Revert "gma500: Fix dependencies"
[zen-stable.git] / drivers / ata / sata_nv.c
blobf173ef3bfc10c1fdc9a4d85794d763df13bd8d7a
1 /*
2 * sata_nv.c - NVIDIA nForce SATA
4 * Copyright 2004 NVIDIA Corp. All rights reserved.
5 * Copyright 2004 Andrew Chew
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; see the file COPYING. If not, write to
20 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 * libata documentation is available via 'make {ps|pdf}docs',
24 * as Documentation/DocBook/libata.*
26 * No hardware documentation available outside of NVIDIA.
27 * This driver programs the NVIDIA SATA controller in a similar
28 * fashion as with other PCI IDE BMDMA controllers, with a few
29 * NV-specific details such as register offsets, SATA phy location,
30 * hotplug info, etc.
32 * CK804/MCP04 controllers support an alternate programming interface
33 * similar to the ADMA specification (with some modifications).
34 * This allows the use of NCQ. Non-DMA-mapped ATA commands are still
35 * sent through the legacy interface.
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/gfp.h>
42 #include <linux/pci.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/interrupt.h>
47 #include <linux/device.h>
48 #include <scsi/scsi_host.h>
49 #include <scsi/scsi_device.h>
50 #include <linux/libata.h>
52 #define DRV_NAME "sata_nv"
53 #define DRV_VERSION "3.5"
55 #define NV_ADMA_DMA_BOUNDARY 0xffffffffUL
57 enum {
58 NV_MMIO_BAR = 5,
60 NV_PORTS = 2,
61 NV_PIO_MASK = ATA_PIO4,
62 NV_MWDMA_MASK = ATA_MWDMA2,
63 NV_UDMA_MASK = ATA_UDMA6,
64 NV_PORT0_SCR_REG_OFFSET = 0x00,
65 NV_PORT1_SCR_REG_OFFSET = 0x40,
67 /* INT_STATUS/ENABLE */
68 NV_INT_STATUS = 0x10,
69 NV_INT_ENABLE = 0x11,
70 NV_INT_STATUS_CK804 = 0x440,
71 NV_INT_ENABLE_CK804 = 0x441,
73 /* INT_STATUS/ENABLE bits */
74 NV_INT_DEV = 0x01,
75 NV_INT_PM = 0x02,
76 NV_INT_ADDED = 0x04,
77 NV_INT_REMOVED = 0x08,
79 NV_INT_PORT_SHIFT = 4, /* each port occupies 4 bits */
81 NV_INT_ALL = 0x0f,
82 NV_INT_MASK = NV_INT_DEV |
83 NV_INT_ADDED | NV_INT_REMOVED,
85 /* INT_CONFIG */
86 NV_INT_CONFIG = 0x12,
87 NV_INT_CONFIG_METHD = 0x01, // 0 = INT, 1 = SMI
89 // For PCI config register 20
90 NV_MCP_SATA_CFG_20 = 0x50,
91 NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04,
92 NV_MCP_SATA_CFG_20_PORT0_EN = (1 << 17),
93 NV_MCP_SATA_CFG_20_PORT1_EN = (1 << 16),
94 NV_MCP_SATA_CFG_20_PORT0_PWB_EN = (1 << 14),
95 NV_MCP_SATA_CFG_20_PORT1_PWB_EN = (1 << 12),
97 NV_ADMA_MAX_CPBS = 32,
98 NV_ADMA_CPB_SZ = 128,
99 NV_ADMA_APRD_SZ = 16,
100 NV_ADMA_SGTBL_LEN = (1024 - NV_ADMA_CPB_SZ) /
101 NV_ADMA_APRD_SZ,
102 NV_ADMA_SGTBL_TOTAL_LEN = NV_ADMA_SGTBL_LEN + 5,
103 NV_ADMA_SGTBL_SZ = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ,
104 NV_ADMA_PORT_PRIV_DMA_SZ = NV_ADMA_MAX_CPBS *
105 (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ),
107 /* BAR5 offset to ADMA general registers */
108 NV_ADMA_GEN = 0x400,
109 NV_ADMA_GEN_CTL = 0x00,
110 NV_ADMA_NOTIFIER_CLEAR = 0x30,
112 /* BAR5 offset to ADMA ports */
113 NV_ADMA_PORT = 0x480,
115 /* size of ADMA port register space */
116 NV_ADMA_PORT_SIZE = 0x100,
118 /* ADMA port registers */
119 NV_ADMA_CTL = 0x40,
120 NV_ADMA_CPB_COUNT = 0x42,
121 NV_ADMA_NEXT_CPB_IDX = 0x43,
122 NV_ADMA_STAT = 0x44,
123 NV_ADMA_CPB_BASE_LOW = 0x48,
124 NV_ADMA_CPB_BASE_HIGH = 0x4C,
125 NV_ADMA_APPEND = 0x50,
126 NV_ADMA_NOTIFIER = 0x68,
127 NV_ADMA_NOTIFIER_ERROR = 0x6C,
129 /* NV_ADMA_CTL register bits */
130 NV_ADMA_CTL_HOTPLUG_IEN = (1 << 0),
131 NV_ADMA_CTL_CHANNEL_RESET = (1 << 5),
132 NV_ADMA_CTL_GO = (1 << 7),
133 NV_ADMA_CTL_AIEN = (1 << 8),
134 NV_ADMA_CTL_READ_NON_COHERENT = (1 << 11),
135 NV_ADMA_CTL_WRITE_NON_COHERENT = (1 << 12),
137 /* CPB response flag bits */
138 NV_CPB_RESP_DONE = (1 << 0),
139 NV_CPB_RESP_ATA_ERR = (1 << 3),
140 NV_CPB_RESP_CMD_ERR = (1 << 4),
141 NV_CPB_RESP_CPB_ERR = (1 << 7),
143 /* CPB control flag bits */
144 NV_CPB_CTL_CPB_VALID = (1 << 0),
145 NV_CPB_CTL_QUEUE = (1 << 1),
146 NV_CPB_CTL_APRD_VALID = (1 << 2),
147 NV_CPB_CTL_IEN = (1 << 3),
148 NV_CPB_CTL_FPDMA = (1 << 4),
150 /* APRD flags */
151 NV_APRD_WRITE = (1 << 1),
152 NV_APRD_END = (1 << 2),
153 NV_APRD_CONT = (1 << 3),
155 /* NV_ADMA_STAT flags */
156 NV_ADMA_STAT_TIMEOUT = (1 << 0),
157 NV_ADMA_STAT_HOTUNPLUG = (1 << 1),
158 NV_ADMA_STAT_HOTPLUG = (1 << 2),
159 NV_ADMA_STAT_CPBERR = (1 << 4),
160 NV_ADMA_STAT_SERROR = (1 << 5),
161 NV_ADMA_STAT_CMD_COMPLETE = (1 << 6),
162 NV_ADMA_STAT_IDLE = (1 << 8),
163 NV_ADMA_STAT_LEGACY = (1 << 9),
164 NV_ADMA_STAT_STOPPED = (1 << 10),
165 NV_ADMA_STAT_DONE = (1 << 12),
166 NV_ADMA_STAT_ERR = NV_ADMA_STAT_CPBERR |
167 NV_ADMA_STAT_TIMEOUT,
169 /* port flags */
170 NV_ADMA_PORT_REGISTER_MODE = (1 << 0),
171 NV_ADMA_ATAPI_SETUP_COMPLETE = (1 << 1),
173 /* MCP55 reg offset */
174 NV_CTL_MCP55 = 0x400,
175 NV_INT_STATUS_MCP55 = 0x440,
176 NV_INT_ENABLE_MCP55 = 0x444,
177 NV_NCQ_REG_MCP55 = 0x448,
179 /* MCP55 */
180 NV_INT_ALL_MCP55 = 0xffff,
181 NV_INT_PORT_SHIFT_MCP55 = 16, /* each port occupies 16 bits */
182 NV_INT_MASK_MCP55 = NV_INT_ALL_MCP55 & 0xfffd,
184 /* SWNCQ ENABLE BITS*/
185 NV_CTL_PRI_SWNCQ = 0x02,
186 NV_CTL_SEC_SWNCQ = 0x04,
188 /* SW NCQ status bits*/
189 NV_SWNCQ_IRQ_DEV = (1 << 0),
190 NV_SWNCQ_IRQ_PM = (1 << 1),
191 NV_SWNCQ_IRQ_ADDED = (1 << 2),
192 NV_SWNCQ_IRQ_REMOVED = (1 << 3),
194 NV_SWNCQ_IRQ_BACKOUT = (1 << 4),
195 NV_SWNCQ_IRQ_SDBFIS = (1 << 5),
196 NV_SWNCQ_IRQ_DHREGFIS = (1 << 6),
197 NV_SWNCQ_IRQ_DMASETUP = (1 << 7),
199 NV_SWNCQ_IRQ_HOTPLUG = NV_SWNCQ_IRQ_ADDED |
200 NV_SWNCQ_IRQ_REMOVED,
204 /* ADMA Physical Region Descriptor - one SG segment */
205 struct nv_adma_prd {
206 __le64 addr;
207 __le32 len;
208 u8 flags;
209 u8 packet_len;
210 __le16 reserved;
