Revert "gma500: Fix dependencies"
[zen-stable.git] / drivers / firewire / ohci.c
blob438e6c83117087d8d10c13418ff3a68edf9314ff
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
54 #include "core.h"
55 #include "ohci.h"
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
71 struct descriptor {
72 __le16 req_count;
73 __le16 control;
74 __le32 data_address;
75 __le32 branch_address;
76 __le16 res_count;
77 __le16 transfer_status;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94 struct ar_context {
95 struct fw_ohci *ohci;
96 struct page *pages[AR_BUFFERS];
97 void *buffer;
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
100 void *pointer;
101 unsigned int last_buffer_index;
102 u32 regs;
103 struct tasklet_struct tasklet;
106 struct context;
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
119 size_t buffer_size;
120 size_t used;
121 struct descriptor buffer[0];
124 struct context {
125 struct fw_ohci *ohci;
126 u32 regs;
127 int total_allocation;
128 bool running;
129 bool flushing;
132 * List of page-sized buffers for storing DMA descriptors.
133 * Head of list contains buffers in use and tail of list contains
134 * free buffers.
136 struct list_head buffer_list;
139 * Pointer to a buffer inside buffer_list that contains the tail
140 * end of the current DMA program.
142 struct descriptor_buffer *buffer_tail;
145 * The descriptor containing the branch address of the first
146 * descriptor that has not yet been filled by the device.
148 struct descriptor *last;
151 * The last descriptor in the DMA program. It contains the branch
152 * address that must be updated upon appending a new descriptor.
154 struct descriptor *prev;
156 descriptor_callback_t callback;
158 struct tasklet_struct tasklet;
161 #define IT_HEADER_SY(v) ((v) << 0)
162 #define IT_HEADER_TCODE(v) ((v) << 4)
163 #define IT_HEADER_CHANNEL(v) ((v) << 8)
164 #define IT_HEADER_TAG(v) ((v) << 14)
165 #define IT_HEADER_SPEED(v) ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168 struct iso_context {
169 struct fw_iso_context base;
170 struct context context;
171 int excess_bytes;
172 void *header;
173 size_t header_length;
175 u8 sync;
176 u8 tags;
179 #define CONFIG_ROM_SIZE 1024
181 struct fw_ohci {
182 struct fw_card card;
184 __iomem char *registers;
185 int node_id;
186 int generation;
187 int request_generation; /* for timestamping incoming requests */
188 unsigned quirks;
189 unsigned int pri_req_max;
190 u32 bus_time;
191 bool is_root;
192 bool csr_state_setclear_abdicate;
193 int n_ir;
194 int n_it;
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
199 spinlock_t lock;
201 struct mutex phy_reg_mutex;
203 void *misc_buffer;
204 dma_addr_t misc_buffer_bus;
206 struct ar_context ar_request_ctx;
207 struct ar_context ar_response_ctx;
208 struct context at_request_ctx;
209 struct context at_response_ctx;
211 u32 it_context_support;
212 u32 it_context_mask; /* unoccupied IT contexts */
213 struct iso_context *it_context_list;
214 u64 ir_context_channels; /* unoccupied channels */
215 u32 ir_context_support;
216 u32 ir_context_mask; /* unoccupied IR contexts */
217 struct iso_context *ir_context_list;
218 u64 mc_channels; /* channels in use by the multichannel IR context */
219 bool mc_allocated;
221 __be32 *config_rom;
222 dma_addr_t config_rom_bus;
223 __be32 *next_config_rom;
224 dma_addr_t next_config_rom_bus;
225 __be32 next_header;
227 __le32 *self_id_cpu;
228 dma_addr_t self_id_bus;
229 struct tasklet_struct bus_reset_tasklet;
231 u32 self_id_buffer[512];
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236 return container_of(card, struct fw_ohci, card);
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI_LOOP_COUNT 500
257 #define OHCI1394_PCI_HCI_Control 0x40
258 #define SELF_ID_BUF_SIZE 0x800
259 #define OHCI_TCODE_PHY_PACKET 0x0e
260 #define OHCI_VERSION_1_1 0x010010
262 static char ohci_driver_name[] = KBUILD_MODNAME;
264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
265 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
266 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268 #define QUIRK_CYCLE_TIMER 1
269 #define QUIRK_RESET_PACKET 2
270 #define QUIRK_BE_HEADERS 4
271 #define QUIRK_NO_1394A 8
272 #define QUIRK_NO_MSI 16
274 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
275 static const struct {
276 unsigned short vendor, device, revision, flags;
277 } ohci_quirks[] = {
278 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
279 QUIRK_CYCLE_TIMER},
281 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
282 QUIRK_BE_HEADERS},
284 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
285 QUIRK_NO_MSI},
287 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
288 QUIRK_NO_MSI},
290 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
291 QUIRK_CYCLE_TIMER},
293 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
294 QUIRK_CYCLE_TIMER},
296 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
297 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
299 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
300 QUIRK_RESET_PACKET},
302 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
303 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
306 /* This overrides anything that was found in ohci_quirks[]. */
307 static int param_quirks;
308 module_param_named(quirks, param_quirks, int, 0644);
309 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
310 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
311 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
312 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
313 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
314 ", disable MSI = " __stringify(QUIRK_NO_MSI)
315 ")");
317 #define OHCI_PARAM_DEBUG_AT_AR 1
318 #define OHCI_PARAM_DEBUG_SELFIDS 2
319 #define OHCI_PARAM_DEBUG_IRQS 4
320 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
322 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
324 static int param_debug;
325 module_param_named(debug, param_debug, int, 0644);
326 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
327 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
328 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
329 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
330 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
331 ", or a combination, or all = -1)");
333 static void log_irqs(u32 evt)
335 if (likely(!(param_debug &
336 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
337 return;
339 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
340 !(evt & OHCI1394_busReset))
341 return;
343 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
344 evt & OHCI1394_selfIDComplete ? " selfID" : "",
345 evt & OHCI1394_RQPkt ? " AR_req" : "",
346 evt & OHCI1394_RSPkt ? " AR_resp" : "",
347 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
348 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
349 evt & OHCI1394_isochRx ? " IR" : "",
350 evt & OHCI1394_isochTx ? " IT" : "",
351 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
352 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
353 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
354 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
355 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
356 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
357 evt & OHCI1394_busReset ? " busReset" : "",
358 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
359 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
360 OHCI1394_respTxComplete | OHCI1394_isochRx |
361 OHCI1394_isochTx | OHCI1394_postedWriteErr |
362 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
363 OHCI1394_cycleInconsistent |
364 OHCI1394_regAccessFail | OHCI1394_busReset)
365 ? " ?" : "");
368 static const char *speed[] = {
369 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
371 static const char *power[] = {
372 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
373 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
375 static const char port[] = { '.', '-', 'p', 'c', };
377 static char _p(u32 *s, int shift)
379 return port[*s >> shift & 3];
382 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
384 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
385 return;
387 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
388 self_id_count, generation, node_id);
390 for (; self_id_count--; ++s)
391 if ((*s & 1 << 23) == 0)
392 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
393 "%s gc=%d %s %s%s%s\n",
394 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
395 speed[*s >> 14 & 3], *s >> 16 & 63,
396 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
397 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
398 else
399 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
400 *s, *s >> 24 & 63,
401 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
402 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
405 static const char *evts[] = {
406 [0x00] = "evt_no_status", [0x01] = "-reserved-",
407 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
408 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
409 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
410 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
411 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
412 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
413 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
414 [0x10] = "-reserved-", [0x11] = "ack_complete",
415 [0x12] = "ack_pending ", [0x13] = "-reserved-",
416 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
417 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
418 [0x18] = "-reserved-", [0x19] = "-reserved-",
419 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
420 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
421 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
422 [0x20] = "pending/cancelled",
424 static const char *tcodes[] = {
425 [0x0] = "QW req", [0x1] = "BW req",
426 [0x2] = "W resp", [0x3] = "-reserved-",
427 [0x4] = "QR req", [0x5] = "BR req",
428 [0x6] = "QR resp", [0x7] = "BR resp",
429 [0x8] = "cycle start", [0x9] = "Lk req",
430 [0xa] = "async stream packet", [0xb] = "Lk resp",
431 [0xc] = "-reserved-", [0xd] = "-reserved-",
432 [0xe] = "link internal", [0xf] = "-reserved-",
435 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
437 int tcode = header[0] >> 4 & 0xf;
438 char specific[12];
440 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
441 return;
443 if (unlikely(evt >= ARRAY_SIZE(evts)))
444 evt = 0x1f;
446 if (evt == OHCI1394_evt_bus_reset) {
447 fw_notify("A%c evt_bus_reset, generation %d\n",
448 dir, (header[2] >> 16) & 0xff);
449 return;
452 switch (tcode) {
453 case 0x0: case 0x6: case 0x8:
454 snprintf(specific, sizeof(specific), " = %08x",
455 be32_to_cpu((__force __be32)header[3]));
456 break;
457 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
458 snprintf(specific, sizeof(specific), " %x,%x",
459 header[3] >> 16, header[3] & 0xffff);
460 break;
461 default:
462 specific[0] = '\0';
465 switch (tcode) {
466 case 0xa:
467 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
468 break;
469 case 0xe:
470 fw_notify("A%c %s, PHY %08x %08x\n",
471 dir, evts[evt], header[1], header[2]);
472 break;
473 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 fw_notify("A%c spd %x tl %02x, "
475 "%04x -> %04x, %s, "
476 "%s, %04x%08x%s\n",
477 dir, speed, header[0] >> 10 & 0x3f,
478 header[1] >> 16, header[0] >> 16, evts[evt],
479 tcodes[tcode], header[1] & 0xffff, header[2], specific);
480 break;
481 default:
482 fw_notify("A%c spd %x tl %02x, "
483 "%04x -> %04x, %s, "
484 "%s%s\n",
485 dir, speed, header[0] >> 10 & 0x3f,
486 header[1] >> 16, header[0] >> 16, evts[evt],
487 tcodes[tcode], specific);
491 #else
493 #define param_debug 0
494 static inline void log_irqs(u32 evt) {}
495 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
496 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
498 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
500 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
502 writel(data, ohci->registers + offset);
505 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
507 return readl(ohci->registers + offset);
510 static inline void flush_writes(const struct fw_ohci *ohci)
512 /* Do a dummy read to flush writes. */
513 reg_read(ohci, OHCI1394_Version);
516 static int read_phy_reg(struct fw_ohci *ohci, int addr)
518 u32 val;
519 int i;
521 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
522 for (i = 0; i < 3 + 100; i++) {
523 val = reg_read(ohci, OHCI1394_PhyControl);
524 if (val & OHCI1394_PhyControl_ReadDone)
525 return OHCI1394_PhyControl_ReadData(val);
528 * Try a few times without waiting. Sleeping is necessary
529 * only when the link/PHY interface is busy.
531 if (i >= 3)
532 msleep(1);
534 fw_error("failed to read phy reg\n");
536 return -EBUSY;
539 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
541 int i;
543 reg_write(ohci, OHCI1394_PhyControl,
544 OHCI1394_PhyControl_Write(addr, val));
545 for (i = 0; i < 3 + 100; i++) {
546 val = reg_read(ohci, OHCI1394_PhyControl);
547 if (!(val & OHCI1394_PhyControl_WritePending))
548 return 0;
550 if (i >= 3)
551 msleep(1);
553 fw_error("failed to write phy reg\n");
555 return -EBUSY;
558 static int update_phy_reg(struct fw_ohci *ohci, int addr,
559 int clear_bits, int set_bits)
561 int ret = read_phy_reg(ohci, addr);
562 if (ret < 0)
563 return ret;
566 * The interrupt status bits are cleared by writing a one bit.
567 * Avoid clearing them unless explicitly requested in set_bits.
