2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Thanks to Cologne Chip AG for this great controller!
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
80 * (all other bits are reserved and shall be 0)
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
107 * NOTE: only one dslot value must be given for every card.
108 * Also this value must be given for non-E1 cards. If omitted, the E1
109 * card has D-channel on time slot 16, which is default.
110 * If 1..15 or 17..31, an alternate time slot is used for D-channel.
111 * In this case, the application must be able to handle this.
112 * If -1 is given, the D-channel is disabled and all 31 slots can be used
113 * for B-channel. (only for specific applications)
114 * If you don't know how to use it, you don't need it!
117 * NOTE: only one mode value must be given for every card.
118 * -> See hfc_multi.h for HFC_IO_MODE_* values
119 * By default, the IO mode is pci memory IO (MEMIO).
120 * Some cards require specific IO mode, so it cannot be changed.
121 * It may be useful to set IO mode to register io (REGIO) to solve
122 * PCI bridge problems.
123 * If unsure, don't give this parameter.
126 * NOTE: only one clockdelay_nt value must be given once for all cards.
127 * Give the value of the clock control register (A_ST_CLK_DLY)
128 * of the S/T interfaces in NT mode.
129 * This register is needed for the TBR3 certification, so don't change it.
132 * NOTE: only one clockdelay_te value must be given once
133 * Give the value of the clock control register (A_ST_CLK_DLY)
134 * of the S/T interfaces in TE mode.
135 * This register is needed for the TBR3 certification, so don't change it.
138 * NOTE: only one clock value must be given once
139 * Selects interface with clock source for mISDN and applications.
140 * Set to card number starting with 1. Set to -1 to disable.
141 * By default, the first card is used as clock source.
144 * NOTE: only one hwid value must be given once
145 * Enable special embedded devices with XHFC controllers.
149 * debug register access (never use this, it will flood your system log)
150 * #define HFC_REGISTER_DEBUG
153 #define HFC_MULTI_VERSION "2.03"
155 #include <linux/module.h>
156 #include <linux/slab.h>
157 #include <linux/pci.h>
158 #include <linux/delay.h>
159 #include <linux/mISDNhw.h>
160 #include <linux/mISDNdsp.h>
163 #define IRQCOUNT_DEBUG
167 #include "hfc_multi.h"
173 #define MAX_PORTS (8 * MAX_CARDS)
175 static LIST_HEAD(HFClist
);
176 static spinlock_t HFClock
; /* global hfc list lock */
178 static void ph_state_change(struct dchannel
*);
180 static struct hfc_multi
*syncmaster
;
181 static int plxsd_master
; /* if we have a master card (yet) */
182 static spinlock_t plx_lock
; /* may not acquire other lock inside */
188 static int poll_timer
= 6; /* default = 128 samples = 16ms */
189 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190 static int nt_t1_count
[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
191 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
192 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
193 (0x60 MUST be included!) */
195 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
196 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
197 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
203 static uint type
[MAX_CARDS
];
204 static int pcm
[MAX_CARDS
];
205 static int dslot
[MAX_CARDS
];
206 static uint iomode
[MAX_CARDS
];
207 static uint port
[MAX_PORTS
];
212 static uint clockdelay_te
= CLKDEL_TE
;
213 static uint clockdelay_nt
= CLKDEL_NT
;
215 #define HWID_MINIP4 1
216 #define HWID_MINIP8 2
217 #define HWID_MINIP16 3
218 static uint hwid
= HWID_NONE
;
220 static int HFC_cnt
, Port_cnt
, PCM_cnt
= 99;
222 MODULE_AUTHOR("Andreas Eversberg");
223 MODULE_LICENSE("GPL");
224 MODULE_VERSION(HFC_MULTI_VERSION
);
225 module_param(debug
, uint
, S_IRUGO
| S_IWUSR
);
226 module_param(poll
, uint
, S_IRUGO
| S_IWUSR
);
227 module_param(clock
, int, S_IRUGO
| S_IWUSR
);
228 module_param(timer
, uint
, S_IRUGO
| S_IWUSR
);
229 module_param(clockdelay_te
, uint
, S_IRUGO
| S_IWUSR
);
230 module_param(clockdelay_nt
, uint
, S_IRUGO
| S_IWUSR
);
231 module_param_array(type
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
232 module_param_array(pcm
, int, NULL
, S_IRUGO
| S_IWUSR
);
233 module_param_array(dslot
, int, NULL
, S_IRUGO
| S_IWUSR
);
234 module_param_array(iomode
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
235 module_param_array(port
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
236 module_param(hwid
, uint
, S_IRUGO
| S_IWUSR
); /* The hardware ID */
238 #ifdef HFC_REGISTER_DEBUG
239 #define HFC_outb(hc, reg, val) \
240 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
241 #define HFC_outb_nodebug(hc, reg, val) \
242 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
243 #define HFC_inb(hc, reg) \
244 (hc->HFC_inb(hc, reg, __func__, __LINE__))
245 #define HFC_inb_nodebug(hc, reg) \
246 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
247 #define HFC_inw(hc, reg) \
248 (hc->HFC_inw(hc, reg, __func__, __LINE__))
249 #define HFC_inw_nodebug(hc, reg) \
250 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
251 #define HFC_wait(hc) \
252 (hc->HFC_wait(hc, __func__, __LINE__))
253 #define HFC_wait_nodebug(hc) \
254 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
256 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
257 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
258 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
259 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
260 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
261 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
262 #define HFC_wait(hc) (hc->HFC_wait(hc))
263 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
266 #ifdef CONFIG_MISDN_HFCMULTI_8xx
267 #include "hfc_multi_8xx.h"
270 /* HFC_IO_MODE_PCIMEM */
272 #ifdef HFC_REGISTER_DEBUG
273 HFC_outb_pcimem(struct hfc_multi
*hc
, u_char reg
, u_char val
,
274 const char *function
, int line
)
276 HFC_outb_pcimem(struct hfc_multi
*hc
, u_char reg
, u_char val
)
279 writeb(val
, hc
->pci_membase
+ reg
);
282 #ifdef HFC_REGISTER_DEBUG
283 HFC_inb_pcimem(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
285 HFC_inb_pcimem(struct hfc_multi
*hc
, u_char reg
)
288 return readb(hc
->pci_membase
+ reg
);
291 #ifdef HFC_REGISTER_DEBUG
292 HFC_inw_pcimem(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
294 HFC_inw_pcimem(struct hfc_multi
*hc
, u_char reg
)
297 return readw(hc
->pci_membase
+ reg
);
300 #ifdef HFC_REGISTER_DEBUG
301 HFC_wait_pcimem(struct hfc_multi
*hc
, const char *function
, int line
)
303 HFC_wait_pcimem(struct hfc_multi
*hc
)
306 while (readb(hc
->pci_membase
+ R_STATUS
) & V_BUSY
)
310 /* HFC_IO_MODE_REGIO */
312 #ifdef HFC_REGISTER_DEBUG
313 HFC_outb_regio(struct hfc_multi
*hc
, u_char reg
, u_char val
,
314 const char *function
, int line
)
316 HFC_outb_regio(struct hfc_multi
*hc
, u_char reg
, u_char val
)
319 outb(reg
, hc
->pci_iobase
+ 4);
320 outb(val
, hc
->pci_iobase
);
323 #ifdef HFC_REGISTER_DEBUG
324 HFC_inb_regio(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
326 HFC_inb_regio(struct hfc_multi
*hc
, u_char reg
)
329 outb(reg
, hc
->pci_iobase
+ 4);
330 return inb(hc
->pci_iobase
);
333 #ifdef HFC_REGISTER_DEBUG
334 HFC_inw_regio(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
336 HFC_inw_regio(struct hfc_multi
*hc
, u_char reg
)
339 outb(reg
, hc
->pci_iobase
+ 4);
340 return inw(hc
->pci_iobase
);
343 #ifdef HFC_REGISTER_DEBUG
344 HFC_wait_regio(struct hfc_multi
*hc
, const char *function
, int line
)
346 HFC_wait_regio(struct hfc_multi
*hc
)
349 outb(R_STATUS
, hc
->pci_iobase
+ 4);
350 while (inb(hc
->pci_iobase
) & V_BUSY
)
354 #ifdef HFC_REGISTER_DEBUG
356 HFC_outb_debug(struct hfc_multi
*hc
, u_char reg
, u_char val
,
357 const char *function
, int line
)
359 char regname
[256] = "", bits
[9] = "xxxxxxxx";
363 while (hfc_register_names
[++i
].name
) {
364 if (hfc_register_names
[i
].reg
== reg
)
365 strcat(regname
, hfc_register_names
[i
].name
);
367 if (regname
[0] == '\0')
368 strcpy(regname
, "register");
370 bits
[7] = '0' + (!!(val
& 1));
371 bits
[6] = '0' + (!!(val
& 2));
372 bits
[5] = '0' + (!!(val
& 4));
373 bits
[4] = '0' + (!!(val
& 8));
374 bits
[3] = '0' + (!!(val
& 16));
375 bits
[2] = '0' + (!!(val
& 32));
376 bits
[1] = '0' + (!!(val
& 64));
377 bits
[0] = '0' + (!!(val
& 128));
379 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
380 hc
->id
, reg
, regname
, val
, bits
, function
, line
);
381 HFC_outb_nodebug(hc
, reg
, val
);
384 HFC_inb_debug(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
386 char regname
[256] = "", bits
[9] = "xxxxxxxx";
387 u_char val
= HFC_inb_nodebug(hc
, reg
);
391 while (hfc_register_names
[i
++].name
)
393 while (hfc_register_names
[++i
].name
) {
394 if (hfc_register_names
[i
].reg
== reg
)
395 strcat(regname
, hfc_register_names
[i
].name
);
397 if (regname
[0] == '\0')
398 strcpy(regname
, "register");
400 bits
[7] = '0' + (!!(val
& 1));
401 bits
[6] = '0' + (!!(val
& 2));
402 bits
[5] = '0' + (!!(val
& 4));
403 bits
[4] = '0' + (!!(val
& 8));
404 bits
[3] = '0' + (!!(val
& 16));
405 bits
[2] = '0' + (!!(val
& 32));
406 bits
[1] = '0' + (!!(val
& 64));
407 bits
[0] = '0' + (!!(val
& 128));
409 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
410 hc
->id
, reg
, regname
, val
, bits
, function
, line
);
414 HFC_inw_debug(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
416 char regname
[256] = "";
417 u_short val
= HFC_inw_nodebug(hc
, reg
);
421 while (hfc_register_names
[i
++].name
)
423 while (hfc_register_names
[++i
].name
) {
424 if (hfc_register_names
[i
].reg
== reg
)
425 strcat(regname
, hfc_register_names
[i
].name
);
427 if (regname
[0] == '\0')
428 strcpy(regname
, "register");
431 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
432 hc
->id
, reg
, regname
, val
, function
, line
);
436 HFC_wait_debug(struct hfc_multi
*hc
, const char *function
, int line
)
438 printk(KERN_DEBUG
"HFC_wait(chip %d); in %s() line %d\n",
439 hc
->id
, function
, line
);
440 HFC_wait_nodebug(hc
);
444 /* write fifo data (REGIO) */
446 write_fifo_regio(struct hfc_multi
*hc
, u_char
*data
, int len
)
448 outb(A_FIFO_DATA0
, (hc
->pci_iobase
)+4);
450 outl(cpu_to_le32(*(u32
*)data
), hc
->pci_iobase
);
455 outw(cpu_to_le16(*(u16
*)data
), hc
->pci_iobase
);
460 outb(*data
, hc
->pci_iobase
);
465 /* write fifo data (PCIMEM) */
467 write_fifo_pcimem(struct hfc_multi
*hc
, u_char
*data
, int len
)
470 writel(cpu_to_le32(*(u32
*)data
),
471 hc
->pci_membase
+ A_FIFO_DATA0
);
476 writew(cpu_to_le16(*(u16
*)data
),
477 hc
->pci_membase
+ A_FIFO_DATA0
);
482 writeb(*data
, hc
->pci_membase
+ A_FIFO_DATA0
);
488 /* read fifo data (REGIO) */
490 read_fifo_regio(struct hfc_multi
*hc
, u_char
*data
, int len
)
492 outb(A_FIFO_DATA0
, (hc
->pci_iobase
)+4);
494 *(u32
*)data
= le32_to_cpu(inl(hc
->pci_iobase
));
499 *(u16
*)data
= le16_to_cpu(inw(hc
->pci_iobase
));
504 *data
= inb(hc
->pci_iobase
);
510 /* read fifo data (PCIMEM) */
512 read_fifo_pcimem(struct hfc_multi
*hc
, u_char
*data
, int len
)
516 le32_to_cpu(readl(hc
->pci_membase
+ A_FIFO_DATA0
));
522 le16_to_cpu(readw(hc
->pci_membase
+ A_FIFO_DATA0
));
527 *data
= readb(hc
->pci_membase
+ A_FIFO_DATA0
);
534 enable_hwirq(struct hfc_multi
*hc
)
536 hc
->hw
.r_irq_ctrl
|= V_GLOB_IRQ_EN
;
537 HFC_outb(hc
, R_IRQ_CTRL
, hc
->hw
.r_irq_ctrl
);
541 disable_hwirq(struct hfc_multi
*hc
)
543 hc
->hw
.r_irq_ctrl
&= ~((u_char
)V_GLOB_IRQ_EN
);
544 HFC_outb(hc
, R_IRQ_CTRL
, hc
->hw
.r_irq_ctrl
);
548 #define MAX_TDM_CHAN 32
552 enablepcibridge(struct hfc_multi
*c
)
554 HFC_outb(c
, R_BRG_PCM_CFG
, (0x0 << 6) | 0x3); /* was _io before */
558 disablepcibridge(struct hfc_multi
*c
)
560 HFC_outb(c
, R_BRG_PCM_CFG
, (0x0 << 6) | 0x2); /* was _io before */
564 readpcibridge(struct hfc_multi
*hc
, unsigned char address
)
572 /* slow down a PCI read access by 1 PCI clock cycle */
573 HFC_outb(hc
, R_CTRL
, 0x4); /*was _io before*/
580 /* select local bridge port address by writing to CIP port */
581 /* data = HFC_inb(c, cipv); * was _io before */
582 outw(cipv
, hc
->pci_iobase
+ 4);
583 data
= inb(hc
->pci_iobase
);
585 /* restore R_CTRL for normal PCI read cycle speed */
586 HFC_outb(hc
, R_CTRL
, 0x0); /* was _io before */
592 writepcibridge(struct hfc_multi
*hc
, unsigned char address
, unsigned char data
)
605 /* select local bridge port address by writing to CIP port */
606 outw(cipv
, hc
->pci_iobase
+ 4);
607 /* define a 32 bit dword with 4 identical bytes for write sequence */
608 datav
= data
| ((__u32
) data
<< 8) | ((__u32
) data
<< 16) |
609 ((__u32
) data
<< 24);
612 * write this 32 bit dword to the bridge data port
613 * this will initiate a write sequence of up to 4 writes to the same
614 * address on the local bus interface the number of write accesses
615 * is undefined but >=1 and depends on the next PCI transaction
616 * during write sequence on the local bus
618 outl(datav
, hc
->pci_iobase
);
622 cpld_set_reg(struct hfc_multi
*hc
, unsigned char reg
)
624 /* Do data pin read low byte */
625 HFC_outb(hc
, R_GPIO_OUT1
, reg
);
629 cpld_write_reg(struct hfc_multi
*hc
, unsigned char reg
, unsigned char val
)
631 cpld_set_reg(hc
, reg
);
634 writepcibridge(hc
, 1, val
);
635 disablepcibridge(hc
);
641 cpld_read_reg(struct hfc_multi
*hc
, unsigned char reg
)
643 unsigned char bytein
;
645 cpld_set_reg(hc
, reg
);
647 /* Do data pin read low byte */
648 HFC_outb(hc
, R_GPIO_OUT1
, reg
);
651 bytein
= readpcibridge(hc
, 1);
652 disablepcibridge(hc
);
658 vpm_write_address(struct hfc_multi
*hc
, unsigned short addr
)
660 cpld_write_reg(hc
, 0, 0xff & addr
);
661 cpld_write_reg(hc
, 1, 0x01 & (addr
>> 8));
664 inline unsigned short
665 vpm_read_address(struct hfc_multi
*c
)
668 unsigned short highbit
;
670 addr
= cpld_read_reg(c
, 0);
671 highbit
= cpld_read_reg(c
, 1);
673 addr
= addr
| (highbit
<< 8);
679 vpm_in(struct hfc_multi
*c
, int which
, unsigned short addr
)
683 vpm_write_address(c
, addr
);
691 res
= readpcibridge(c
, 1);
700 vpm_out(struct hfc_multi
*c
, int which
, unsigned short addr
,
703 vpm_write_address(c
, addr
);
712 writepcibridge(c
, 1, data
);
720 regin
= vpm_in(c
, which
, addr
);
722 printk(KERN_DEBUG
"Wrote 0x%x to register 0x%x but got back "
723 "0x%x\n", data
, addr
, regin
);
730 vpm_init(struct hfc_multi
*wc
)
734 unsigned int i
, x
, y
;
737 for (x
= 0; x
< NUM_EC
; x
++) {
740 ver
= vpm_in(wc
, x
, 0x1a0);
741 printk(KERN_DEBUG
"VPM: Chip %d: ver %02x\n", x
, ver
);
744 for (y
= 0; y
< 4; y
++) {
745 vpm_out(wc
, x
, 0x1a8 + y
, 0x00); /* GPIO out */
746 vpm_out(wc
, x
, 0x1ac + y
, 0x00); /* GPIO dir */
747 vpm_out(wc
, x
, 0x1b0 + y
, 0x00); /* GPIO sel */
750 /* Setup TDM path - sets fsync and tdm_clk as inputs */
751 reg
= vpm_in(wc
, x
, 0x1a3); /* misc_con */
752 vpm_out(wc
, x
, 0x1a3, reg
& ~2);
754 /* Setup Echo length (256 taps) */
755 vpm_out(wc
, x
, 0x022, 1);
756 vpm_out(wc
, x
, 0x023, 0xff);
758 /* Setup timeslots */
759 vpm_out(wc
, x
, 0x02f, 0x00);
760 mask
= 0x02020202 << (x
* 4);
762 /* Setup the tdm channel masks for all chips */
763 for (i
= 0; i
< 4; i
++)
764 vpm_out(wc
, x
, 0x33 - i
, (mask
>> (i
<< 3)) & 0xff);
766 /* Setup convergence rate */
767 printk(KERN_DEBUG
"VPM: A-law mode\n");
768 reg
= 0x00 | 0x10 | 0x01;
769 vpm_out(wc
, x
, 0x20, reg
);
770 printk(KERN_DEBUG
"VPM reg 0x20 is %x\n", reg
);
771 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
773 vpm_out(wc
, x
, 0x24, 0x02);
774 reg
= vpm_in(wc
, x
, 0x24);
775 printk(KERN_DEBUG
"NLP Thresh is set to %d (0x%x)\n", reg
, reg
);
777 /* Initialize echo cans */
778 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
779 if (mask
& (0x00000001 << i
))
780 vpm_out(wc
, x
, i
, 0x00);
784 * ARM arch at least disallows a udelay of
785 * more than 2ms... it gives a fake "__bad_udelay"
786 * reference at link-time.