213 enum nv_adma_regbits {
214 CMDEND = (1 << 15), /* end of command list */
215 WNB = (1 << 14), /* wait-not-BSY */
216 IGN = (1 << 13), /* ignore this entry */
217 CS1n = (1 << (4 + 8)), /* std. PATA signals follow... */
218 DA2 = (1 << (2 + 8)),
219 DA1 = (1 << (1 + 8)),
220 DA0 = (1 << (0 + 8)),
223 /* ADMA Command Parameter Block
224 The first 5 SG segments are stored inside the Command Parameter Block itself.
225 If there are more than 5 segments the remainder are stored in a separate
226 memory area indicated by next_aprd. */
227 struct nv_adma_cpb {
228 u8 resp_flags; /* 0 */
229 u8 reserved1; /* 1 */
230 u8 ctl_flags; /* 2 */
231 /* len is length of taskfile in 64 bit words */
232 u8 len; /* 3 */
233 u8 tag; /* 4 */
234 u8 next_cpb_idx; /* 5 */
235 __le16 reserved2; /* 6-7 */
236 __le16 tf[12]; /* 8-31 */
237 struct nv_adma_prd aprd[5]; /* 32-111 */
238 __le64 next_aprd; /* 112-119 */
239 __le64 reserved3; /* 120-127 */
243 struct nv_adma_port_priv {
244 struct nv_adma_cpb *cpb;
245 dma_addr_t cpb_dma;
246 struct nv_adma_prd *aprd;
247 dma_addr_t aprd_dma;
248 void __iomem *ctl_block;
249 void __iomem *gen_block;
250 void __iomem *notifier_clear_block;
251 u64 adma_dma_mask;
252 u8 flags;
253 int last_issue_ncq;
256 struct nv_host_priv {
257 unsigned long type;
260 struct defer_queue {
261 u32 defer_bits;
262 unsigned int head;
263 unsigned int tail;
264 unsigned int tag[ATA_MAX_QUEUE];
267 enum ncq_saw_flag_list {
268 ncq_saw_d2h = (1U << 0),
269 ncq_saw_dmas = (1U << 1),
270 ncq_saw_sdb = (1U << 2),
271 ncq_saw_backout = (1U << 3),
274 struct nv_swncq_port_priv {
275 struct ata_bmdma_prd *prd; /* our SG list */
276 dma_addr_t prd_dma; /* and its DMA mapping */
277 void __iomem *sactive_block;
278 void __iomem *irq_block;
279 void __iomem *tag_block;
280 u32 qc_active;
282 unsigned int last_issue_tag;
284 /* fifo circular queue to store deferral command */
285 struct defer_queue defer_queue;
287 /* for NCQ interrupt analysis */
288 u32 dhfis_bits;
289 u32 dmafis_bits;
290 u32 sdbfis_bits;
292 unsigned int ncq_flags;
296 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT)))))
298 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
299 #ifdef CONFIG_PM
300 static int nv_pci_device_resume(struct pci_dev *pdev);
301 #endif
302 static void nv_ck804_host_stop(struct ata_host *host);
303 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance);
304 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance);
305 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance);
306 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val);
307 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val);
309 static int nv_hardreset(struct ata_link *link, unsigned int *class,
310 unsigned long deadline);
311 static void nv_nf2_freeze(struct ata_port *ap);
312 static void nv_nf2_thaw(struct ata_port *ap);
313 static void nv_ck804_freeze(struct ata_port *ap);
314 static void nv_ck804_thaw(struct ata_port *ap);
315 static int nv_adma_slave_config(struct scsi_device *sdev);
316 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc);
317 static void nv_adma_qc_prep(struct ata_queued_cmd *qc);
318 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc);
319 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance);
320 static void nv_adma_irq_clear(struct ata_port *ap);
321 static int nv_adma_port_start(struct ata_port *ap);
322 static void nv_adma_port_stop(struct ata_port *ap);
323 #ifdef CONFIG_PM
324 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg);
325 static int nv_adma_port_resume(struct ata_port *ap);
326 #endif
327 static void nv_adma_freeze(struct ata_port *ap);
328 static void nv_adma_thaw(struct ata_port *ap);
329 static void nv_adma_error_handler(struct ata_port *ap);
330 static void nv_adma_host_stop(struct ata_host *host);
331 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc);
332 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
334 static void nv_mcp55_thaw(struct ata_port *ap);
335 static void nv_mcp55_freeze(struct ata_port *ap);
336 static void nv_swncq_error_handler(struct ata_port *ap);
337 static int nv_swncq_slave_config(struct scsi_device *sdev);
338 static int nv_swncq_port_start(struct ata_port *ap);
339 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc);
340 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc);
341 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc);
342 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis);
343 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance);
344 #ifdef CONFIG_PM
345 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg);
346 static int nv_swncq_port_resume(struct ata_port *ap);
347 #endif
349 enum nv_host_type
351 GENERIC,
352 NFORCE2,
353 NFORCE3 = NFORCE2, /* NF2 == NF3 as far as sata_nv is concerned */
354 CK804,
355 ADMA,
356 MCP5x,
357 SWNCQ,
360 static const struct pci_device_id nv_pci_tbl[] = {
361 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 },
362 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 },
363 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 },
364 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 },
365 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 },
366 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 },
367 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 },
368 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), MCP5x },
369 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), MCP5x },
370 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), MCP5x },
371 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), MCP5x },
372 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC },
373 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC },
374 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC },
376 { } /* terminate list */
379 static struct pci_driver nv_pci_driver = {
380 .name = DRV_NAME,
381 .id_table = nv_pci_tbl,
382 .probe = nv_init_one,
383 #ifdef CONFIG_PM
384 .suspend = ata_pci_device_suspend,
385 .resume = nv_pci_device_resume,
386 #endif
387 .remove = ata_pci_remove_one,
390 static struct scsi_host_template nv_sht = {
391 ATA_BMDMA_SHT(DRV_NAME),
394 static struct scsi_host_template nv_adma_sht = {
395 ATA_NCQ_SHT(DRV_NAME),
396 .can_queue = NV_ADMA_MAX_CPBS,
397 .sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN,
398 .dma_boundary = NV_ADMA_DMA_BOUNDARY,
399 .slave_configure = nv_adma_slave_config,
402 static struct scsi_host_template nv_swncq_sht = {
403 ATA_NCQ_SHT(DRV_NAME),
404 .can_queue = ATA_MAX_QUEUE,
405 .sg_tablesize = LIBATA_MAX_PRD,
406 .dma_boundary = ATA_DMA_BOUNDARY,
407 .slave_configure = nv_swncq_slave_config,
411 * NV SATA controllers have various different problems with hardreset
412 * protocol depending on the specific controller and device.
414 * GENERIC:
416 * bko11195 reports that link doesn't come online after hardreset on
417 * generic nv's and there have been several other similar reports on
418 * linux-ide.
420 * bko12351#c23 reports that warmplug on MCP61 doesn't work with
421 * softreset.
423 * NF2/3:
425 * bko3352 reports nf2/3 controllers can't determine device signature
426 * reliably after hardreset. The following thread reports detection
427 * failure on cold boot with the standard debouncing timing.
429 * http://thread.gmane.org/gmane.linux.ide/34098
431 * bko12176 reports that hardreset fails to bring up the link during
432 * boot on nf2.
434 * CK804:
436 * For initial probing after boot and hot plugging, hardreset mostly
437 * works fine on CK804 but curiously, reprobing on the initial port
438 * by rescanning or rmmod/insmod fails to acquire the initial D2H Reg
439 * FIS in somewhat undeterministic way.
441 * SWNCQ:
443 * bko12351 reports that when SWNCQ is enabled, for hotplug to work,
444 * hardreset should be used and hardreset can't report proper
445 * signature, which suggests that mcp5x is closer to nf2 as long as
446 * reset quirkiness is concerned.
448 * bko12703 reports that boot probing fails for intel SSD with
449 * hardreset. Link fails to come online. Softreset works fine.
451 * The failures are varied but the following patterns seem true for
452 * all flavors.
454 * - Softreset during boot always works.
456 * - Hardreset during boot sometimes fails to bring up the link on
457 * certain comibnations and device signature acquisition is
458 * unreliable.
460 * - Hardreset is often necessary after hotplug.
462 * So, preferring softreset for boot probing and error handling (as
463 * hardreset might bring down the link) but using hardreset for
464 * post-boot probing should work around the above issues in most
465 * cases. Define nv_hardreset() which only kicks in for post-boot
466 * probing and use it for all variants.