569 if (addr == 5)
570 clear_bits |= PHY_INT_STATUS_BITS;
572 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
575 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
577 int ret;
579 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
580 if (ret < 0)
581 return ret;
583 return read_phy_reg(ohci, addr);
586 static int ohci_read_phy_reg(struct fw_card *card, int addr)
588 struct fw_ohci *ohci = fw_ohci(card);
589 int ret;
591 mutex_lock(&ohci->phy_reg_mutex);
592 ret = read_phy_reg(ohci, addr);
593 mutex_unlock(&ohci->phy_reg_mutex);
595 return ret;
598 static int ohci_update_phy_reg(struct fw_card *card, int addr,
599 int clear_bits, int set_bits)
601 struct fw_ohci *ohci = fw_ohci(card);
602 int ret;
604 mutex_lock(&ohci->phy_reg_mutex);
605 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
606 mutex_unlock(&ohci->phy_reg_mutex);
608 return ret;
611 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
613 return page_private(ctx->pages[i]);
616 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
618 struct descriptor *d;
620 d = &ctx->descriptors[index];
621 d->branch_address &= cpu_to_le32(~0xf);
622 d->res_count = cpu_to_le16(PAGE_SIZE);
623 d->transfer_status = 0;
625 wmb(); /* finish init of new descriptors before branch_address update */
626 d = &ctx->descriptors[ctx->last_buffer_index];
627 d->branch_address |= cpu_to_le32(1);
629 ctx->last_buffer_index = index;
631 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
632 flush_writes(ctx->ohci);
635 static void ar_context_release(struct ar_context *ctx)
637 unsigned int i;
639 if (ctx->buffer)
640 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
642 for (i = 0; i < AR_BUFFERS; i++)
643 if (ctx->pages[i]) {
644 dma_unmap_page(ctx->ohci->card.device,
645 ar_buffer_bus(ctx, i),
646 PAGE_SIZE, DMA_FROM_DEVICE);
647 __free_page(ctx->pages[i]);
651 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
653 if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
654 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
655 flush_writes(ctx->ohci);
657 fw_error("AR error: %s; DMA stopped\n", error_msg);
659 /* FIXME: restart? */
662 static inline unsigned int ar_next_buffer_index(unsigned int index)
664 return (index + 1) % AR_BUFFERS;
667 static inline unsigned int ar_prev_buffer_index(unsigned int index)
669 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
672 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
674 return ar_next_buffer_index(ctx->last_buffer_index);
678 * We search for the buffer that contains the last AR packet DMA data written
679 * by the controller.
681 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
682 unsigned int *buffer_offset)
684 unsigned int i, next_i, last = ctx->last_buffer_index;
685 __le16 res_count, next_res_count;
687 i = ar_first_buffer_index(ctx);
688 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
690 /* A buffer that is not yet completely filled must be the last one. */
691 while (i != last && res_count == 0) {
693 /* Peek at the next descriptor. */
694 next_i = ar_next_buffer_index(i);
695 rmb(); /* read descriptors in order */
696 next_res_count = ACCESS_ONCE(
697 ctx->descriptors[next_i].res_count);
699 * If the next descriptor is still empty, we must stop at this
700 * descriptor.
702 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
704 * The exception is when the DMA data for one packet is
705 * split over three buffers; in this case, the middle
706 * buffer's descriptor might be never updated by the
707 * controller and look still empty, and we have to peek
708 * at the third one.
710 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
711 next_i = ar_next_buffer_index(next_i);
712 rmb();
713 next_res_count = ACCESS_ONCE(
714 ctx->descriptors[next_i].res_count);
715 if (next_res_count != cpu_to_le16(PAGE_SIZE))
716 goto next_buffer_is_active;
719 break;
722 next_buffer_is_active:
723 i = next_i;
724 res_count = next_res_count;
727 rmb(); /* read res_count before the DMA data */
729 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
730 if (*buffer_offset > PAGE_SIZE) {
731 *buffer_offset = 0;
732 ar_context_abort(ctx, "corrupted descriptor");
735 return i;
738 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
739 unsigned int end_buffer_index,
740 unsigned int end_buffer_offset)
742 unsigned int i;
744 i = ar_first_buffer_index(ctx);
745 while (i != end_buffer_index) {
746 dma_sync_single_for_cpu(ctx->ohci->card.device,
747 ar_buffer_bus(ctx, i),
748 PAGE_SIZE, DMA_FROM_DEVICE);
749 i = ar_next_buffer_index(i);
751 if (end_buffer_offset > 0)
752 dma_sync_single_for_cpu(ctx->ohci->card.device,
753 ar_buffer_bus(ctx, i),
754 end_buffer_offset, DMA_FROM_DEVICE);
757 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
758 #define cond_le32_to_cpu(v) \
759 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
760 #else
761 #define cond_le32_to_cpu(v) le32_to_cpu(v)
762 #endif
764 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
766 struct fw_ohci *ohci = ctx->ohci;
767 struct fw_packet p;
768 u32 status, length, tcode;
769 int evt;
771 p.header[0] = cond_le32_to_cpu(buffer[0]);
772 p.header[1] = cond_le32_to_cpu(buffer[1]);
773 p.header[2] = cond_le32_to_cpu(buffer[2]);
775 tcode = (p.header[0] >> 4) & 0x0f;
776 switch (tcode) {
777 case TCODE_WRITE_QUADLET_REQUEST:
778 case TCODE_READ_QUADLET_RESPONSE:
779 p.header[3] = (__force __u32) buffer[3];
780 p.header_length = 16;
781 p.payload_length = 0;
782 break;
784 case TCODE_READ_BLOCK_REQUEST :
785 p.header[3] = cond_le32_to_cpu(buffer[3]);
786 p.header_length = 16;
787 p.payload_length = 0;
788 break;
790 case TCODE_WRITE_BLOCK_REQUEST:
791 case TCODE_READ_BLOCK_RESPONSE:
792 case TCODE_LOCK_REQUEST:
793 case TCODE_LOCK_RESPONSE:
794 p.header[3] = cond_le32_to_cpu(buffer[3]);
795 p.header_length = 16;
796 p.payload_length = p.header[3] >> 16;
797 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
798 ar_context_abort(ctx, "invalid packet length");
799 return NULL;
801 break;
803 case TCODE_WRITE_RESPONSE:
804 case TCODE_READ_QUADLET_REQUEST:
805 case OHCI_TCODE_PHY_PACKET:
806 p.header_length = 12;
807 p.payload_length = 0;
808 break;
810 default:
811 ar_context_abort(ctx, "invalid tcode");
812 return NULL;
815 p.payload = (void *) buffer + p.header_length;
817 /* FIXME: What to do about evt_* errors? */
818 length = (p.header_length + p.payload_length + 3) / 4;
819 status = cond_le32_to_cpu(buffer[length]);
820 evt = (status >> 16) & 0x1f;
822 p.ack = evt - 16;
823 p.speed = (status >> 21) & 0x7;
824 p.timestamp = status & 0xffff;
825 p.generation = ohci->request_generation;
827 log_ar_at_event('R', p.speed, p.header, evt);
830 * Several controllers, notably from NEC and VIA, forget to
831 * write ack_complete status at PHY packet reception.
833 if (evt == OHCI1394_evt_no_status &&
834 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
835 p.ack = ACK_COMPLETE;
838 * The OHCI bus reset handler synthesizes a PHY packet with
839 * the new generation number when a bus reset happens (see
840 * section 8.4.2.3). This helps us determine when a request
841 * was received and make sure we send the response in the same
842 * generation. We only need this for requests; for responses
843 * we use the unique tlabel for finding the matching
844 * request.
846 * Alas some chips sometimes emit bus reset packets with a
847 * wrong generation. We set the correct generation for these
848 * at a slightly incorrect time (in bus_reset_tasklet).
850 if (evt == OHCI1394_evt_bus_reset) {
851 if (!(ohci->quirks & QUIRK_RESET_PACKET))
852 ohci->request_generation = (p.header[2] >> 16) & 0xff;
853 } else if (ctx == &ohci->ar_request_ctx) {
854 fw_core_handle_request(&ohci->card, &p);
855 } else {
856 fw_core_handle_response(&ohci->card, &p);
859 return buffer + length + 1;
862 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
864 void *next;
866 while (p < end) {
867 next = handle_ar_packet(ctx, p);
868 if (!next)
869 return p;
870 p = next;
873 return p;
876 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
878 unsigned int i;
880 i = ar_first_buffer_index(ctx);
881 while (i != end_buffer) {
882 dma_sync_single_for_device(ctx->ohci->card.device,
883 ar_buffer_bus(ctx, i),
884 PAGE_SIZE, DMA_FROM_DEVICE);
885 ar_context_link_page(ctx, i);
886 i = ar_next_buffer_index(i);
890 static void ar_context_tasklet(unsigned long data)
892 struct ar_context *ctx = (struct ar_context *)data;
893 unsigned int end_buffer_index, end_buffer_offset;
894 void *p, *end;
896 p = ctx->pointer;
897 if (!p)
898 return;
900 end_buffer_index = ar_search_last_active_buffer(ctx,
901 &end_buffer_offset);
902 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
903 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
905 if (end_buffer_index < ar_first_buffer_index(ctx)) {
907 * The filled part of the overall buffer wraps around; handle
908 * all packets up to the buffer end here. If the last packet
909 * wraps around, its tail will be visible after the buffer end
910 * because the buffer start pages are mapped there again.
912 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
913 p = handle_ar_packets(ctx, p, buffer_end);
914 if (p < buffer_end)
915 goto error;
916 /* adjust p to point back into the actual buffer */
917 p -= AR_BUFFERS * PAGE_SIZE;
920 p = handle_ar_packets(ctx, p, end);
921 if (p != end) {
922 if (p > end)
923 ar_context_abort(ctx, "inconsistent descriptor");
924 goto error;
927 ctx->pointer = p;
928 ar_recycle_buffers(ctx, end_buffer_index);
930 return;
932 error:
933 ctx->pointer = NULL;
936 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
937 unsigned int descriptors_offset, u32 regs)
939 unsigned int i;
940 dma_addr_t dma_addr;
941 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
942 struct descriptor *d;
944 ctx->regs = regs;
945 ctx->ohci = ohci;
946 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
948 for (i = 0; i < AR_BUFFERS; i++) {
949 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
950 if (!ctx->pages[i])
951 goto out_of_memory;
952 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
953 0, PAGE_SIZE, DMA_FROM_DEVICE);
954 if (dma_mapping_error(ohci->card.device, dma_addr)) {
955 __free_page(ctx->pages[i]);
956 ctx->pages[i] = NULL;
957 goto out_of_memory;
959 set_page_private(ctx->pages[i], dma_addr);
962 for (i = 0; i < AR_BUFFERS; i++)
963 pages[i] = ctx->pages[i];
964 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
965 pages[AR_BUFFERS + i] = ctx->pages[i];
966 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
967 -1, PAGE_KERNEL);
968 if (!ctx->buffer)
969 goto out_of_memory;
971 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
972 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
974 for (i = 0; i < AR_BUFFERS; i++) {
975 d = &ctx->descriptors[i];
976 d->req_count = cpu_to_le16(PAGE_SIZE);
977 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
978 DESCRIPTOR_STATUS |
979 DESCRIPTOR_BRANCH_ALWAYS);
980 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
981 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
982 ar_next_buffer_index(i) * sizeof(struct descriptor));
985 return 0;
987 out_of_memory:
988 ar_context_release(ctx);
990 return -ENOMEM;
993 static void ar_context_run(struct ar_context *ctx)
995 unsigned int i;
997 for (i = 0; i < AR_BUFFERS; i++)
998 ar_context_link_page(ctx, i);
1000 ctx->pointer = ctx->buffer;
1002 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1003 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1004 flush_writes(ctx->ohci);
1007 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1009 __le16 branch;
1011 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1013 /* figure out which descriptor the branch address goes in */
1014 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1015 return d;
1016 else
1017 return d + z - 1;
1020 static void context_tasklet(unsigned long data)
1022 struct context *ctx = (struct context *) data;
1023 struct descriptor *d, *last;
1024 u32 address;
1025 int z;
1026 struct descriptor_buffer *desc;
1028 desc = list_entry(ctx->buffer_list.next,
1029 struct descriptor_buffer, list);
1030 last = ctx->last;
1031 while (last->branch_address != 0) {
1032 struct descriptor_buffer *old_desc = desc;
1033 address = le32_to_cpu(last->branch_address);
1034 z = address & 0xf;
1035 address &= ~0xf;
1037 /* If the branch address points to a buffer outside of the
1038 * current buffer, advance to the next buffer. */
1039 if (address < desc->buffer_bus ||
1040 address >= desc->buffer_bus + desc->used)
1041 desc = list_entry(desc->list.next,
1042 struct descriptor_buffer, list);
1043 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1044 last = find_branch_descriptor(d, z);
1046 if (!ctx->callback(ctx, d, last))
1047 break;
1049 if (old_desc != desc) {
1050 /* If we've advanced to the next buffer, move the
1051 * previous buffer to the free list. */
1052 unsigned long flags;
1053 old_desc->used = 0;
1054 spin_lock_irqsave(&ctx->ohci->lock, flags);
1055 list_move_tail(&old_desc->list, &ctx->buffer_list);
1056 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1058 ctx->last = last;
1063 * Allocate a new buffer and add it to the list of free buffers for this
1064 * context. Must be called with ohci->lock held.