787 * long delays in kernel code are pretty sucky anyway
788 * for now work around it using 5 x 2ms instead of 1 x 10ms
797 /* Put in bypass mode */
798 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
799 if (mask
& (0x00000001 << i
))
800 vpm_out(wc
, x
, i
, 0x01);
804 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
805 if (mask
& (0x00000001 << i
))
806 vpm_out(wc
, x
, 0x78 + i
, 0x01);
814 vpm_check(struct hfc_multi
*hctmp
)
818 gpi2
= HFC_inb(hctmp
, R_GPI_IN2
);
820 if ((gpi2
& 0x3) != 0x3)
821 printk(KERN_DEBUG
"Got interrupt 0x%x from VPM!\n", gpi2
);
827 * Interface to enable/disable the HW Echocan
829 * these functions are called within a spin_lock_irqsave on
830 * the channel instance lock, so we are not disturbed by irqs
832 * we can later easily change the interface to make other
833 * things configurable, for now we configure the taps
838 vpm_echocan_on(struct hfc_multi
*hc
, int ch
, int taps
)
840 unsigned int timeslot
;
842 struct bchannel
*bch
= hc
->chan
[ch
].bch
;
847 if (hc
->chan
[ch
].protocol
!= ISDN_P_B_RAW
)
854 skb
= _alloc_mISDN_skb(PH_CONTROL_IND
, HFC_VOL_CHANGE_TX
,
855 sizeof(int), &txadj
, GFP_ATOMIC
);
857 recv_Bchannel_skb(bch
, skb
);
860 timeslot
= ((ch
/4)*8) + ((ch
%4)*4) + 1;
863 printk(KERN_NOTICE
"vpm_echocan_on called taps [%d] on timeslot %d\n",
866 vpm_out(hc
, unit
, timeslot
, 0x7e);
870 vpm_echocan_off(struct hfc_multi
*hc
, int ch
)
872 unsigned int timeslot
;
874 struct bchannel
*bch
= hc
->chan
[ch
].bch
;
880 if (hc
->chan
[ch
].protocol
!= ISDN_P_B_RAW
)
887 skb
= _alloc_mISDN_skb(PH_CONTROL_IND
, HFC_VOL_CHANGE_TX
,
888 sizeof(int), &txadj
, GFP_ATOMIC
);
890 recv_Bchannel_skb(bch
, skb
);
893 timeslot
= ((ch
/4)*8) + ((ch
%4)*4) + 1;
896 printk(KERN_NOTICE
"vpm_echocan_off called on timeslot %d\n",
899 vpm_out(hc
, unit
, timeslot
, 0x01);
904 * Speech Design resync feature
905 * NOTE: This is called sometimes outside interrupt handler.
906 * We must lock irqsave, so no other interrupt (other card) will occur!
907 * Also multiple interrupts may nest, so must lock each access (lists, card)!
910 hfcmulti_resync(struct hfc_multi
*locked
, struct hfc_multi
*newmaster
, int rm
)
912 struct hfc_multi
*hc
, *next
, *pcmmaster
= NULL
;
913 void __iomem
*plx_acc_32
;
917 spin_lock_irqsave(&HFClock
, flags
);
918 spin_lock(&plx_lock
); /* must be locked inside other locks */
920 if (debug
& DEBUG_HFCMULTI_PLXSD
)
921 printk(KERN_DEBUG
"%s: RESYNC(syncmaster=0x%p)\n",
922 __func__
, syncmaster
);
924 /* select new master */
926 if (debug
& DEBUG_HFCMULTI_PLXSD
)
927 printk(KERN_DEBUG
"using provided controller\n");
929 list_for_each_entry_safe(hc
, next
, &HFClist
, list
) {
930 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
931 if (hc
->syncronized
) {
939 /* Disable sync of all cards */
940 list_for_each_entry_safe(hc
, next
, &HFClist
, list
) {
941 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
942 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
943 pv
= readl(plx_acc_32
);
944 pv
&= ~PLX_SYNC_O_EN
;
945 writel(pv
, plx_acc_32
);
946 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)) {
948 if (hc
->ctype
== HFC_TYPE_E1
) {
949 if (debug
& DEBUG_HFCMULTI_PLXSD
)
951 "Schedule SYNC_I\n");
952 hc
->e1_resync
|= 1; /* get SYNC_I */
960 if (debug
& DEBUG_HFCMULTI_PLXSD
)
961 printk(KERN_DEBUG
"id=%d (0x%p) = syncronized with "
962 "interface.\n", hc
->id
, hc
);
963 /* Enable new sync master */
964 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
965 pv
= readl(plx_acc_32
);
967 writel(pv
, plx_acc_32
);
968 /* switch to jatt PLL, if not disabled by RX_SYNC */
969 if (hc
->ctype
== HFC_TYPE_E1
970 && !test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
)) {
971 if (debug
& DEBUG_HFCMULTI_PLXSD
)
972 printk(KERN_DEBUG
"Schedule jatt PLL\n");
973 hc
->e1_resync
|= 2; /* switch to jatt */
978 if (debug
& DEBUG_HFCMULTI_PLXSD
)
980 "id=%d (0x%p) = PCM master syncronized "
981 "with QUARTZ\n", hc
->id
, hc
);
982 if (hc
->ctype
== HFC_TYPE_E1
) {
983 /* Use the crystal clock for the PCM
985 if (debug
& DEBUG_HFCMULTI_PLXSD
)
987 "Schedule QUARTZ for HFC-E1\n");
988 hc
->e1_resync
|= 4; /* switch quartz */
990 if (debug
& DEBUG_HFCMULTI_PLXSD
)
992 "QUARTZ is automatically "
993 "enabled by HFC-%dS\n", hc
->ctype
);
995 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
996 pv
= readl(plx_acc_32
);
998 writel(pv
, plx_acc_32
);
1001 printk(KERN_ERR
"%s no pcm master, this MUST "
1002 "not happen!\n", __func__
);
1004 syncmaster
= newmaster
;
1006 spin_unlock(&plx_lock
);
1007 spin_unlock_irqrestore(&HFClock
, flags
);
1010 /* This must be called AND hc must be locked irqsave!!! */
1012 plxsd_checksync(struct hfc_multi
*hc
, int rm
)
1014 if (hc
->syncronized
) {
1015 if (syncmaster
== NULL
) {
1016 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1017 printk(KERN_DEBUG
"%s: GOT sync on card %d"
1018 " (id=%d)\n", __func__
, hc
->id
+ 1,
1020 hfcmulti_resync(hc
, hc
, rm
);
1023 if (syncmaster
== hc
) {
1024 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1025 printk(KERN_DEBUG
"%s: LOST sync on card %d"
1026 " (id=%d)\n", __func__
, hc
->id
+ 1,
1028 hfcmulti_resync(hc
, NULL
, rm
);
1035 * free hardware resources used by driver
1038 release_io_hfcmulti(struct hfc_multi
*hc
)
1040 void __iomem
*plx_acc_32
;
1044 if (debug
& DEBUG_HFCMULTI_INIT
)
1045 printk(KERN_DEBUG
"%s: entered\n", __func__
);
1047 /* soft reset also masks all interrupts */
1048 hc
->hw
.r_cirm
|= V_SRES
;
1049 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1051 hc
->hw
.r_cirm
&= ~V_SRES
;
1052 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1053 udelay(1000); /* instead of 'wait' that may cause locking */
1055 /* release Speech Design card, if PLX was initialized */
1056 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
) && hc
->plx_membase
) {
1057 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1058 printk(KERN_DEBUG
"%s: release PLXSD card %d\n",
1059 __func__
, hc
->id
+ 1);
1060 spin_lock_irqsave(&plx_lock
, plx_flags
);
1061 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1062 writel(PLX_GPIOC_INIT
, plx_acc_32
);
1063 pv
= readl(plx_acc_32
);
1064 /* Termination off */
1066 /* Disconnect the PCM */
1067 pv
|= PLX_SLAVE_EN_N
;
1068 pv
&= ~PLX_MASTER_EN
;
1069 pv
&= ~PLX_SYNC_O_EN
;
1070 /* Put the DSP in Reset */
1071 pv
&= ~PLX_DSP_RES_N
;
1072 writel(pv
, plx_acc_32
);
1073 if (debug
& DEBUG_HFCMULTI_INIT
)
1074 printk(KERN_DEBUG
"%s: PCM off: PLX_GPIO=%x\n",
1076 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1079 /* disable memory mapped ports / io ports */
1080 test_and_clear_bit(HFC_CHIP_PLXSD
, &hc
->chip
); /* prevent resync */
1082 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, 0);
1083 if (hc
->pci_membase
)
1084 iounmap(hc
->pci_membase
);
1085 if (hc
->plx_membase
)
1086 iounmap(hc
->plx_membase
);
1088 release_region(hc
->pci_iobase
, 8);
1089 if (hc
->xhfc_membase
)
1090 iounmap((void *)hc
->xhfc_membase
);
1093 pci_disable_device(hc
->pci_dev
);
1094 pci_set_drvdata(hc
->pci_dev
, NULL
);
1096 if (debug
& DEBUG_HFCMULTI_INIT
)
1097 printk(KERN_DEBUG
"%s: done\n", __func__
);
1101 * function called to reset the HFC chip. A complete software reset of chip
1102 * and fifos is done. All configuration of the chip is done.
1106 init_chip(struct hfc_multi
*hc
)
1108 u_long flags
, val
, val2
= 0, rev
;
1110 u_char r_conf_en
, rval
;
1111 void __iomem
*plx_acc_32
;
1113 u_long plx_flags
, hfc_flags
;
1115 struct hfc_multi
*pos
, *next
, *plx_last_hc
;
1117 spin_lock_irqsave(&hc
->lock
, flags
);
1118 /* reset all registers */
1119 memset(&hc
->hw
, 0, sizeof(struct hfcm_hw
));
1121 /* revision check */
1122 if (debug
& DEBUG_HFCMULTI_INIT
)
1123 printk(KERN_DEBUG
"%s: entered\n", __func__
);
1124 val
= HFC_inb(hc
, R_CHIP_ID
);
1125 if ((val
>> 4) != 0x8 && (val
>> 4) != 0xc && (val
>> 4) != 0xe &&
1126 (val
>> 1) != 0x31) {
1127 printk(KERN_INFO
"HFC_multi: unknown CHIP_ID:%x\n", (u_int
)val
);
1131 rev
= HFC_inb(hc
, R_CHIP_RV
);
1133 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1134 val
, rev
, (rev
== 0 && (hc
->ctype
!= HFC_TYPE_XHFC
)) ?
1135 " (old FIFO handling)" : "");
1136 if (hc
->ctype
!= HFC_TYPE_XHFC
&& rev
== 0) {
1137 test_and_set_bit(HFC_CHIP_REVISION0
, &hc
->chip
);
1139 "HFC_multi: NOTE: Your chip is revision 0, "
1140 "ask Cologne Chip for update. Newer chips "
1141 "have a better FIFO handling. Old chips "
1142 "still work but may have slightly lower "
1143 "HDLC transmit performance.\n");
1146 printk(KERN_WARNING
"HFC_multi: WARNING: This driver doesn't "
1147 "consider chip revision = %ld. The chip / "
1148 "bridge may not work.\n", rev
);
1151 /* set s-ram size */
1155 hc
->DTMFbase
= 0x1000;
1156 if (test_bit(HFC_CHIP_EXRAM_128
, &hc
->chip
)) {
1157 if (debug
& DEBUG_HFCMULTI_INIT
)
1158 printk(KERN_DEBUG
"%s: changing to 128K extenal RAM\n",
1160 hc
->hw
.r_ctrl
|= V_EXT_RAM
;
1161 hc
->hw
.r_ram_sz
= 1;
1165 hc
->DTMFbase
= 0x2000;
1167 if (test_bit(HFC_CHIP_EXRAM_512
, &hc
->chip
)) {
1168 if (debug
& DEBUG_HFCMULTI_INIT
)
1169 printk(KERN_DEBUG
"%s: changing to 512K extenal RAM\n",
1171 hc
->hw
.r_ctrl
|= V_EXT_RAM
;
1172 hc
->hw
.r_ram_sz
= 2;
1176 hc
->DTMFbase
= 0x2000;
1178 if (hc
->ctype
== HFC_TYPE_XHFC
) {
1184 hc
->max_trans
= poll
<< 1;
1185 if (hc
->max_trans
> hc
->Zlen
)
1186 hc
->max_trans
= hc
->Zlen
;
1188 /* Speech Design PLX bridge */
1189 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1190 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1191 printk(KERN_DEBUG
"%s: initializing PLXSD card %d\n",
1192 __func__
, hc
->id
+ 1);
1193 spin_lock_irqsave(&plx_lock
, plx_flags
);
1194 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1195 writel(PLX_GPIOC_INIT
, plx_acc_32
);
1196 pv
= readl(plx_acc_32
);
1197 /* The first and the last cards are terminating the PCM bus */
1198 pv
|= PLX_TERM_ON
; /* hc is currently the last */
1199 /* Disconnect the PCM */
1200 pv
|= PLX_SLAVE_EN_N
;
1201 pv
&= ~PLX_MASTER_EN
;
1202 pv
&= ~PLX_SYNC_O_EN
;
1203 /* Put the DSP in Reset */
1204 pv
&= ~PLX_DSP_RES_N
;
1205 writel(pv
, plx_acc_32
);
1206 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1207 if (debug
& DEBUG_HFCMULTI_INIT
)
1208 printk(KERN_DEBUG
"%s: slave/term: PLX_GPIO=%x\n",
1211 * If we are the 3rd PLXSD card or higher, we must turn
1212 * termination of last PLXSD card off.
