock();
5119 * If the name is a format string the caller wants us to do a
5120 * name allocation.
5122 if (strchr(dev->name, '%')) {
5123 err = dev_alloc_name(dev, dev->name);
5124 if (err < 0)
5125 goto out;
5128 err = register_netdevice(dev);
5129 out:
5130 rtnl_unlock();
5131 return err;
5133 EXPORT_SYMBOL(register_netdev);
5136 * netdev_wait_allrefs - wait until all references are gone.
5138 * This is called when unregistering network devices.
5140 * Any protocol or device that holds a reference should register
5141 * for netdevice notification, and cleanup and put back the
5142 * reference if they receive an UNREGISTER event.
5143 * We can get stuck here if buggy protocols don't correctly
5144 * call dev_put.
5146 static void netdev_wait_allrefs(struct net_device *dev)
5148 unsigned long rebroadcast_time, warning_time;
5150 linkwatch_forget_dev(dev);
5152 rebroadcast_time = warning_time = jiffies;
5153 while (atomic_read(&dev->refcnt) != 0) {
5154 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5155 rtnl_lock();
5157 /* Rebroadcast unregister notification */
5158 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5159 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5160 * should have already handle it the first time */
5162 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5163 &dev->state)) {
5164 /* We must not have linkwatch events
5165 * pending on unregister. If this
5166 * happens, we simply run the queue
5167 * unscheduled, resulting in a noop
5168 * for this device.
5170 linkwatch_run_queue();
5173 __rtnl_unlock();
5175 rebroadcast_time = jiffies;
5178 msleep(250);
5180 if (time_after(jiffies, warning_time + 10 * HZ)) {
5181 printk(KERN_EMERG "unregister_netdevice: "
5182 "waiting for %s to become free. Usage "
5183 "count = %d\n",
5184 dev->name, atomic_read(&dev->refcnt));
5185 warning_time = jiffies;
5190 /* The sequence is:
5192 * rtnl_lock();
5193 * ...
5194 * register_netdevice(x1);
5195 * register_netdevice(x2);
5196 * ...
5197 * unregister_netdevice(y1);
5198 * unregister_netdevice(y2);
5199 * ...
5200 * rtnl_unlock();
5201 * free_netdev(y1);
5202 * free_netdev(y2);
5204 * We are invoked by rtnl_unlock().
5205 * This allows us to deal with problems:
5206 * 1) We can delete sysfs objects which invoke hotplug
5207 * without deadlocking with linkwatch via keventd.
5208 * 2) Since we run with the RTNL semaphore not held, we can sleep
5209 * safely in order to wait for the netdev refcnt to drop to zero.
5211 * We must not return until all unregister events added during
5212 * the interval the lock was held have been completed.
5214 void netdev_run_todo(void)
5216 struct list_head list;
5218 /* Snapshot list, allow later requests */
5219 list_replace_init(&net_todo_list, &list);
5221 __rtnl_unlock();
5223 while (!list_empty(&list)) {
5224 struct net_device *dev
5225 = list_first_entry(&list, struct net_device, todo_list);
5226 list_del(&dev->todo_list);
5228 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5229 printk(KERN_ERR "network todo '%s' but state %d\n",
5230 dev->name, dev->reg_state);
5231 dump_stack();
5232 continue;
5235 dev->reg_state = NETREG_UNREGISTERED;
5237 on_each_cpu(flush_backlog, dev, 1);
5239 netdev_wait_allrefs(dev);
5241 /* paranoia */
5242 BUG_ON(atomic_read(&dev->refcnt));
5243 WARN_ON(dev->ip_ptr);
5244 WARN_ON(dev->ip6_ptr);
5245 WARN_ON(dev->dn_ptr);
5247 if (dev->destructor)
5248 dev->destructor(dev);
5250 /* Free network device */
5251 kobject_put(&dev->dev.kobj);
5256 * dev_txq_stats_fold - fold tx_queues stats
5257 * @dev: device to get statistics from
5258 * @stats: struct net_device_stats to hold results
5260 void dev_txq_stats_fold(const struct net_device *dev,
5261 struct net_device_stats *stats)
5263 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5264 unsigned int i;
5265 struct netdev_queue *txq;
5267 for (i = 0; i < dev->num_tx_queues; i++) {
5268 txq = netdev_get_tx_queue(dev, i);
5269 tx_bytes += txq->tx_bytes;
5270 tx_packets += txq->tx_packets;
5271 tx_dropped += txq->tx_dropped;
5273 if (tx_bytes || tx_packets || tx_dropped) {
5274 stats->tx_bytes = tx_bytes;
5275 stats->tx_packets = tx_packets;
5276 stats->tx_dropped = tx_dropped;
5279 EXPORT_SYMBOL(dev_txq_stats_fold);
5282 * dev_get_stats - get network device statistics
5283 * @dev: device to get statistics from
5285 * Get network statistics from device. The device driver may provide
5286 * its own method by setting dev->netdev_ops->get_stats64 or
5287 * dev->netdev_ops->get_stats; otherwise the internal statistics
5288 * structure is used.