468 static struct ata_port_operations nv_generic_ops = {
469 .inherits = &ata_bmdma_port_ops,
470 .lost_interrupt = ATA_OP_NULL,
471 .scr_read = nv_scr_read,
472 .scr_write = nv_scr_write,
473 .hardreset = nv_hardreset,
476 static struct ata_port_operations nv_nf2_ops = {
477 .inherits = &nv_generic_ops,
478 .freeze = nv_nf2_freeze,
479 .thaw = nv_nf2_thaw,
482 static struct ata_port_operations nv_ck804_ops = {
483 .inherits = &nv_generic_ops,
484 .freeze = nv_ck804_freeze,
485 .thaw = nv_ck804_thaw,
486 .host_stop = nv_ck804_host_stop,
489 static struct ata_port_operations nv_adma_ops = {
490 .inherits = &nv_ck804_ops,
492 .check_atapi_dma = nv_adma_check_atapi_dma,
493 .sff_tf_read = nv_adma_tf_read,
494 .qc_defer = ata_std_qc_defer,
495 .qc_prep = nv_adma_qc_prep,
496 .qc_issue = nv_adma_qc_issue,
497 .sff_irq_clear = nv_adma_irq_clear,
499 .freeze = nv_adma_freeze,
500 .thaw = nv_adma_thaw,
501 .error_handler = nv_adma_error_handler,
502 .post_internal_cmd = nv_adma_post_internal_cmd,
504 .port_start = nv_adma_port_start,
505 .port_stop = nv_adma_port_stop,
506 #ifdef CONFIG_PM
507 .port_suspend = nv_adma_port_suspend,
508 .port_resume = nv_adma_port_resume,
509 #endif
510 .host_stop = nv_adma_host_stop,
513 static struct ata_port_operations nv_swncq_ops = {
514 .inherits = &nv_generic_ops,
516 .qc_defer = ata_std_qc_defer,
517 .qc_prep = nv_swncq_qc_prep,
518 .qc_issue = nv_swncq_qc_issue,
520 .freeze = nv_mcp55_freeze,
521 .thaw = nv_mcp55_thaw,
522 .error_handler = nv_swncq_error_handler,
524 #ifdef CONFIG_PM
525 .port_suspend = nv_swncq_port_suspend,
526 .port_resume = nv_swncq_port_resume,
527 #endif
528 .port_start = nv_swncq_port_start,
531 struct nv_pi_priv {
532 irq_handler_t irq_handler;
533 struct scsi_host_template *sht;
536 #define NV_PI_PRIV(_irq_handler, _sht) \
537 &(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht }
539 static const struct ata_port_info nv_port_info[] = {
540 /* generic */
542 .flags = ATA_FLAG_SATA,
543 .pio_mask = NV_PIO_MASK,
544 .mwdma_mask = NV_MWDMA_MASK,
545 .udma_mask = NV_UDMA_MASK,
546 .port_ops = &nv_generic_ops,
547 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
549 /* nforce2/3 */
551 .flags = ATA_FLAG_SATA,
552 .pio_mask = NV_PIO_MASK,
553 .mwdma_mask = NV_MWDMA_MASK,
554 .udma_mask = NV_UDMA_MASK,
555 .port_ops = &nv_nf2_ops,
556 .private_data = NV_PI_PRIV(nv_nf2_interrupt, &nv_sht),
558 /* ck804 */
560 .flags = ATA_FLAG_SATA,
561 .pio_mask = NV_PIO_MASK,
562 .mwdma_mask = NV_MWDMA_MASK,
563 .udma_mask = NV_UDMA_MASK,
564 .port_ops = &nv_ck804_ops,
565 .private_data = NV_PI_PRIV(nv_ck804_interrupt, &nv_sht),
567 /* ADMA */
569 .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ,
570 .pio_mask = NV_PIO_MASK,
571 .mwdma_mask = NV_MWDMA_MASK,
572 .udma_mask = NV_UDMA_MASK,
573 .port_ops = &nv_adma_ops,
574 .private_data = NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht),
576 /* MCP5x */
578 .flags = ATA_FLAG_SATA,
579 .pio_mask = NV_PIO_MASK,
580 .mwdma_mask = NV_MWDMA_MASK,
581 .udma_mask = NV_UDMA_MASK,
582 .port_ops = &nv_generic_ops,
583 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
585 /* SWNCQ */
587 .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ,
588 .pio_mask = NV_PIO_MASK,
589 .mwdma_mask = NV_MWDMA_MASK,
590 .udma_mask = NV_UDMA_MASK,
591 .port_ops = &nv_swncq_ops,
592 .private_data = NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht),
596 MODULE_AUTHOR("NVIDIA");
597 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller");
598 MODULE_LICENSE("GPL");
599 MODULE_DEVICE_TABLE(pci, nv_pci_tbl);
600 MODULE_VERSION(DRV_VERSION);
602 static int adma_enabled;
603 static int swncq_enabled = 1;
604 static int msi_enabled;
606 static void nv_adma_register_mode(struct ata_port *ap)
608 struct nv_adma_port_priv *pp = ap->private_data;
609 void __iomem *mmio = pp->ctl_block;
610 u16 tmp, status;
611 int count = 0;
613 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
614 return;
616 status = readw(mmio + NV_ADMA_STAT);
617 while (!(status & NV_ADMA_STAT_IDLE) && count < 20) {
618 ndelay(50);
619 status = readw(mmio + NV_ADMA_STAT);
620 count++;
622 if (count == 20)
623 ata_port_printk(ap, KERN_WARNING,
624 "timeout waiting for ADMA IDLE, stat=0x%hx\n",
625 status);
627 tmp = readw(mmio + NV_ADMA_CTL);
628 writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
630 count = 0;
631 status = readw(mmio + NV_ADMA_STAT);
632 while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) {
633 ndelay(50);
634 status = readw(mmio + NV_ADMA_STAT);
635 count++;
637 if (count == 20)
638 ata_port_printk(ap, KERN_WARNING,
639 "timeout waiting for ADMA LEGACY, stat=0x%hx\n",
640 status);
642 pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
645 static void nv_adma_mode(struct ata_port *ap)
647 struct nv_adma_port_priv *pp = ap->private_data;
648 void __iomem *mmio = pp->ctl_block;
649 u16 tmp, status;
650 int count = 0;
652 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE))
653 return;
655 WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
657 tmp = readw(mmio + NV_ADMA_CTL);
658 writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
660 status = readw(mmio + NV_ADMA_STAT);
661 while (((status & NV_ADMA_STAT_LEGACY) ||
662 !(status & NV_ADMA_STAT_IDLE)) && count < 20) {
663 ndelay(50);
664 status = readw(mmio + NV_ADMA_STAT);
665 count++;
667 if (count == 20)
668 ata_port_printk(ap, KERN_WARNING,
669 "timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n",
670 status);
672 pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE;
675 static int nv_adma_slave_config(struct scsi_device *sdev)
677 struct ata_port *ap = ata_shost_to_port(sdev->host);
678 struct nv_adma_port_priv *pp = ap->private_data;
679 struct nv_adma_port_priv *port0, *port1;
680 struct scsi_device *sdev0, *sdev1;
681 struct pci_dev *pdev = to_pci_dev(ap->host->dev);
682 unsigned long segment_boundary, flags;
683 unsigned short sg_tablesize;
684 int rc;
685 int adma_enable;
686 u32 current_reg, new_reg, config_mask;
688 rc = ata_scsi_slave_config(sdev);
690 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
691 /* Not a proper libata device, ignore */
692 return rc;
694 spin_lock_irqsave(ap->lock, flags);
696 if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) {
698 * NVIDIA reports that ADMA mode does not support ATAPI commands.
699 * Therefore ATAPI commands are sent through the legacy interface.
700 * However, the legacy interface only supports 32-bit DMA.
701 * Restrict DMA parameters as required by the legacy interface
702 * when an ATAPI device is connected.
704 segment_boundary = ATA_DMA_BOUNDARY;
705 /* Subtract 1 since an extra entry may be needed for padding, see
706 libata-scsi.c */
707 sg_tablesize = LIBATA_MAX_PRD - 1;
709 /* Since the legacy DMA engine is in use, we need to disable ADMA
710 on the port. */
711 adma_enable = 0;
712 nv_adma_register_mode(ap);
713 } else {
714 segment_boundary = NV_ADMA_DMA_BOUNDARY;
715 sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN;
716 adma_enable = 1;
719 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &current_reg);
721 if (ap->port_no == 1)
722 config_mask = NV_MCP_SATA_CFG_20_PORT1_EN |
723 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
724 else
725 config_mask = NV_MCP_SATA_CFG_20_PORT0_EN |
726 NV_MCP_SATA_CFG_20_PORT0_PWB_EN;
728 if (adma_enable) {
729 new_reg = current_reg | config_mask;
730 pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE;
731 } else {
732 new_reg = current_reg & ~config_mask;
733 pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE;
736 if (current_reg != new_reg)
737 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg);
739 port0 = ap->host->ports[0]->private_data;
740 port1 = ap->host->ports[1]->private_data;
741 sdev0 = ap->host->ports[0]->link.device[0].sdev;
742 sdev1 = ap->host->ports[1]->link.device[0].sdev;
743 if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
744 (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) {
745 /** We have to set the DMA mask to 32-bit if either port is in
746 ATAPI mode, since they are on the same PCI device which is
747 used for DMA mapping. If we set the mask we also need to set
748 the bounce limit on both ports to ensure that the block
749 layer doesn't feed addresses that cause DMA mapping to
750 choke. If either SCSI device is not allocated yet, it's OK
751 since that port will discover its correct setting when it
752 does get allocated.