1214 spin_lock_irqsave(&HFClock
, hfc_flags
);
1217 list_for_each_entry_safe(pos
, next
, &HFClist
, list
) {
1218 if (test_bit(HFC_CHIP_PLXSD
, &pos
->chip
)) {
1224 if (plx_count
>= 3) {
1225 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1226 printk(KERN_DEBUG
"%s: card %d is between, so "
1227 "we disable termination\n",
1228 __func__
, plx_last_hc
->id
+ 1);
1229 spin_lock_irqsave(&plx_lock
, plx_flags
);
1230 plx_acc_32
= plx_last_hc
->plx_membase
+ PLX_GPIOC
;
1231 pv
= readl(plx_acc_32
);
1233 writel(pv
, plx_acc_32
);
1234 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1235 if (debug
& DEBUG_HFCMULTI_INIT
)
1237 "%s: term off: PLX_GPIO=%x\n",
1240 spin_unlock_irqrestore(&HFClock
, hfc_flags
);
1241 hc
->hw
.r_pcm_md0
= V_F0_LEN
; /* shift clock for DSP */
1244 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1245 hc
->hw
.r_pcm_md0
= V_F0_LEN
; /* shift clock for DSP */
1247 /* we only want the real Z2 read-pointer for revision > 0 */
1248 if (!test_bit(HFC_CHIP_REVISION0
, &hc
->chip
))
1249 hc
->hw
.r_ram_sz
|= V_FZ_MD
;
1251 /* select pcm mode */
1252 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
1253 if (debug
& DEBUG_HFCMULTI_INIT
)
1254 printk(KERN_DEBUG
"%s: setting PCM into slave mode\n",
1257 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
) && !plxsd_master
) {
1258 if (debug
& DEBUG_HFCMULTI_INIT
)
1259 printk(KERN_DEBUG
"%s: setting PCM into master mode\n",
1261 hc
->hw
.r_pcm_md0
|= V_PCM_MD
;
1263 if (debug
& DEBUG_HFCMULTI_INIT
)
1264 printk(KERN_DEBUG
"%s: performing PCM auto detect\n",
1269 HFC_outb(hc
, R_CTRL
, hc
->hw
.r_ctrl
);
1270 if (hc
->ctype
== HFC_TYPE_XHFC
)
1271 HFC_outb(hc
, 0x0C /* R_FIFO_THRES */,
1272 0x11 /* 16 Bytes TX/RX */);
1274 HFC_outb(hc
, R_RAM_SZ
, hc
->hw
.r_ram_sz
);
1275 HFC_outb(hc
, R_FIFO_MD
, 0);
1276 if (hc
->ctype
== HFC_TYPE_XHFC
)
1277 hc
->hw
.r_cirm
= V_SRES
| V_HFCRES
| V_PCMRES
| V_STRES
;
1279 hc
->hw
.r_cirm
= V_SRES
| V_HFCRES
| V_PCMRES
| V_STRES
1281 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1284 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1286 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1287 HFC_outb(hc
, R_RAM_SZ
, hc
->hw
.r_ram_sz
);
1289 /* Speech Design PLX bridge pcm and sync mode */
1290 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1291 spin_lock_irqsave(&plx_lock
, plx_flags
);
1292 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1293 pv
= readl(plx_acc_32
);
1295 if (hc
->hw
.r_pcm_md0
& V_PCM_MD
) {
1296 pv
|= PLX_MASTER_EN
| PLX_SLAVE_EN_N
;
1297 pv
|= PLX_SYNC_O_EN
;
1298 if (debug
& DEBUG_HFCMULTI_INIT
)
1299 printk(KERN_DEBUG
"%s: master: PLX_GPIO=%x\n",
1302 pv
&= ~(PLX_MASTER_EN
| PLX_SLAVE_EN_N
);
1303 pv
&= ~PLX_SYNC_O_EN
;
1304 if (debug
& DEBUG_HFCMULTI_INIT
)
1305 printk(KERN_DEBUG
"%s: slave: PLX_GPIO=%x\n",
1308 writel(pv
, plx_acc_32
);
1309 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1313 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x90);
1314 if (hc
->slots
== 32)
1315 HFC_outb(hc
, R_PCM_MD1
, 0x00);
1316 if (hc
->slots
== 64)
1317 HFC_outb(hc
, R_PCM_MD1
, 0x10);
1318 if (hc
->slots
== 128)
1319 HFC_outb(hc
, R_PCM_MD1
, 0x20);
1320 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0xa0);
1321 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
1322 HFC_outb(hc
, R_PCM_MD2
, V_SYNC_SRC
); /* sync via SYNC_I / O */
1323 else if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1324 HFC_outb(hc
, R_PCM_MD2
, 0x10); /* V_C2O_EN */
1326 HFC_outb(hc
, R_PCM_MD2
, 0x00); /* sync from interface */
1327 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x00);
1328 for (i
= 0; i
< 256; i
++) {
1329 HFC_outb_nodebug(hc
, R_SLOT
, i
);
1330 HFC_outb_nodebug(hc
, A_SL_CFG
, 0);
1331 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1332 HFC_outb_nodebug(hc
, A_CONF
, 0);
1333 hc
->slot_owner
[i
] = -1;
1336 /* set clock speed */
1337 if (test_bit(HFC_CHIP_CLOCK2
, &hc
->chip
)) {
1338 if (debug
& DEBUG_HFCMULTI_INIT
)
1340 "%s: setting double clock\n", __func__
);
1341 HFC_outb(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
1344 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1345 HFC_outb(hc
, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1348 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
1349 printk(KERN_NOTICE
"Setting GPIOs\n");
1350 HFC_outb(hc
, R_GPIO_SEL
, 0x30);
1351 HFC_outb(hc
, R_GPIO_EN1
, 0x3);
1353 printk(KERN_NOTICE
"calling vpm_init\n");
1357 /* check if R_F0_CNT counts (8 kHz frame count) */
1358 val
= HFC_inb(hc
, R_F0_CNTL
);
1359 val
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1360 if (debug
& DEBUG_HFCMULTI_INIT
)
1362 "HFC_multi F0_CNT %ld after reset\n", val
);
1363 spin_unlock_irqrestore(&hc
->lock
, flags
);
1364 set_current_state(TASK_UNINTERRUPTIBLE
);
1365 schedule_timeout((HZ
/100)?:1); /* Timeout minimum 10ms */
1366 spin_lock_irqsave(&hc
->lock
, flags
);
1367 val2
= HFC_inb(hc
, R_F0_CNTL
);
1368 val2
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1369 if (debug
& DEBUG_HFCMULTI_INIT
)
1371 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1373 if (val2
>= val
+8) { /* 1 ms */
1374 /* it counts, so we keep the pcm mode */
1375 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
))
1376 printk(KERN_INFO
"controller is PCM bus MASTER\n");
1378 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
))
1379 printk(KERN_INFO
"controller is PCM bus SLAVE\n");
1381 test_and_set_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
1382 printk(KERN_INFO
"controller is PCM bus SLAVE "
1383 "(auto detected)\n");
1386 /* does not count */
1387 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)) {
1389 printk(KERN_ERR
"HFC_multi ERROR, getting no 125us "
1390 "pulse. Seems that controller fails.\n");
1394 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
1395 printk(KERN_INFO
"controller is PCM bus SLAVE "
1396 "(ignoring missing PCM clock)\n");
1398 /* only one pcm master */
1399 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)
1401 printk(KERN_ERR
"HFC_multi ERROR, no clock "
1402 "on another Speech Design card found. "
1403 "Please be sure to connect PCM cable.\n");
1407 /* retry with master clock */
1408 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1409 spin_lock_irqsave(&plx_lock
, plx_flags
);
1410 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1411 pv
= readl(plx_acc_32
);
1412 pv
|= PLX_MASTER_EN
| PLX_SLAVE_EN_N
;
1413 pv
|= PLX_SYNC_O_EN
;
1414 writel(pv
, plx_acc_32
);
1415 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1416 if (debug
& DEBUG_HFCMULTI_INIT
)
1417 printk(KERN_DEBUG
"%s: master: "
1418 "PLX_GPIO=%x\n", __func__
, pv
);
1420 hc
->hw
.r_pcm_md0
|= V_PCM_MD
;
1421 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x00);
1422 spin_unlock_irqrestore(&hc
->lock
, flags
);
1423 set_current_state(TASK_UNINTERRUPTIBLE
);
1424 schedule_timeout((HZ
/100)?:1); /* Timeout min. 10ms */
1425 spin_lock_irqsave(&hc
->lock
, flags
);
1426 val2
= HFC_inb(hc
, R_F0_CNTL
);
1427 val2
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1428 if (debug
& DEBUG_HFCMULTI_INIT
)
1429 printk(KERN_DEBUG
"HFC_multi F0_CNT %ld after "
1430 "10 ms (2nd try)\n", val2
);
1431 if (val2
>= val
+8) { /* 1 ms */
1432 test_and_set_bit(HFC_CHIP_PCM_MASTER
,
1434 printk(KERN_INFO
"controller is PCM bus MASTER "
1435 "(auto detected)\n");
1437 goto controller_fail
;
1441 /* Release the DSP Reset */
1442 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1443 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
))
1445 spin_lock_irqsave(&plx_lock
, plx_flags
);
1446 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1447 pv
= readl(plx_acc_32
);
1448 pv
|= PLX_DSP_RES_N
;
1449 writel(pv
, plx_acc_32
);
1450 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1451 if (debug
& DEBUG_HFCMULTI_INIT
)
1452 printk(KERN_DEBUG
"%s: reset off: PLX_GPIO=%x\n",
1458 printk(KERN_INFO
"controller has given PCM BUS ID %d\n",
1461 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)
1462 || test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1463 PCM_cnt
++; /* SD has proprietary bridging */
1466 printk(KERN_INFO
"controller has PCM BUS ID %d "
1467 "(auto selected)\n", hc
->pcm
);
1471 HFC_outb(hc
, R_TI_WD
, poll_timer
);
1472 hc
->hw
.r_irqmsk_misc
|= V_TI_IRQMSK
;
1474 /* set E1 state machine IRQ */
1475 if (hc
->ctype
== HFC_TYPE_E1
)
1476 hc
->hw
.r_irqmsk_misc
|= V_STA_IRQMSK
;
1478 /* set DTMF detection */
1479 if (test_bit(HFC_CHIP_DTMF
, &hc
->chip
)) {
1480 if (debug
& DEBUG_HFCMULTI_INIT
)
1481 printk(KERN_DEBUG
"%s: enabling DTMF detection "
1482 "for all B-channel\n", __func__
);
1483 hc
->hw
.r_dtmf
= V_DTMF_EN
| V_DTMF_STOP
;
1484 if (test_bit(HFC_CHIP_ULAW
, &hc
->chip
))
1485 hc
->hw
.r_dtmf
|= V_ULAW_SEL
;
1486 HFC_outb(hc
, R_DTMF_N
, 102 - 1);
1487 hc
->hw
.r_irqmsk_misc
|= V_DTMF_IRQMSK
;
1490 /* conference engine */
1491 if (test_bit(HFC_CHIP_ULAW
, &hc
->chip
))
1492 r_conf_en
= V_CONF_EN
| V_ULAW
;
1494 r_conf_en
= V_CONF_EN
;
1495 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1496 HFC_outb(hc
, R_CONF_EN
, r_conf_en
);
1500 case 1: /* HFC-E1 OEM */
1501 if (test_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
))
1502 HFC_outb(hc
, R_GPIO_SEL
, 0x32);
1504 HFC_outb(hc
, R_GPIO_SEL
, 0x30);
1506 HFC_outb(hc
, R_GPIO_EN1
, 0x0f);
1507 HFC_outb(hc
, R_GPIO_OUT1
, 0x00);
1509 HFC_outb(hc
, R_GPIO_EN0
, V_GPIO_EN2
| V_GPIO_EN3
);
1512 case 2: /* HFC-4S OEM */
1514 HFC_outb(hc
, R_GPIO_SEL
, 0xf0);
1515 HFC_outb(hc
, R_GPIO_EN1
, 0xff);
1516 HFC_outb(hc
, R_GPIO_OUT1
, 0x00);
1520 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
)) {
1521 hc
->hw
.r_st_sync
= 0x10; /* V_AUTO_SYNCI */
1522 HFC_outb(hc
, R_ST_SYNC
, hc
->hw
.r_st_sync
);
1525 /* set master clock */
1526 if (hc
->masterclk
>= 0) {
1527 if (debug
& DEBUG_HFCMULTI_INIT
)
1528 printk(KERN_DEBUG
"%s: setting ST master clock "
1529 "to port %d (0..%d)\n",
1530 __func__
, hc
->masterclk
, hc
->ports
-1);
1531 hc
->hw
.r_st_sync
|= (hc
->masterclk
| V_AUTO_SYNC
);
1532 HFC_outb(hc
, R_ST_SYNC
, hc
->hw
.r_st_sync
);
1537 /* setting misc irq */
1538 HFC_outb(hc
, R_IRQMSK_MISC
, hc
->hw
.r_irqmsk_misc
);
1539 if (debug
& DEBUG_HFCMULTI_INIT
)
1540 printk(KERN_DEBUG
"r_irqmsk_misc.2: 0x%x\n",
1541 hc
->hw
.r_irqmsk_misc
);
1543 /* RAM access test */
1544 HFC_outb(hc
, R_RAM_ADDR0
, 0);
1545 HFC_outb(hc
, R_RAM_ADDR1
, 0);
1546 HFC_outb(hc
, R_RAM_ADDR2
, 0);
1547 for (i
= 0; i
< 256; i
++) {
1548 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, i
);
1549 HFC_outb_nodebug(hc
, R_RAM_DATA
, ((i
*3)&0xff));
1551 for (i
= 0; i
< 256; i
++) {
1552 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, i
);
1553 HFC_inb_nodebug(hc
, R_RAM_DATA
);
1554 rval
= HFC_inb_nodebug(hc
, R_INT_DATA
);
1555 if (rval
!= ((i
* 3) & 0xff)) {
1557 "addr:%x val:%x should:%x\n", i
, rval
,
1563 printk(KERN_DEBUG
"aborting - %d RAM access errors\n", err
);
1568 if (debug
& DEBUG_HFCMULTI_INIT
)
1569 printk(KERN_DEBUG
"%s: done\n", __func__
);
1571 spin_unlock_irqrestore(&hc
->lock
, flags
);
1577 * control the watchdog
1580 hfcmulti_watchdog(struct hfc_multi
*hc
)
1584 if (hc
->wdcount
> 10) {
1586 hc
->wdbyte
= hc
->wdbyte
== V_GPIO_OUT2
?
1587 V_GPIO_OUT3
: V_GPIO_OUT2
;
1589 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1590 HFC_outb(hc
, R_GPIO_EN0
, V_GPIO_EN2
| V_GPIO_EN3
);
1591 HFC_outb(hc
, R_GPIO_OUT0
, hc
->wdbyte
);
1601 hfcmulti_leds(struct hfc_multi
*hc
)
1604 unsigned long leddw
;
1605 int i
, state
, active
, leds
;
1606 struct dchannel
*dch
;
1609 hc
->ledcount
+= poll
;
1610 if (hc
->ledcount
> 4096) {
1611 hc
->ledcount
-= 4096;
1612 hc
->ledstate
= 0xAFFEAFFE;
1616 case 1: /* HFC-E1 OEM */
1617 /* 2 red blinking: NT mode deactivate
1618 * 2 red steady: TE mode deactivate
1619 * left green: L1 active
1620 * left red: frame sync, but no L1
1621 * right green: L2 active
1623 if (hc
->chan
[hc
->dslot
].sync
!= 2) { /* no frame sync */
1624 if (hc
->chan
[hc
->dslot
].dch
->dev
.D
.protocol
1628 } else if (hc
->ledcount
>>11) {
1637 } else { /* with frame sync */
1638 /* TODO make it work */
1644 leds
= (led
[0] | (led
[1]<<2) | (led
[2]<<1) | (led
[3]<<3))^0xF;
1645 /* leds are inverted */
1646 if (leds
!= (int)hc
->ledstate
) {
1647 HFC_outb_nodebug(hc
, R_GPIO_OUT1
, leds
);
1648 hc
->ledstate
= leds
;
1652 case 2: /* HFC-4S OEM */
1653 /* red blinking = PH_DEACTIVATE NT Mode
1654 * red steady = PH_DEACTIVATE TE Mode
1655 * green steady = PH_ACTIVATE
1657 for (i
= 0; i
< 4; i
++) {
1660 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1663 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1669 if (state
== active
) {
1670 led
[i
] = 1; /* led green */
1672 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
)
1673 /* TE mode: led red */
1676 if (hc
->ledcount
>>11)
1683 led
[i
] = 0; /* led off */
1685 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
1687 for (i
= 0; i
< 4; i
++) {
1690 leds
|= (0x2 << (i
* 2));
1691 } else if (led
[i
] == 2) {
1693 leds
|= (0x1 << (i
* 2));
1696 if (leds
!= (int)hc
->ledstate
) {
1697 vpm_out(hc
, 0, 0x1a8 + 3, leds
);
1698 hc
->ledstate
= leds
;
1701 leds
= ((led
[3] > 0) << 0) | ((led
[1] > 0) << 1) |
1702 ((led
[0] > 0) << 2) | ((led
[2] > 0) << 3) |
1703 ((led
[3] & 1) << 4) | ((led
[1] & 1) << 5) |
1704 ((led
[0] & 1) << 6) | ((led
[2] & 1) << 7);
1705 if (leds
!= (int)hc
->ledstate
) {
1706 HFC_outb_nodebug(hc
, R_GPIO_EN1
, leds
& 0x0F);
1707 HFC_outb_nodebug(hc
, R_GPIO_OUT1
, leds
>> 4);
1708 hc
->ledstate
= leds
;
1713 case 3: /* HFC 1S/2S Beronet */
1714 /* red blinking = PH_DEACTIVATE NT Mode
1715 * red steady = PH_DEACTIVATE TE Mode
1716 * green steady = PH_ACTIVATE
1718 for (i
= 0; i
< 2; i
++) {
1721 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1724 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1730 if (state
== active
) {
1731 led
[i
] = 1; /* led green */
1733 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
)
1734 /* TE mode: led red */
1737 if (hc
->ledcount
>> 11)
1744 led
[i
] = 0; /* led off */
1748 leds
= (led
[0] > 0) | ((led
[1] > 0)<<1) | ((led
[0]&1)<<2)
1750 if (leds
!= (int)hc
->ledstate
) {
1751 HFC_outb_nodebug(hc
, R_GPIO_EN1
,
1752 ((led
[0] > 0) << 2) | ((led
[1] > 0) << 3));
1753 HFC_outb_nodebug(hc
, R_GPIO_OUT1
,
1754 ((led
[0] & 1) << 2) | ((led
[1] & 1) << 3));
1755 hc
->ledstate
= leds
;
1758 case 8: /* HFC 8S+ Beronet */
1761 for (i
= 0; i
< 8; i
++) {
1764 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1767 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1773 if (state
== active
) {
1776 if (hc
->ledcount
>> 11)
1783 leddw
= lled
<< 24 | lled
<< 16 | lled
<< 8 | lled
;
1784 if (leddw
!= hc
->ledstate
) {
1785 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1786 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1787 /* was _io before */
1788 HFC_outb_nodebug(hc
, R_BRG_PCM_CFG
, 1 | V_PCM_CLK
);
1789 outw(0x4000, hc
->pci_iobase
+ 4);
1790 outl(leddw
, hc
->pci_iobase
);
1791 HFC_outb_nodebug(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
1792 hc
->ledstate
= leddw
;
1798 * read dtmf coefficients
1802 hfcmulti_dtmf(struct hfc_multi
*hc
)
1807 struct bchannel
*bch
= NULL
;
1812 struct sk_buff
*skb
;
1813 struct mISDNhead
*hh
;
1815 if (debug
& DEBUG_HFCMULTI_DTMF
)
1816 printk(KERN_DEBUG
"%s: dtmf detection irq\n", __func__
);
1817 for (ch
= 0; ch
<= 31; ch
++) {
1818 /* only process enabled B-channels */
1819 bch
= hc
->chan
[ch
].bch
;
1822 if (!hc
->created
[hc
->chan
[ch
].port
])
1824 if (!test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
1826 if (debug
& DEBUG_HFCMULTI_DTMF
)
1827 printk(KERN_DEBUG
"%s: dtmf channel %d:",
1829 coeff
= &(hc
->chan
[ch
].coeff
[hc
->chan
[ch
].coeff_count
* 16]);
1831 for (co
= 0; co
< 8; co
++) {
1832 /* read W(n-1) coefficient */
1833 addr
= hc
->DTMFbase
+ ((co
<<7) | (ch
<<2));
1834 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, addr
);
1835 HFC_outb_nodebug(hc
, R_RAM_ADDR1
, addr
>>8);
1836 HFC_outb_nodebug(hc
, R_RAM_ADDR2
, (addr
>>16)
1838 w_float
= HFC_inb_nodebug(hc
, R_RAM_DATA
);
1839 w_float
|= (HFC_inb_nodebug(hc
, R_RAM_DATA
) << 8);
1840 if (debug
& DEBUG_HFCMULTI_DTMF
)
1841 printk(" %04x", w_float
);
1843 /* decode float (see chip doc) */
1844 mantissa
= w_float
& 0x0fff;
1845 if (w_float
& 0x8000)
1846 mantissa
|= 0xfffff000;
1847 exponent
= (w_float
>>12) & 0x7;
1850 mantissa
<<= (exponent
-1);
1853 /* store coefficient */
1854 coeff
[co
<<1] = mantissa
;
1856 /* read W(n) coefficient */
1857 w_float
= HFC_inb_nodebug(hc
, R_RAM_DATA
);
1858 w_float
|= (HFC_inb_nodebug(hc
, R_RAM_DATA
) << 8);
1859 if (debug
& DEBUG_HFCMULTI_DTMF
)
1860 printk(" %04x", w_float
);
1862 /* decode float (see chip doc) */
1863 mantissa
= w_float
& 0x0fff;
1864 if (w_float
& 0x8000)
1865 mantissa
|= 0xfffff000;
1866 exponent
= (w_float
>>12) & 0x7;
1869 mantissa
<<= (exponent
-1);
1872 /* store coefficient */
1873 coeff
[(co
<<1)|1] = mantissa
;
1875 if (debug
& DEBUG_HFCMULTI_DTMF
)
1876 printk(" DTMF ready %08x %08x %08x %08x "
1877 "%08x %08x %08x %08x\n",
1878 coeff
[0], coeff
[1], coeff
[2], coeff
[3],
1879 coeff
[4], coeff
[5], coeff
[6], coeff
[7]);
1880 hc
->chan
[ch
].coeff_count
++;
1881 if (hc
->chan
[ch
].coeff_count
== 8) {
1882 hc
->chan
[ch
].coeff_count
= 0;
1883 skb
= mI_alloc_skb(512, GFP_ATOMIC
);
1885 printk(KERN_DEBUG
"%s: No memory for skb\n",
1889 hh
= mISDN_HEAD_P(skb
);
1890 hh
->prim
= PH_CONTROL_IND
;
1891 hh
->id
= DTMF_HFC_COEF
;
1892 memcpy(skb_put(skb
, 512), hc
->chan
[ch
].coeff
, 512);
1893 recv_Bchannel_skb(bch
, skb
);
1897 /* restart DTMF processing */
1900 HFC_outb_nodebug(hc
, R_DTMF
, hc
->hw
.r_dtmf
| V_RST_DTMF
);
1905 * fill fifo as much as possible
1909 hfcmulti_tx(struct hfc_multi
*hc
, int ch
)
1911 int i
, ii
, temp
, len
= 0;
1912 int Zspace
, z1
, z2
; /* must be int for calculation */
1915 int *txpending
, slot_tx
;
1916 struct bchannel
*bch
;
1917 struct dchannel
*dch
;
1918 struct sk_buff
**sp
= NULL
;
1921 bch
= hc
->chan
[ch
].bch
;
1922 dch
= hc
->chan
[ch
].dch
;
1923 if ((!dch
) && (!bch
))
1926 txpending
= &hc
->chan
[ch
].txpending
;
1927 slot_tx
= hc
->chan
[ch
].slot_tx
;
1929 if (!test_bit(FLG_ACTIVE
, &dch
->Flags
))
1932 idxp
= &dch
->tx_idx
;
1934 if (!test_bit(FLG_ACTIVE
, &bch
->Flags
))
1937 idxp
= &bch
->tx_idx
;
1942 if ((!len
) && *txpending
!= 1)
1943 return; /* no data */
1945 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
1946 (hc
->chan
[ch
].protocol
== ISDN_P_B_RAW
) &&
1947 (hc
->chan
[ch
].slot_rx
< 0) &&
1948 (hc
->chan
[ch
].slot_tx
< 0))
1949 HFC_outb_nodebug(hc
, R_FIFO
, 0x20 | (ch
<< 1));
1951 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
1952 HFC_wait_nodebug(hc
);
1954 if (*txpending
== 2) {
1956 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
1957 HFC_wait_nodebug(hc
);
1958 HFC_outb(hc
, A_SUBCH_CFG
, 0);
1962 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
1963 f1
= HFC_inb_nodebug(hc
, A_F1
);
1964 f2
= HFC_inb_nodebug(hc
, A_F2
);
1965 while (f2
!= (temp
= HFC_inb_nodebug(hc
, A_F2
))) {
1966 if (debug
& DEBUG_HFCMULTI_FIFO
)
1968 "%s(card %d): reread f2 because %d!=%d\n",
1969 __func__
, hc
->id
+ 1, temp
, f2
);
1970 f2
= temp
; /* repeat until F2 is equal */
1972 Fspace
= f2
- f1
- 1;
1976 * Old FIFO handling doesn't give us the current Z2 read
1977 * pointer, so we cannot send the next frame before the fifo
1978 * is empty. It makes no difference except for a slightly
1979 * lower performance.