5290 const struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev)
5292 const struct net_device_ops *ops = dev->netdev_ops;
5294 if (ops->ndo_get_stats64)
5295 return ops->ndo_get_stats64(dev);
5296 if (ops->ndo_get_stats)
5297 return (struct rtnl_link_stats64 *)ops->ndo_get_stats(dev);
5299 dev_txq_stats_fold(dev, &dev->stats);
5300 return &dev->stats64;
5302 EXPORT_SYMBOL(dev_get_stats);
5304 static void netdev_init_one_queue(struct net_device *dev,
5305 struct netdev_queue *queue,
5306 void *_unused)
5308 queue->dev = dev;
5311 static void netdev_init_queues(struct net_device *dev)
5313 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5314 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5315 spin_lock_init(&dev->tx_global_lock);
5319 * alloc_netdev_mq - allocate network device
5320 * @sizeof_priv: size of private data to allocate space for
5321 * @name: device name format string
5322 * @setup: callback to initialize device
5323 * @queue_count: the number of subqueues to allocate
5325 * Allocates a struct net_device with private data area for driver use
5326 * and performs basic initialization. Also allocates subquue structs
5327 * for each queue on the device at the end of the netdevice.
5329 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5330 void (*setup)(struct net_device *), unsigned int queue_count)
5332 struct netdev_queue *tx;
5333 struct net_device *dev;
5334 size_t alloc_size;
5335 struct net_device *p;
5336 #ifdef CONFIG_RPS
5337 struct netdev_rx_queue *rx;
5338 int i;
5339 #endif
5341 BUG_ON(strlen(name) >= sizeof(dev->name));
5343 alloc_size = sizeof(struct net_device);
5344 if (sizeof_priv) {
5345 /* ensure 32-byte alignment of private area */
5346 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5347 alloc_size += sizeof_priv;
5349 /* ensure 32-byte alignment of whole construct */
5350 alloc_size += NETDEV_ALIGN - 1;
5352 p = kzalloc(alloc_size, GFP_KERNEL);
5353 if (!p) {
5354 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5355 return NULL;
5358 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5359 if (!tx) {
5360 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5361 "tx qdiscs.\n");
5362 goto free_p;
5365 #ifdef CONFIG_RPS
5366 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5367 if (!rx) {
5368 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5369 "rx queues.\n");
5370 goto free_tx;
5373 atomic_set(&rx->count, queue_count);
5376 * Set a pointer to first element in the array which holds the
5377 * reference count.