1066 static int context_add_buffer(struct context *ctx)
1068 struct descriptor_buffer *desc;
1069 dma_addr_t uninitialized_var(bus_addr);
1070 int offset;
1073 * 16MB of descriptors should be far more than enough for any DMA
1074 * program. This will catch run-away userspace or DoS attacks.
1076 if (ctx->total_allocation >= 16*1024*1024)
1077 return -ENOMEM;
1079 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1080 &bus_addr, GFP_ATOMIC);
1081 if (!desc)
1082 return -ENOMEM;
1084 offset = (void *)&desc->buffer - (void *)desc;
1085 desc->buffer_size = PAGE_SIZE - offset;
1086 desc->buffer_bus = bus_addr + offset;
1087 desc->used = 0;
1089 list_add_tail(&desc->list, &ctx->buffer_list);
1090 ctx->total_allocation += PAGE_SIZE;
1092 return 0;
1095 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1096 u32 regs, descriptor_callback_t callback)
1098 ctx->ohci = ohci;
1099 ctx->regs = regs;
1100 ctx->total_allocation = 0;
1102 INIT_LIST_HEAD(&ctx->buffer_list);
1103 if (context_add_buffer(ctx) < 0)
1104 return -ENOMEM;
1106 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1107 struct descriptor_buffer, list);
1109 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1110 ctx->callback = callback;
1113 * We put a dummy descriptor in the buffer that has a NULL
1114 * branch address and looks like it's been sent. That way we
1115 * have a descriptor to append DMA programs to.
1117 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1118 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1119 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1120 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1121 ctx->last = ctx->buffer_tail->buffer;
1122 ctx->prev = ctx->buffer_tail->buffer;
1124 return 0;
1127 static void context_release(struct context *ctx)
1129 struct fw_card *card = &ctx->ohci->card;
1130 struct descriptor_buffer *desc, *tmp;
1132 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1133 dma_free_coherent(card->device, PAGE_SIZE, desc,
1134 desc->buffer_bus -
1135 ((void *)&desc->buffer - (void *)desc));
1138 /* Must be called with ohci->lock held */
1139 static struct descriptor *context_get_descriptors(struct context *ctx,
1140 int z, dma_addr_t *d_bus)
1142 struct descriptor *d = NULL;
1143 struct descriptor_buffer *desc = ctx->buffer_tail;
1145 if (z * sizeof(*d) > desc->buffer_size)
1146 return NULL;
1148 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1149 /* No room for the descriptor in this buffer, so advance to the
1150 * next one. */
1152 if (desc->list.next == &ctx->buffer_list) {
1153 /* If there is no free buffer next in the list,
1154 * allocate one. */
1155 if (context_add_buffer(ctx) < 0)
1156 return NULL;
1158 desc = list_entry(desc->list.next,
1159 struct descriptor_buffer, list);
1160 ctx->buffer_tail = desc;
1163 d = desc->buffer + desc->used / sizeof(*d);
1164 memset(d, 0, z * sizeof(*d));
1165 *d_bus = desc->buffer_bus + desc->used;
1167 return d;
1170 static void context_run(struct context *ctx, u32 extra)
1172 struct fw_ohci *ohci = ctx->ohci;
1174 reg_write(ohci, COMMAND_PTR(ctx->regs),
1175 le32_to_cpu(ctx->last->branch_address));
1176 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1177 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1178 ctx->running = true;
1179 flush_writes(ohci);
1182 static void context_append(struct context *ctx,
1183 struct descriptor *d, int z, int extra)
1185 dma_addr_t d_bus;
1186 struct descriptor_buffer *desc = ctx->buffer_tail;
1188 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1190 desc->used += (z + extra) * sizeof(*d);
1192 wmb(); /* finish init of new descriptors before branch_address update */
1193 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1194 ctx->prev = find_branch_descriptor(d, z);
1197 static void context_stop(struct context *ctx)
1199 u32 reg;
1200 int i;
1202 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1203 ctx->running = false;
1204 flush_writes(ctx->ohci);
1206 for (i = 0; i < 10; i++) {
1207 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1208 if ((reg & CONTEXT_ACTIVE) == 0)
1209 return;
1211 mdelay(1);
1213 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1216 struct driver_data {
1217 u8 inline_data[8];
1218 struct fw_packet *packet;
1222 * This function apppends a packet to the DMA queue for transmission.
1223 * Must always be called with the ochi->lock held to ensure proper
1224 * generation handling and locking around packet queue manipulation.
1226 static int at_context_queue_packet(struct context *ctx,
1227 struct fw_packet *packet)
1229 struct fw_ohci *ohci = ctx->ohci;
1230 dma_addr_t d_bus, uninitialized_var(payload_bus);
1231 struct driver_data *driver_data;
1232 struct descriptor *d, *last;
1233 __le32 *header;
1234 int z, tcode;
1236 d = context_get_descriptors(ctx, 4, &d_bus);
1237 if (d == NULL) {
1238 packet->ack = RCODE_SEND_ERROR;
1239 return -1;
1242 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1243 d[0].res_count = cpu_to_le16(packet->timestamp);
1246 * The DMA format for asyncronous link packets is different
1247 * from the IEEE1394 layout, so shift the fields around
1248 * accordingly.
1251 tcode = (packet->header[0] >> 4) & 0x0f;
1252 header = (__le32 *) &d[1];
1253 switch (tcode) {
1254 case TCODE_WRITE_QUADLET_REQUEST:
1255 case TCODE_WRITE_BLOCK_REQUEST:
1256 case TCODE_WRITE_RESPONSE:
1257 case TCODE_READ_QUADLET_REQUEST:
1258 case TCODE_READ_BLOCK_REQUEST:
1259 case TCODE_READ_QUADLET_RESPONSE:
1260 case TCODE_READ_BLOCK_RESPONSE:
1261 case TCODE_LOCK_REQUEST:
1262 case TCODE_LOCK_RESPONSE:
1263 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1264 (packet->speed << 16));
1265 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1266 (packet->header[0] & 0xffff0000));
1267 header[2] = cpu_to_le32(packet->header[2]);
1269 if (TCODE_IS_BLOCK_PACKET(tcode))
1270 header[3] = cpu_to_le32(packet->header[3]);
1271 else
1272 header[3] = (__force __le32) packet->header[3];
1274 d[0].req_count = cpu_to_le16(packet->header_length);
1275 break;
1277 case TCODE_LINK_INTERNAL:
1278 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1279 (packet->speed << 16));
1280 header[1] = cpu_to_le32(packet->header[1]);
1281 header[2] = cpu_to_le32(packet->header[2]);
1282 d[0].req_count = cpu_to_le16(12);
1284 if (is_ping_packet(&packet->header[1]))
1285 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1286 break;
1288 case TCODE_STREAM_DATA:
1289 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1290 (packet->speed << 16));
1291 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1292 d[0].req_count = cpu_to_le16(8);
1293 break;
1295 default:
1296 /* BUG(); */
1297 packet->ack = RCODE_SEND_ERROR;
1298 return -1;
1301 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1302 driver_data = (struct driver_data *) &d[3];
1303 driver_data->packet = packet;
1304 packet->driver_data = driver_data;
1306 if (packet->payload_length > 0) {
1307 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1308 payload_bus = dma_map_single(ohci->card.device,
1309 packet->payload,
1310 packet->payload_length,
1311 DMA_TO_DEVICE);
1312 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1313 packet->ack = RCODE_SEND_ERROR;
1314 return -1;
1316 packet->payload_bus = payload_bus;
1317 packet->payload_mapped = true;
1318 } else {
1319 memcpy(driver_data->inline_data, packet->payload,
1320 packet->payload_length);
1321 payload_bus = d_bus + 3 * sizeof(*d);
1324 d[2].req_count = cpu_to_le16(packet->payload_length);
1325 d[2].data_address = cpu_to_le32(payload_bus);
1326 last = &d[2];
1327 z = 3;
1328 } else {
1329 last = &d[0];
1330 z = 2;
1333 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1334 DESCRIPTOR_IRQ_ALWAYS |
1335 DESCRIPTOR_BRANCH_ALWAYS);
1337 /* FIXME: Document how the locking works. */
1338 if (ohci->generation != packet->generation) {
1339 if (packet->payload_mapped)
1340 dma_unmap_single(ohci->card.device, payload_bus,
1341 packet->payload_length, DMA_TO_DEVICE);
1342 packet->ack = RCODE_GENERATION;
1343 return -1;
1346 context_append(ctx, d, z, 4 - z);
1348 if (ctx->running) {
1349 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1350 flush_writes(ohci);
1351 } else {
1352 context_run(ctx, 0);
1355 return 0;
1358 static void at_context_flush(struct context *ctx)
1360 tasklet_disable(&ctx->tasklet);
1362 ctx->flushing = true;
1363 context_tasklet((unsigned long)ctx);
1364 ctx->flushing = false;
1366 tasklet_enable(&ctx->tasklet);
1369 static int handle_at_packet(struct context *context,
1370 struct descriptor *d,
1371 struct descriptor *last)
1373 struct driver_data *driver_data;
1374 struct fw_packet *packet;
1375 struct fw_ohci *ohci = context->ohci;
1376 int evt;
1378 if (last->transfer_status == 0 && !context->flushing)
1379 /* This descriptor isn't done yet, stop iteration. */
1380 return 0;
1382 driver_data = (struct driver_data *) &d[3];
1383 packet = driver_data->packet;
1384 if (packet == NULL)
1385 /* This packet was cancelled, just continue. */
1386 return 1;
1388 if (packet->payload_mapped)
1389 dma_unmap_single(ohci->card.device, packet->payload_bus,
1390 packet->payload_length, DMA_TO_DEVICE);
1392 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1393 packet->timestamp = le16_to_cpu(last->res_count);
1395 log_ar_at_event('T', packet->speed, packet->header, evt);
1397 switch (evt) {
1398 case OHCI1394_evt_timeout:
1399 /* Async response transmit timed out. */
1400 packet->ack = RCODE_CANCELLED;
1401 break;
1403 case OHCI1394_evt_flushed:
1405 * The packet was flushed should give same error as
1406 * when we try to use a stale generation count.
1408 packet->ack = RCODE_GENERATION;
1409 break;
1411 case OHCI1394_evt_missing_ack:
1412 if (context->flushing)
1413 packet->ack = RCODE_GENERATION;
1414 else {
1416 * Using a valid (current) generation count, but the
1417 * node is not on the bus or not sending acks.