1981 if (test_bit(HFC_CHIP_REVISION0
, &hc
->chip
)) {
1987 /* one frame only for ST D-channels, to allow resending */
1988 if (hc
->ctype
!= HFC_TYPE_E1
&& dch
) {
1992 /* F-counter full condition */
1996 z1
= HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
;
1997 z2
= HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
;
1998 while (z2
!= (temp
= (HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
))) {
1999 if (debug
& DEBUG_HFCMULTI_FIFO
)
2000 printk(KERN_DEBUG
"%s(card %d): reread z2 because "
2001 "%d!=%d\n", __func__
, hc
->id
+ 1, temp
, z2
);
2002 z2
= temp
; /* repeat unti Z2 is equal */
2004 hc
->chan
[ch
].Zfill
= z1
- z2
;
2005 if (hc
->chan
[ch
].Zfill
< 0)
2006 hc
->chan
[ch
].Zfill
+= hc
->Zlen
;
2010 Zspace
-= 4; /* keep not too full, so pointers will not overrun */
2011 /* fill transparent data only to maxinum transparent load (minus 4) */
2012 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2013 Zspace
= Zspace
- hc
->Zlen
+ hc
->max_trans
;
2014 if (Zspace
<= 0) /* no space of 4 bytes */
2019 if (z1
== z2
) { /* empty */
2020 /* if done with FIFO audio data during PCM connection */
2021 if (bch
&& (!test_bit(FLG_HDLC
, &bch
->Flags
)) &&
2022 *txpending
&& slot_tx
>= 0) {
2023 if (debug
& DEBUG_HFCMULTI_MODE
)
2025 "%s: reconnecting PCM due to no "
2026 "more FIFO data: channel %d "
2028 __func__
, ch
, slot_tx
);
2030 if (hc
->ctype
== HFC_TYPE_XHFC
)
2031 HFC_outb(hc
, A_CON_HDLC
, 0xc0
2032 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2033 /* Enable FIFO, no interrupt */
2035 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | 0x00 |
2036 V_HDLC_TRP
| V_IFF
);
2037 HFC_outb_nodebug(hc
, R_FIFO
, ch
<<1 | 1);
2038 HFC_wait_nodebug(hc
);
2039 if (hc
->ctype
== HFC_TYPE_XHFC
)
2040 HFC_outb(hc
, A_CON_HDLC
, 0xc0
2041 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2042 /* Enable FIFO, no interrupt */
2044 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | 0x00 |
2045 V_HDLC_TRP
| V_IFF
);
2046 HFC_outb_nodebug(hc
, R_FIFO
, ch
<<1);
2047 HFC_wait_nodebug(hc
);
2051 return; /* no data */
2054 /* "fill fifo if empty" feature */
2055 if (bch
&& test_bit(FLG_FILLEMPTY
, &bch
->Flags
)
2056 && !test_bit(FLG_HDLC
, &bch
->Flags
) && z2
== z1
) {
2057 if (debug
& DEBUG_HFCMULTI_FILL
)
2058 printk(KERN_DEBUG
"%s: buffer empty, so we have "
2059 "underrun\n", __func__
);
2060 /* fill buffer, to prevent future underrun */
2061 hc
->write_fifo(hc
, hc
->silence_data
, poll
>> 1);
2062 Zspace
-= (poll
>> 1);
2065 /* if audio data and connected slot */
2066 if (bch
&& (!test_bit(FLG_HDLC
, &bch
->Flags
)) && (!*txpending
)
2068 if (debug
& DEBUG_HFCMULTI_MODE
)
2069 printk(KERN_DEBUG
"%s: disconnecting PCM due to "
2070 "FIFO data: channel %d slot_tx %d\n",
2071 __func__
, ch
, slot_tx
);
2072 /* disconnect slot */
2073 if (hc
->ctype
== HFC_TYPE_XHFC
)
2074 HFC_outb(hc
, A_CON_HDLC
, 0x80
2075 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2076 /* Enable FIFO, no interrupt */
2078 HFC_outb(hc
, A_CON_HDLC
, 0x80 | 0x00 |
2079 V_HDLC_TRP
| V_IFF
);
2080 HFC_outb_nodebug(hc
, R_FIFO
, ch
<<1 | 1);
2081 HFC_wait_nodebug(hc
);
2082 if (hc
->ctype
== HFC_TYPE_XHFC
)
2083 HFC_outb(hc
, A_CON_HDLC
, 0x80
2084 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2085 /* Enable FIFO, no interrupt */
2087 HFC_outb(hc
, A_CON_HDLC
, 0x80 | 0x00 |
2088 V_HDLC_TRP
| V_IFF
);
2089 HFC_outb_nodebug(hc
, R_FIFO
, ch
<<1);
2090 HFC_wait_nodebug(hc
);
2095 hc
->activity
[hc
->chan
[ch
].port
] = 1;
2097 /* fill fifo to what we have left */
2099 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
))
2104 d
= (*sp
)->data
+ i
;
2105 if (ii
- i
> Zspace
)
2107 if (debug
& DEBUG_HFCMULTI_FIFO
)
2108 printk(KERN_DEBUG
"%s(card %d): fifo(%d) has %d bytes space "
2109 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2110 __func__
, hc
->id
+ 1, ch
, Zspace
, z1
, z2
, ii
-i
, len
-i
,
2111 temp
? "HDLC" : "TRANS");
2113 /* Have to prep the audio data */
2114 hc
->write_fifo(hc
, d
, ii
- i
);
2115 hc
->chan
[ch
].Zfill
+= ii
- i
;
2118 /* if not all data has been written */
2120 /* NOTE: fifo is started by the calling function */
2124 /* if all data has been written, terminate frame */
2125 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2126 /* increment f-counter */
2127 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_INC_F
);
2128 HFC_wait_nodebug(hc
);
2131 /* send confirm, since get_net_bframe will not do it with trans */
2132 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2135 /* check for next frame */
2137 if (bch
&& get_next_bframe(bch
)) { /* hdlc is confirmed here */
2141 if (dch
&& get_next_dframe(dch
)) {
2147 * now we have no more data, so in case of transparent,
2148 * we set the last byte in fifo to 'silence' in case we will get
2149 * no more data at all. this prevents sending an undefined value.
2151 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2152 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
2156 /* NOTE: only called if E1 card is in active state */
2158 hfcmulti_rx(struct hfc_multi
*hc
, int ch
)
2161 int Zsize
, z1
, z2
= 0; /* = 0, to make GCC happy */
2162 int f1
= 0, f2
= 0; /* = 0, to make GCC happy */
2164 struct bchannel
*bch
;
2165 struct dchannel
*dch
;
2166 struct sk_buff
*skb
, **sp
= NULL
;
2169 bch
= hc
->chan
[ch
].bch
;
2170 dch
= hc
->chan
[ch
].dch
;
2171 if ((!dch
) && (!bch
))
2174 if (!test_bit(FLG_ACTIVE
, &dch
->Flags
))
2177 maxlen
= dch
->maxlen
;
2179 if (!test_bit(FLG_ACTIVE
, &bch
->Flags
))
2182 maxlen
= bch
->maxlen
;
2185 /* on first AND before getting next valid frame, R_FIFO must be written
2187 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
2188 (hc
->chan
[ch
].protocol
== ISDN_P_B_RAW
) &&
2189 (hc
->chan
[ch
].slot_rx
< 0) &&
2190 (hc
->chan
[ch
].slot_tx
< 0))
2191 HFC_outb_nodebug(hc
, R_FIFO
, 0x20 | (ch
<<1) | 1);
2193 HFC_outb_nodebug(hc
, R_FIFO
, (ch
<<1)|1);
2194 HFC_wait_nodebug(hc
);
2196 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2197 if (hc
->chan
[ch
].rx_off
)
2200 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2201 f1
= HFC_inb_nodebug(hc
, A_F1
);
2202 while (f1
!= (temp
= HFC_inb_nodebug(hc
, A_F1
))) {
2203 if (debug
& DEBUG_HFCMULTI_FIFO
)
2205 "%s(card %d): reread f1 because %d!=%d\n",
2206 __func__
, hc
->id
+ 1, temp
, f1
);
2207 f1
= temp
; /* repeat until F1 is equal */
2209 f2
= HFC_inb_nodebug(hc
, A_F2
);
2211 z1
= HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
;
2212 while (z1
!= (temp
= (HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
))) {
2213 if (debug
& DEBUG_HFCMULTI_FIFO
)
2214 printk(KERN_DEBUG
"%s(card %d): reread z2 because "
2215 "%d!=%d\n", __func__
, hc
->id
+ 1, temp
, z2
);
2216 z1
= temp
; /* repeat until Z1 is equal */
2218 z2
= HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
;
2220 if ((dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) && f1
!= f2
)
2221 /* complete hdlc frame */
2225 /* if buffer is empty */
2230 *sp
= mI_alloc_skb(maxlen
+ 3, GFP_ATOMIC
);
2232 printk(KERN_DEBUG
"%s: No mem for rx_skb\n",
2238 hc
->activity
[hc
->chan
[ch
].port
] = 1;
2240 /* empty fifo with what we have */
2241 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2242 if (debug
& DEBUG_HFCMULTI_FIFO
)
2243 printk(KERN_DEBUG
"%s(card %d): fifo(%d) reading %d "
2244 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2245 "got=%d (again %d)\n", __func__
, hc
->id
+ 1, ch
,
2246 Zsize
, z1
, z2
, (f1
== f2
) ? "fragment" : "COMPLETE",
2247 f1
, f2
, Zsize
+ (*sp
)->len
, again
);
2249 if ((Zsize
+ (*sp
)->len
) > (maxlen
+ 3)) {
2250 if (debug
& DEBUG_HFCMULTI_FIFO
)
2252 "%s(card %d): hdlc-frame too large.\n",
2253 __func__
, hc
->id
+ 1);
2255 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
2256 HFC_wait_nodebug(hc
);
2260 hc
->read_fifo(hc
, skb_put(*sp
, Zsize
), Zsize
);
2263 /* increment Z2,F2-counter */
2264 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_INC_F
);
2265 HFC_wait_nodebug(hc
);
2267 if ((*sp
)->len
< 4) {
2268 if (debug
& DEBUG_HFCMULTI_FIFO
)
2270 "%s(card %d): Frame below minimum "
2271 "size\n", __func__
, hc
->id
+ 1);
2275 /* there is at least one complete frame, check crc */
2276 if ((*sp
)->data
[(*sp
)->len
- 1]) {
2277 if (debug
& DEBUG_HFCMULTI_CRC
)
2279 "%s: CRC-error\n", __func__
);
2283 skb_trim(*sp
, (*sp
)->len
- 3);
2284 if ((*sp
)->len
< MISDN_COPY_SIZE
) {
2286 *sp
= mI_alloc_skb(skb
->len
, GFP_ATOMIC
);
2288 memcpy(skb_put(*sp
, skb
->len
),
2289 skb
->data
, skb
->len
);
2292 printk(KERN_DEBUG
"%s: No mem\n",
2300 if (debug
& DEBUG_HFCMULTI_FIFO
) {
2301 printk(KERN_DEBUG
"%s(card %d):",
2302 __func__
, hc
->id
+ 1);
2304 while (temp
< (*sp
)->len
)
2305 printk(" %02x", (*sp
)->data
[temp
++]);
2311 recv_Bchannel(bch
, MISDN_ID_ANY
);
2316 /* there is an incomplete frame */
2319 if (Zsize
> skb_tailroom(*sp
))
2320 Zsize
= skb_tailroom(*sp
);
2321 hc
->read_fifo(hc
, skb_put(*sp
, Zsize
), Zsize
);
2322 if (((*sp
)->len
) < MISDN_COPY_SIZE
) {
2324 *sp
= mI_alloc_skb(skb
->len
, GFP_ATOMIC
);
2326 memcpy(skb_put(*sp
, skb
->len
),
2327 skb
->data
, skb
->len
);
2330 printk(KERN_DEBUG
"%s: No mem\n", __func__
);
2337 if (debug
& DEBUG_HFCMULTI_FIFO
)
2339 "%s(card %d): fifo(%d) reading %d bytes "
2340 "(z1=%04x, z2=%04x) TRANS\n",
2341 __func__
, hc
->id
+ 1, ch
, Zsize
, z1
, z2
);
2342 /* only bch is transparent */
2343 recv_Bchannel(bch
, hc
->chan
[ch
].Zfill
);
2353 signal_state_up(struct dchannel
*dch
, int info
, char *msg
)
2355 struct sk_buff
*skb
;
2356 int id
, data
= info
;
2358 if (debug
& DEBUG_HFCMULTI_STATE
)
2359 printk(KERN_DEBUG
"%s: %s\n", __func__
, msg
);
2361 id
= TEI_SAPI
| (GROUP_TEI
<< 8); /* manager address */
2363 skb
= _alloc_mISDN_skb(MPH_INFORMATION_IND
, id
, sizeof(data
), &data
,
2367 recv_Dchannel_skb(dch
, skb
);
2371 handle_timer_irq(struct hfc_multi
*hc
)
2374 struct dchannel
*dch
;
2377 /* process queued resync jobs */
2378 if (hc
->e1_resync
) {
2379 /* lock, so e1_resync gets not changed */
2380 spin_lock_irqsave(&HFClock
, flags
);
2381 if (hc
->e1_resync
& 1) {
2382 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2383 printk(KERN_DEBUG
"Enable SYNC_I\n");
2384 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
);
2385 /* disable JATT, if RX_SYNC is set */
2386 if (test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
))
2387 HFC_outb(hc
, R_SYNC_OUT
, V_SYNC_E1_RX
);
2389 if (hc
->e1_resync
& 2) {
2390 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2391 printk(KERN_DEBUG
"Enable jatt PLL\n");
2392 HFC_outb(hc
, R_SYNC_CTRL
, V_SYNC_OFFS
);
2394 if (hc
->e1_resync
& 4) {
2395 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2397 "Enable QUARTZ for HFC-E1\n");
2398 /* set jatt to quartz */
2399 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
2401 /* switch to JATT, in case it is not already */
2402 HFC_outb(hc
, R_SYNC_OUT
, 0);
2405 spin_unlock_irqrestore(&HFClock
, flags
);
2408 if (hc
->ctype
!= HFC_TYPE_E1
|| hc
->e1_state
== 1)
2409 for (ch
= 0; ch
<= 31; ch
++) {
2410 if (hc
->created
[hc
->chan
[ch
].port
]) {
2411 hfcmulti_tx(hc
, ch
);
2412 /* fifo is started when switching to rx-fifo */
2413 hfcmulti_rx(hc
, ch
);
2414 if (hc
->chan
[ch
].dch
&&
2415 hc
->chan
[ch
].nt_timer
> -1) {
2416 dch
= hc
->chan
[ch
].dch
;
2417 if (!(--hc
->chan
[ch
].nt_timer
)) {
2421 DEBUG_HFCMULTI_STATE
)
2431 if (hc
->ctype
== HFC_TYPE_E1
&& hc
->created
[0]) {
2432 dch
= hc
->chan
[hc
->dslot
].dch
;
2433 if (test_bit(HFC_CFG_REPORT_LOS
, &hc
->chan
[hc
->dslot
].cfg
)) {
2435 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
) & V_SIG_LOS
;
2436 if (!temp
&& hc
->chan
[hc
->dslot
].los
)
2437 signal_state_up(dch
, L1_SIGNAL_LOS_ON
,
2439 if (temp
&& !hc
->chan
[hc
->dslot
].los
)
2440 signal_state_up(dch
, L1_SIGNAL_LOS_OFF
,
2442 hc
->chan
[hc
->dslot
].los
= temp
;
2444 if (test_bit(HFC_CFG_REPORT_AIS
, &hc
->chan
[hc
->dslot
].cfg
)) {
2446 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
) & V_AIS
;
2447 if (!temp
&& hc
->chan
[hc
->dslot
].ais
)
2448 signal_state_up(dch
, L1_SIGNAL_AIS_ON
,
2450 if (temp
&& !hc
->chan
[hc
->dslot
].ais
)
2451 signal_state_up(dch
, L1_SIGNAL_AIS_OFF
,
2453 hc
->chan
[hc
->dslot
].ais
= temp
;
2455 if (test_bit(HFC_CFG_REPORT_SLIP
, &hc
->chan
[hc
->dslot
].cfg
)) {
2457 temp
= HFC_inb_nodebug(hc
, R_SLIP
) & V_FOSLIP_RX
;
2458 if (!temp
&& hc
->chan
[hc
->dslot
].slip_rx
)
2459 signal_state_up(dch
, L1_SIGNAL_SLIP_RX
,
2460 " bit SLIP detected RX");
2461 hc
->chan
[hc
->dslot
].slip_rx
= temp
;
2462 temp
= HFC_inb_nodebug(hc
, R_SLIP
) & V_FOSLIP_TX
;
2463 if (!temp
&& hc
->chan
[hc
->dslot
].slip_tx
)
2464 signal_state_up(dch
, L1_SIGNAL_SLIP_TX
,
2465 " bit SLIP detected TX");
2466 hc
->chan
[hc
->dslot
].slip_tx
= temp
;
2468 if (test_bit(HFC_CFG_REPORT_RDI
, &hc
->chan
[hc
->dslot
].cfg
)) {
2470 temp
= HFC_inb_nodebug(hc
, R_RX_SL0_0
) & V_A
;
2471 if (!temp
&& hc
->chan
[hc
->dslot
].rdi
)
2472 signal_state_up(dch
, L1_SIGNAL_RDI_ON
,
2474 if (temp
&& !hc
->chan
[hc
->dslot
].rdi
)
2475 signal_state_up(dch
, L1_SIGNAL_RDI_OFF
,
2477 hc
->chan
[hc
->dslot
].rdi
= temp