5379 for (i = 0; i < queue_count; i++)
5380 rx[i].first = rx;
5381 #endif
5383 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5384 dev->padded = (char *)dev - (char *)p;
5386 if (dev_addr_init(dev))
5387 goto free_rx;
5389 dev_mc_init(dev);
5390 dev_uc_init(dev);
5392 dev_net_set(dev, &init_net);
5394 dev->_tx = tx;
5395 dev->num_tx_queues = queue_count;
5396 dev->real_num_tx_queues = queue_count;
5398 #ifdef CONFIG_RPS
5399 dev->_rx = rx;
5400 dev->num_rx_queues = queue_count;
5401 #endif
5403 dev->gso_max_size = GSO_MAX_SIZE;
5405 netdev_init_queues(dev);
5407 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5408 dev->ethtool_ntuple_list.count = 0;
5409 INIT_LIST_HEAD(&dev->napi_list);
5410 INIT_LIST_HEAD(&dev->unreg_list);
5411 INIT_LIST_HEAD(&dev->link_watch_list);
5412 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5413 setup(dev);
5414 strcpy(dev->name, name);
5415 return dev;
5417 free_rx:
5418 #ifdef CONFIG_RPS
5419 kfree(rx);
5420 free_tx:
5421 #endif
5422 kfree(tx);
5423 free_p:
5424 kfree(p);
5425 return NULL;
5427 EXPORT_SYMBOL(alloc_netdev_mq);
5430 * free_netdev - free network device
5431 * @dev: device
5433 * This function does the last stage of destroying an allocated device
5434 * interface. The reference to the device object is released.
5435 * If this is the last reference then it will be freed.
5437 void free_netdev(struct net_device *dev)
5439 struct napi_struct *p, *n;
5441 release_net(dev_net(dev));
5443 kfree(dev->_tx);
5445 /* Flush device addresses */
5446 dev_addr_flush(dev);
5448 /* Clear ethtool n-tuple list */
5449 ethtool_ntuple_flush(dev);
5451 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5452 netif_napi_del(p);
5454 /* Compatibility with error handling in drivers */
5455 if (dev->reg_state == NETREG_UNINITIALIZED) {
5456 kfree((char *)dev - dev->padded);
5457 return;
5460 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5461 dev->reg_state = NETREG_RELEASED;
5463 /* will free via device release */
5464 put_device(&dev->dev);
5466 EXPORT_SYMBOL(free_netdev);
5469 * synchronize_net - Synchronize with packet receive processing
5471 * Wait for packets currently being received to be done.
5472 * Does not block later packets from starting.
5474 void synchronize_net(void)
5476 might_sleep();
5477 synchronize_rcu();
5479 EXPORT_SYMBOL(synchronize_net);
5482 * unregister_netdevice_queue - remove device from the kernel
5483 * @dev: device
5484 * @head: list
5486 * This function shuts down a device interface and removes it
5487 * from the kernel tables.
5488 * If head not NULL, device is queued to be unregistered later.
5490 * Callers must hold the rtnl semaphore. You may want
5491 * unregister_netdev() instead of this.
5494 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5496 ASSERT_RTNL();
5498 if (head) {
5499 list_move_tail(&dev->unreg_list, head);
5500 } else {
5501 rollback_registered(dev);
5502 /* Finish processing unregister after unlock */
5503 net_set_todo(dev);
5506 EXPORT_SYMBOL(unregister_netdevice_queue);
5509 * unregister_netdevice_many - unregister many devices
5510 * @head: list of devices
5512 void unregister_netdevice_many(struct list_head *head)
5514 struct net_device *dev;
5516 if (!list_empty(head)) {
5517 rollback_registered_many(head);
5518 list_for_each_entry(dev, head, unreg_list)
5519 net_set_todo(dev);
5522 EXPORT_SYMBOL(unregister_netdevice_many);
5525 * unregister_netdev - remove device from the kernel
5526 * @dev: device
5528 * This function shuts down a device interface and removes it
5529 * from the kernel tables.
5531 * This is just a wrapper for unregister_netdevice that takes
5532 * the rtnl semaphore. In general you want to use this and not
5533 * unregister_netdevice.