753 Note: Setting 32-bit mask should not fail. */
754 if (sdev0)
755 blk_queue_bounce_limit(sdev0->request_queue,
756 ATA_DMA_MASK);
757 if (sdev1)
758 blk_queue_bounce_limit(sdev1->request_queue,
759 ATA_DMA_MASK);
761 pci_set_dma_mask(pdev, ATA_DMA_MASK);
762 } else {
763 /** This shouldn't fail as it was set to this value before */
764 pci_set_dma_mask(pdev, pp->adma_dma_mask);
765 if (sdev0)
766 blk_queue_bounce_limit(sdev0->request_queue,
767 pp->adma_dma_mask);
768 if (sdev1)
769 blk_queue_bounce_limit(sdev1->request_queue,
770 pp->adma_dma_mask);
773 blk_queue_segment_boundary(sdev->request_queue, segment_boundary);
774 blk_queue_max_segments(sdev->request_queue, sg_tablesize);
775 ata_port_printk(ap, KERN_INFO,
776 "DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n",
777 (unsigned long long)*ap->host->dev->dma_mask,
778 segment_boundary, sg_tablesize);
780 spin_unlock_irqrestore(ap->lock, flags);
782 return rc;
785 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc)
787 struct nv_adma_port_priv *pp = qc->ap->private_data;
788 return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
791 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
793 /* Other than when internal or pass-through commands are executed,
794 the only time this function will be called in ADMA mode will be
795 if a command fails. In the failure case we don't care about going
796 into register mode with ADMA commands pending, as the commands will
797 all shortly be aborted anyway. We assume that NCQ commands are not
798 issued via passthrough, which is the only way that switching into
799 ADMA mode could abort outstanding commands. */
800 nv_adma_register_mode(ap);
802 ata_sff_tf_read(ap, tf);
805 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb)
807 unsigned int idx = 0;
809 if (tf->flags & ATA_TFLAG_ISADDR) {
810 if (tf->flags & ATA_TFLAG_LBA48) {
811 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->hob_feature | WNB);
812 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect);
813 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->hob_lbal);
814 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->hob_lbam);
815 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->hob_lbah);
816 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature);
817 } else
818 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature | WNB);
820 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->nsect);
821 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->lbal);
822 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->lbam);
823 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->lbah);
826 if (tf->flags & ATA_TFLAG_DEVICE)
827 cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device);
829 cpb[idx++] = cpu_to_le16((ATA_REG_CMD << 8) | tf->command | CMDEND);
831 while (idx < 12)
832 cpb[idx++] = cpu_to_le16(IGN);
834 return idx;
837 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err)
839 struct nv_adma_port_priv *pp = ap->private_data;
840 u8 flags = pp->cpb[cpb_num].resp_flags;
842 VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags);
844 if (unlikely((force_err ||
845 flags & (NV_CPB_RESP_ATA_ERR |
846 NV_CPB_RESP_CMD_ERR |
847 NV_CPB_RESP_CPB_ERR)))) {
848 struct ata_eh_info *ehi = &ap->link.eh_info;
849 int freeze = 0;
851 ata_ehi_clear_desc(ehi);
852 __ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags);
853 if (flags & NV_CPB_RESP_ATA_ERR) {
854 ata_ehi_push_desc(ehi, "ATA error");
855 ehi->err_mask |= AC_ERR_DEV;
856 } else if (flags & NV_CPB_RESP_CMD_ERR) {
857 ata_ehi_push_desc(ehi, "CMD error");
858 ehi->err_mask |= AC_ERR_DEV;
859 } else if (flags & NV_CPB_RESP_CPB_ERR) {
860 ata_ehi_push_desc(ehi, "CPB error");
861 ehi->err_mask |= AC_ERR_SYSTEM;
862 freeze = 1;
863 } else {
864 /* notifier error, but no error in CPB flags? */
865 ata_ehi_push_desc(ehi, "unknown");
866 ehi->err_mask |= AC_ERR_OTHER;
867 freeze = 1;
869 /* Kill all commands. EH will determine what actually failed. */
870 if (freeze)
871 ata_port_freeze(ap);
872 else
873 ata_port_abort(ap);
874 return -1;
877 if (likely(flags & NV_CPB_RESP_DONE))
878 return 1;
879 return 0;
882 static int nv_host_intr(struct ata_port *ap, u8 irq_stat)
884 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
886 /* freeze if hotplugged */
887 if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) {
888 ata_port_freeze(ap);
889 return 1;
892 /* bail out if not our interrupt */
893 if (!(irq_stat & NV_INT_DEV))
894 return 0;
896 /* DEV interrupt w/ no active qc? */
897 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
898 ata_sff_check_status(ap);
899 return 1;
902 /* handle interrupt */
903 return ata_bmdma_port_intr(ap, qc);
906 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
908 struct ata_host *host = dev_instance;
909 int i, handled = 0;
910 u32 notifier_clears[2];
912 spin_lock(&host->lock);
914 for (i = 0; i < host->n_ports; i++) {
915 struct ata_port *ap = host->ports[i];
916 struct nv_adma_port_priv *pp = ap->private_data;
917 void __iomem *mmio = pp->ctl_block;
918 u16 status;
919 u32 gen_ctl;
920 u32 notifier, notifier_error;
922 notifier_clears[i] = 0;
924 /* if ADMA is disabled, use standard ata interrupt handler */
925 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
926 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
927 >> (NV_INT_PORT_SHIFT * i);
928 handled += nv_host_intr(ap, irq_stat);
929 continue;
932 /* if in ATA register mode, check for standard interrupts */
933 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) {
934 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
935 >> (NV_INT_PORT_SHIFT * i);
936 if (ata_tag_valid(ap->link.active_tag))
937 /** NV_INT_DEV indication seems unreliable
938 at times at least in ADMA mode. Force it
939 on always when a command is active, to
940 prevent losing interrupts. */
941 irq_stat |= NV_INT_DEV;
942 handled += nv_host_intr(ap, irq_stat);
945 notifier = readl(mmio + NV_ADMA_NOTIFIER);
946 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
947 notifier_clears[i] = notifier | notifier_error;
949 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
951 if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier &&
952 !notifier_error)
953 /* Nothing to do */
954 continue;
956 status = readw(mmio + NV_ADMA_STAT);
959 * Clear status. Ensure the controller sees the
960 * clearing before we start looking at any of the CPB
961 * statuses, so that any CPB completions after this
962 * point in the handler will raise another interrupt.
964 writew(status, mmio + NV_ADMA_STAT);
965 readw(mmio + NV_ADMA_STAT); /* flush posted write */
966 rmb();
968 handled++; /* irq handled if we got here */
970 /* freeze if hotplugged or controller error */
971 if (unlikely(status & (NV_ADMA_STAT_HOTPLUG |
972 NV_ADMA_STAT_HOTUNPLUG |
973 NV_ADMA_STAT_TIMEOUT |
974 NV_ADMA_STAT_SERROR))) {
975 struct ata_eh_info *ehi = &ap->link.eh_info;
977 ata_ehi_clear_desc(ehi);
978 __ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status);
979 if (status & NV_ADMA_STAT_TIMEOUT) {
980 ehi->err_mask |= AC_ERR_SYSTEM;
981 ata_ehi_push_desc(ehi, "timeout");
982 } else if (status & NV_ADMA_STAT_HOTPLUG) {
983 ata_ehi_hotplugged(ehi);
984 ata_ehi_push_desc(ehi, "hotplug");
985 } else if (status & NV_ADMA_STAT_HOTUNPLUG) {
986 ata_ehi_hotplugged(ehi);
987 ata_ehi_push_desc(ehi, "hot unplug");
988 } else if (status & NV_ADMA_STAT_SERROR) {
989 /* let EH analyze SError and figure out cause */
990 ata_ehi_push_desc(ehi, "SError");
991 } else
992 ata_ehi_push_desc(ehi, "unknown");
993 ata_port_freeze(ap);
994 continue;
997 if (status & (NV_ADMA_STAT_DONE |
998 NV_ADMA_STAT_CPBERR |
999 NV_ADMA_STAT_CMD_COMPLETE)) {
1000 u32 check_commands = notifier_clears[i];
1001 u32 done_mask = 0;
1002 int pos, rc;
1004 if (status & NV_ADMA_STAT_CPBERR) {
1005 /* check all active commands */
1006 if (ata_tag_valid(ap->link.active_tag))
1007 check_commands = 1 <<
1008 ap->link.active_tag;
1009 else
1010 check_commands = ap->link.sactive;
1013 /* check CPBs for completed commands */
1014 while ((pos = ffs(check_commands))) {
1015 pos--;
1016 rc = nv_adma_check_cpb(ap, pos,
1017 notifier_error & (1 << pos));
1018 if (rc > 0)
1019 done_mask |= 1 << pos;
1020 else if (unlikely(rc < 0))
1021 check_commands = 0;
1022 check_commands &= ~(1 << pos);
1024 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
1028 if (notifier_clears[0] || notifier_clears[1]) {
1029 /* Note: Both notifier clear registers must be written
1030 if either is set, even if one is zero, according to NVIDIA. */
1031 struct nv_adma_port_priv *pp = host->ports[0]->private_data;
1032 writel(notifier_clears[0], pp->notifier_clear_block);
1033 pp = host->ports[1]->private_data;
1034 writel(notifier_clears[1], pp->notifier_clear_block);
1037 spin_unlock(&host->lock);
1039 return IRQ_RETVAL(handled);
1042 static void nv_adma_freeze(struct ata_port *ap)
1044 struct nv_adma_port_priv *pp = ap->private_data;
1045 void __iomem *mmio = pp->ctl_block;
1046 u16 tmp;
1048 nv_ck804_freeze(ap);
1050 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1051 return;
1053 /* clear any outstanding CK804 notifications */
1054 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1055 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1057 /* Disable interrupt */
1058 tmp = readw(mmio + NV_ADMA_CTL);
1059 writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1060 mmio + NV_ADMA_CTL);
1061 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1064 static void nv_adma_thaw(struct ata_port *ap)
1066 struct nv_adma_port_priv *pp = ap->private_data;
1067 void __iomem *mmio = pp->ctl_block;
1068 u16 tmp;
1070 nv_ck804_thaw(ap);
1072 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1073 return;
1075 /* Enable interrupt */
1076 tmp = readw(mmio + NV_ADMA_CTL);
1077 writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1078 mmio + NV_ADMA_CTL);
1079 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1082 static void nv_adma_irq_clear(struct ata_port *ap)
1084 struct nv_adma_port_priv *pp = ap->private_data;
1085 void __iomem *mmio = pp->ctl_block;
1086 u32 notifier_clears[2];
1088 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
1089 ata_bmdma_irq_clear(ap);
1090 return;
1093 /* clear any outstanding CK804 notifications */
1094 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1095 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1097 /* clear ADMA status */
1098 writew(0xffff, mmio + NV_ADMA_STAT);
1100 /* clear notifiers - note both ports need to be written with
1101 something even though we are only clearing on one */
1102 if (ap->port_no == 0) {
1103 notifier_clears[0] = 0xFFFFFFFF;
1104 notifier_clears[1] = 0;
1105 } else {
1106 notifier_clears[0] = 0;
1107 notifier_clears[1] = 0xFFFFFFFF;
1109 pp = ap->host->ports[0]->private_data;
1110 writel(notifier_clears[0], pp->notifier_clear_block);
1111 pp = ap->host->ports[1]->private_data;
1112 writel(notifier_clears[1], pp->notifier_clear_block);
1115 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc)
1117 struct nv_adma_port_priv *pp = qc->ap->private_data;
1119 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
1120 ata_bmdma_post_internal_cmd(qc);
1123 static int nv_adma_port_start(struct ata_port *ap)
1125 struct device *dev = ap->host->dev;
1126 struct nv_adma_port_priv *pp;
1127 int rc;
1128 void *mem;
1129 dma_addr_t mem_dma;
1130 void __iomem *mmio;
1131 struct pci_dev *pdev = to_pci_dev(dev);
1132 u16 tmp;
1134 VPRINTK("ENTER\n");
1136 /* Ensure DMA mask is set to 32-bit before allocating legacy PRD and
1137 pad buffers */
1138 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1139 if (rc)
1140 return rc;
1141 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1142 if (rc)
1143 return rc;
1145 /* we might fallback to bmdma, allocate bmdma resources */
1146 rc = ata_bmdma_port_start(ap);
1147 if (rc)
1148 return rc;
1150 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1151 if (!pp)
1152 return -ENOMEM;
1154 mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT +
1155 ap->port_no * NV_ADMA_PORT_SIZE;
1156 pp->ctl_block = mmio;
1157 pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN;
1158 pp->notifier_clear_block = pp->gen_block +
1159 NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no);
1161 /* Now that the legacy PRD and padding buffer are allocated we can
1162 safely raise the DMA mask to allocate the CPB/APRD table.