;
2479 temp
= HFC_inb_nodebug(hc
, R_JATT_DIR
);
2480 switch (hc
->chan
[hc
->dslot
].sync
) {
2482 if ((temp
& 0x60) == 0x60) {
2483 if (debug
& DEBUG_HFCMULTI_SYNC
)
2485 "%s: (id=%d) E1 now "
2488 HFC_outb(hc
, R_RX_OFF
,
2489 hc
->chan
[hc
->dslot
].jitter
| V_RX_INIT
);
2490 HFC_outb(hc
, R_TX_OFF
,
2491 hc
->chan
[hc
->dslot
].jitter
| V_RX_INIT
);
2492 hc
->chan
[hc
->dslot
].sync
= 1;
2493 goto check_framesync
;
2497 if ((temp
& 0x60) != 0x60) {
2498 if (debug
& DEBUG_HFCMULTI_SYNC
)
2501 "lost clock sync\n",
2503 hc
->chan
[hc
->dslot
].sync
= 0;
2507 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2509 if (debug
& DEBUG_HFCMULTI_SYNC
)
2512 "now in frame sync\n",
2514 hc
->chan
[hc
->dslot
].sync
= 2;
2518 if ((temp
& 0x60) != 0x60) {
2519 if (debug
& DEBUG_HFCMULTI_SYNC
)
2521 "%s: (id=%d) E1 lost "
2522 "clock & frame sync\n",
2524 hc
->chan
[hc
->dslot
].sync
= 0;
2527 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2529 if (debug
& DEBUG_HFCMULTI_SYNC
)
2532 "lost frame sync\n",
2534 hc
->chan
[hc
->dslot
].sync
= 1;
2540 if (test_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
))
2541 hfcmulti_watchdog(hc
);
2548 ph_state_irq(struct hfc_multi
*hc
, u_char r_irq_statech
)
2550 struct dchannel
*dch
;
2553 u_char st_status
, temp
;
2556 for (ch
= 0; ch
<= 31; ch
++) {
2557 if (hc
->chan
[ch
].dch
) {
2558 dch
= hc
->chan
[ch
].dch
;
2559 if (r_irq_statech
& 1) {
2560 HFC_outb_nodebug(hc
, R_ST_SEL
,
2562 /* undocumented: delay after R_ST_SEL */
2564 /* undocumented: status changes during read */
2565 st_status
= HFC_inb_nodebug(hc
, A_ST_RD_STATE
);
2566 while (st_status
!= (temp
=
2567 HFC_inb_nodebug(hc
, A_ST_RD_STATE
))) {
2568 if (debug
& DEBUG_HFCMULTI_STATE
)
2569 printk(KERN_DEBUG
"%s: reread "
2570 "STATE because %d!=%d\n",
2573 st_status
= temp
; /* repeat */
2576 /* Speech Design TE-sync indication */
2577 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
) &&
2578 dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) {
2579 if (st_status
& V_FR_SYNC_ST
)
2581 (1 << hc
->chan
[ch
].port
);
2584 ~(1 << hc
->chan
[ch
].port
);
2586 dch
->state
= st_status
& 0x0f;
2587 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
2591 if (dch
->state
== active
) {
2592 HFC_outb_nodebug(hc
, R_FIFO
,
2594 HFC_wait_nodebug(hc
);
2595 HFC_outb_nodebug(hc
,
2596 R_INC_RES_FIFO
, V_RES_F
);
2597 HFC_wait_nodebug(hc
);
2600 schedule_event(dch
, FLG_PHCHANGE
);
2601 if (debug
& DEBUG_HFCMULTI_STATE
)
2603 "%s: S/T newstate %x port %d\n",
2604 __func__
, dch
->state
,
2607 r_irq_statech
>>= 1;
2610 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
2611 plxsd_checksync(hc
, 0);
2615 fifo_irq(struct hfc_multi
*hc
, int block
)
2618 struct dchannel
*dch
;
2619 struct bchannel
*bch
;
2620 u_char r_irq_fifo_bl
;
2622 r_irq_fifo_bl
= HFC_inb_nodebug(hc
, R_IRQ_FIFO_BL0
+ block
);
2625 ch
= (block
<< 2) + (j
>> 1);
2626 dch
= hc
->chan
[ch
].dch
;
2627 bch
= hc
->chan
[ch
].bch
;
2628 if (((!dch
) && (!bch
)) || (!hc
->created
[hc
->chan
[ch
].port
])) {
2632 if (dch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2633 test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
2634 hfcmulti_tx(hc
, ch
);
2636 HFC_outb_nodebug(hc
, R_FIFO
, 0);
2637 HFC_wait_nodebug(hc
);
2639 if (bch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2640 test_bit(FLG_ACTIVE
, &bch
->Flags
)) {
2641 hfcmulti_tx(hc
, ch
);
2643 HFC_outb_nodebug(hc
, R_FIFO
, 0);
2644 HFC_wait_nodebug(hc
);
2647 if (dch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2648 test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
2649 hfcmulti_rx(hc
, ch
);
2651 if (bch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2652 test_bit(FLG_ACTIVE
, &bch
->Flags
)) {
2653 hfcmulti_rx(hc
, ch
);
2663 hfcmulti_interrupt(int intno
, void *dev_id
)
2665 #ifdef IRQCOUNT_DEBUG
2666 static int iq1
= 0, iq2
= 0, iq3
= 0, iq4
= 0,
2667 iq5
= 0, iq6
= 0, iqcnt
= 0;
2669 struct hfc_multi
*hc
= dev_id
;
2670 struct dchannel
*dch
;
2671 u_char r_irq_statech
, status
, r_irq_misc
, r_irq_oview
;
2673 void __iomem
*plx_acc
;
2675 u_char e1_syncsta
, temp
;
2679 printk(KERN_ERR
"HFC-multi: Spurious interrupt!\n");
2683 spin_lock(&hc
->lock
);
2687 printk(KERN_ERR
"irq for card %d during irq from "
2688 "card %d, this is no bug.\n", hc
->id
+ 1, irqsem
);
2689 irqsem
= hc
->id
+ 1;
2691 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2692 if (hc
->immap
->im_cpm
.cp_pbdat
& hc
->pb_irqmsk
)
2695 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
2696 spin_lock_irqsave(&plx_lock
, flags
);
2697 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
2698 wval
= readw(plx_acc
);
2699 spin_unlock_irqrestore(&plx_lock
, flags
);
2700 if (!(wval
& PLX_INTCSR_LINTI1_STATUS
))
2704 status
= HFC_inb_nodebug(hc
, R_STATUS
);
2705 r_irq_statech
= HFC_inb_nodebug(hc
, R_IRQ_STATECH
);
2706 #ifdef IRQCOUNT_DEBUG
2709 if (status
& V_DTMF_STA
)
2711 if (status
& V_LOST_STA
)
2713 if (status
& V_EXT_IRQSTA
)
2715 if (status
& V_MISC_IRQSTA
)
2717 if (status
& V_FR_IRQSTA
)
2719 if (iqcnt
++ > 5000) {
2720 printk(KERN_ERR
"iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2721 iq1
, iq2
, iq3
, iq4
, iq5
, iq6
);
2726 if (!r_irq_statech
&&
2727 !(status
& (V_DTMF_STA
| V_LOST_STA
| V_EXT_IRQSTA
|
2728 V_MISC_IRQSTA
| V_FR_IRQSTA
))) {
2729 /* irq is not for us */
2733 if (r_irq_statech
) {
2734 if (hc
->ctype
!= HFC_TYPE_E1
)
2735 ph_state_irq(hc
, r_irq_statech
);
2737 if (status
& V_EXT_IRQSTA
)
2738 ; /* external IRQ */
2739 if (status
& V_LOST_STA
) {
2741 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_LOST
); /* clear irq! */
2743 if (status
& V_MISC_IRQSTA
) {
2745 r_irq_misc
= HFC_inb_nodebug(hc
, R_IRQ_MISC
);
2746 r_irq_misc
&= hc
->hw
.r_irqmsk_misc
; /* ignore disabled irqs */
2747 if (r_irq_misc
& V_STA_IRQ
) {
2748 if (hc
->ctype
== HFC_TYPE_E1
) {
2750 dch
= hc
->chan
[hc
->dslot
].dch
;
2751 e1_syncsta
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2752 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)
2753 && hc
->e1_getclock
) {
2754 if (e1_syncsta
& V_FR_SYNC_E1
)
2755 hc
->syncronized
= 1;
2757 hc
->syncronized
= 0;
2759 /* undocumented: status changes during read */
2760 dch
->state
= HFC_inb_nodebug(hc
, R_E1_RD_STA
);
2761 while (dch
->state
!= (temp
=
2762 HFC_inb_nodebug(hc
, R_E1_RD_STA
))) {
2763 if (debug
& DEBUG_HFCMULTI_STATE
)
2764 printk(KERN_DEBUG
"%s: reread "
2765 "STATE because %d!=%d\n",
2768 dch
->state
= temp
; /* repeat */
2770 dch
->state
= HFC_inb_nodebug(hc
, R_E1_RD_STA
)
2772 schedule_event(dch
, FLG_PHCHANGE
);
2773 if (debug
& DEBUG_HFCMULTI_STATE
)
2775 "%s: E1 (id=%d) newstate %x\n",
2776 __func__
, hc
->id
, dch
->state
);
2777 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
2778 plxsd_checksync(hc
, 0);
2781 if (r_irq_misc
& V_TI_IRQ
) {
2783 mISDN_clock_update(hc
->iclock
, poll
, NULL
);
2784 handle_timer_irq(hc
);
2787 if (r_irq_misc
& V_DTMF_IRQ
)
2790 if (r_irq_misc
& V_IRQ_PROC
) {
2791 static int irq_proc_cnt
;
2792 if (!irq_proc_cnt
++)
2793 printk(KERN_DEBUG
"%s: got V_IRQ_PROC -"
2794 " this should not happen\n", __func__
);
2798 if (status
& V_FR_IRQSTA
) {
2800 r_irq_oview
= HFC_inb_nodebug(hc
, R_IRQ_OVIEW
);
2801 for (i
= 0; i
< 8; i
++) {
2802 if (r_irq_oview
& (1 << i
))
2810 spin_unlock(&hc
->lock
);
2817 spin_unlock(&hc
->lock
);
2823 * timer callback for D-chan busy resolution. Currently no function
2827 hfcmulti_dbusy_timer(struct hfc_multi
*hc
)
2833 * activate/deactivate hardware for selected channels and mode
2835 * configure B-channel with the given protocol
2836 * ch eqals to the HFC-channel (0-31)
2837 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2838 * for S/T, 1-31 for E1)
2839 * the hdlc interrupts will be set/unset
2842 mode_hfcmulti(struct hfc_multi
*hc
, int ch
, int protocol
, int slot_tx
,
2843 int bank_tx
, int slot_rx
, int bank_rx
)
2845 int flow_tx
= 0, flow_rx
= 0, routing
= 0;
2846 int oslot_tx
, oslot_rx
;
2849 if (ch
< 0 || ch
> 31)
2851 oslot_tx
= hc
->chan
[ch
].slot_tx
;
2852 oslot_rx
= hc
->chan
[ch
].slot_rx
;
2853 conf
= hc
->chan
[ch
].conf
;
2855 if (debug
& DEBUG_HFCMULTI_MODE
)
2857 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2858 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2859 __func__
, hc
->id
, ch
, protocol
, oslot_tx
, slot_tx
,
2860 bank_tx
, oslot_rx
, slot_rx
, bank_rx
);
2862 if (oslot_tx
>= 0 && slot_tx
!= oslot_tx
) {
2863 /* remove from slot */
2864 if (debug
& DEBUG_HFCMULTI_MODE
)
2865 printk(KERN_DEBUG
"%s: remove from slot %d (TX)\n",
2866 __func__
, oslot_tx
);
2867 if (hc
->slot_owner
[oslot_tx
<<1] == ch
) {
2868 HFC_outb(hc
, R_SLOT
, oslot_tx
<< 1);
2869 HFC_outb(hc
, A_SL_CFG
, 0);
2870 if (hc
->ctype
!= HFC_TYPE_XHFC
)
2871 HFC_outb(hc
, A_CONF
, 0);
2872 hc
->slot_owner
[oslot_tx
<<1] = -1;
2874 if (debug
& DEBUG_HFCMULTI_MODE
)
2876 "%s: we are not owner of this tx slot "
2877 "anymore, channel %d is.\n",
2878 __func__
, hc
->slot_owner
[oslot_tx
<<1]);
2882 if (oslot_rx
>= 0 && slot_rx
!= oslot_rx
) {
2883 /* remove from slot */
2884 if (debug
& DEBUG_HFCMULTI_MODE
)
2886 "%s: remove from slot %d (RX)\n",
2887 __func__
, oslot_rx
);
2888 if (hc
->slot_owner
[(oslot_rx
<< 1) | 1] == ch
) {
2889 HFC_outb(hc
, R_SLOT
, (oslot_rx
<< 1) | V_SL_DIR
);
2890 HFC_outb(hc
, A_SL_CFG
, 0);
2891 hc
->slot_owner
[(oslot_rx
<< 1) | 1] = -1;
2893 if (debug
& DEBUG_HFCMULTI_MODE
)
2895 "%s: we are not owner of this rx slot "
2896 "anymore, channel %d is.\n",
2898 hc
->slot_owner
[(oslot_rx
<< 1) | 1]);
2903 flow_tx
= 0x80; /* FIFO->ST */
2904 /* disable pcm slot */
2905 hc
->chan
[ch
].slot_tx
= -1;
2906 hc
->chan
[ch
].bank_tx
= 0;
2909 if (hc
->chan
[ch
].txpending
)
2910 flow_tx
= 0x80; /* FIFO->ST */
2912 flow_tx
= 0xc0; /* PCM->ST */
2914 routing
= bank_tx
? 0xc0 : 0x80;
2915 if (conf
>= 0 || bank_tx
> 1)
2916 routing
= 0x40; /* loop */
2917 if (debug
& DEBUG_HFCMULTI_MODE
)
2918 printk(KERN_DEBUG
"%s: put channel %d to slot %d bank"
2919 " %d flow %02x routing %02x conf %d (TX)\n",
2920 __func__
, ch
, slot_tx
, bank_tx
,
2921 flow_tx
, routing
, conf
);
2922 HFC_outb(hc
, R_SLOT
, slot_tx
<< 1);
2923 HFC_outb(hc
, A_SL_CFG
, (ch
<<1) | routing
);
2924 if (hc
->ctype
!= HFC_TYPE_XHFC
)
2925 HFC_outb(hc
, A_CONF
,
2926 (conf
< 0) ? 0 : (conf
| V_CONF_SL
));
2927 hc
->slot_owner
[slot_tx
<< 1] = ch
;
2928 hc
->chan
[ch
].slot_tx
= slot_tx
;
2929 hc
->chan
[ch
].bank_tx
= bank_tx
;
2932 /* disable pcm slot */
2933 flow_rx
= 0x80; /* ST->FIFO */
2934 hc
->chan
[ch
].slot_rx
= -1;
2935 hc
->chan
[ch
].bank_rx
= 0;
2938 if (hc
->chan
[ch
].txpending
)
2939 flow_rx
= 0x80; /* ST->FIFO */
2941 flow_rx
= 0xc0; /* ST->(FIFO,PCM) */
2943 routing
= bank_rx
? 0x80 : 0xc0; /* reversed */
2944 if (conf
>= 0 || bank_rx
> 1)
2945 routing
= 0x40; /* loop */
2946 if (debug
& DEBUG_HFCMULTI_MODE
)
2947 printk(KERN_DEBUG
"%s: put channel %d to slot %d bank"
2948 " %d flow %02x routing %02x conf %d (RX)\n",
2949 __func__
, ch
, slot_rx
, bank_rx
,
2950 flow_rx
, routing
, conf
);
2951 HFC_outb(hc
, R_SLOT
, (slot_rx
<<1) | V_SL_DIR
);
2952 HFC_outb(hc
, A_SL_CFG
, (ch
<<1) | V_CH_DIR
| routing
);
2953 hc
->slot_owner
[(slot_rx
<<1)|1] = ch
;
2954 hc
->chan
[ch
].slot_rx
= slot_rx
;
2955 hc
->chan
[ch
].bank_rx
= bank_rx
;
2960 /* disable TX fifo */
2961 HFC_outb(hc
, R_FIFO
, ch
<< 1);
2963 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x00 | V_IFF
);
2964 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2965 HFC_outb(hc
, A_IRQ_MSK
, 0);
2966 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2968 /* disable RX fifo */
2969 HFC_outb(hc
, R_FIFO
, (ch
<<1)|1);
2971 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x00);
2972 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2973 HFC_outb(hc
, A_IRQ_MSK
, 0);
2974 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2976 if (hc
->chan
[ch
].bch
&& hc
->ctype
!= HFC_TYPE_E1
) {
2977 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] &=
2978 ((ch
& 0x3) == 0) ? ~V_B1_EN
: ~V_B2_EN
;
2979 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
2980 /* undocumented: delay after R_ST_SEL */
2982 HFC_outb(hc
, A_ST_CTRL0
,
2983 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
2985 if (hc
->chan
[ch
].bch
) {
2986 test_and_clear_bit(FLG_HDLC
, &hc
->chan
[ch
].bch
->Flags
);
2987 test_and_clear_bit(FLG_TRANSPARENT
,
2988 &hc
->chan
[ch
].bch
->Flags
);
2991 case (ISDN_P_B_RAW
): /* B-channel */
2993 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
2994 (hc
->chan
[ch
].slot_rx
< 0) &&
2995 (hc
->chan
[ch
].slot_tx
< 0)) {
2998 "Setting B-channel %d to echo cancelable "
2999 "state on PCM slot %d\n", ch
,
3000 ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1);
3002 "Enabling pass through for channel\n");
3003 vpm_out(hc
, ch
, ((ch
/ 4) * 8) +
3004 ((ch
% 4) * 4) + 1, 0x01);
3007 HFC_outb(hc
, R_FIFO
, (ch
<< 1));
3009 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | V_HDLC_TRP
| V_IFF
);
3010 HFC_outb(hc
, R_SLOT
, (((ch
/ 4) * 8) +
3011 ((ch
% 4) * 4) + 1) << 1);
3012 HFC_outb(hc
, A_SL_CFG
, 0x80 | (ch
<< 1));
3015 HFC_outb(hc
, R_FIFO