1419 packet->ack = RCODE_NO_ACK;
1421 break;
1423 case ACK_COMPLETE + 0x10:
1424 case ACK_PENDING + 0x10:
1425 case ACK_BUSY_X + 0x10:
1426 case ACK_BUSY_A + 0x10:
1427 case ACK_BUSY_B + 0x10:
1428 case ACK_DATA_ERROR + 0x10:
1429 case ACK_TYPE_ERROR + 0x10:
1430 packet->ack = evt - 0x10;
1431 break;
1433 case OHCI1394_evt_no_status:
1434 if (context->flushing) {
1435 packet->ack = RCODE_GENERATION;
1436 break;
1438 /* fall through */
1440 default:
1441 packet->ack = RCODE_SEND_ERROR;
1442 break;
1445 packet->callback(packet, &ohci->card, packet->ack);
1447 return 1;
1450 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1451 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1452 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1453 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1454 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1456 static void handle_local_rom(struct fw_ohci *ohci,
1457 struct fw_packet *packet, u32 csr)
1459 struct fw_packet response;
1460 int tcode, length, i;
1462 tcode = HEADER_GET_TCODE(packet->header[0]);
1463 if (TCODE_IS_BLOCK_PACKET(tcode))
1464 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1465 else
1466 length = 4;
1468 i = csr - CSR_CONFIG_ROM;
1469 if (i + length > CONFIG_ROM_SIZE) {
1470 fw_fill_response(&response, packet->header,
1471 RCODE_ADDRESS_ERROR, NULL, 0);
1472 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1473 fw_fill_response(&response, packet->header,
1474 RCODE_TYPE_ERROR, NULL, 0);
1475 } else {
1476 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1477 (void *) ohci->config_rom + i, length);
1480 fw_core_handle_response(&ohci->card, &response);
1483 static void handle_local_lock(struct fw_ohci *ohci,
1484 struct fw_packet *packet, u32 csr)
1486 struct fw_packet response;
1487 int tcode, length, ext_tcode, sel, try;
1488 __be32 *payload, lock_old;
1489 u32 lock_arg, lock_data;
1491 tcode = HEADER_GET_TCODE(packet->header[0]);
1492 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1493 payload = packet->payload;
1494 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1496 if (tcode == TCODE_LOCK_REQUEST &&
1497 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1498 lock_arg = be32_to_cpu(payload[0]);
1499 lock_data = be32_to_cpu(payload[1]);
1500 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1501 lock_arg = 0;
1502 lock_data = 0;
1503 } else {
1504 fw_fill_response(&response, packet->header,
1505 RCODE_TYPE_ERROR, NULL, 0);
1506 goto out;
1509 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1510 reg_write(ohci, OHCI1394_CSRData, lock_data);
1511 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1512 reg_write(ohci, OHCI1394_CSRControl, sel);
1514 for (try = 0; try < 20; try++)
1515 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1516 lock_old = cpu_to_be32(reg_read(ohci,
1517 OHCI1394_CSRData));
1518 fw_fill_response(&response, packet->header,
1519 RCODE_COMPLETE,
1520 &lock_old, sizeof(lock_old));
1521 goto out;
1524 fw_error("swap not done (CSR lock timeout)\n");
1525 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1527 out:
1528 fw_core_handle_response(&ohci->card, &response);
1531 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1533 u64 offset, csr;
1535 if (ctx == &ctx->ohci->at_request_ctx) {
1536 packet->ack = ACK_PENDING;
1537 packet->callback(packet, &ctx->ohci->card, packet->ack);
1540 offset =
1541 ((unsigned long long)
1542 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1543 packet->header[2];
1544 csr = offset - CSR_REGISTER_BASE;
1546 /* Handle config rom reads. */
1547 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1548 handle_local_rom(ctx->ohci, packet, csr);
1549 else switch (csr) {
1550 case CSR_BUS_MANAGER_ID:
1551 case CSR_BANDWIDTH_AVAILABLE:
1552 case CSR_CHANNELS_AVAILABLE_HI:
1553 case CSR_CHANNELS_AVAILABLE_LO:
1554 handle_local_lock(ctx->ohci, packet, csr);
1555 break;
1556 default:
1557 if (ctx == &ctx->ohci->at_request_ctx)
1558 fw_core_handle_request(&ctx->ohci->card, packet);
1559 else
1560 fw_core_handle_response(&ctx->ohci->card, packet);
1561 break;
1564 if (ctx == &ctx->ohci->at_response_ctx) {
1565 packet->ack = ACK_COMPLETE;
1566 packet->callback(packet, &ctx->ohci->card, packet->ack);
1570 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1572 unsigned long flags;
1573 int ret;
1575 spin_lock_irqsave(&ctx->ohci->lock, flags);
1577 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1578 ctx->ohci->generation == packet->generation) {
1579 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1580 handle_local_request(ctx, packet);
1581 return;
1584 ret = at_context_queue_packet(ctx, packet);
1585 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1587 if (ret < 0)
1588 packet->callback(packet, &ctx->ohci->card, packet->ack);
1592 static void detect_dead_context(struct fw_ohci *ohci,
1593 const char *name, unsigned int regs)
1595 u32 ctl;
1597 ctl = reg_read(ohci, CONTROL_SET(regs));
1598 if (ctl & CONTEXT_DEAD) {
1599 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1600 fw_error("DMA context %s has stopped, error code: %s\n",
1601 name, evts[ctl & 0x1f]);
1602 #else
1603 fw_error("DMA context %s has stopped, error code: %#x\n",
1604 name, ctl & 0x1f);
1605 #endif
1609 static void handle_dead_contexts(struct fw_ohci *ohci)
1611 unsigned int i;
1612 char name[8];
1614 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1615 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1616 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1617 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1618 for (i = 0; i < 32; ++i) {
1619 if (!(ohci->it_context_support & (1 << i)))
1620 continue;
1621 sprintf(name, "IT%u", i);
1622 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1624 for (i = 0; i < 32; ++i) {
1625 if (!(ohci->ir_context_support & (1 << i)))
1626 continue;
1627 sprintf(name, "IR%u", i);
1628 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1630 /* TODO: maybe try to flush and restart the dead contexts */
1633 static u32 cycle_timer_ticks(u32 cycle_timer)
1635 u32 ticks;
1637 ticks = cycle_timer & 0xfff;
1638 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1639 ticks += (3072 * 8000) * (cycle_timer >> 25);
1641 return ticks;
1645 * Some controllers exhibit one or more of the following bugs when updating the
1646 * iso cycle timer register:
1647 * - When the lowest six bits are wrapping around to zero, a read that happens
1648 * at the same time will return garbage in the lowest ten bits.
1649 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1650 * not incremented for about 60 ns.
1651 * - Occasionally, the entire register reads zero.
1653 * To catch these, we read the register three times and ensure that the
1654 * difference between each two consecutive reads is approximately the same, i.e.
1655 * less than twice the other. Furthermore, any negative difference indicates an
1656 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1657 * execute, so we have enough precision to compute the ratio of the differences.)
1659 static u32 get_cycle_time(struct fw_ohci *ohci)
1661 u32 c0, c1, c2;
1662 u32 t0, t1, t2;
1663 s32 diff01, diff12;
1664 int i;
1666 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1668 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1669 i = 0;
1670 c1 = c2;
1671 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1672 do {
1673 c0 = c1;
1674 c1 = c2;
1675 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1676 t0 = cycle_timer_ticks(c0);
1677 t1 = cycle_timer_ticks(c1);
1678 t2 = cycle_timer_ticks(c2);
1679 diff01 = t1 - t0;
1680 diff12 = t2 - t1;
1681 } while ((diff01 <= 0 || diff12 <= 0 ||
1682 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1683 && i++ < 20);
1686 return c2;
1690 * This function has to be called at least every 64 seconds. The bus_time
1691 * field stores not only the upper 25 bits of the BUS_TIME register but also
1692 * the most significant bit of the cycle timer in bit 6 so that we can detect
1693 * changes in this bit.
1695 static u32 update_bus_time(struct fw_ohci *ohci)
1697 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1699 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1700 ohci->bus_time += 0x40;
1702 return ohci->bus_time | cycle_time_seconds;
1705 static void bus_reset_tasklet(unsigned long data)
1707 struct fw_ohci *ohci = (struct fw_ohci *)data;
1708 int self_id_count, i, j, reg;
1709 int generation, new_generation;
1710 unsigned long flags;
1711 void *free_rom = NULL;
1712 dma_addr_t free_rom_bus = 0;
1713 bool is_new_root;
1715 reg = reg_read(ohci, OHCI1394_NodeID);
1716 if (!(reg & OHCI1394_NodeID_idValid)) {
1717 fw_notify("node ID not valid, new bus reset in progress\n");
1718 return;
1720 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1721 fw_notify("malconfigured bus\n");
1722 return;
1724 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1725 OHCI1394_NodeID_nodeNumber);
1727 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1728 if (!(ohci->is_root && is_new_root))
1729 reg_write(ohci, OHCI1394_LinkControlSet,
1730 OHCI1394_LinkControl_cycleMaster);
1731 ohci->is_root = is_new_root;
1733 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1734 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1735 fw_notify("inconsistent self IDs\n");
1736 return;
1739 * The count in the SelfIDCount register is the number of
1740 * bytes in the self ID receive buffer. Since we also receive
1741 * the inverted quadlets and a header quadlet, we shift one
1742 * bit extra to get the actual number of self IDs.
1744 self_id_count = (reg >> 3) & 0xff;
1745 if (self_id_count == 0 || self_id_count > 252) {
1746 fw_notify("inconsistent self IDs\n");
1747 return;
1749 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1750 rmb();
1752 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1753 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1754 fw_notify("inconsistent self IDs\n");
1755 return;
1757 ohci->self_id_buffer[j] =
1758 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1760 rmb();
1763 * Check the consistency of the self IDs we just read. The
1764 * problem we face is that a new bus reset can start while we
1765 * read out the self IDs from the DMA buffer. If this happens,
1766 * the DMA buffer will be overwritten with new self IDs and we
1767 * will read out inconsistent data. The OHCI specification
1768 * (section 11.2) recommends a technique similar to
1769 * linux/seqlock.h, where we remember the generation of the
1770 * self IDs in the buffer before reading them out and compare
1771 * it to the current generation after reading them out. If
1772 * the two generations match we know we have a consistent set
1773 * of self IDs.
1776 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1777 if (new_generation != generation) {
1778 fw_notify("recursive bus reset detected, "
1779 "discarding self ids\n");
1780 return;
1783 /* FIXME: Document how the locking works. */
1784 spin_lock_irqsave(&ohci->lock, flags);
1786 ohci->generation = -1; /* prevent AT packet queueing */
1787 context_stop(&ohci->at_request_ctx);
1788 context_stop(&ohci->at_response_ctx);
1790 spin_unlock_irqrestore(&ohci->lock, flags);
1793 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1794 * packets in the AT queues and software needs to drain them.
1795 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1797 at_context_flush(&ohci->at_request_ctx);
1798 at_context_flush(&ohci->at_response_ctx);
1800 spin_lock_irqsave(&ohci->lock, flags);
1802 ohci->generation = generation;
1803 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1805 if (ohci->quirks & QUIRK_RESET_PACKET)
1806 ohci->request_generation = generation;
1809 * This next bit is unrelated to the AT context stuff but we
1810 * have to do it under the spinlock also. If a new config rom
1811 * was set up before this reset, the old one is now no longer
1812 * in use and we can free it. Update the config rom pointers
1813 * to point to the current config rom and clear the
1814 * next_config_rom pointer so a new update can take place.
1817 if (ohci->next_config_rom != NULL) {
1818 if (ohci->next_config_rom != ohci->config_rom) {
1819 free_rom = ohci->config_rom;
1820 free_rom_bus = ohci->config_rom_bus;
1822 ohci->config_rom = ohci->next_config_rom;
1823 ohci->config_rom_bus = ohci->next_config_rom_bus;
1824 ohci->next_config_rom = NULL;
1827 * Restore config_rom image and manually update
1828 * config_rom registers. Writing the header quadlet
1829 * will indicate that the config rom is ready, so we
1830 * do that last.