1163 These are allowed to fail since we store the value that ends up
1164 being used to set as the bounce limit in slave_config later if
1165 needed. */
1166 pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1167 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1168 pp->adma_dma_mask = *dev->dma_mask;
1170 mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ,
1171 &mem_dma, GFP_KERNEL);
1172 if (!mem)
1173 return -ENOMEM;
1174 memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ);
1177 * First item in chunk of DMA memory:
1178 * 128-byte command parameter block (CPB)
1179 * one for each command tag
1181 pp->cpb = mem;
1182 pp->cpb_dma = mem_dma;
1184 writel(mem_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW);
1185 writel((mem_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH);
1187 mem += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1188 mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1191 * Second item: block of ADMA_SGTBL_LEN s/g entries
1193 pp->aprd = mem;
1194 pp->aprd_dma = mem_dma;
1196 ap->private_data = pp;
1198 /* clear any outstanding interrupt conditions */
1199 writew(0xffff, mmio + NV_ADMA_STAT);
1201 /* initialize port variables */
1202 pp->flags = NV_ADMA_PORT_REGISTER_MODE;
1204 /* clear CPB fetch count */
1205 writew(0, mmio + NV_ADMA_CPB_COUNT);
1207 /* clear GO for register mode, enable interrupt */
1208 tmp = readw(mmio + NV_ADMA_CTL);
1209 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1210 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1212 tmp = readw(mmio + NV_ADMA_CTL);
1213 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1214 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1215 udelay(1);
1216 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1217 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1219 return 0;
1222 static void nv_adma_port_stop(struct ata_port *ap)
1224 struct nv_adma_port_priv *pp = ap->private_data;
1225 void __iomem *mmio = pp->ctl_block;
1227 VPRINTK("ENTER\n");
1228 writew(0, mmio + NV_ADMA_CTL);
1231 #ifdef CONFIG_PM
1232 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg)
1234 struct nv_adma_port_priv *pp = ap->private_data;
1235 void __iomem *mmio = pp->ctl_block;
1237 /* Go to register mode - clears GO */
1238 nv_adma_register_mode(ap);
1240 /* clear CPB fetch count */
1241 writew(0, mmio + NV_ADMA_CPB_COUNT);
1243 /* disable interrupt, shut down port */
1244 writew(0, mmio + NV_ADMA_CTL);
1246 return 0;
1249 static int nv_adma_port_resume(struct ata_port *ap)
1251 struct nv_adma_port_priv *pp = ap->private_data;
1252 void __iomem *mmio = pp->ctl_block;
1253 u16 tmp;
1255 /* set CPB block location */
1256 writel(pp->cpb_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW);
1257 writel((pp->cpb_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH);
1259 /* clear any outstanding interrupt conditions */
1260 writew(0xffff, mmio + NV_ADMA_STAT);
1262 /* initialize port variables */
1263 pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
1265 /* clear CPB fetch count */
1266 writew(0, mmio + NV_ADMA_CPB_COUNT);
1268 /* clear GO for register mode, enable interrupt */
1269 tmp = readw(mmio + NV_ADMA_CTL);
1270 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1271 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1273 tmp = readw(mmio + NV_ADMA_CTL);
1274 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1275 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1276 udelay(1);
1277 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1278 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1280 return 0;
1282 #endif
1284 static void nv_adma_setup_port(struct ata_port *ap)
1286 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1287 struct ata_ioports *ioport = &ap->ioaddr;
1289 VPRINTK("ENTER\n");
1291 mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE;
1293 ioport->cmd_addr = mmio;
1294 ioport->data_addr = mmio + (ATA_REG_DATA * 4);
1295 ioport->error_addr =
1296 ioport->feature_addr = mmio + (ATA_REG_ERR * 4);
1297 ioport->nsect_addr = mmio + (ATA_REG_NSECT * 4);
1298 ioport->lbal_addr = mmio + (ATA_REG_LBAL * 4);
1299 ioport->lbam_addr = mmio + (ATA_REG_LBAM * 4);
1300 ioport->lbah_addr = mmio + (ATA_REG_LBAH * 4);
1301 ioport->device_addr = mmio + (ATA_REG_DEVICE * 4);
1302 ioport->status_addr =
1303 ioport->command_addr = mmio + (ATA_REG_STATUS * 4);
1304 ioport->altstatus_addr =
1305 ioport->ctl_addr = mmio + 0x20;
1308 static int nv_adma_host_init(struct ata_host *host)
1310 struct pci_dev *pdev = to_pci_dev(host->dev);
1311 unsigned int i;
1312 u32 tmp32;
1314 VPRINTK("ENTER\n");
1316 /* enable ADMA on the ports */
1317 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
1318 tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN |
1319 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
1320 NV_MCP_SATA_CFG_20_PORT1_EN |
1321 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
1323 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
1325 for (i = 0; i < host->n_ports; i++)
1326 nv_adma_setup_port(host->ports[i]);
1328 return 0;
1331 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc,
1332 struct scatterlist *sg,
1333 int idx,
1334 struct nv_adma_prd *aprd)
1336 u8 flags = 0;
1337 if (qc->tf.flags & ATA_TFLAG_WRITE)
1338 flags |= NV_APRD_WRITE;
1339 if (idx == qc->n_elem - 1)
1340 flags |= NV_APRD_END;
1341 else if (idx != 4)
1342 flags |= NV_APRD_CONT;
1344 aprd->addr = cpu_to_le64(((u64)sg_dma_address(sg)));
1345 aprd->len = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */
1346 aprd->flags = flags;
1347 aprd->packet_len = 0;
1350 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb)
1352 struct nv_adma_port_priv *pp = qc->ap->private_data;
1353 struct nv_adma_prd *aprd;
1354 struct scatterlist *sg;
1355 unsigned int si;
1357 VPRINTK("ENTER\n");
1359 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1360 aprd = (si < 5) ? &cpb->aprd[si] :
1361 &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)];
1362 nv_adma_fill_aprd(qc, sg, si, aprd);
1364 if (si > 5)
1365 cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag)));
1366 else
1367 cpb->next_aprd = cpu_to_le64(0);
1370 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc)
1372 struct nv_adma_port_priv *pp = qc->ap->private_data;
1374 /* ADMA engine can only be used for non-ATAPI DMA commands,
1375 or interrupt-driven no-data commands. */
1376 if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
1377 (qc->tf.flags & ATA_TFLAG_POLLING))
1378 return 1;
1380 if ((qc->flags & ATA_QCFLAG_DMAMAP) ||
1381 (qc->tf.protocol == ATA_PROT_NODATA))
1382 return 0;
1384 return 1;
1387 static void nv_adma_qc_prep(struct ata_queued_cmd *qc)
1389 struct nv_adma_port_priv *pp = qc->ap->private_data;
1390 struct nv_adma_cpb *cpb = &pp->cpb[qc->tag];
1391 u8 ctl_flags = NV_CPB_CTL_CPB_VALID |
1392 NV_CPB_CTL_IEN;
1394 if (nv_adma_use_reg_mode(qc)) {
1395 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1396 (qc->flags & ATA_QCFLAG_DMAMAP));
1397 nv_adma_register_mode(qc->ap);
1398 ata_bmdma_qc_prep(qc);
1399 return;
1402 cpb->resp_flags = NV_CPB_RESP_DONE;
1403 wmb();
1404 cpb->ctl_flags = 0;
1405 wmb();
1407 cpb->len = 3;
1408 cpb->tag = qc->tag;
1409 cpb->next_cpb_idx = 0;
1411 /* turn on NCQ flags for NCQ commands */
1412 if (qc->tf.protocol == ATA_PROT_NCQ)
1413 ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA;
1415 VPRINTK("qc->flags = 0x%lx\n", qc->flags);
1417 nv_adma_tf_to_cpb(&qc->tf, cpb->tf);
1419 if (qc->flags & ATA_QCFLAG_DMAMAP) {
1420 nv_adma_fill_sg(qc, cpb);
1421 ctl_flags |= NV_CPB_CTL_APRD_VALID;
1422 } else
1423 memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5);
1425 /* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID
1426 until we are finished filling in all of the contents */
1427 wmb();
1428 cpb->ctl_flags = ctl_flags;
1429 wmb();
1430 cpb->resp_flags = 0;
1433 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc)
1435 struct nv_adma_port_priv *pp = qc->ap->private_data;
1436 void __iomem *mmio = pp->ctl_block;
1437 int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ);
1439 VPRINTK("ENTER\n");
1441 /* We can't handle result taskfile with NCQ commands, since
1442 retrieving the taskfile switches us out of ADMA mode and would abort
1443 existing commands. */
1444 if (unlikely(qc->tf.protocol == ATA_PROT_NCQ &&
1445 (qc->flags & ATA_QCFLAG_RESULT_TF))) {
1446 ata_dev_printk(qc->dev, KERN_ERR,
1447 "NCQ w/ RESULT_TF not allowed\n");
1448 return AC_ERR_SYSTEM;
1451 if (nv_adma_use_reg_mode(qc)) {
1452 /* use ATA register mode */
1453 VPRINTK("using ATA register mode: 0x%lx\n", qc->flags);
1454 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1455 (qc->flags & ATA_QCFLAG_DMAMAP));
1456 nv_adma_register_mode(qc->ap);
1457 return ata_bmdma_qc_issue(qc);
1458 } else
1459 nv_adma_mode(qc->ap);
1461 /* write append register, command tag in lower 8 bits
1462 and (number of cpbs to append -1) in top 8 bits */
1463 wmb();
1465 if (curr_ncq != pp->last_issue_ncq) {
1466 /* Seems to need some delay before switching between NCQ and
1467 non-NCQ commands, else we get command timeouts and such. */
1468 udelay(20);
1469 pp->last_issue_ncq = curr_ncq;
1472 writew(qc->tag, mmio + NV_ADMA_APPEND);
1474 DPRINTK("Issued tag %u\n", qc->tag);
1476 return 0;
1479 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance)
1481 struct ata_host *host = dev_instance;
1482 unsigned int i;
1483 unsigned int handled = 0;
1484 unsigned long flags;
1486 spin_lock_irqsave(&host->lock, flags);
1488 for (i = 0; i < host->n_ports; i++) {
1489 struct ata_port *ap = host->ports[i];
1490 struct ata_queued_cmd *qc;
1492 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1493 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
1494 handled += ata_bmdma_port_intr(ap, qc);
1495 } else {
1497 * No request pending? Clear interrupt status
1498 * anyway, in case there's one pending.