, 0x20 | (ch
<< 1) | 1);
3017 HFC_outb(hc
, A_CON_HDLC
, 0x20 | V_HDLC_TRP
| V_IFF
);
3018 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3019 HFC_outb(hc
, A_IRQ_MSK
, 0);
3020 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3022 HFC_outb(hc
, R_SLOT
, ((((ch
/ 4) * 8) +
3023 ((ch
% 4) * 4) + 1) << 1) | 1);
3024 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x20 | (ch
<< 1) | 1);
3028 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3030 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | V_HDLC_TRP
| V_IFF
);
3031 HFC_outb(hc
, R_SLOT
, ((((ch
/ 4) * 8) +
3032 ((ch
% 4) * 4)) << 1) | 1);
3033 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x40 | (ch
<< 1) | 1);
3036 HFC_outb(hc
, R_FIFO
, 0x20 | (ch
<< 1));
3038 HFC_outb(hc
, A_CON_HDLC
, 0x20 | V_HDLC_TRP
| V_IFF
);
3039 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3040 HFC_outb(hc
, A_IRQ_MSK
, 0);
3041 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3044 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
3045 HFC_outb(hc
, R_SLOT
, (((ch
/ 4) * 8) +
3046 ((ch
% 4) * 4)) << 1);
3047 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x20 | (ch
<< 1));
3049 /* enable TX fifo */
3050 HFC_outb(hc
, R_FIFO
, ch
<< 1);
3052 if (hc
->ctype
== HFC_TYPE_XHFC
)
3053 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x07 << 2 |
3054 V_HDLC_TRP
| V_IFF
);
3055 /* Enable FIFO, no interrupt */
3057 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x00 |
3058 V_HDLC_TRP
| V_IFF
);
3059 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3060 HFC_outb(hc
, A_IRQ_MSK
, 0);
3061 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3064 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
3065 /* enable RX fifo */
3066 HFC_outb(hc
, R_FIFO
, (ch
<<1)|1);
3068 if (hc
->ctype
== HFC_TYPE_XHFC
)
3069 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x07 << 2 |
3071 /* Enable FIFO, no interrupt*/
3073 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x00 |
3075 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3076 HFC_outb(hc
, A_IRQ_MSK
, 0);
3077 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3080 if (hc
->ctype
!= HFC_TYPE_E1
) {
3081 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] |=
3082 ((ch
& 0x3) == 0) ? V_B1_EN
: V_B2_EN
;
3083 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3084 /* undocumented: delay after R_ST_SEL */
3086 HFC_outb(hc
, A_ST_CTRL0
,
3087 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3089 if (hc
->chan
[ch
].bch
)
3090 test_and_set_bit(FLG_TRANSPARENT
,
3091 &hc
->chan
[ch
].bch
->Flags
);
3093 case (ISDN_P_B_HDLC
): /* B-channel */
3094 case (ISDN_P_TE_S0
): /* D-channel */
3095 case (ISDN_P_NT_S0
):
3096 case (ISDN_P_TE_E1
):
3097 case (ISDN_P_NT_E1
):
3098 /* enable TX fifo */
3099 HFC_outb(hc
, R_FIFO
, ch
<<1);
3101 if (hc
->ctype
== HFC_TYPE_E1
|| hc
->chan
[ch
].bch
) {
3102 /* E1 or B-channel */
3103 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x04);
3104 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3106 /* D-Channel without HDLC fill flags */
3107 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x04 | V_IFF
);
3108 HFC_outb(hc
, A_SUBCH_CFG
, 2);
3110 HFC_outb(hc
, A_IRQ_MSK
, V_IRQ
);
3111 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3113 /* enable RX fifo */
3114 HFC_outb(hc
, R_FIFO
, (ch
<<1)|1);
3116 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x04);
3117 if (hc
->ctype
== HFC_TYPE_E1
|| hc
->chan
[ch
].bch
)
3118 HFC_outb(hc
, A_SUBCH_CFG
, 0); /* full 8 bits */
3120 HFC_outb(hc
, A_SUBCH_CFG
, 2); /* 2 bits dchannel */
3121 HFC_outb(hc
, A_IRQ_MSK
, V_IRQ
);
3122 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3124 if (hc
->chan
[ch
].bch
) {
3125 test_and_set_bit(FLG_HDLC
, &hc
->chan
[ch
].bch
->Flags
);
3126 if (hc
->ctype
!= HFC_TYPE_E1
) {
3127 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] |=
3128 ((ch
&0x3) == 0) ? V_B1_EN
: V_B2_EN
;
3129 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3130 /* undocumented: delay after R_ST_SEL */
3132 HFC_outb(hc
, A_ST_CTRL0
,
3133 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3138 printk(KERN_DEBUG
"%s: protocol not known %x\n",
3139 __func__
, protocol
);
3140 hc
->chan
[ch
].protocol
= ISDN_P_NONE
;
3141 return -ENOPROTOOPT
;
3143 hc
->chan
[ch
].protocol
= protocol
;
3149 * connect/disconnect PCM
3153 hfcmulti_pcm(struct hfc_multi
*hc
, int ch
, int slot_tx
, int bank_tx
,
3154 int slot_rx
, int bank_rx
)
3156 if (slot_tx
< 0 || slot_rx
< 0 || bank_tx
< 0 || bank_rx
< 0) {
3158 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, -1, 0, -1, 0);
3163 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, slot_tx
, bank_tx
,
3168 * set/disable conference
3172 hfcmulti_conf(struct hfc_multi
*hc
, int ch
, int num
)
3174 if (num
>= 0 && num
<= 7)
3175 hc
->chan
[ch
].conf
= num
;
3177 hc
->chan
[ch
].conf
= -1;
3178 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, hc
->chan
[ch
].slot_tx
,
3179 hc
->chan
[ch
].bank_tx
, hc
->chan
[ch
].slot_rx
,
3180 hc
->chan
[ch
].bank_rx
);
3185 * set/disable sample loop
3188 /* NOTE: this function is experimental and therefore disabled */
3191 * Layer 1 callback function
3194 hfcm_l1callback(struct dchannel
*dch
, u_int cmd
)
3196 struct hfc_multi
*hc
= dch
->hw
;
3204 /* start activation */
3205 spin_lock_irqsave(&hc
->lock
, flags
);
3206 if (hc
->ctype
== HFC_TYPE_E1
) {
3207 if (debug
& DEBUG_HFCMULTI_MSG
)
3209 "%s: HW_RESET_REQ no BRI\n",
3212 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3213 /* undocumented: delay after R_ST_SEL */
3215 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_LD_STA
| 3); /* F3 */
3216 udelay(6); /* wait at least 5,21us */
3217 HFC_outb(hc
, A_ST_WR_STATE
, 3);
3218 HFC_outb(hc
, A_ST_WR_STATE
, 3 | (V_ST_ACT
*3));
3221 spin_unlock_irqrestore(&hc
->lock
, flags
);
3222 l1_event(dch
->l1
, HW_POWERUP_IND
);
3225 /* start deactivation */
3226 spin_lock_irqsave(&hc
->lock
, flags
);
3227 if (hc
->ctype
== HFC_TYPE_E1
) {
3228 if (debug
& DEBUG_HFCMULTI_MSG
)
3230 "%s: HW_DEACT_REQ no BRI\n",
3233 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3234 /* undocumented: delay after R_ST_SEL */
3236 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_ACT
*2);
3238 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3240 ~(1 << hc
->chan
[dch
->slot
].port
);
3241 plxsd_checksync(hc
, 0);
3244 skb_queue_purge(&dch
->squeue
);
3246 dev_kfree_skb(dch
->tx_skb
);
3251 dev_kfree_skb(dch
->rx_skb
);
3254 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
3255 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
3256 del_timer(&dch
->timer
);
3257 spin_unlock_irqrestore(&hc
->lock
, flags
);
3259 case HW_POWERUP_REQ
:
3260 spin_lock_irqsave(&hc
->lock
, flags
);
3261 if (hc
->ctype
== HFC_TYPE_E1
) {
3262 if (debug
& DEBUG_HFCMULTI_MSG
)
3264 "%s: HW_POWERUP_REQ no BRI\n",
3267 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3268 /* undocumented: delay after R_ST_SEL */
3270 HFC_outb(hc
, A_ST_WR_STATE
, 3 | 0x10); /* activate */
3271 udelay(6); /* wait at least 5,21us */
3272 HFC_outb(hc
, A_ST_WR_STATE
, 3); /* activate */
3274 spin_unlock_irqrestore(&hc
->lock
, flags
);
3276 case PH_ACTIVATE_IND
:
3277 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3278 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
3281 case PH_DEACTIVATE_IND
:
3282 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3283 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
3287 if (dch
->debug
& DEBUG_HW
)
3288 printk(KERN_DEBUG
"%s: unknown command %x\n",
3296 * Layer2 -> Layer 1 Transfer
3300 handle_dmsg(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
3302 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
3303 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
3304 struct hfc_multi
*hc
= dch
->hw
;
3305 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
3314 spin_lock_irqsave(&hc
->lock
, flags
);
3315 ret
= dchannel_senddata(dch
, skb
);
3316 if (ret
> 0) { /* direct TX */
3317 id
= hh
->id
; /* skb can be freed */
3318 hfcmulti_tx(hc
, dch
->slot
);
3321 HFC_outb(hc
, R_FIFO
, 0);
3323 spin_unlock_irqrestore(&hc
->lock
, flags
);
3324 queue_ch_frame(ch
, PH_DATA_CNF
, id
, NULL
);
3326 spin_unlock_irqrestore(&hc
->lock
, flags
);
3328 case PH_ACTIVATE_REQ
:
3329 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
3330 spin_lock_irqsave(&hc
->lock
, flags
);
3332 if (debug
& DEBUG_HFCMULTI_MSG
)
3334 "%s: PH_ACTIVATE port %d (0..%d)\n",
3335 __func__
, hc
->chan
[dch
->slot
].port
,
3337 /* start activation */
3338 if (hc
->ctype
== HFC_TYPE_E1
) {
3339 ph_state_change(dch
);
3340 if (debug
& DEBUG_HFCMULTI_STATE
)
3342 "%s: E1 report state %x \n",
3343 __func__
, dch
->state
);
3345 HFC_outb(hc
, R_ST_SEL
,
3346 hc
->chan
[dch
->slot
].port
);
3347 /* undocumented: delay after R_ST_SEL */
3349 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_LD_STA
| 1);
3351 udelay(6); /* wait at least 5,21us */
3352 HFC_outb(hc
, A_ST_WR_STATE
, 1);
3353 HFC_outb(hc
, A_ST_WR_STATE
, 1 |
3354 (V_ST_ACT
*3)); /* activate */
3357 spin_unlock_irqrestore(&hc
->lock
, flags
);
3359 ret
= l1_event(dch
->l1
, hh
->prim
);
3361 case PH_DEACTIVATE_REQ
:
3362 test_and_clear_bit(FLG_L2_ACTIVATED
, &dch
->Flags
);
3363 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
3364 spin_lock_irqsave(&hc
->lock
, flags
);
3365 if (debug
& DEBUG_HFCMULTI_MSG
)
3367 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3368 __func__
, hc
->chan
[dch
->slot
].port
,
3370 /* start deactivation */
3371 if (hc
->ctype
== HFC_TYPE_E1
) {
3372 if (debug
& DEBUG_HFCMULTI_MSG
)
3374 "%s: PH_DEACTIVATE no BRI\n",
3377 HFC_outb(hc
, R_ST_SEL
,
3378 hc
->chan
[dch
->slot
].port
);
3379 /* undocumented: delay after R_ST_SEL */
3381 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_ACT
* 2);
3385 skb_queue_purge(&dch
->squeue
);
3387 dev_kfree_skb(dch
->tx_skb
);
3392 dev_kfree_skb(dch
->rx_skb
);
3395 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
3396 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
3397 del_timer(&dch
->timer
);
3399 if (test_and_clear_bit(FLG_L1_BUSY
, &dch
->Flags
))
3400 dchannel_sched_event(&hc
->dch
, D_CLEARBUSY
);
3403 spin_unlock_irqrestore(&hc
->lock
, flags
);
3405 ret
= l1_event(dch
->l1
, hh
->prim
);
3414 deactivate_bchannel(struct bchannel
*bch
)
3416 struct hfc_multi
*hc
= bch
->hw
;
3419 spin_lock_irqsave(&hc
->lock
, flags
);
3420 mISDN_clear_bchannel(bch
);
3421 hc
->chan
[bch
->slot
].coeff_count
= 0;
3422 hc
->chan
[bch
->slot
].rx_off
= 0;
3423 hc
->chan
[bch
->slot
].conf
= -1;
3424 mode_hfcmulti(hc
, bch
->slot
, ISDN_P_NONE
, -1, 0, -1, 0);
3425 spin_unlock_irqrestore(&hc
->lock
, flags
);
3429 handle_bmsg(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
3431 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
3432 struct hfc_multi
*hc
= bch
->hw
;
3434 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
3442 spin_lock_irqsave(&hc
->lock
, flags
);
3443 ret
= bchannel_senddata(bch
, skb
);
3444 if (ret
> 0) { /* direct TX */
3445 id
= hh
->id
; /* skb can be freed */
3446 hfcmulti_tx(hc
, bch
->slot
);
3449 HFC_outb_nodebug(hc
, R_FIFO
, 0);
3450 HFC_wait_nodebug(hc
);
3451 if (!test_bit(FLG_TRANSPARENT
, &bch
->Flags
)) {
3452 spin_unlock_irqrestore(&hc
->lock
, flags
);
3453 queue_ch_frame(ch
, PH_DATA_CNF
, id
, NULL
);
3455 spin_unlock_irqrestore(&hc
->lock
, flags
);
3457 spin_unlock_irqrestore(&hc
->lock
, flags
);
3459 case PH_ACTIVATE_REQ
:
3460 if (debug
& DEBUG_HFCMULTI_MSG
)
3461 printk(KERN_DEBUG
"%s: PH_ACTIVATE ch %d (0..32)\n",
3462 __func__
, bch
->slot
);
3463 spin_lock_irqsave(&hc
->lock
, flags
);
3464 /* activate B-channel if not already activated */
3465 if (!test_and_set_bit(FLG_ACTIVE
, &bch
->Flags
)) {
3466 hc
->chan
[bch
->slot
].txpending
= 0;
3467 ret
= mode_hfcmulti(hc
, bch
->slot
,
3469 hc
->chan
[bch
->slot
].slot_tx
,
3470 hc
->chan
[bch
->slot
].bank_tx
,
3471 hc
->chan
[bch
->slot
].slot_rx
,
3472 hc
->chan
[bch
->slot
].bank_rx
);
3474 if (ch
->protocol
== ISDN_P_B_RAW
&& !hc
->dtmf
3475 && test_bit(HFC_CHIP_DTMF
, &hc
->chip
)) {
3478 if (debug
& DEBUG_HFCMULTI_DTMF
)
3480 "%s: start dtmf decoder\n",
3482 HFC_outb(hc
, R_DTMF
, hc
->hw
.r_dtmf
|
3488 spin_unlock_irqrestore(&hc
->lock
, flags
);
3490 _queue_data(ch
, PH_ACTIVATE_IND
, MISDN_ID_ANY
, 0, NULL
,
3493 case PH_CONTROL_REQ
:
3494 spin_lock_irqsave(&hc
->lock
, flags
);
3496 case HFC_SPL_LOOP_ON
: /* set sample loop */
3497 if (debug
& DEBUG_HFCMULTI_MSG
)
3499 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3500 __func__
, skb
->len
);
3503 case HFC_SPL_LOOP_OFF
: /* set silence */
3504 if (debug
& DEBUG_HFCMULTI_MSG
)
3505 printk(KERN_DEBUG
"%s: HFC_SPL_LOOP_OFF\n",
3511 "%s: unknown PH_CONTROL_REQ info %x\n",
3515 spin_unlock_irqrestore(&hc
->lock
, flags
);
3517 case PH_DEACTIVATE_REQ
:
3518 deactivate_bchannel(bch
); /* locked there */
3519 _queue_data(ch
, PH_DEACTIVATE_IND
, MISDN_ID_ANY
, 0, NULL
,
3530 * bchannel control function
3533 channel_bctrl(struct bchannel
*bch
, struct mISDN_ctrl_req
*cq
)
3536 struct dsp_features
*features