1832 reg_write(ohci, OHCI1394_BusOptions,
1833 be32_to_cpu(ohci->config_rom[2]));
1834 ohci->config_rom[0] = ohci->next_header;
1835 reg_write(ohci, OHCI1394_ConfigROMhdr,
1836 be32_to_cpu(ohci->next_header));
1839 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1840 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1841 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1842 #endif
1844 spin_unlock_irqrestore(&ohci->lock, flags);
1846 if (free_rom)
1847 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1848 free_rom, free_rom_bus);
1850 log_selfids(ohci->node_id, generation,
1851 self_id_count, ohci->self_id_buffer);
1853 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1854 self_id_count, ohci->self_id_buffer,
1855 ohci->csr_state_setclear_abdicate);
1856 ohci->csr_state_setclear_abdicate = false;
1859 static irqreturn_t irq_handler(int irq, void *data)
1861 struct fw_ohci *ohci = data;
1862 u32 event, iso_event;
1863 int i;
1865 event = reg_read(ohci, OHCI1394_IntEventClear);
1867 if (!event || !~event)
1868 return IRQ_NONE;
1871 * busReset and postedWriteErr must not be cleared yet
1872 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1874 reg_write(ohci, OHCI1394_IntEventClear,
1875 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1876 log_irqs(event);
1878 if (event & OHCI1394_selfIDComplete)
1879 tasklet_schedule(&ohci->bus_reset_tasklet);
1881 if (event & OHCI1394_RQPkt)
1882 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1884 if (event & OHCI1394_RSPkt)
1885 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1887 if (event & OHCI1394_reqTxComplete)
1888 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1890 if (event & OHCI1394_respTxComplete)
1891 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1893 if (event & OHCI1394_isochRx) {
1894 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1895 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1897 while (iso_event) {
1898 i = ffs(iso_event) - 1;
1899 tasklet_schedule(
1900 &ohci->ir_context_list[i].context.tasklet);
1901 iso_event &= ~(1 << i);
1905 if (event & OHCI1394_isochTx) {
1906 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1907 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1909 while (iso_event) {
1910 i = ffs(iso_event) - 1;
1911 tasklet_schedule(
1912 &ohci->it_context_list[i].context.tasklet);
1913 iso_event &= ~(1 << i);
1917 if (unlikely(event & OHCI1394_regAccessFail))
1918 fw_error("Register access failure - "
1919 "please notify linux1394-devel@lists.sf.net\n");
1921 if (unlikely(event & OHCI1394_postedWriteErr)) {
1922 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1923 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1924 reg_write(ohci, OHCI1394_IntEventClear,
1925 OHCI1394_postedWriteErr);
1926 fw_error("PCI posted write error\n");
1929 if (unlikely(event & OHCI1394_cycleTooLong)) {
1930 if (printk_ratelimit())
1931 fw_notify("isochronous cycle too long\n");
1932 reg_write(ohci, OHCI1394_LinkControlSet,
1933 OHCI1394_LinkControl_cycleMaster);
1936 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1938 * We need to clear this event bit in order to make
1939 * cycleMatch isochronous I/O work. In theory we should
1940 * stop active cycleMatch iso contexts now and restart
1941 * them at least two cycles later. (FIXME?)
1943 if (printk_ratelimit())
1944 fw_notify("isochronous cycle inconsistent\n");
1947 if (unlikely(event & OHCI1394_unrecoverableError))
1948 handle_dead_contexts(ohci);
1950 if (event & OHCI1394_cycle64Seconds) {
1951 spin_lock(&ohci->lock);
1952 update_bus_time(ohci);
1953 spin_unlock(&ohci->lock);
1954 } else
1955 flush_writes(ohci);
1957 return IRQ_HANDLED;
1960 static int software_reset(struct fw_ohci *ohci)
1962 int i;
1964 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1966 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1967 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1968 OHCI1394_HCControl_softReset) == 0)
1969 return 0;
1970 msleep(1);
1973 return -EBUSY;
1976 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1978 size_t size = length * 4;
1980 memcpy(dest, src, size);
1981 if (size < CONFIG_ROM_SIZE)
1982 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1985 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1987 bool enable_1394a;
1988 int ret, clear, set, offset;
1990 /* Check if the driver should configure link and PHY. */
1991 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1992 OHCI1394_HCControl_programPhyEnable))
1993 return 0;
1995 /* Paranoia: check whether the PHY supports 1394a, too. */
1996 enable_1394a = false;
1997 ret = read_phy_reg(ohci, 2);
1998 if (ret < 0)
1999 return ret;
2000 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2001 ret = read_paged_phy_reg(ohci, 1, 8);
2002 if (ret < 0)
2003 return ret;
2004 if (ret >= 1)
2005 enable_1394a = true;
2008 if (ohci->quirks & QUIRK_NO_1394A)
2009 enable_1394a = false;
2011 /* Configure PHY and link consistently. */
2012 if (enable_1394a) {
2013 clear = 0;
2014 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2015 } else {
2016 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2017 set = 0;
2019 ret = update_phy_reg(ohci, 5, clear, set);
2020 if (ret < 0)
2021 return ret;
2023 if (enable_1394a)
2024 offset = OHCI1394_HCControlSet;
2025 else
2026 offset = OHCI1394_HCControlClear;
2027 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2029 /* Clean up: configuration has been taken care of. */
2030 reg_write(ohci, OHCI1394_HCControlClear,
2031 OHCI1394_HCControl_programPhyEnable);
2033 return 0;
2036 static int ohci_enable(struct fw_card *card,
2037 const __be32 *config_rom, size_t length)
2039 struct fw_ohci *ohci = fw_ohci(card);
2040 struct pci_dev *dev = to_pci_dev(card->device);
2041 u32 lps, seconds, version, irqs;
2042 int i, ret;
2044 if (software_reset(ohci)) {
2045 fw_error("Failed to reset ohci card.\n");
2046 return -EBUSY;
2050 * Now enable LPS, which we need in order to start accessing
2051 * most of the registers. In fact, on some cards (ALI M5251),
2052 * accessing registers in the SClk domain without LPS enabled
2053 * will lock up the machine. Wait 50msec to make sure we have
2054 * full link enabled. However, with some cards (well, at least
2055 * a JMicron PCIe card), we have to try again sometimes.
2057 reg_write(ohci, OHCI1394_HCControlSet,
2058 OHCI1394_HCControl_LPS |
2059 OHCI1394_HCControl_postedWriteEnable);
2060 flush_writes(ohci);
2062 for (lps = 0, i = 0; !lps && i < 3; i++) {
2063 msleep(50);
2064 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2065 OHCI1394_HCControl_LPS;
2068 if (!lps) {
2069 fw_error("Failed to set Link Power Status\n");
2070 return -EIO;
2073 reg_write(ohci, OHCI1394_HCControlClear,
2074 OHCI1394_HCControl_noByteSwapData);
2076 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2077 reg_write(ohci, OHCI1394_LinkControlSet,
2078 OHCI1394_LinkControl_cycleTimerEnable |
2079 OHCI1394_LinkControl_cycleMaster);
2081 reg_write(ohci, OHCI1394_ATRetries,
2082 OHCI1394_MAX_AT_REQ_RETRIES |
2083 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2084 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2085 (200 << 16));
2087 seconds = lower_32_bits(get_seconds());
2088 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2089 ohci->bus_time = seconds & ~0x3f;
2091 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2092 if (version >= OHCI_VERSION_1_1) {
2093 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2094 0xfffffffe);
2095 card->broadcast_channel_auto_allocated = true;
2098 /* Get implemented bits of the priority arbitration request counter. */
2099 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2100 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2101 reg_write(ohci, OHCI1394_FairnessControl, 0);
2102 card->priority_budget_implemented = ohci->pri_req_max != 0;
2104 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2105 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2106 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2108 ret = configure_1394a_enhancements(ohci);
2109 if (ret < 0)
2110 return ret;
2112 /* Activate link_on bit and contender bit in our self ID packets.*/
2113 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2114 if (ret < 0)
2115 return ret;
2118 * When the link is not yet enabled, the atomic config rom
2119 * update mechanism described below in ohci_set_config_rom()
2120 * is not active. We have to update ConfigRomHeader and
2121 * BusOptions manually, and the write to ConfigROMmap takes
2122 * effect immediately. We tie this to the enabling of the
2123 * link, so we have a valid config rom before enabling - the
2124 * OHCI requires that ConfigROMhdr and BusOptions have valid
2125 * values before enabling.
2127 * However, when the ConfigROMmap is written, some controllers
2128 * always read back quadlets 0 and 2 from the config rom to
2129 * the ConfigRomHeader and BusOptions registers on bus reset.
2130 * They shouldn't do that in this initial case where the link
2131 * isn't enabled. This means we have to use the same
2132 * workaround here, setting the bus header to 0 and then write
2133 * the right values in the bus reset tasklet.
2136 if (config_rom) {
2137 ohci->next_config_rom =
2138 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2139 &ohci->next_config_rom_bus,
2140 GFP_KERNEL);
2141 if (ohci->next_config_rom == NULL)
2142 return -ENOMEM;
2144 copy_config_rom(ohci->next_config_rom, config_rom, length);
2145 } else {
2147 * In the suspend case, config_rom is NULL, which
2148 * means that we just reuse the old config rom.
2150 ohci->next_config_rom = ohci->config_rom;
2151 ohci->next_config_rom_bus = ohci->config_rom_bus;
2154 ohci->next_header = ohci->next_config_rom[0];
2155 ohci->next_config_rom[0] = 0;
2156 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2157 reg_write(ohci, OHCI1394_BusOptions,
2158 be32_to_cpu(ohci->next_config_rom[2]));
2159 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2161 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2163 if (!(ohci->quirks & QUIRK_NO_MSI))
2164 pci_enable_msi(dev);
2165 if (request_irq(dev->irq, irq_handler,
2166 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2167 ohci_driver_name, ohci)) {
2168 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2169 pci_disable_msi(dev);
2170 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2171 ohci->config_rom, ohci->config_rom_bus);
2172 return -EIO;
2175 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2176 OHCI1394_RQPkt | OHCI1394_RSPkt |
2177 OHCI1394_isochTx | OHCI1394_isochRx |
2178 OHCI1394_postedWriteErr |
2179 OHCI1394_selfIDComplete |
2180 OHCI1394_regAccessFail |
2181 OHCI1394_cycle64Seconds |
2182 OHCI1394_cycleInconsistent |
2183 OHCI1394_unrecoverableError |
2184 OHCI1394_cycleTooLong |
2185 OHCI1394_masterIntEnable;
2186 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2187 irqs |= OHCI1394_busReset;
2188 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2190 reg_write(ohci, OHCI1394_HCControlSet,
2191 OHCI1394_HCControl_linkEnable |
2192 OHCI1394_HCControl_BIBimageValid);
2194 reg_write(ohci, OHCI1394_LinkControlSet,
2195 OHCI1394_LinkControl_rcvSelfID |
2196 OHCI1394_LinkControl_rcvPhyPkt);
2198 ar_context_run(&ohci->ar_request_ctx);
2199 ar_context_run(&ohci->ar_response_ctx); /* also flushes writes */
2201 /* We are ready to go, reset bus to finish initialization. */
2202 fw_schedule_bus_reset(&ohci->card, false, true);
2204 return 0;
2207 static int ohci_set_config_rom(struct fw_card *card,
2208 const __be32 *config_rom, size_t length)
2210 struct fw_ohci *ohci;
2211 unsigned long flags;
2212 __be32 *next_config_rom;
2213 dma_addr_t uninitialized_var(next_config_rom_bus);
2215 ohci = fw_ohci(card);
2218 * When the OHCI controller is enabled, the config rom update
2219 * mechanism is a bit tricky, but easy enough to use. See
2220 * section 5.5.6 in the OHCI specification.