1500 ap->ops->sff_check_status(ap);
1504 spin_unlock_irqrestore(&host->lock, flags);
1506 return IRQ_RETVAL(handled);
1509 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat)
1511 int i, handled = 0;
1513 for (i = 0; i < host->n_ports; i++) {
1514 handled += nv_host_intr(host->ports[i], irq_stat);
1515 irq_stat >>= NV_INT_PORT_SHIFT;
1518 return IRQ_RETVAL(handled);
1521 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance)
1523 struct ata_host *host = dev_instance;
1524 u8 irq_stat;
1525 irqreturn_t ret;
1527 spin_lock(&host->lock);
1528 irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS);
1529 ret = nv_do_interrupt(host, irq_stat);
1530 spin_unlock(&host->lock);
1532 return ret;
1535 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance)
1537 struct ata_host *host = dev_instance;
1538 u8 irq_stat;
1539 irqreturn_t ret;
1541 spin_lock(&host->lock);
1542 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1543 ret = nv_do_interrupt(host, irq_stat);
1544 spin_unlock(&host->lock);
1546 return ret;
1549 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val)
1551 if (sc_reg > SCR_CONTROL)
1552 return -EINVAL;
1554 *val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg * 4));
1555 return 0;
1558 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val)
1560 if (sc_reg > SCR_CONTROL)
1561 return -EINVAL;
1563 iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
1564 return 0;
1567 static int nv_hardreset(struct ata_link *link, unsigned int *class,
1568 unsigned long deadline)
1570 struct ata_eh_context *ehc = &link->eh_context;
1572 /* Do hardreset iff it's post-boot probing, please read the
1573 * comment above port ops for details.
1575 if (!(link->ap->pflags & ATA_PFLAG_LOADING) &&
1576 !ata_dev_enabled(link->device))
1577 sata_link_hardreset(link, sata_deb_timing_hotplug, deadline,
1578 NULL, NULL);
1579 else {
1580 const unsigned long *timing = sata_ehc_deb_timing(ehc);
1581 int rc;
1583 if (!(ehc->i.flags & ATA_EHI_QUIET))
1584 ata_link_printk(link, KERN_INFO, "nv: skipping "
1585 "hardreset on occupied port\n");
1587 /* make sure the link is online */
1588 rc = sata_link_resume(link, timing, deadline);
1589 /* whine about phy resume failure but proceed */
1590 if (rc && rc != -EOPNOTSUPP)
1591 ata_link_printk(link, KERN_WARNING, "failed to resume "
1592 "link (errno=%d)\n", rc);
1595 /* device signature acquisition is unreliable */
1596 return -EAGAIN;
1599 static void nv_nf2_freeze(struct ata_port *ap)
1601 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1602 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1603 u8 mask;
1605 mask = ioread8(scr_addr + NV_INT_ENABLE);
1606 mask &= ~(NV_INT_ALL << shift);
1607 iowrite8(mask, scr_addr + NV_INT_ENABLE);
1610 static void nv_nf2_thaw(struct ata_port *ap)
1612 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1613 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1614 u8 mask;
1616 iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS);
1618 mask = ioread8(scr_addr + NV_INT_ENABLE);
1619 mask |= (NV_INT_MASK << shift);
1620 iowrite8(mask, scr_addr + NV_INT_ENABLE);
1623 static void nv_ck804_freeze(struct ata_port *ap)
1625 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1626 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1627 u8 mask;
1629 mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1630 mask &= ~(NV_INT_ALL << shift);
1631 writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1634 static void nv_ck804_thaw(struct ata_port *ap)
1636 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1637 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1638 u8 mask;
1640 writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804);
1642 mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1643 mask |= (NV_INT_MASK << shift);
1644 writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1647 static void nv_mcp55_freeze(struct ata_port *ap)
1649 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1650 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1651 u32 mask;
1653 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1655 mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1656 mask &= ~(NV_INT_ALL_MCP55 << shift);
1657 writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1660 static void nv_mcp55_thaw(struct ata_port *ap)
1662 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1663 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1664 u32 mask;
1666 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1668 mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1669 mask |= (NV_INT_MASK_MCP55 << shift);
1670 writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1673 static void nv_adma_error_handler(struct ata_port *ap)
1675 struct nv_adma_port_priv *pp = ap->private_data;
1676 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) {
1677 void __iomem *mmio = pp->ctl_block;
1678 int i;
1679 u16 tmp;
1681 if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) {
1682 u32 notifier = readl(mmio + NV_ADMA_NOTIFIER);
1683 u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
1684 u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
1685 u32 status = readw(mmio + NV_ADMA_STAT);
1686 u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT);
1687 u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX);
1689 ata_port_printk(ap, KERN_ERR,
1690 "EH in ADMA mode, notifier 0x%X "
1691 "notifier_error 0x%X gen_ctl 0x%X status 0x%X "
1692 "next cpb count 0x%X next cpb idx 0x%x\n",
1693 notifier, notifier_error, gen_ctl, status,
1694 cpb_count, next_cpb_idx);
1696 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) {
1697 struct nv_adma_cpb *cpb = &pp->cpb[i];
1698 if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) ||
1699 ap->link.sactive & (1 << i))
1700 ata_port_printk(ap, KERN_ERR,
1701 "CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n",
1702 i, cpb->ctl_flags, cpb->resp_flags);
1706 /* Push us back into port register mode for error handling. */
1707 nv_adma_register_mode(ap);
1709 /* Mark all of the CPBs as invalid to prevent them from
1710 being executed */
1711 for (i = 0; i < NV_ADMA_MAX_CPBS; i++)
1712 pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID;
1714 /* clear CPB fetch count */
1715 writew(0, mmio + NV_ADMA_CPB_COUNT);
1717 /* Reset channel */
1718 tmp = readw(mmio + NV_ADMA_CTL);
1719 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1720 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1721 udelay(1);
1722 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1723 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1726 ata_bmdma_error_handler(ap);
1729 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc)
1731 struct nv_swncq_port_priv *pp = ap->private_data;
1732 struct defer_queue *dq = &pp->defer_queue;
1734 /* queue is full */
1735 WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE);
1736 dq->defer_bits |= (1 << qc->tag);
1737 dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag;
1740 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap)
1742 struct nv_swncq_port_priv *pp = ap->private_data;
1743 struct defer_queue *dq = &pp->defer_queue;
1744 unsigned int tag;
1746 if (dq->head == dq->tail) /* null queue */
1747 return NULL;
1749 tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)];
1750 dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON;
1751 WARN_ON(!(dq->defer_bits & (1 << tag)));
1752 dq->defer_bits &= ~(1 << tag);
1754 return ata_qc_from_tag(ap, tag);
1757 static void nv_swncq_fis_reinit(struct ata_port *ap)
1759 struct nv_swncq_port_priv *pp = ap->private_data;
1761 pp->dhfis_bits = 0;
1762 pp->dmafis_bits = 0;
1763 pp->sdbfis_bits = 0;
1764 pp->ncq_flags = 0;
1767 static void nv_swncq_pp_reinit(struct ata_port *ap)
1769 struct nv_swncq_port_priv *pp = ap->private_data;
1770 struct defer_queue *dq = &pp->defer_queue;
1772 dq->head = 0;
1773 dq->tail = 0;
1774 dq->defer_bits = 0;
1775 pp->qc_active = 0;
1776 pp->last_issue_tag = ATA_TAG_POISON;
1777 nv_swncq_fis_reinit(ap);
1780 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis)
1782 struct nv_swncq_port_priv *pp = ap->private_data;
1784 writew(fis, pp->irq_block);
1787 static void __ata_bmdma_stop(struct ata_port *ap)
1789 struct ata_queued_cmd qc;
1791 qc.ap = ap;
1792 ata_bmdma_stop(&qc);
1795 static void nv_swncq_ncq_stop(struct ata_port *ap)
1797 struct nv_swncq_port_priv *pp = ap->private_data;
1798 unsigned int i;
1799 u32 sactive;
1800 u32 done_mask;
1802 ata_port_printk(ap, KERN_ERR,
1803 "EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n",
1804 ap->qc_active, ap->link.sactive);
1805 ata_port_printk(ap, KERN_ERR,
1806 "SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n "
1807 "dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n",
1808 pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag,
1809 pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits);