5535 void unregister_netdev(struct net_device *dev)
5537 rtnl_lock();
5538 unregister_netdevice(dev);
5539 rtnl_unlock();
5541 EXPORT_SYMBOL(unregister_netdev);
5544 * dev_change_net_namespace - move device to different nethost namespace
5545 * @dev: device
5546 * @net: network namespace
5547 * @pat: If not NULL name pattern to try if the current device name
5548 * is already taken in the destination network namespace.
5550 * This function shuts down a device interface and moves it
5551 * to a new network namespace. On success 0 is returned, on
5552 * a failure a netagive errno code is returned.
5554 * Callers must hold the rtnl semaphore.
5557 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5559 int err;
5561 ASSERT_RTNL();
5563 /* Don't allow namespace local devices to be moved. */
5564 err = -EINVAL;
5565 if (dev->features & NETIF_F_NETNS_LOCAL)
5566 goto out;
5568 /* Ensure the device has been registrered */
5569 err = -EINVAL;
5570 if (dev->reg_state != NETREG_REGISTERED)
5571 goto out;
5573 /* Get out if there is nothing todo */
5574 err = 0;
5575 if (net_eq(dev_net(dev), net))
5576 goto out;
5578 /* Pick the destination device name, and ensure
5579 * we can use it in the destination network namespace.
5581 err = -EEXIST;
5582 if (__dev_get_by_name(net, dev->name)) {
5583 /* We get here if we can't use the current device name */
5584 if (!pat)
5585 goto out;
5586 if (dev_get_valid_name(dev, pat, 1))
5587 goto out;
5591 * And now a mini version of register_netdevice unregister_netdevice.
5594 /* If device is running close it first. */
5595 dev_close(dev);
5597 /* And unlink it from device chain */
5598 err = -ENODEV;
5599 unlist_netdevice(dev);
5601 synchronize_net();
5603 /* Shutdown queueing discipline. */
5604 dev_shutdown(dev);
5606 /* Notify protocols, that we are about to destroy
5607 this device. They should clean all the things.
5609 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5610 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5613 * Flush the unicast and multicast chains
5615 dev_uc_flush(dev);
5616 dev_mc_flush(dev);
5618 /* Actually switch the network namespace */
5619 dev_net_set(dev, net);
5621 /* If there is an ifindex conflict assign a new one */
5622 if (__dev_get_by_index(net, dev->ifindex)) {
5623 int iflink = (dev->iflink == dev->ifindex);
5624 dev->ifindex = dev_new_index(net);
5625 if (iflink)
5626 dev->iflink = dev->ifindex;
5629 /* Fixup kobjects */
5630 err = device_rename(&dev->dev, dev->name);
5631 WARN_ON(err);
5633 /* Add the device back in the hashes */
5634 list_netdevice(dev);
5636 /* Notify protocols, that a new device appeared. */
5637 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5640 * Prevent userspace races by waiting until the network
5641 * device is fully setup before sending notifications.
5643 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5645 synchronize_net();
5646 err = 0;
5647 out:
5648 return err;
5650 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5652 static int dev_cpu_callback(struct notifier_block *nfb,
5653 unsigned long action,
5654 void *ocpu)
5656 struct sk_buff **list_skb;
5657 struct sk_buff *skb;
5658 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5659 struct softnet_data *sd, *oldsd;
5661 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5662 return NOTIFY_OK;
5664 local_irq_disable();
5665 cpu = smp_processor_id();
5666 sd = &per_cpu(softnet_data, cpu);
5667 oldsd = &per_cpu(softnet_data, oldcpu);
5669 /* Find end of our completion_queue. */
5670 list_skb = &sd->completion_queue;
5671 while (*list_skb)
5672 list_skb = &(*list_skb)->next;
5673 /* Append completion queue from offline CPU. */
5674 *list_skb = oldsd->completion_queue;
5675 oldsd->completion_queue = NULL;
5677 /* Append output queue from offline CPU. */
5678 if (oldsd->output_queue) {
5679 *sd->output_queue_tailp = oldsd->output_queue;
5680 sd->output_queue_tailp = oldsd->output_queue_tailp;
5681 oldsd->output_queue = NULL;
5682 oldsd->output_queue_tailp = &oldsd->output_queue;
5685 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5686 local_irq_enable();
5688 /* Process offline CPU's input_pkt_queue */
5689 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5690 netif_rx(skb);
5691 input_queue_head_incr(oldsd);
5693 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5694 netif_rx(skb);
5695 input_queue_head_incr(oldsd);
5698 return NOTIFY_OK;
5703 * netdev_increment_features - increment feature set by one
5704 * @all: current feature set
5705 * @one: new feature set
5706 * @mask: mask feature set
5708 * Computes a new feature set after adding a device with feature set
5709 * @one to the master device with current feature set @all. Will not
5710 * enable anything that is off in @mask. Returns the new feature set.