2222 * The OHCI controller caches the new config rom address in a
2223 * shadow register (ConfigROMmapNext) and needs a bus reset
2224 * for the changes to take place. When the bus reset is
2225 * detected, the controller loads the new values for the
2226 * ConfigRomHeader and BusOptions registers from the specified
2227 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2228 * shadow register. All automatically and atomically.
2230 * Now, there's a twist to this story. The automatic load of
2231 * ConfigRomHeader and BusOptions doesn't honor the
2232 * noByteSwapData bit, so with a be32 config rom, the
2233 * controller will load be32 values in to these registers
2234 * during the atomic update, even on litte endian
2235 * architectures. The workaround we use is to put a 0 in the
2236 * header quadlet; 0 is endian agnostic and means that the
2237 * config rom isn't ready yet. In the bus reset tasklet we
2238 * then set up the real values for the two registers.
2240 * We use ohci->lock to avoid racing with the code that sets
2241 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2244 next_config_rom =
2245 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2246 &next_config_rom_bus, GFP_KERNEL);
2247 if (next_config_rom == NULL)
2248 return -ENOMEM;
2250 spin_lock_irqsave(&ohci->lock, flags);
2253 * If there is not an already pending config_rom update,
2254 * push our new allocation into the ohci->next_config_rom
2255 * and then mark the local variable as null so that we
2256 * won't deallocate the new buffer.
2258 * OTOH, if there is a pending config_rom update, just
2259 * use that buffer with the new config_rom data, and
2260 * let this routine free the unused DMA allocation.
2263 if (ohci->next_config_rom == NULL) {
2264 ohci->next_config_rom = next_config_rom;
2265 ohci->next_config_rom_bus = next_config_rom_bus;
2266 next_config_rom = NULL;
2269 copy_config_rom(ohci->next_config_rom, config_rom, length);
2271 ohci->next_header = config_rom[0];
2272 ohci->next_config_rom[0] = 0;
2274 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2276 spin_unlock_irqrestore(&ohci->lock, flags);
2278 /* If we didn't use the DMA allocation, delete it. */
2279 if (next_config_rom != NULL)
2280 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2281 next_config_rom, next_config_rom_bus);
2284 * Now initiate a bus reset to have the changes take
2285 * effect. We clean up the old config rom memory and DMA
2286 * mappings in the bus reset tasklet, since the OHCI
2287 * controller could need to access it before the bus reset
2288 * takes effect.
2291 fw_schedule_bus_reset(&ohci->card, true, true);
2293 return 0;
2296 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2298 struct fw_ohci *ohci = fw_ohci(card);
2300 at_context_transmit(&ohci->at_request_ctx, packet);
2303 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2305 struct fw_ohci *ohci = fw_ohci(card);
2307 at_context_transmit(&ohci->at_response_ctx, packet);
2310 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2312 struct fw_ohci *ohci = fw_ohci(card);
2313 struct context *ctx = &ohci->at_request_ctx;
2314 struct driver_data *driver_data = packet->driver_data;
2315 int ret = -ENOENT;
2317 tasklet_disable(&ctx->tasklet);
2319 if (packet->ack != 0)
2320 goto out;
2322 if (packet->payload_mapped)
2323 dma_unmap_single(ohci->card.device, packet->payload_bus,
2324 packet->payload_length, DMA_TO_DEVICE);
2326 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2327 driver_data->packet = NULL;
2328 packet->ack = RCODE_CANCELLED;
2329 packet->callback(packet, &ohci->card, packet->ack);
2330 ret = 0;
2331 out:
2332 tasklet_enable(&ctx->tasklet);
2334 return ret;
2337 static int ohci_enable_phys_dma(struct fw_card *card,
2338 int node_id, int generation)
2340 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2341 return 0;
2342 #else
2343 struct fw_ohci *ohci = fw_ohci(card);
2344 unsigned long flags;
2345 int n, ret = 0;
2348 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2349 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2352 spin_lock_irqsave(&ohci->lock, flags);
2354 if (ohci->generation != generation) {
2355 ret = -ESTALE;
2356 goto out;
2360 * Note, if the node ID contains a non-local bus ID, physical DMA is
2361 * enabled for _all_ nodes on remote buses.
2364 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2365 if (n < 32)
2366 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2367 else
2368 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2370 flush_writes(ohci);
2371 out:
2372 spin_unlock_irqrestore(&ohci->lock, flags);
2374 return ret;
2375 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2378 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2380 struct fw_ohci *ohci = fw_ohci(card);
2381 unsigned long flags;
2382 u32 value;
2384 switch (csr_offset) {
2385 case CSR_STATE_CLEAR:
2386 case CSR_STATE_SET:
2387 if (ohci->is_root &&
2388 (reg_read(ohci, OHCI1394_LinkControlSet) &
2389 OHCI1394_LinkControl_cycleMaster))
2390 value = CSR_STATE_BIT_CMSTR;
2391 else
2392 value = 0;
2393 if (ohci->csr_state_setclear_abdicate)
2394 value |= CSR_STATE_BIT_ABDICATE;
2396 return value;
2398 case CSR_NODE_IDS:
2399 return reg_read(ohci, OHCI1394_NodeID) << 16;
2401 case CSR_CYCLE_TIME:
2402 return get_cycle_time(ohci);
2404 case CSR_BUS_TIME:
2406 * We might be called just after the cycle timer has wrapped
2407 * around but just before the cycle64Seconds handler, so we
2408 * better check here, too, if the bus time needs to be updated.
2410 spin_lock_irqsave(&ohci->lock, flags);
2411 value = update_bus_time(ohci);
2412 spin_unlock_irqrestore(&ohci->lock, flags);
2413 return value;
2415 case CSR_BUSY_TIMEOUT:
2416 value = reg_read(ohci, OHCI1394_ATRetries);
2417 return (value >> 4) & 0x0ffff00f;
2419 case CSR_PRIORITY_BUDGET:
2420 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2421 (ohci->pri_req_max << 8);
2423 default:
2424 WARN_ON(1);
2425 return 0;
2429 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2431 struct fw_ohci *ohci = fw_ohci(card);
2432 unsigned long flags;
2434 switch (csr_offset) {
2435 case CSR_STATE_CLEAR:
2436 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2437 reg_write(ohci, OHCI1394_LinkControlClear,
2438 OHCI1394_LinkControl_cycleMaster);
2439 flush_writes(ohci);
2441 if (value & CSR_STATE_BIT_ABDICATE)
2442 ohci->csr_state_setclear_abdicate = false;
2443 break;
2445 case CSR_STATE_SET:
2446 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2447 reg_write(ohci, OHCI1394_LinkControlSet,
2448 OHCI1394_LinkControl_cycleMaster);
2449 flush_writes(ohci);
2451 if (value & CSR_STATE_BIT_ABDICATE)
2452 ohci->csr_state_setclear_abdicate = true;
2453 break;
2455 case CSR_NODE_IDS:
2456 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2457 flush_writes(ohci);
2458 break;
2460 case CSR_CYCLE_TIME:
2461 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2462 reg_write(ohci, OHCI1394_IntEventSet,
2463 OHCI1394_cycleInconsistent);
2464 flush_writes(ohci);
2465 break;
2467 case CSR_BUS_TIME:
2468 spin_lock_irqsave(&ohci->lock, flags);
2469 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2470 spin_unlock_irqrestore(&ohci->lock, flags);
2471 break;
2473 case CSR_BUSY_TIMEOUT:
2474 value = (value & 0xf) | ((value & 0xf) << 4) |
2475 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2476 reg_write(ohci, OHCI1394_ATRetries, value);
2477 flush_writes(ohci);
2478 break;
2480 case CSR_PRIORITY_BUDGET:
2481 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2482 flush_writes(ohci);
2483 break;
2485 default:
2486 WARN_ON(1);
2487 break;
2491 static void copy_iso_headers(struct iso_context *ctx, void *p)
2493 int i = ctx->header_length;
2495 if (i + ctx->base.header_size > PAGE_SIZE)
2496 return;
2499 * The iso header is byteswapped to little endian by
2500 * the controller, but the remaining header quadlets
2501 * are big endian. We want to present all the headers
2502 * as big endian, so we have to swap the first quadlet.
2504 if (ctx->base.header_size > 0)
2505 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2506 if (ctx->base.header_size > 4)
2507 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2508 if (ctx->base.header_size > 8)
2509 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2510 ctx->header_length += ctx->base.header_size;
2513 static int handle_ir_packet_per_buffer(struct context *context,
2514 struct descriptor *d,
2515 struct descriptor *last)
2517 struct iso_context *ctx =
2518 container_of(context, struct iso_context, context);
2519 struct descriptor *pd;
2520 __le32 *ir_header;
2521 void *p;
2523 for (pd = d; pd <= last; pd++)
2524 if (pd->transfer_status)
2525 break;
2526 if (pd > last)
2527 /* Descriptor(s) not done yet, stop iteration */
2528 return 0;
2530 p = last + 1;
2531 copy_iso_headers(ctx, p);
2533 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2534 ir_header = (__le32 *) p;
2535 ctx->base.callback.sc(&ctx->base,
2536 le32_to_cpu(ir_header[0]) & 0xffff,
2537 ctx->header_length, ctx->header,
2538 ctx->base.callback_data);
2539 ctx->header_length = 0;
2542 return 1;
2545 /* d == last because each descriptor block is only a single descriptor. */
2546 static int handle_ir_buffer_fill(struct context *context,
2547 struct descriptor *d,
2548 struct descriptor *last)
2550 struct iso_context *ctx =
2551 container_of(context, struct iso_context, context);
2553 if (!last->transfer_status)
2554 /* Descriptor(s) not done yet, stop iteration */
2555 return 0;
2557 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2558 ctx->base.callback.mc(&ctx->base,
2559 le32_to_cpu(last->data_address) +
2560 le16_to_cpu(last->req_count) -
2561 le16_to_cpu(last->res_count),
2562 ctx->base.callback_data);
2564 return 1;
2567 static int handle_it_packet(struct context *context,
2568 struct descriptor *d,
2569 struct descriptor *last)
2571 struct iso_context *ctx =
2572 container_of(context, struct iso_context, context);
2573 int i;
2574 struct descriptor *pd;
2576 for (pd = d; pd <= last; pd++)
2577 if (pd->transfer_status)
2578 break;
2579 if (pd > last)
2580 /* Descriptor(s) not done yet, stop iteration */
2581 return 0;
2583 i = ctx->header_length;
2584 if (i + 4 < PAGE_SIZE) {
2585 /* Present this value as big-endian to match the receive code */
2586 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2587 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2588 le16_to_cpu(pd->res_count));
2589 ctx->header_length += 4;
2591 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2592 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2593 ctx->header_length, ctx->header,
2594 ctx->base.callback_data);
2595 ctx->header_length = 0;
2597 return 1;