1811 ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n",
1812 ap->ops->sff_check_status(ap),
1813 ioread8(ap->ioaddr.error_addr));
1815 sactive = readl(pp->sactive_block);
1816 done_mask = pp->qc_active ^ sactive;
1818 ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n");
1819 for (i = 0; i < ATA_MAX_QUEUE; i++) {
1820 u8 err = 0;
1821 if (pp->qc_active & (1 << i))
1822 err = 0;
1823 else if (done_mask & (1 << i))
1824 err = 1;
1825 else
1826 continue;
1828 ata_port_printk(ap, KERN_ERR,
1829 "tag 0x%x: %01x %01x %01x %01x %s\n", i,
1830 (pp->dhfis_bits >> i) & 0x1,
1831 (pp->dmafis_bits >> i) & 0x1,
1832 (pp->sdbfis_bits >> i) & 0x1,
1833 (sactive >> i) & 0x1,
1834 (err ? "error! tag doesn't exit" : " "));
1837 nv_swncq_pp_reinit(ap);
1838 ap->ops->sff_irq_clear(ap);
1839 __ata_bmdma_stop(ap);
1840 nv_swncq_irq_clear(ap, 0xffff);
1843 static void nv_swncq_error_handler(struct ata_port *ap)
1845 struct ata_eh_context *ehc = &ap->link.eh_context;
1847 if (ap->link.sactive) {
1848 nv_swncq_ncq_stop(ap);
1849 ehc->i.action |= ATA_EH_RESET;
1852 ata_bmdma_error_handler(ap);
1855 #ifdef CONFIG_PM
1856 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg)
1858 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1859 u32 tmp;
1861 /* clear irq */
1862 writel(~0, mmio + NV_INT_STATUS_MCP55);
1864 /* disable irq */
1865 writel(0, mmio + NV_INT_ENABLE_MCP55);
1867 /* disable swncq */
1868 tmp = readl(mmio + NV_CTL_MCP55);
1869 tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ);
1870 writel(tmp, mmio + NV_CTL_MCP55);
1872 return 0;
1875 static int nv_swncq_port_resume(struct ata_port *ap)
1877 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1878 u32 tmp;
1880 /* clear irq */
1881 writel(~0, mmio + NV_INT_STATUS_MCP55);
1883 /* enable irq */
1884 writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1886 /* enable swncq */
1887 tmp = readl(mmio + NV_CTL_MCP55);
1888 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1890 return 0;
1892 #endif
1894 static void nv_swncq_host_init(struct ata_host *host)
1896 u32 tmp;
1897 void __iomem *mmio = host->iomap[NV_MMIO_BAR];
1898 struct pci_dev *pdev = to_pci_dev(host->dev);
1899 u8 regval;
1901 /* disable ECO 398 */
1902 pci_read_config_byte(pdev, 0x7f, &regval);
1903 regval &= ~(1 << 7);
1904 pci_write_config_byte(pdev, 0x7f, regval);
1906 /* enable swncq */
1907 tmp = readl(mmio + NV_CTL_MCP55);
1908 VPRINTK("HOST_CTL:0x%X\n", tmp);
1909 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1911 /* enable irq intr */
1912 tmp = readl(mmio + NV_INT_ENABLE_MCP55);
1913 VPRINTK("HOST_ENABLE:0x%X\n", tmp);
1914 writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1916 /* clear port irq */
1917 writel(~0x0, mmio + NV_INT_STATUS_MCP55);
1920 static int nv_swncq_slave_config(struct scsi_device *sdev)
1922 struct ata_port *ap = ata_shost_to_port(sdev->host);
1923 struct pci_dev *pdev = to_pci_dev(ap->host->dev);
1924 struct ata_device *dev;
1925 int rc;
1926 u8 rev;
1927 u8 check_maxtor = 0;
1928 unsigned char model_num[ATA_ID_PROD_LEN + 1];
1930 rc = ata_scsi_slave_config(sdev);
1931 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
1932 /* Not a proper libata device, ignore */
1933 return rc;
1935 dev = &ap->link.device[sdev->id];
1936 if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI)
1937 return rc;
1939 /* if MCP51 and Maxtor, then disable ncq */
1940 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA ||
1941 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2)
1942 check_maxtor = 1;
1944 /* if MCP55 and rev <= a2 and Maxtor, then disable ncq */
1945 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA ||
1946 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) {
1947 pci_read_config_byte(pdev, 0x8, &rev);
1948 if (rev <= 0xa2)
1949 check_maxtor = 1;
1952 if (!check_maxtor)
1953 return rc;
1955 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
1957 if (strncmp(model_num, "Maxtor", 6) == 0) {
1958 ata_scsi_change_queue_depth(sdev, 1, SCSI_QDEPTH_DEFAULT);
1959 ata_dev_printk(dev, KERN_NOTICE,
1960 "Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth);
1963 return rc;
1966 static int nv_swncq_port_start(struct ata_port *ap)
1968 struct device *dev = ap->host->dev;
1969 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1970 struct nv_swncq_port_priv *pp;
1971 int rc;
1973 /* we might fallback to bmdma, allocate bmdma resources */
1974 rc = ata_bmdma_port_start(ap);
1975 if (rc)
1976 return rc;
1978 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1979 if (!pp)
1980 return -ENOMEM;
1982 pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE,
1983 &pp->prd_dma, GFP_KERNEL);
1984 if (!pp->prd)
1985 return -ENOMEM;
1986 memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE);
1988 ap->private_data = pp;
1989 pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE;
1990 pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2;
1991 pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2;
1993 return 0;
1996 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc)
1998 if (qc->tf.protocol != ATA_PROT_NCQ) {
1999 ata_bmdma_qc_prep(qc);
2000 return;
2003 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2004 return;
2006 nv_swncq_fill_sg(qc);
2009 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc)
2011 struct ata_port *ap = qc->ap;
2012 struct scatterlist *sg;
2013 struct nv_swncq_port_priv *pp = ap->private_data;
2014 struct ata_bmdma_prd *prd;
2015 unsigned int si, idx;
2017 prd = pp->prd + ATA_MAX_PRD * qc->tag;
2019 idx = 0;
2020 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2021 u32 addr, offset;
2022 u32 sg_len, len;
2024 addr = (u32)sg_dma_address(sg);
2025 sg_len = sg_dma_len(sg);
2027 while (sg_len) {
2028 offset = addr & 0xffff;
2029 len = sg_len;
2030 if ((offset + sg_len) > 0x10000)
2031 len = 0x10000 - offset;
2033 prd[idx].addr = cpu_to_le32(addr);
2034 prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2036 idx++;
2037 sg_len -= len;
2038 addr += len;
2042 prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2045 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap,
2046 struct ata_queued_cmd *qc)
2048 struct nv_swncq_port_priv *pp = ap->private_data;
2050 if (qc == NULL)
2051 return 0;
2053 DPRINTK("Enter\n");
2055 writel((1 << qc->tag), pp->sactive_block);
2056 pp->last_issue_tag = qc->tag;
2057 pp->dhfis_bits &= ~(1 << qc->tag);
2058 pp->dmafis_bits &= ~(1 << qc->tag);
2059 pp->qc_active |= (0x1 << qc->tag);
2061 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2062 ap->ops->sff_exec_command(ap, &qc->tf);
2064 DPRINTK("Issued tag %u\n", qc->tag);
2066 return 0;
2069 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc)
2071 struct ata_port *ap = qc->ap;
2072 struct nv_swncq_port_priv *pp = ap->private_data;
2074 if (qc->tf.protocol != ATA_PROT_NCQ)
2075 return ata_bmdma_qc_issue(qc);
2077 DPRINTK("Enter\n");
2079 if (!pp->qc_active)
2080 nv_swncq_issue_atacmd(ap, qc);
2081 else
2082 nv_swncq_qc_to_dq(ap, qc); /* add qc to defer queue */
2084 return 0;
2087 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis)
2089 u32 serror;
2090 struct ata_eh_info *ehi = &ap->link.eh_info;
2092 ata_ehi_clear_desc(ehi);
2094 /* AHCI needs SError cleared; otherwise, it might lock up */
2095 sata_scr_read(&ap->link, SCR_ERROR, &serror);
2096 sata_scr_write(&ap->link, SCR_ERROR, serror);
2098 /* analyze @irq_stat */
2099 if (fis & NV_SWNCQ_IRQ_ADDED)
2100 ata_ehi_push_desc(ehi, "hot plug");
2101 else if (fis & NV_SWNCQ_IRQ_REMOVED)
2102 ata_ehi_push_desc(ehi, "hot unplug");
2104 ata_ehi_hotplugged(ehi);
2106 /* okay, let's hand over to EH */
2107 ehi->serror |= serror;
2109 ata_port_freeze(ap);
2112 static int nv_swncq_sdbfis(struct ata_port *ap)
2114 struct ata_queued_cmd *qc;
2115 struct nv_swncq_port_priv *pp = ap->private_data;
2116 struct ata_eh_info *ehi = &ap->link.eh_info;
2117 u32 sactive;
2118 u32 done_mask;
2119 u8 host_stat;
2120 u8 lack_dhfis = 0;
2122 host_stat = ap->ops->bmdma_status(ap);
2123 if (unlikely(host_stat & ATA_DMA_ERR)) {
2124 /* error when transferring data to/from memory */
2125 ata_ehi_clear_desc(ehi);
2126 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2127 ehi->err_mask |= AC_ERR_HOST_BUS;
2128 ehi->action |= ATA_EH_RESET;
2129 return -EINVAL;
2132 ap->ops->sff_irq_clear(ap);
2133 __ata_bmdma_stop(ap);
2135 sactive = readl(pp->sactive_block);
2136 done_mask = pp->qc_active ^ sactive;
2138 pp->qc_active &= ~done_mask;
2139 pp->dhfis_bits &= ~done_mask;
2140 pp->dmafis_bits &= ~done_mask;
2141 pp->sdbfis_bits |= done_mask;
2142 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2144 if (!ap->qc_active) {
2145 DPRINTK("over\n");
2146 nv_swncq_pp_reinit(ap);
2147 return 0;
2150 if (pp->qc_active & pp->dhfis_bits)
2151 return 0;
2153 if ((pp->ncq_flags & ncq_saw_backout) ||
2154 (pp->qc_active ^ pp->dhfis_bits))
2155 /* if the controller can't get a device to host register FIS,
2156 * The driver needs to reissue the new command.