5712 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5713 unsigned long mask)
5715 /* If device needs checksumming, downgrade to it. */
5716 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5717 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5718 else if (mask & NETIF_F_ALL_CSUM) {
5719 /* If one device supports v4/v6 checksumming, set for all. */
5720 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5721 !(all & NETIF_F_GEN_CSUM)) {
5722 all &= ~NETIF_F_ALL_CSUM;
5723 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5726 /* If one device supports hw checksumming, set for all. */
5727 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5728 all &= ~NETIF_F_ALL_CSUM;
5729 all |= NETIF_F_HW_CSUM;
5733 one |= NETIF_F_ALL_CSUM;
5735 one |= all & NETIF_F_ONE_FOR_ALL;
5736 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5737 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5739 return all;
5741 EXPORT_SYMBOL(netdev_increment_features);
5743 static struct hlist_head *netdev_create_hash(void)
5745 int i;
5746 struct hlist_head *hash;
5748 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5749 if (hash != NULL)
5750 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5751 INIT_HLIST_HEAD(&hash[i]);
5753 return hash;
5756 /* Initialize per network namespace state */
5757 static int __net_init netdev_init(struct net *net)
5759 INIT_LIST_HEAD(&net->dev_base_head);
5761 net->dev_name_head = netdev_create_hash();
5762 if (net->dev_name_head == NULL)
5763 goto err_name;
5765 net->dev_index_head = netdev_create_hash();
5766 if (net->dev_index_head == NULL)
5767 goto err_idx;
5769 return 0;
5771 err_idx:
5772 kfree(net->dev_name_head);
5773 err_name:
5774 return -ENOMEM;
5778 * netdev_drivername - network driver for the device
5779 * @dev: network device
5780 * @buffer: buffer for resulting name
5781 * @len: size of buffer
5783 * Determine network driver for device.
5785 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5787 const struct device_driver *driver;
5788 const struct device *parent;
5790 if (len <= 0 || !buffer)
5791 return buffer;
5792 buffer[0] = 0;
5794 parent = dev->dev.parent;
5796 if (!parent)
5797 return buffer;
5799 driver = parent->driver;
5800 if (driver && driver->name)
5801 strlcpy(buffer, driver->name, len);
5802 return buffer;
5805 static void __net_exit netdev_exit(struct net *net)
5807 kfree(net->dev_name_head);
5808 kfree(net->dev_index_head);
5811 static struct pernet_operations __net_initdata netdev_net_ops = {
5812 .init = netdev_init,
5813 .exit = netdev_exit,
5816 static void __net_exit default_device_exit(struct net *net)
5818 struct net_device *dev, *aux;
5820 * Push all migratable network devices back to the
5821 * initial network namespace
5823 rtnl_lock();
5824 for_each_netdev_safe(net, dev, aux) {
5825 int err;
5826 char fb_name[IFNAMSIZ];
5828 /* Ignore unmoveable devices (i.e. loopback) */
5829 if (dev->features & NETIF_F_NETNS_LOCAL)
5830 continue;
5832 /* Leave virtual devices for the generic cleanup */
5833 if (dev->rtnl_link_ops)
5834 continue;
5836 /* Push remaing network devices to init_net */
5837 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5838 err = dev_change_net_namespace(dev, &init_net, fb_name);
5839 if (err) {
5840 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5841 __func__, dev->name, err);
5842 BUG();
5845 rtnl_unlock();
5848 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5850 /* At exit all network devices most be removed from a network
5851 * namespace. Do this in the reverse order of registeration.