2600 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2602 u32 hi = channels >> 32, lo = channels;
2604 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2605 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2606 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2607 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2608 mmiowb();
2609 ohci->mc_channels = channels;
2612 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2613 int type, int channel, size_t header_size)
2615 struct fw_ohci *ohci = fw_ohci(card);
2616 struct iso_context *uninitialized_var(ctx);
2617 descriptor_callback_t uninitialized_var(callback);
2618 u64 *uninitialized_var(channels);
2619 u32 *uninitialized_var(mask), uninitialized_var(regs);
2620 unsigned long flags;
2621 int index, ret = -EBUSY;
2623 spin_lock_irqsave(&ohci->lock, flags);
2625 switch (type) {
2626 case FW_ISO_CONTEXT_TRANSMIT:
2627 mask = &ohci->it_context_mask;
2628 callback = handle_it_packet;
2629 index = ffs(*mask) - 1;
2630 if (index >= 0) {
2631 *mask &= ~(1 << index);
2632 regs = OHCI1394_IsoXmitContextBase(index);
2633 ctx = &ohci->it_context_list[index];
2635 break;
2637 case FW_ISO_CONTEXT_RECEIVE:
2638 channels = &ohci->ir_context_channels;
2639 mask = &ohci->ir_context_mask;
2640 callback = handle_ir_packet_per_buffer;
2641 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2642 if (index >= 0) {
2643 *channels &= ~(1ULL << channel);
2644 *mask &= ~(1 << index);
2645 regs = OHCI1394_IsoRcvContextBase(index);
2646 ctx = &ohci->ir_context_list[index];
2648 break;
2650 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2651 mask = &ohci->ir_context_mask;
2652 callback = handle_ir_buffer_fill;
2653 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2654 if (index >= 0) {
2655 ohci->mc_allocated = true;
2656 *mask &= ~(1 << index);
2657 regs = OHCI1394_IsoRcvContextBase(index);
2658 ctx = &ohci->ir_context_list[index];
2660 break;
2662 default:
2663 index = -1;
2664 ret = -ENOSYS;
2667 spin_unlock_irqrestore(&ohci->lock, flags);
2669 if (index < 0)
2670 return ERR_PTR(ret);
2672 memset(ctx, 0, sizeof(*ctx));
2673 ctx->header_length = 0;
2674 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2675 if (ctx->header == NULL) {
2676 ret = -ENOMEM;
2677 goto out;
2679 ret = context_init(&ctx->context, ohci, regs, callback);
2680 if (ret < 0)
2681 goto out_with_header;
2683 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2684 set_multichannel_mask(ohci, 0);
2686 return &ctx->base;
2688 out_with_header:
2689 free_page((unsigned long)ctx->header);
2690 out:
2691 spin_lock_irqsave(&ohci->lock, flags);
2693 switch (type) {
2694 case FW_ISO_CONTEXT_RECEIVE:
2695 *channels |= 1ULL << channel;
2696 break;
2698 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2699 ohci->mc_allocated = false;
2700 break;
2702 *mask |= 1 << index;
2704 spin_unlock_irqrestore(&ohci->lock, flags);
2706 return ERR_PTR(ret);
2709 static int ohci_start_iso(struct fw_iso_context *base,
2710 s32 cycle, u32 sync, u32 tags)
2712 struct iso_context *ctx = container_of(base, struct iso_context, base);
2713 struct fw_ohci *ohci = ctx->context.ohci;
2714 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2715 int index;
2717 /* the controller cannot start without any queued packets */
2718 if (ctx->context.last->branch_address == 0)
2719 return -ENODATA;
2721 switch (ctx->base.type) {
2722 case FW_ISO_CONTEXT_TRANSMIT:
2723 index = ctx - ohci->it_context_list;
2724 match = 0;
2725 if (cycle >= 0)
2726 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2727 (cycle & 0x7fff) << 16;
2729 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2730 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2731 context_run(&ctx->context, match);
2732 break;
2734 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2735 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2736 /* fall through */
2737 case FW_ISO_CONTEXT_RECEIVE:
2738 index = ctx - ohci->ir_context_list;
2739 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2740 if (cycle >= 0) {
2741 match |= (cycle & 0x07fff) << 12;
2742 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2745 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2746 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2747 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2748 context_run(&ctx->context, control);
2750 ctx->sync = sync;
2751 ctx->tags = tags;
2753 break;
2756 return 0;
2759 static int ohci_stop_iso(struct fw_iso_context *base)
2761 struct fw_ohci *ohci = fw_ohci(base->card);
2762 struct iso_context *ctx = container_of(base, struct iso_context, base);
2763 int index;
2765 switch (ctx->base.type) {
2766 case FW_ISO_CONTEXT_TRANSMIT:
2767 index = ctx - ohci->it_context_list;
2768 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2769 break;
2771 case FW_ISO_CONTEXT_RECEIVE:
2772 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2773 index = ctx - ohci->ir_context_list;
2774 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2775 break;
2777 flush_writes(ohci);
2778 context_stop(&ctx->context);
2779 tasklet_kill(&ctx->context.tasklet);
2781 return 0;
2784 static void ohci_free_iso_context(struct fw_iso_context *base)
2786 struct fw_ohci *ohci = fw_ohci(base->card);
2787 struct iso_context *ctx = container_of(base, struct iso_context, base);
2788 unsigned long flags;
2789 int index;
2791 ohci_stop_iso(base);
2792 context_release(&ctx->context);
2793 free_page((unsigned long)ctx->header);
2795 spin_lock_irqsave(&ohci->lock, flags);
2797 switch (base->type) {
2798 case FW_ISO_CONTEXT_TRANSMIT:
2799 index = ctx - ohci->it_context_list;
2800 ohci->it_context_mask |= 1 << index;
2801 break;
2803 case FW_ISO_CONTEXT_RECEIVE:
2804 index = ctx - ohci->ir_context_list;
2805 ohci->ir_context_mask |= 1 << index;
2806 ohci->ir_context_channels |= 1ULL << base->channel;
2807 break;
2809 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2810 index = ctx - ohci->ir_context_list;
2811 ohci->ir_context_mask |= 1 << index;
2812 ohci->ir_context_channels |= ohci->mc_channels;
2813 ohci->mc_channels = 0;
2814 ohci->mc_allocated = false;
2815 break;
2818 spin_unlock_irqrestore(&ohci->lock, flags);
2821 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2823 struct fw_ohci *ohci = fw_ohci(base->card);
2824 unsigned long flags;
2825 int ret;
2827 switch (base->type) {
2828 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2830 spin_lock_irqsave(&ohci->lock, flags);
2832 /* Don't allow multichannel to grab other contexts' channels. */
2833 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2834 *channels = ohci->ir_context_channels;
2835 ret = -EBUSY;
2836 } else {
2837 set_multichannel_mask(ohci, *channels);
2838 ret = 0;
2841 spin_unlock_irqrestore(&ohci->lock, flags);
2843 break;
2844 default:
2845 ret = -EINVAL;
2848 return ret;
2851 #ifdef CONFIG_PM
2852 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2854 int i;
2855 struct iso_context *ctx;
2857 for (i = 0 ; i < ohci->n_ir ; i++) {
2858 ctx = &ohci->ir_context_list[i];
2859 if (ctx->context.running)
2860 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2863 for (i = 0 ; i < ohci->n_it ; i++) {
2864 ctx = &ohci->it_context_list[i];
2865 if (ctx->context.running)
2866 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2869 #endif
2871 static int queue_iso_transmit(struct iso_context *ctx,
2872 struct fw_iso_packet *packet,
2873 struct fw_iso_buffer *buffer,
2874 unsigned long payload)
2876 struct descriptor *d, *last, *pd;
2877 struct fw_iso_packet *p;
2878 __le32 *header;
2879 dma_addr_t d_bus, page_bus;
2880 u32 z, header_z, payload_z, irq;
2881 u32 payload_index, payload_end_index, next_page_index;
2882 int page, end_page, i, length, offset;
2884 p = packet;
2885 payload_index = payload;
2887 if (p->skip)
2888 z = 1;
2889 else
2890 z = 2;
2891 if (p->header_length > 0)
2892 z++;
2894 /* Determine the first page the payload isn't contained in. */
2895 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2896 if (p->payload_length > 0)
2897 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2898 else
2899 payload_z = 0;
2901 z += payload_z;
2903 /* Get header size in number of descriptors. */
2904 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2906 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2907 if (d == NULL)
2908 return -ENOMEM;
2910 if (!p->skip) {
2911 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2912 d[0].req_count = cpu_to_le16(8);
2914 * Link the skip address to this descriptor itself. This causes
2915 * a context to skip a cycle whenever lost cycles or FIFO
2916 * overruns occur, without dropping the data. The application
2917 * should then decide whether this is an error condition or not.
2918 * FIXME: Make the context's cycle-lost behaviour configurable?
2920 d[0].branch_address = cpu_to_le32(d_bus | z);
2922 header = (__le32 *) &d[1];
2923 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2924 IT_HEADER_TAG(p->tag) |
2925 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2926 IT_HEADER_CHANNEL(ctx->base.channel) |
2927 IT_HEADER_SPEED(ctx->base.speed));
2928 header[1] =
2929 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2930 p->payload_length));
2933 if (p->header_length > 0) {
2934 d[2].req_count = cpu_to_le16(p->header_length);
2935 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2936 memcpy(&d[z], p->header, p->header_length);
2939 pd = d + z - payload_z;
2940 payload_end_index = payload_index + p->payload_length;
2941 for (i = 0; i < payload_z; i++) {
2942 page = payload_index >> PAGE_SHIFT;
2943 offset = payload_index & ~PAGE_MASK;
2944 next_page_index = (page + 1) << PAGE_SHIFT;
2945 length =
2946 min(next_page_index, payload_end_index) - payload_index;
2947 pd[i].req_count = cpu_to_le16(length);
2949 page_bus = page_private(buffer->pages[page]);
2950 pd[i].data_address = cpu_to_le32(page_bus + offset);
2952 payload_index += length;
2955 if (p->interrupt)
2956 irq = DESCRIPTOR_IRQ_ALWAYS;
2957 else
2958 irq = DESCRIPTOR_NO_IRQ;
2960 last = z == 2 ? d : d + z - 1;
2961 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2962 DESCRIPTOR_STATUS |
2963 DESCRIPTOR_BRANCH_ALWAYS |
2964 irq);
2966 context_append(&ctx->context, d, z, header_z);
2968 return 0;
2971 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2972 struct fw_iso_packet *packet,
2973 struct fw_iso_buffer *buffer,
2974 unsigned long payload)
2976 struct descriptor *d, *pd;
2977 dma_addr_t d_bus, page_bus;
2978 u32 z, header_z, rest;
2979 int i, j, length;
2980 int page, offset, packet_count, header_size, payload_per_buffer;
2983 * The OHCI controller puts the isochronous header and trailer in the
2984 * buffer, so we need at least 8 bytes.