2158 lack_dhfis = 1;
2160 DPRINTK("id 0x%x QC: qc_active 0x%x,"
2161 "SWNCQ:qc_active 0x%X defer_bits %X "
2162 "dhfis 0x%X dmafis 0x%X last_issue_tag %x\n",
2163 ap->print_id, ap->qc_active, pp->qc_active,
2164 pp->defer_queue.defer_bits, pp->dhfis_bits,
2165 pp->dmafis_bits, pp->last_issue_tag);
2167 nv_swncq_fis_reinit(ap);
2169 if (lack_dhfis) {
2170 qc = ata_qc_from_tag(ap, pp->last_issue_tag);
2171 nv_swncq_issue_atacmd(ap, qc);
2172 return 0;
2175 if (pp->defer_queue.defer_bits) {
2176 /* send deferral queue command */
2177 qc = nv_swncq_qc_from_dq(ap);
2178 WARN_ON(qc == NULL);
2179 nv_swncq_issue_atacmd(ap, qc);
2182 return 0;
2185 static inline u32 nv_swncq_tag(struct ata_port *ap)
2187 struct nv_swncq_port_priv *pp = ap->private_data;
2188 u32 tag;
2190 tag = readb(pp->tag_block) >> 2;
2191 return (tag & 0x1f);
2194 static void nv_swncq_dmafis(struct ata_port *ap)
2196 struct ata_queued_cmd *qc;
2197 unsigned int rw;
2198 u8 dmactl;
2199 u32 tag;
2200 struct nv_swncq_port_priv *pp = ap->private_data;
2202 __ata_bmdma_stop(ap);
2203 tag = nv_swncq_tag(ap);
2205 DPRINTK("dma setup tag 0x%x\n", tag);
2206 qc = ata_qc_from_tag(ap, tag);
2208 if (unlikely(!qc))
2209 return;
2211 rw = qc->tf.flags & ATA_TFLAG_WRITE;
2213 /* load PRD table addr. */
2214 iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag,
2215 ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2217 /* specify data direction, triple-check start bit is clear */
2218 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2219 dmactl &= ~ATA_DMA_WR;
2220 if (!rw)
2221 dmactl |= ATA_DMA_WR;
2223 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2226 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
2228 struct nv_swncq_port_priv *pp = ap->private_data;
2229 struct ata_queued_cmd *qc;
2230 struct ata_eh_info *ehi = &ap->link.eh_info;
2231 u32 serror;
2232 u8 ata_stat;
2234 ata_stat = ap->ops->sff_check_status(ap);
2235 nv_swncq_irq_clear(ap, fis);
2236 if (!fis)
2237 return;
2239 if (ap->pflags & ATA_PFLAG_FROZEN)
2240 return;
2242 if (fis & NV_SWNCQ_IRQ_HOTPLUG) {
2243 nv_swncq_hotplug(ap, fis);
2244 return;
2247 if (!pp->qc_active)
2248 return;
2250 if (ap->ops->scr_read(&ap->link, SCR_ERROR, &serror))
2251 return;
2252 ap->ops->scr_write(&ap->link, SCR_ERROR, serror);
2254 if (ata_stat & ATA_ERR) {
2255 ata_ehi_clear_desc(ehi);
2256 ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis);
2257 ehi->err_mask |= AC_ERR_DEV;
2258 ehi->serror |= serror;
2259 ehi->action |= ATA_EH_RESET;
2260 ata_port_freeze(ap);
2261 return;
2264 if (fis & NV_SWNCQ_IRQ_BACKOUT) {
2265 /* If the IRQ is backout, driver must issue
2266 * the new command again some time later.
2268 pp->ncq_flags |= ncq_saw_backout;
2271 if (fis & NV_SWNCQ_IRQ_SDBFIS) {
2272 pp->ncq_flags |= ncq_saw_sdb;
2273 DPRINTK("id 0x%x SWNCQ: qc_active 0x%X "
2274 "dhfis 0x%X dmafis 0x%X sactive 0x%X\n",
2275 ap->print_id, pp->qc_active, pp->dhfis_bits,
2276 pp->dmafis_bits, readl(pp->sactive_block));
2277 if (nv_swncq_sdbfis(ap) < 0)
2278 goto irq_error;
2281 if (fis & NV_SWNCQ_IRQ_DHREGFIS) {
2282 /* The interrupt indicates the new command
2283 * was transmitted correctly to the drive.
2285 pp->dhfis_bits |= (0x1 << pp->last_issue_tag);
2286 pp->ncq_flags |= ncq_saw_d2h;
2287 if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) {
2288 ata_ehi_push_desc(ehi, "illegal fis transaction");
2289 ehi->err_mask |= AC_ERR_HSM;
2290 ehi->action |= ATA_EH_RESET;
2291 goto irq_error;
2294 if (!(fis & NV_SWNCQ_IRQ_DMASETUP) &&
2295 !(pp->ncq_flags & ncq_saw_dmas)) {
2296 ata_stat = ap->ops->sff_check_status(ap);
2297 if (ata_stat & ATA_BUSY)
2298 goto irq_exit;
2300 if (pp->defer_queue.defer_bits) {
2301 DPRINTK("send next command\n");
2302 qc = nv_swncq_qc_from_dq(ap);
2303 nv_swncq_issue_atacmd(ap, qc);
2308 if (fis & NV_SWNCQ_IRQ_DMASETUP) {
2309 /* program the dma controller with appropriate PRD buffers
2310 * and start the DMA transfer for requested command.
2312 pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap));
2313 pp->ncq_flags |= ncq_saw_dmas;
2314 nv_swncq_dmafis(ap);
2317 irq_exit:
2318 return;
2319 irq_error:
2320 ata_ehi_push_desc(ehi, "fis:0x%x", fis);
2321 ata_port_freeze(ap);
2322 return;
2325 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance)
2327 struct ata_host *host = dev_instance;
2328 unsigned int i;
2329 unsigned int handled = 0;
2330 unsigned long flags;
2331 u32 irq_stat;
2333 spin_lock_irqsave(&host->lock, flags);
2335 irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55);
2337 for (i = 0; i < host->n_ports; i++) {
2338 struct ata_port *ap = host->ports[i];
2340 if (ap->link.sactive) {
2341 nv_swncq_host_interrupt(ap, (u16)irq_stat);
2342 handled = 1;
2343 } else {
2344 if (irq_stat) /* reserve Hotplug */
2345 nv_swncq_irq_clear(ap, 0xfff0);
2347 handled += nv_host_intr(ap, (u8)irq_stat);
2349 irq_stat >>= NV_INT_PORT_SHIFT_MCP55;
2352 spin_unlock_irqrestore(&host->lock, flags);
2354 return IRQ_RETVAL(handled);
2357 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2359 static int printed_version;
2360 const struct ata_port_info *ppi[] = { NULL, NULL };
2361 struct nv_pi_priv *ipriv;
2362 struct ata_host *host;
2363 struct nv_host_priv *hpriv;
2364 int rc;
2365 u32 bar;
2366 void __iomem *base;
2367 unsigned long type = ent->driver_data;
2369 // Make sure this is a SATA controller by counting the number of bars
2370 // (NVIDIA SATA controllers will always have six bars). Otherwise,
2371 // it's an IDE controller and we ignore it.
2372 for (bar = 0; bar < 6; bar++)
2373 if (pci_resource_start(pdev, bar) == 0)
2374 return -ENODEV;
2376 if (!printed_version++)
2377 dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
2379 rc = pcim_enable_device(pdev);
2380 if (rc)
2381 return rc;
2383 /* determine type and allocate host */
2384 if (type == CK804 && adma_enabled) {
2385 dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n");
2386 type = ADMA;
2387 } else if (type == MCP5x && swncq_enabled) {
2388 dev_printk(KERN_NOTICE, &pdev->dev, "Using SWNCQ mode\n");
2389 type = SWNCQ;
2392 ppi[0] = &nv_port_info[type];
2393 ipriv = ppi[0]->private_data;
2394 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2395 if (rc)
2396 return rc;
2398 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2399 if (!hpriv)
2400 return -ENOMEM;
2401 hpriv->type = type;
2402 host->private_data = hpriv;
2404 /* request and iomap NV_MMIO_BAR */
2405 rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME);
2406 if (rc)
2407 return rc;
2409 /* configure SCR access */
2410 base = host->iomap[NV_MMIO_BAR];
2411 host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET;
2412 host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET;
2414 /* enable SATA space for CK804 */
2415 if (type >= CK804) {
2416 u8 regval;
2418 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2419 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2420 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2423 /* init ADMA */
2424 if (type == ADMA) {
2425 rc = nv_adma_host_init(host);
2426 if (rc)
2427 return rc;
2428 } else if (type == SWNCQ)
2429 nv_swncq_host_init(host);
2431 if (msi_enabled) {
2432 dev_printk(KERN_NOTICE, &pdev->dev, "Using MSI\n");
2433 pci_enable_msi(pdev);
2436 pci_set_master(pdev);
2437 return ata_pci_sff_activate_host(host, ipriv->irq_handler, ipriv->sht);
2440 #ifdef CONFIG_PM
2441 static int nv_pci_device_resume(struct pci_dev *pdev)
2443 struct ata_host *host = dev_get_drvdata(&pdev->dev);
2444 struct nv_host_priv *hpriv = host->private_data;
2445 int rc;
2447 rc = ata_pci_device_do_resume(pdev);
2448 if (rc)
2449 return rc;
2451 if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
2452 if (hpriv->type >= CK804) {
2453 u8 regval;
2455 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2456 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2457 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2459 if (hpriv->type == ADMA) {
2460 u32 tmp32;
2461 struct nv_adma_port_priv *pp;
2462 /* enable/disable ADMA on the ports appropriately */
2463 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2465 pp = host->ports[0]->private_data;
2466 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2467 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2468 NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2469 else
2470 tmp32 |= (NV_MCP_SATA_CFG_20_PORT0_EN |
2471 NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2472 pp = host->ports[1]->private_data;
2473 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2474 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN |
2475 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2476 else
2477 tmp32 |= (NV_MCP_SATA_CFG_20_PORT1_EN |
2478 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2480 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2484 ata_host_resume(host);
2486 return 0;
2488 #endif
2490 static void nv_ck804_host_stop(struct ata_host *host)
2492 struct pci_dev *pdev = to_pci_dev(host->dev);
2493 u8 regval;
2495 /* disable SATA space for CK804 */
2496 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2497 regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2498 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2501 static void nv_adma_host_stop(struct ata_host *host)
2503 struct pci_dev *pdev = to_pci_dev(host->dev);
2504 u32 tmp32;
2506 /* disable ADMA on the ports */
2507 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2508 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2509 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
2510 NV_MCP_SATA_CFG_20_PORT1_EN |
2511 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2513 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2515 nv_ck804_host_stop(host);
2518 static int __init nv_init(void)
2520 return pci_register_driver(&nv_pci_driver);
2523 static void __exit nv_exit(void)
2525 pci_unregister_driver(&nv_pci_driver);
2528 module_init(nv_init);
2529 module_exit(nv_exit);
2530 module_param_named(adma, adma_enabled, bool, 0444);
2531 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: false)");
2532 module_param_named(swncq, swncq_enabled, bool, 0444);
2533 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)");
2534 module_param_named(msi, msi_enabled, bool, 0444);
2535 MODULE_PARM_DESC(msi, "Enable use of MSI (Default: false)");