5852 * Do this across as many network namespaces as possible to
5853 * improve batching efficiency.
5855 struct net_device *dev;
5856 struct net *net;
5857 LIST_HEAD(dev_kill_list);
5859 rtnl_lock();
5860 list_for_each_entry(net, net_list, exit_list) {
5861 for_each_netdev_reverse(net, dev) {
5862 if (dev->rtnl_link_ops)
5863 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5864 else
5865 unregister_netdevice_queue(dev, &dev_kill_list);
5868 unregister_netdevice_many(&dev_kill_list);
5869 rtnl_unlock();
5872 static struct pernet_operations __net_initdata default_device_ops = {
5873 .exit = default_device_exit,
5874 .exit_batch = default_device_exit_batch,
5878 * Initialize the DEV module. At boot time this walks the device list and
5879 * unhooks any devices that fail to initialise (normally hardware not
5880 * present) and leaves us with a valid list of present and active devices.
5885 * This is called single threaded during boot, so no need
5886 * to take the rtnl semaphore.
5888 static int __init net_dev_init(void)
5890 int i, rc = -ENOMEM;
5892 BUG_ON(!dev_boot_phase);
5894 if (dev_proc_init())
5895 goto out;
5897 if (netdev_kobject_init())
5898 goto out;
5900 INIT_LIST_HEAD(&ptype_all);
5901 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5902 INIT_LIST_HEAD(&ptype_base[i]);
5904 if (register_pernet_subsys(&netdev_net_ops))
5905 goto out;
5908 * Initialise the packet receive queues.
5911 for_each_possible_cpu(i) {
5912 struct softnet_data *sd = &per_cpu(softnet_data, i);
5914 memset(sd, 0, sizeof(*sd));
5915 skb_queue_head_init(&sd->input_pkt_queue);
5916 skb_queue_head_init(&sd->process_queue);
5917 sd->completion_queue = NULL;
5918 INIT_LIST_HEAD(&sd->poll_list);
5919 sd->output_queue = NULL;
5920 sd->output_queue_tailp = &sd->output_queue;
5921 #ifdef CONFIG_RPS
5922 sd->csd.func = rps_trigger_softirq;
5923 sd->csd.info = sd;
5924 sd->csd.flags = 0;
5925 sd->cpu = i;
5926 #endif
5928 sd->backlog.poll = process_backlog;
5929 sd->backlog.weight = weight_p;
5930 sd->backlog.gro_list = NULL;
5931 sd->backlog.gro_count = 0;
5934 dev_boot_phase = 0;
5936 /* The loopback device is special if any other network devices
5937 * is present in a network namespace the loopback device must
5938 * be present. Since we now dynamically allocate and free the
5939 * loopback device ensure this invariant is maintained by
5940 * keeping the loopback device as the first device on the
5941 * list of network devices. Ensuring the loopback devices
5942 * is the first device that appears and the last network device
5943 * that disappears.
5945 if (register_pernet_device(&loopback_net_ops))
5946 goto out;
5948 if (register_pernet_device(&default_device_ops))
5949 goto out;
5951 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5952 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5954 hotcpu_notifier(dev_cpu_callback, 0);
5955 dst_init();
5956 dev_mcast_init();
5957 rc = 0;
5958 out:
5959 return rc;
5962 subsys_initcall(net_dev_init);
5964 static int __init initialize_hashrnd(void)
5966 get_random_bytes(&hashrnd, sizeof(hashrnd));
5967 return 0;
5970 late_initcall_sync(initialize_hashrnd);