2986 packet_count = packet->header_length / ctx->base.header_size;
2987 header_size = max(ctx->base.header_size, (size_t)8);
2989 /* Get header size in number of descriptors. */
2990 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2991 page = payload >> PAGE_SHIFT;
2992 offset = payload & ~PAGE_MASK;
2993 payload_per_buffer = packet->payload_length / packet_count;
2995 for (i = 0; i < packet_count; i++) {
2996 /* d points to the header descriptor */
2997 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2998 d = context_get_descriptors(&ctx->context,
2999 z + header_z, &d_bus);
3000 if (d == NULL)
3001 return -ENOMEM;
3003 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3004 DESCRIPTOR_INPUT_MORE);
3005 if (packet->skip && i == 0)
3006 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3007 d->req_count = cpu_to_le16(header_size);
3008 d->res_count = d->req_count;
3009 d->transfer_status = 0;
3010 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3012 rest = payload_per_buffer;
3013 pd = d;
3014 for (j = 1; j < z; j++) {
3015 pd++;
3016 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3017 DESCRIPTOR_INPUT_MORE);
3019 if (offset + rest < PAGE_SIZE)
3020 length = rest;
3021 else
3022 length = PAGE_SIZE - offset;
3023 pd->req_count = cpu_to_le16(length);
3024 pd->res_count = pd->req_count;
3025 pd->transfer_status = 0;
3027 page_bus = page_private(buffer->pages[page]);
3028 pd->data_address = cpu_to_le32(page_bus + offset);
3030 offset = (offset + length) & ~PAGE_MASK;
3031 rest -= length;
3032 if (offset == 0)
3033 page++;
3035 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3036 DESCRIPTOR_INPUT_LAST |
3037 DESCRIPTOR_BRANCH_ALWAYS);
3038 if (packet->interrupt && i == packet_count - 1)
3039 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3041 context_append(&ctx->context, d, z, header_z);
3044 return 0;
3047 static int queue_iso_buffer_fill(struct iso_context *ctx,
3048 struct fw_iso_packet *packet,
3049 struct fw_iso_buffer *buffer,
3050 unsigned long payload)
3052 struct descriptor *d;
3053 dma_addr_t d_bus, page_bus;
3054 int page, offset, rest, z, i, length;
3056 page = payload >> PAGE_SHIFT;
3057 offset = payload & ~PAGE_MASK;
3058 rest = packet->payload_length;
3060 /* We need one descriptor for each page in the buffer. */
3061 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3063 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3064 return -EFAULT;
3066 for (i = 0; i < z; i++) {
3067 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3068 if (d == NULL)
3069 return -ENOMEM;
3071 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3072 DESCRIPTOR_BRANCH_ALWAYS);
3073 if (packet->skip && i == 0)
3074 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3075 if (packet->interrupt && i == z - 1)
3076 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3078 if (offset + rest < PAGE_SIZE)
3079 length = rest;
3080 else
3081 length = PAGE_SIZE - offset;
3082 d->req_count = cpu_to_le16(length);
3083 d->res_count = d->req_count;
3084 d->transfer_status = 0;
3086 page_bus = page_private(buffer->pages[page]);
3087 d->data_address = cpu_to_le32(page_bus + offset);
3089 rest -= length;
3090 offset = 0;
3091 page++;
3093 context_append(&ctx->context, d, 1, 0);
3096 return 0;
3099 static int ohci_queue_iso(struct fw_iso_context *base,
3100 struct fw_iso_packet *packet,
3101 struct fw_iso_buffer *buffer,
3102 unsigned long payload)
3104 struct iso_context *ctx = container_of(base, struct iso_context, base);
3105 unsigned long flags;
3106 int ret = -ENOSYS;
3108 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3109 switch (base->type) {
3110 case FW_ISO_CONTEXT_TRANSMIT:
3111 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3112 break;
3113 case FW_ISO_CONTEXT_RECEIVE:
3114 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3115 break;
3116 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3117 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3118 break;
3120 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3122 return ret;
3125 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3127 struct context *ctx =
3128 &container_of(base, struct iso_context, base)->context;
3130 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3131 flush_writes(ctx->ohci);
3134 static const struct fw_card_driver ohci_driver = {
3135 .enable = ohci_enable,
3136 .read_phy_reg = ohci_read_phy_reg,
3137 .update_phy_reg = ohci_update_phy_reg,
3138 .set_config_rom = ohci_set_config_rom,
3139 .send_request = ohci_send_request,
3140 .send_response = ohci_send_response,
3141 .cancel_packet = ohci_cancel_packet,
3142 .enable_phys_dma = ohci_enable_phys_dma,
3143 .read_csr = ohci_read_csr,
3144 .write_csr = ohci_write_csr,
3146 .allocate_iso_context = ohci_allocate_iso_context,
3147 .free_iso_context = ohci_free_iso_context,
3148 .set_iso_channels = ohci_set_iso_channels,
3149 .queue_iso = ohci_queue_iso,
3150 .flush_queue_iso = ohci_flush_queue_iso,
3151 .start_iso = ohci_start_iso,
3152 .stop_iso = ohci_stop_iso,
3155 #ifdef CONFIG_PPC_PMAC
3156 static void pmac_ohci_on(struct pci_dev *dev)
3158 if (machine_is(powermac)) {
3159 struct device_node *ofn = pci_device_to_OF_node(dev);
3161 if (ofn) {
3162 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3163 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3168 static void pmac_ohci_off(struct pci_dev *dev)
3170 if (machine_is(powermac)) {
3171 struct device_node *ofn = pci_device_to_OF_node(dev);
3173 if (ofn) {
3174 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3175 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3179 #else
3180 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3181 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3182 #endif /* CONFIG_PPC_PMAC */
3184 static int __devinit pci_probe(struct pci_dev *dev,
3185 const struct pci_device_id *ent)
3187 struct fw_ohci *ohci;
3188 u32 bus_options, max_receive, link_speed, version;
3189 u64 guid;
3190 int i, err;
3191 size_t size;
3193 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3194 if (ohci == NULL) {
3195 err = -ENOMEM;
3196 goto fail;
3199 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3201 pmac_ohci_on(dev);
3203 err = pci_enable_device(dev);
3204 if (err) {
3205 fw_error("Failed to enable OHCI hardware\n");
3206 goto fail_free;
3209 pci_set_master(dev);
3210 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3211 pci_set_drvdata(dev, ohci);
3213 spin_lock_init(&ohci->lock);
3214 mutex_init(&ohci->phy_reg_mutex);
3216 tasklet_init(&ohci->bus_reset_tasklet,
3217 bus_reset_tasklet, (unsigned long)ohci);
3219 err = pci_request_region(dev, 0, ohci_driver_name);
3220 if (err) {
3221 fw_error("MMIO resource unavailable\n");
3222 goto fail_disable;
3225 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3226 if (ohci->registers == NULL) {
3227 fw_error("Failed to remap registers\n");
3228 err = -ENXIO;
3229 goto fail_iomem;
3232 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3233 if ((ohci_quirks[i].vendor == dev->vendor) &&
3234 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3235 ohci_quirks[i].device == dev->device) &&
3236 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3237 ohci_quirks[i].revision >= dev->revision)) {
3238 ohci->quirks = ohci_quirks[i].flags;
3239 break;
3241 if (param_quirks)
3242 ohci->quirks = param_quirks;
3245 * Because dma_alloc_coherent() allocates at least one page,
3246 * we save space by using a common buffer for the AR request/
3247 * response descriptors and the self IDs buffer.
3249 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3250 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3251 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3252 PAGE_SIZE,
3253 &ohci->misc_buffer_bus,
3254 GFP_KERNEL);
3255 if (!ohci->misc_buffer) {
3256 err = -ENOMEM;
3257 goto fail_iounmap;
3260 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3261 OHCI1394_AsReqRcvContextControlSet);
3262 if (err < 0)
3263 goto fail_misc_buf;
3265 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3266 OHCI1394_AsRspRcvContextControlSet);
3267 if (err < 0)
3268 goto fail_arreq_ctx;
3270 err = context_init(&ohci->at_request_ctx, ohci,
3271 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3272 if (err < 0)
3273 goto fail_arrsp_ctx;
3275 err = context_init(&ohci->at_response_ctx, ohci,
3276 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3277 if (err < 0)
3278 goto fail_atreq_ctx;
3280 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3281 ohci->ir_context_channels = ~0ULL;
3282 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3283 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3284 ohci->ir_context_mask = ohci->ir_context_support;
3285 ohci->n_ir = hweight32(ohci->ir_context_mask);
3286 size = sizeof(struct iso_context) * ohci->n_ir;
3287 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3289 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3290 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3291 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3292 ohci->it_context_mask = ohci->it_context_support;
3293 ohci->n_it = hweight32(ohci->it_context_mask);
3294 size = sizeof(struct iso_context) * ohci->n_it;
3295 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3297 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3298 err = -ENOMEM;
3299 goto fail_contexts;
3302 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3303 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3305 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3306 max_receive = (bus_options >> 12) & 0xf;
3307 link_speed = bus_options & 0x7;
3308 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3309 reg_read(ohci, OHCI1394_GUIDLo);
3311 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3312 if (err)
3313 goto fail_contexts;
3315 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3316 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3317 "%d IR + %d IT contexts, quirks 0x%x\n",
3318 dev_name(&dev->dev), version >> 16, version & 0xff,
3319 ohci->n_ir, ohci->n_it, ohci->quirks);
3321 return 0;
3323 fail_contexts:
3324 kfree(ohci->ir_context_list);
3325 kfree(ohci->it_context_list);
3326 context_release(&ohci->at_response_ctx);
3327 fail_atreq_ctx:
3328 context_release(&ohci->at_request_ctx);
3329 fail_arrsp_ctx:
3330 ar_context_release(&ohci->ar_response_ctx);
3331 fail_arreq_ctx:
3332 ar_context_release(&ohci->ar_request_ctx);
3333 fail_misc_buf:
3334 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3335 ohci->misc_buffer, ohci->misc_buffer_bus);
3336 fail_iounmap:
3337 pci_iounmap(dev, ohci->registers);
3338 fail_iomem:
3339 pci_release_region(dev, 0);
3340 fail_disable:
3341 pci_disable_device(dev);
3342 fail_free:
3343 kfree(ohci);
3344 pmac_ohci_off(dev);
3345 fail:
3346 if (err == -ENOMEM)
3347 fw_error("Out of memory\n");
3349 return err;
3352 static void pci_remove(struct pci_dev *dev)
3354 struct fw_ohci *ohci;
3356 ohci = pci_get_drvdata(dev);
3357 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3358 flush_writes(ohci);
3359 fw_core_remove_card(&ohci->card);
3362 * FIXME: Fail all pending packets here, now that the upper
3363 * layers can't queue any more.
3366 software_reset(ohci);
3367 free_irq(dev->irq, ohci);
3369 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3370 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3371 ohci->next_config_rom, ohci->next_config_rom_bus);
3372 if (ohci->config_rom)
3373 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3374 ohci->config_rom, ohci->config_rom_bus);
3375 ar_context_release(&ohci->ar_request_ctx);
3376 ar_context_release(&ohci->ar_response_ctx);
3377 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3378 ohci->misc_buffer, ohci->misc_buffer_bus);
3379 context_release(&ohci->at_request_ctx);
3380 context_release(&ohci->at_response_ctx);
3381 kfree(ohci->it_context_list);
3382 kfree(ohci->ir_context_list);
3383 pci_disable_msi(dev);
3384 pci_iounmap(dev, ohci->registers);
3385 pci_release_region(dev, 0);
3386 pci_disable_device(dev);
3387 kfree(ohci);
3388 pmac_ohci_off(dev);
3390 fw_notify("Removed fw-ohci device.\n");
3393 #ifdef CONFIG_PM
3394 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3396 struct fw_ohci *ohci = pci_get_drvdata(dev);
3397 int err;
3399 software_reset(ohci);
3400 free_irq(dev->irq, ohci);
3401 pci_disable_msi(dev);
3402 err = pci_save_state(dev);
3403 if (err) {
3404 fw_error("pci_save_state failed\n");
3405 return err;
3407 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3408 if (err)
3409 fw_error("pci_set_power_state failed with %d\n", err);
3410 pmac_ohci_off(dev);
3412 return 0;
3415 static int pci_resume(struct pci_dev *dev)
3417 struct fw_ohci *ohci = pci_get_drvdata(dev);
3418 int err;
3420 pmac_ohci_on(dev);
3421 pci_set_power_state(dev, PCI_D0);
3422 pci_restore_state(dev);
3423 err = pci_enable_device(dev);
3424 if (err) {
3425 fw_error("pci_enable_device failed\n");
3426 return err;
3429 /* Some systems don't setup GUID register on resume from ram */
3430 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3431 !reg_read(ohci, OHCI1394_GUIDHi)) {
3432 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3433 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3436 err = ohci_enable(&ohci->card, NULL, 0);
3437 if (err)
3438 return err;
3440 ohci_resume_iso_dma(ohci);
3442 return 0;
3444 #endif
3446 static const struct pci_device_id pci_table[] = {
3447 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3451 MODULE_DEVICE_TABLE(pci, pci_table);
3453 static struct pci_driver fw_ohci_pci_driver = {
3454 .name = ohci_driver_name,
3455 .id_table = pci_table,
3456 .probe = pci_probe,
3457 .remove = pci_remove,
3458 #ifdef CONFIG_PM
3459 .resume = pci_resume,
3460 .suspend = pci_suspend,
3461 #endif
3464 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3465 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3466 MODULE_LICENSE("GPL");
3468 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3469 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3470 MODULE_ALIAS("ohci1394");
3471 #endif
3473 static int __init fw_ohci_init(void)
3475 return pci_register_driver(&fw_ohci_pci_driver);
3478 static void __exit fw_ohci_cleanup(void)
3480 pci_unregister_driver(&fw_ohci_pci_driver);
3483 module_init(fw_ohci_init);
3484 module_exit(fw_ohci_cleanup);