=
3537 (struct dsp_features
*)(*((u_long
*)&cq
->p1
));
3538 struct hfc_multi
*hc
= bch
->hw
;
3546 case MISDN_CTRL_GETOP
:
3547 cq
->op
= MISDN_CTRL_HFC_OP
| MISDN_CTRL_HW_FEATURES_OP
3548 | MISDN_CTRL_RX_OFF
| MISDN_CTRL_FILL_EMPTY
;
3550 case MISDN_CTRL_RX_OFF
: /* turn off / on rx stream */
3551 hc
->chan
[bch
->slot
].rx_off
= !!cq
->p1
;
3552 if (!hc
->chan
[bch
->slot
].rx_off
) {
3553 /* reset fifo on rx on */
3554 HFC_outb_nodebug(hc
, R_FIFO
, (bch
->slot
<< 1) | 1);
3555 HFC_wait_nodebug(hc
);
3556 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
3557 HFC_wait_nodebug(hc
);
3559 if (debug
& DEBUG_HFCMULTI_MSG
)
3560 printk(KERN_DEBUG
"%s: RX_OFF request (nr=%d off=%d)\n",
3561 __func__
, bch
->nr
, hc
->chan
[bch
->slot
].rx_off
);
3563 case MISDN_CTRL_FILL_EMPTY
: /* fill fifo, if empty */
3564 test_and_set_bit(FLG_FILLEMPTY
, &bch
->Flags
);
3565 if (debug
& DEBUG_HFCMULTI_MSG
)
3566 printk(KERN_DEBUG
"%s: FILL_EMPTY request (nr=%d "
3567 "off=%d)\n", __func__
, bch
->nr
, !!cq
->p1
);
3569 case MISDN_CTRL_HW_FEATURES
: /* fill features structure */
3570 if (debug
& DEBUG_HFCMULTI_MSG
)
3571 printk(KERN_DEBUG
"%s: HW_FEATURE request\n",
3573 /* create confirm */
3574 features
->hfc_id
= hc
->id
;
3575 if (test_bit(HFC_CHIP_DTMF
, &hc
->chip
))
3576 features
->hfc_dtmf
= 1;
3577 if (test_bit(HFC_CHIP_CONF
, &hc
->chip
))
3578 features
->hfc_conf
= 1;
3579 features
->hfc_loops
= 0;
3580 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
3581 features
->hfc_echocanhw
= 1;
3583 features
->pcm_id
= hc
->pcm
;
3584 features
->pcm_slots
= hc
->slots
;
3585 features
->pcm_banks
= 2;
3588 case MISDN_CTRL_HFC_PCM_CONN
: /* connect to pcm timeslot (0..N) */
3589 slot_tx
= cq
->p1
& 0xff;
3590 bank_tx
= cq
->p1
>> 8;
3591 slot_rx
= cq
->p2
& 0xff;
3592 bank_rx
= cq
->p2
>> 8;
3593 if (debug
& DEBUG_HFCMULTI_MSG
)
3595 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3596 "slot %d bank %d (RX)\n",
3597 __func__
, slot_tx
, bank_tx
,
3599 if (slot_tx
< hc
->slots
&& bank_tx
<= 2 &&
3600 slot_rx
< hc
->slots
&& bank_rx
<= 2)
3601 hfcmulti_pcm(hc
, bch
->slot
,
3602 slot_tx
, bank_tx
, slot_rx
, bank_rx
);
3605 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3606 "slot %d bank %d (RX) out of range\n",
3607 __func__
, slot_tx
, bank_tx
,
3612 case MISDN_CTRL_HFC_PCM_DISC
: /* release interface from pcm timeslot */
3613 if (debug
& DEBUG_HFCMULTI_MSG
)
3614 printk(KERN_DEBUG
"%s: HFC_PCM_DISC\n",
3616 hfcmulti_pcm(hc
, bch
->slot
, -1, 0, -1, 0);
3618 case MISDN_CTRL_HFC_CONF_JOIN
: /* join conference (0..7) */
3619 num
= cq
->p1
& 0xff;
3620 if (debug
& DEBUG_HFCMULTI_MSG
)
3621 printk(KERN_DEBUG
"%s: HFC_CONF_JOIN conf %d\n",
3624 hfcmulti_conf(hc
, bch
->slot
, num
);
3627 "%s: HW_CONF_JOIN conf %d out of range\n",
3632 case MISDN_CTRL_HFC_CONF_SPLIT
: /* split conference */
3633 if (debug
& DEBUG_HFCMULTI_MSG
)
3634 printk(KERN_DEBUG
"%s: HFC_CONF_SPLIT\n", __func__
);
3635 hfcmulti_conf(hc
, bch
->slot
, -1);
3637 case MISDN_CTRL_HFC_ECHOCAN_ON
:
3638 if (debug
& DEBUG_HFCMULTI_MSG
)
3639 printk(KERN_DEBUG
"%s: HFC_ECHOCAN_ON\n", __func__
);
3640 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
3641 vpm_echocan_on(hc
, bch
->slot
, cq
->p1
);
3646 case MISDN_CTRL_HFC_ECHOCAN_OFF
:
3647 if (debug
& DEBUG_HFCMULTI_MSG
)
3648 printk(KERN_DEBUG
"%s: HFC_ECHOCAN_OFF\n",
3650 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
3651 vpm_echocan_off(hc
, bch
->slot
);
3656 printk(KERN_WARNING
"%s: unknown Op %x\n",
3665 hfcm_bctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
3667 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
3668 struct hfc_multi
*hc
= bch
->hw
;
3672 if (bch
->debug
& DEBUG_HW
)
3673 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
3674 __func__
, cmd
, arg
);
3677 test_and_clear_bit(FLG_OPEN
, &bch
->Flags
);
3678 if (test_bit(FLG_ACTIVE
, &bch
->Flags
))
3679 deactivate_bchannel(bch
); /* locked there */
3680 ch
->protocol
= ISDN_P_NONE
;
3682 module_put(THIS_MODULE
);
3685 case CONTROL_CHANNEL
:
3686 spin_lock_irqsave(&hc
->lock
, flags
);
3687 err
= channel_bctrl(bch
, arg
);
3688 spin_unlock_irqrestore(&hc
->lock
, flags
);
3691 printk(KERN_WARNING
"%s: unknown prim(%x)\n",
3698 * handle D-channel events
3700 * handle state change event
3703 ph_state_change(struct dchannel
*dch
)
3705 struct hfc_multi
*hc
;
3709 printk(KERN_WARNING
"%s: ERROR given dch is NULL\n", __func__
);
3715 if (hc
->ctype
== HFC_TYPE_E1
) {
3716 if (dch
->dev
.D
.protocol
== ISDN_P_TE_E1
) {
3717 if (debug
& DEBUG_HFCMULTI_STATE
)
3719 "%s: E1 TE (id=%d) newstate %x\n",
3720 __func__
, hc
->id
, dch
->state
);
3722 if (debug
& DEBUG_HFCMULTI_STATE
)
3724 "%s: E1 NT (id=%d) newstate %x\n",
3725 __func__
, hc
->id
, dch
->state
);
3727 switch (dch
->state
) {
3729 if (hc
->e1_state
!= 1) {
3730 for (i
= 1; i
<= 31; i
++) {
3731 /* reset fifos on e1 activation */
3732 HFC_outb_nodebug(hc
, R_FIFO
,
3734 HFC_wait_nodebug(hc
);
3735 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
,
3737 HFC_wait_nodebug(hc
);
3740 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3741 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
3742 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3746 if (hc
->e1_state
!= 1)
3748 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3749 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
3750 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3752 hc
->e1_state
= dch
->state
;
3754 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) {
3755 if (debug
& DEBUG_HFCMULTI_STATE
)
3757 "%s: S/T TE newstate %x\n",
3758 __func__
, dch
->state
);
3759 switch (dch
->state
) {
3761 l1_event(dch
->l1
, HW_RESET_IND
);
3764 l1_event(dch
->l1
, HW_DEACT_IND
);
3768 l1_event(dch
->l1
, ANYSIGNAL
);
3771 l1_event(dch
->l1
, INFO2
);
3774 l1_event(dch
->l1
, INFO4_P8
);
3778 if (debug
& DEBUG_HFCMULTI_STATE
)
3779 printk(KERN_DEBUG
"%s: S/T NT newstate %x\n",
3780 __func__
, dch
->state
);
3781 switch (dch
->state
) {
3783 if (hc
->chan
[ch
].nt_timer
== 0) {
3784 hc
->chan
[ch
].nt_timer
= -1;
3785 HFC_outb(hc
, R_ST_SEL
,
3787 /* undocumented: delay after R_ST_SEL */
3789 HFC_outb(hc
, A_ST_WR_STATE
, 4 |
3790 V_ST_LD_STA
); /* G4 */
3791 udelay(6); /* wait at least 5,21us */
3792 HFC_outb(hc
, A_ST_WR_STATE
, 4);
3795 /* one extra count for the next event */
3796 hc
->chan
[ch
].nt_timer
=
3797 nt_t1_count
[poll_timer
] + 1;
3798 HFC_outb(hc
, R_ST_SEL
,
3800 /* undocumented: delay after R_ST_SEL */
3802 /* allow G2 -> G3 transition */
3803 HFC_outb(hc
, A_ST_WR_STATE
, 2 |
3808 hc
->chan
[ch
].nt_timer
= -1;
3809 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3810 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
3811 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3814 hc
->chan
[ch
].nt_timer
= -1;
3817 hc
->chan
[ch
].nt_timer
= -1;
3818 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3819 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
3820 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3828 * called for card mode init message
3832 hfcmulti_initmode(struct dchannel
*dch
)
3834 struct hfc_multi
*hc
= dch
->hw
;
3835 u_char a_st_wr_state
, r_e1_wr_sta
;
3838 if (debug
& DEBUG_HFCMULTI_INIT
)
3839 printk(KERN_DEBUG
"%s: entered\n", __func__
);
3841 if (hc
->ctype
== HFC_TYPE_E1
) {
3842 hc
->chan
[hc
->dslot
].slot_tx
= -1;
3843 hc
->chan
[hc
->dslot
].slot_rx
= -1;
3844 hc
->chan
[hc
->dslot
].conf
= -1;
3846 mode_hfcmulti(hc
, hc
->dslot
, dch
->dev
.D
.protocol
,
3848 dch
->timer
.function
= (void *) hfcmulti_dbusy_timer
;
3849 dch
->timer
.data
= (long) dch
;
3850 init_timer(&dch
->timer
);
3852 for (i
= 1; i
<= 31; i
++) {
3855 hc
->chan
[i
].slot_tx
= -1;
3856 hc
->chan
[i
].slot_rx
= -1;
3857 hc
->chan
[i
].conf
= -1;
3858 mode_hfcmulti(hc
, i
, ISDN_P_NONE
, -1, 0, -1, 0);
3861 if (test_bit(HFC_CFG_REPORT_LOS
, &hc
->chan
[hc
->dslot
].cfg
)) {
3862 HFC_outb(hc
, R_LOS0
, 255); /* 2 ms */
3863 HFC_outb(hc
, R_LOS1
, 255); /* 512 ms */
3865 if (test_bit(HFC_CFG_OPTICAL
, &hc
->chan
[hc
->dslot
].cfg
)) {
3866 HFC_outb(hc
, R_RX0
, 0);
3867 hc
->hw
.r_tx0
= 0 | V_OUT_EN
;
3869 HFC_outb(hc
, R_RX0
, 1);
3870 hc
->hw
.r_tx0
= 1 | V_OUT_EN
;
3872 hc
->hw
.r_tx1
= V_ATX
| V_NTRI
;
3873 HFC_outb(hc
, R_TX0
, hc
->hw
.r_tx0
);
3874 HFC_outb(hc
, R_TX1
, hc
->hw
.r_tx1
);
3875 HFC_outb(hc
, R_TX_FR0
, 0x00);
3876 HFC_outb(hc
, R_TX_FR1
, 0xf8);
3878 if (test_bit(HFC_CFG_CRC4
, &hc
->chan
[hc
->dslot
].cfg
))
3879 HFC_outb(hc
, R_TX_FR2
, V_TX_MF
| V_TX_E
| V_NEG_E
);
3881 HFC_outb(hc
, R_RX_FR0
, V_AUTO_RESYNC
| V_AUTO_RECO
| 0);
3883 if (test_bit(HFC_CFG_CRC4
, &hc
->chan
[hc
->dslot
].cfg
))
3884 HFC_outb(hc
, R_RX_FR1
, V_RX_MF
| V_RX_MF_SYNC
);
3886 if (dch
->dev
.D
.protocol
== ISDN_P_NT_E1
) {
3887 if (debug
& DEBUG_HFCMULTI_INIT
)
3888 printk(KERN_DEBUG
"%s: E1 port is NT-mode\n",
3890 r_e1_wr_sta
= 0; /* G0 */
3891 hc
->e1_getclock
= 0;
3893 if (debug
& DEBUG_HFCMULTI_INIT
)
3894 printk(KERN_DEBUG
"%s: E1 port is TE-mode\n",
3896 r_e1_wr_sta
= 0; /* F0 */
3897 hc
->e1_getclock
= 1;
3899 if (test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
))
3900 HFC_outb(hc
, R_SYNC_OUT
, V_SYNC_E1_RX
);
3902 HFC_outb(hc
, R_SYNC_OUT
, 0);
3903 if (test_bit(HFC_CHIP_E1CLOCK_GET
, &hc
->chip
))
3904 hc
->e1_getclock
= 1;
3905 if (test_bit(HFC_CHIP_E1CLOCK_PUT
, &hc
->chip
))
3906 hc
->e1_getclock
= 0;
3907 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
3908 /* SLAVE (clock master) */
3909 if (debug
& DEBUG_HFCMULTI_INIT
)
3911 "%s: E1 port is clock master "
3912 "(clock from PCM)\n", __func__
);
3913 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
| V_PCM_SYNC
);
3915 if (hc
->e1_getclock
) {
3916 /* MASTER (clock slave) */
3917 if (debug
& DEBUG_HFCMULTI_INIT
)
3919 "%s: E1 port is clock slave "
3920 "(clock to PCM)\n", __func__
);
3921 HFC_outb(hc
, R_SYNC_CTRL
, V_SYNC_OFFS
);
3923 /* MASTER (clock master) */
3924 if (debug
& DEBUG_HFCMULTI_INIT
)
3925 printk(KERN_DEBUG
"%s: E1 port is "
3927 "(clock from QUARTZ)\n",
3929 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
|
3930 V_PCM_SYNC
| V_JATT_OFF
);
3931 HFC_outb(hc
, R_SYNC_OUT
, 0);
3934 HFC_outb(hc
, R_JATT_ATT
, 0x9c); /* undoc register */
3935 HFC_outb(hc
, R_PWM_MD
, V_PWM0_MD
);
3936 HFC_outb(hc
, R_PWM0
, 0x50);
3937 HFC_outb(hc
, R_PWM1
, 0xff);
3938 /* state machine setup */
3939 HFC_outb(hc
, R_E1_WR_STA
, r_e1_wr_sta
| V_E1_LD_STA
);
3940 udelay(6); /* wait at least 5,21us */
3941 HFC_outb(hc
, R_E1_WR_STA
, r_e1_wr_sta
);
3942 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3943 hc
->syncronized
= 0;
3944 plxsd_checksync(hc
, 0);
3948 hc
->chan
[i
].slot_tx
= -1;
3949 hc
->chan
[i
].slot_rx
= -1;
3950 hc
->chan
[i
].conf
= -1;
3951 mode_hfcmulti(hc
, i
, dch
->dev
.D
.protocol
, -1, 0, -1, 0);
3952 dch
->timer
.function
= (void *)hfcmulti_dbusy_timer
;
3953 dch
->timer
.data
= (long) dch
;
3954 init_timer(&dch
->timer
);
3955 hc
->chan
[i
- 2].slot_tx
= -1;
3956 hc
->chan
[i
- 2].slot_rx
= -1;
3957 hc
->chan
[i
- 2].conf
= -1;
3958 mode_hfcmulti(hc
, i
- 2, ISDN_P_NONE
, -1, 0, -1, 0);
3959 hc
->chan
[i
- 1].slot_tx
= -1;
3960 hc
->chan
[i
- 1].slot_rx
= -1;
3961 hc
->chan
[i
- 1].conf
= -1;
3962 mode_hfcmulti(hc
, i
- 1, ISDN_P_NONE
, -1, 0, -1, 0);
3964 pt
= hc
->chan
[i
].port
;
3965 /* select interface */
3966 HFC_outb(hc
, R_ST_SEL
, pt
);
3967 /* undocumented: delay after R_ST_SEL */
3969 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
) {
3970 if (debug
& DEBUG_HFCMULTI_INIT
)
3972 "%s: ST port %d is NT-mode\n",
3975 HFC_outb(hc
, A_ST_CLK_DLY
, clockdelay_nt
);
3976 a_st_wr_state
= 1; /* G1 */
3977 hc
->hw
.a_st_ctrl0
[pt
] = V_ST_MD
;
3979 if (debug
& DEBUG_HFCMULTI_INIT
)
3981 "%s: ST port %d is TE-mode\n",
3984 HFC_outb(hc
, A_ST_CLK_DLY
, clockdelay_te
);
3985 a_st_wr_state
= 2; /* F2 */
3986 hc
->hw
.a_st_ctrl0
[pt
] = 0;
3988 if (!test_bit(HFC_CFG_NONCAP_TX
, &hc
->chan
[i
].cfg
))
3989 hc
->hw
.a_st_ctrl0
[pt
] |= V_TX_LI
;
3990 if (hc
->ctype
== HFC_TYPE_XHFC
) {
3991 hc
->hw
.a_st_ctrl0
[pt
] |= 0x40 /* V_ST_PU_CTRL */;
3992 HFC_outb(hc
, 0x35 /* A_ST_CTRL3 */,
3993 0x7c << 1 /* V_ST_PULSE */);
3996 HFC_outb(hc
, A_ST_CTRL0
, hc
->hw
.a_st_ctrl0
[pt
]);
3997 /* disable E-channel */
3998 if ((dch
->dev
.D
.protocol
== ISDN_P_NT_S0
) ||
3999 test_bit(HFC_CFG_DIS_ECHANNEL
, &hc
->chan
[i
].cfg
))
4000 HFC_outb(hc
, A_ST_CTRL1
, V_E_IGNO
);
4002 HFC_outb(hc
, A_ST_CTRL1
, 0);
4003 /* enable B-channel receive */
4004 HFC_outb(hc
, A_ST_CTRL2
, V_B1_RX_EN
| V_B2_RX_EN
);
4005 /* state machine setup */
4006 HFC_outb(hc
, A_ST_WR_STATE
, a_st_wr_state
| V_ST_LD_STA
);
4007 udelay(6); /* wait at least 5,21us */
4008 HFC_outb(hc
, A_ST_WR_STATE
, a_st_wr_state
);
4009 hc
->hw
.r_sci_msk
|= 1 << pt
;
4010 /* state machine interrupts */
4011 HFC_outb(hc
, R_SCI_MSK
, hc
->hw
.r_sci_msk
);
4012 /* unset sync on port */
4013 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4015 ~(1 << hc
->chan
[dch
->slot
].port
);
4016 plxsd_checksync(hc
, 0);
4019 if (debug
& DEBUG_HFCMULTI_INIT
)
4020 printk("%s: done\n", __func__
);
4025 open_dchannel(struct hfc_multi
*hc
, struct dchannel
*dch
,
4026 struct channel_req
*rq
)
4031 if (debug
& DEBUG_HW_OPEN
)
4032 printk(KERN_DEBUG
"%s: dev(%d) open from %p\n", __func__
,
4033 dch
->dev
.id
, __builtin_return_address(0));
4034 if (rq
->protocol
== ISDN_P_NONE
)
4036 if ((dch
->dev
.D
.protocol
!= ISDN_P_NONE
) &&
4037 (dch
->dev
.D
.protocol
!= rq
->protocol
)) {
4038 if (debug
& DEBUG_HFCMULTI_MODE
)
4039 printk(KERN_DEBUG
"%s: change protocol %x to %x\n",
4040 __func__
, dch
->dev
.D
.protocol
, rq
->protocol
);
4042 if ((dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) &&
4043 (rq
->protocol
!= ISDN_P_TE_S0
))
4044 l1_event(dch
->l1
, CLOSE_CHANNEL
);
4045 if (dch
->dev
.D
.protocol
!= rq
->protocol
) {
4046 if (rq
->protocol
== ISDN_P_TE_S0
) {
4047 err
= create_l1(dch
, hfcm_l1callback
);
4051 dch
->dev
.D
.protocol
= rq
->protocol
;
4052 spin_lock_irqsave(&hc
->lock
, flags
);
4053 hfcmulti_initmode(dch
);
4054 spin_unlock_irqrestore(&hc
->lock
, flags
);
4057 if (((rq
->protocol
== ISDN_P_NT_S0
) && (dch
->state
== 3)) ||
4058 ((rq
->protocol
== ISDN_P_TE_S0
) && (dch
->state
== 7)) ||
4059 ((rq
->protocol
== ISDN_P_NT_E1
) && (dch
->state
== 1)) ||
4060 ((rq
->protocol
== ISDN_P_TE_E1
) && (dch
->state
== 1))) {
4061 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
, MISDN_ID_ANY
,
4062 0, NULL
, GFP_KERNEL
);
4064 rq
->ch
= &dch
->dev
.D
;
4065 if (!try_module_get(THIS_MODULE
))
4066 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
4071 open_bchannel(struct hfc_multi
*hc
, struct dchannel
*dch
,
4072 struct channel_req
*rq
)
4074 struct bchannel
*bch
;
4077 if (!test_channelmap(rq
->adr
.channel
, dch
->dev
.channelmap
))
4079 if (rq
->protocol
== ISDN_P_NONE
)
4081 if (hc
->ctype
== HFC_TYPE_E1
)
4082 ch
= rq
->adr
.channel
;
4084 ch
= (rq
->adr
.channel
- 1) + (dch
->slot
- 2);
4085 bch
= hc
->chan
[ch
].bch
;
4087 printk(KERN_ERR
"%s:internal error ch %d has no bch\n",
4091 if (test_and_set_bit(FLG_OPEN
, &bch
->Flags
))
4092 return -EBUSY
; /* b-channel can be only open once */
4093 test_and_clear_bit(FLG_FILLEMPTY
, &bch
->Flags
);
4094 bch
->ch
.protocol
= rq
->protocol
;
4095 hc
->chan
[ch
].rx_off
= 0;
4097 if (!try_module_get(THIS_MODULE
))
4098 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
4103 * device control function
4106 channel_dctrl(struct dchannel
*dch
, struct mISDN_ctrl_req
*cq
)
4108 struct hfc_multi
*hc
= dch
->hw
;
4110 int wd_mode
, wd_cnt
;
4113 case MISDN_CTRL_GETOP
:
4114 cq
->op
= MISDN_CTRL_HFC_OP
;
4116 case MISDN_CTRL_HFC_WD_INIT
: /* init the watchdog */
4117 wd_cnt
= cq
->p1
& 0xf;
4118 wd_mode
= !!(cq
->p1
>> 4);
4119 if (debug
& DEBUG_HFCMULTI_MSG
)
4120 printk(KERN_DEBUG
"%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4121 ", counter 0x%x\n", __func__
,
4122 wd_mode
? "AUTO" : "MANUAL", wd_cnt
);
4123 /* set the watchdog timer */
4124 HFC_outb(hc
, R_TI_WD
, poll_timer
| (wd_cnt
<< 4));
4125 hc
->hw
.r_bert_wd_md
= (wd_mode
? V_AUTO_WD_RES
: 0);
4126 if (hc
->ctype
== HFC_TYPE_XHFC
)
4127 hc
->hw
.r_bert_wd_md
|= 0x40 /* V_WD_EN */;
4128 /* init the watchdog register and reset the counter */
4129 HFC_outb(hc
, R_BERT_WD_MD
, hc
->hw
.r_bert_wd_md
| V_WD_RES
);
4130 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4131 /* enable the watchdog output for Speech-Design */
4132 HFC_outb(hc
, R_GPIO_SEL
, V_GPIO_SEL7
);
4133 HFC_outb(hc
, R_GPIO_EN1
, V_GPIO_EN15
);
4134 HFC_outb(hc
, R_GPIO_OUT1
, 0);
4135 HFC_outb(hc
, R_GPIO_OUT1
, V_GPIO_OUT15
);
4138 case MISDN_CTRL_HFC_WD_RESET
: /* reset the watchdog counter */
4139 if (debug
& DEBUG_HFCMULTI_MSG
)
4140 printk(KERN_DEBUG
"%s: MISDN_CTRL_HFC_WD_RESET\n",
4142 HFC_outb(hc
, R_BERT_WD_MD
, hc
->hw
.r_bert_wd_md
| V_WD_RES
);
4145 printk(KERN_WARNING
"%s: unknown Op %x\n",
4154 hfcm_dctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
4156 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
4157 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
4158 struct hfc_multi
*hc
= dch
->hw
;
4159 struct channel_req
*rq
;
4163 if (dch
->debug
& DEBUG_HW
)
4164 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
4165 __func__
, cmd
, arg
);
4169 switch (rq
->protocol
) {
4172 if (hc
->ctype
== HFC_TYPE_E1
) {
4176 err
= open_dchannel(hc
, dch
, rq
); /* locked there */
4180 if (hc
->ctype
!= HFC_TYPE_E1
) {
4184 err
= open_dchannel(hc
, dch
, rq
); /* locked there */
4187 spin_lock_irqsave(&hc
->lock
, flags
);
4188 err
= open_bchannel(hc
, dch
, rq
);
4189 spin_unlock_irqrestore(&hc
->lock
, flags
);
4193 if (debug
& DEBUG_HW_OPEN
)
4194 printk(KERN_DEBUG
"%s: dev(%d) close from %p\n",
4195 __func__
, dch
->dev
.id
,
4196 __builtin_return_address(0));
4197 module_put(THIS_MODULE
);
4199 case CONTROL_CHANNEL
:
4200 spin_lock_irqsave(&hc
->lock
, flags
);
4201 err
= channel_dctrl(dch
, arg
);
4202 spin_unlock_irqrestore(&hc
->lock
, flags
);
4205 if (dch
->debug
& DEBUG_HW
)
4206 printk(KERN_DEBUG
"%s: unknown command %x\n",
4214 clockctl(void *priv
, int enable
)
4216 struct hfc_multi
*hc
= priv
;
4218 hc
->iclock_on
= enable
;
4223 * initialize the card
4227 * start timer irq, wait some time and check if we have interrupts.
4228 * if not, reset chip and try again.
4231 init_card(struct hfc_multi
*hc
)
4235 void __iomem
*plx_acc
;
4238 if (debug
& DEBUG_HFCMULTI_INIT
)
4239 printk(KERN_DEBUG
"%s: entered\n", __func__
);
4241 spin_lock_irqsave(&hc
->lock
, flags
);
4242 /* set interrupts but leave global interrupt disabled */
4243 hc
->hw
.r_irq_ctrl
= V_FIFO_IRQ
;
4245 spin_unlock_irqrestore(&hc
->lock
, flags
);
4247 if (request_irq(hc
->irq
, hfcmulti_interrupt
, IRQF_SHARED
,
4249 printk(KERN_WARNING
"mISDN: Could not get interrupt %d.\n",
4255 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4256 spin_lock_irqsave(&plx_lock
, plx_flags
);
4257 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
4258 writew((PLX_INTCSR_PCIINT_ENABLE
| PLX_INTCSR_LINTI1_ENABLE
),
4259 plx_acc
); /* enable PCI & LINT1 irq */
4260 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
4263 if (debug
& DEBUG_HFCMULTI_INIT
)
4264 printk(KERN_DEBUG
"%s: IRQ %d count %d\n",
4265 __func__
, hc
->irq
, hc
->irqcnt
);
4266 err
= init_chip(hc
);
4270 * Finally enable IRQ output
4271 * this is only allowed, if an IRQ routine is already
4272 * established for this HFC, so don't do that earlier
4274 spin_lock_irqsave(&hc
->lock
, flags
);
4276 spin_unlock_irqrestore(&hc
->lock
, flags
);
4277 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4278 set_current_state(TASK_UNINTERRUPTIBLE
);
4279 schedule_timeout((100*HZ
)/1000); /* Timeout 100ms */
4280 /* turn IRQ off until chip is completely initialized */
4281 spin_lock_irqsave(&hc
->lock
, flags
);
4283 spin_unlock_irqrestore(&hc
->lock
, flags
);
4284 if (debug
& DEBUG_HFCMULTI_INIT
)
4285 printk(KERN_DEBUG
"%s: IRQ %d count %d\n",
4286 __func__
, hc
->irq
, hc
->irqcnt
);
4288 if (debug
& DEBUG_HFCMULTI_INIT
)
4289 printk(KERN_DEBUG
"%s: done\n", __func__
);
4293 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
4294 printk(KERN_INFO
"ignoring missing interrupts\n");
4298 printk(KERN_ERR
"HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4304 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4305 spin_lock_irqsave(&plx_lock
, plx_flags
);
4306 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
4307 writew(0x00, plx_acc
); /*disable IRQs*/
4308 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
4311 if (debug
& DEBUG_HFCMULTI_INIT
)
4312 printk(KERN_DEBUG
"%s: free irq %d\n", __func__
, hc
->irq
);
4314 free_irq(hc
->irq
, hc
);
4318 if (debug
& DEBUG_HFCMULTI_INIT
)
4319 printk(KERN_DEBUG
"%s: done (err=%d)\n", __func__
, err
);
4324 * find pci device and set it up
4328 setup_pci(struct hfc_multi
*hc
, struct pci_dev
*pdev
,
4329 const struct pci_device_id
*ent
)
4331 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
4334 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4335 m
->vendor_name
, m
->card_name
, m
->clock2
? "double" : "normal");
4339 test_and_set_bit(HFC_CHIP_CLOCK2
, &hc
->chip
);
4341 if (ent
->device
== 0xB410) {
4342 test_and_set_bit(HFC_CHIP_B410P
, &hc
->chip
);
4343 test_and_set_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
);
4344 test_and_clear_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
4348 if (hc
->pci_dev
->irq
<= 0) {
4349 printk(KERN_WARNING
"HFC-multi: No IRQ for PCI card found.\n");
4352 if (pci_enable_device(hc
->pci_dev
)) {
4353 printk(KERN_WARNING
"HFC-multi: Error enabling PCI card.\n");
4357 hc
->ledstate
= 0xAFFEAFFE;
4358 hc
->opticalsupport
= m
->opticalsupport
;
4361 hc
->pci_membase
= NULL
;
4362 hc
->plx_membase
= NULL
;
4364 /* set memory access methods */
4365 if (m
->io_mode
) /* use mode from card config */
4366 hc
->io_mode
= m
->io_mode
;
4367 switch (hc
->io_mode
) {
4368 case HFC_IO_MODE_PLXSD
:
4369 test_and_set_bit(HFC_CHIP_PLXSD
, &hc
->chip
);
4370 hc
->slots
= 128; /* required */
4371 hc
->HFC_outb
= HFC_outb_pcimem
;
4372 hc
->HFC_inb
= HFC_inb_pcimem
;
4373 hc
->HFC_inw
= HFC_inw_pcimem
;
4374 hc
->HFC_wait
= HFC_wait_pcimem
;
4375 hc
->read_fifo
= read_fifo_pcimem
;
4376 hc
->write_fifo
= write_fifo_pcimem
;
4377 hc
->plx_origmembase
= hc
->pci_dev
->resource
[0].start
;
4378 /* MEMBASE 1 is PLX PCI Bridge */
4380 if (!hc
->plx_origmembase
) {
4382 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4383 pci_disable_device(hc
->pci_dev
);
4387 hc
->plx_membase
= ioremap(hc
->plx_origmembase
, 0x80);
4388 if (!hc
->plx_membase
) {
4390 "HFC-multi: failed to remap plx address space. "
4391 "(internal error)\n");
4392 pci_disable_device(hc
->pci_dev
);
4396 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4397 (u_long
)hc
->plx_membase
, hc
->plx_origmembase
);
4399 hc
->pci_origmembase
= hc
->pci_dev
->resource
[2].start
;
4400 /* MEMBASE 1 is PLX PCI Bridge */
4401 if (!hc
->pci_origmembase
) {
4403 "HFC-multi: No IO-Memory for PCI card found\n");
4404 pci_disable_device(hc
->pci_dev
);
4408 hc
->pci_membase
= ioremap(hc
->pci_origmembase
, 0x400);
4409 if (!hc
->pci_membase
) {
4410 printk(KERN_WARNING
"HFC-multi: failed to remap io "
4411 "address space. (internal error)\n");
4412 pci_disable_device(hc
->pci_dev
);
4417 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4419 hc
->id
, (u_long
)hc
->pci_membase
, hc
->pci_origmembase
,
4420 hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4421 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
4423 case HFC_IO_MODE_PCIMEM
:
4424 hc
->HFC_outb
= HFC_outb_pcimem
;
4425 hc
->HFC_inb
= HFC_inb_pcimem
;
4426 hc
->HFC_inw
= HFC_inw_pcimem
;
4427 hc
->HFC_wait
= HFC_wait_pcimem
;
4428 hc
->read_fifo
= read_fifo_pcimem
;
4429 hc
->write_fifo
= write_fifo_pcimem
;
4430 hc
->pci_origmembase
= hc
->pci_dev
->resource
[1].start
;
4431 if (!hc
->pci_origmembase
) {
4433 "HFC-multi: No IO-Memory for PCI card found\n");
4434 pci_disable_device(hc
->pci_dev
);
4438 hc
->pci_membase
= ioremap(hc
->pci_origmembase
, 256);
4439 if (!hc
->pci_membase
) {
4441 "HFC-multi: failed to remap io address space. "
4442 "(internal error)\n");
4443 pci_disable_device(hc
->pci_dev
);
4446 printk(KERN_INFO
"card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4447 "%d HZ %d leds-type %d\n", hc
->id
, (u_long
)hc
->pci_membase
,
4448 hc
->pci_origmembase
, hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4449 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
4451 case HFC_IO_MODE_REGIO
:
4452 hc
->HFC_outb
= HFC_outb_regio
;
4453 hc
->HFC_inb
= HFC_inb_regio
;
4454 hc
->HFC_inw
= HFC_inw_regio
;
4455 hc
->HFC_wait
= HFC_wait_regio
;
4456 hc
->read_fifo
= read_fifo_regio
;
4457 hc
->write_fifo
= write_fifo_regio
;
4458 hc
->pci_iobase
= (u_int
) hc
->pci_dev
->resource
[0].start
;
4459 if (!hc
->pci_iobase
) {
4461 "HFC-multi: No IO for PCI card found\n");
4462 pci_disable_device(hc
->pci_dev
);
4466 if (!request_region(hc
->pci_iobase
, 8, "hfcmulti")) {
4467 printk(KERN_WARNING
"HFC-multi: failed to request "
4468 "address space at 0x%08lx (internal error)\n",
4470 pci_disable_device(hc
->pci_dev
);
4475 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4476 m
->vendor_name
, m
->card_name
, (u_int
) hc
->pci_iobase
,
4477 hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4478 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_REGIO
);
4481 printk(KERN_WARNING
"HFC-multi: Invalid IO mode.\n");
4482 pci_disable_device(hc
->pci_dev
);
4486 pci_set_drvdata(hc
->pci_dev
, hc
);
4488 /* At this point the needed PCI config is done */
4489 /* fifos are still not enabled */
4499 release_port(struct hfc_multi
*hc
, struct dchannel
*dch
)
4503 struct bchannel
*pb
;
4506 pt
= hc
->chan
[ci
].port
;
4508 if (debug
& DEBUG_HFCMULTI_INIT
)
4509 printk(KERN_DEBUG
"%s: entered for port %d\n",
4512 if (pt
>= hc
->ports
) {
4513 printk(KERN_WARNING
"%s: ERROR port out of range (%d).\n",
4518 if (debug
& DEBUG_HFCMULTI_INIT
)
4519 printk(KERN_DEBUG
"%s: releasing port=%d\n",
4522 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
)
4523 l1_event(dch
->l1
, CLOSE_CHANNEL
);
4525 hc
->chan
[ci
].dch
= NULL
;
4527 if (hc
->created
[pt
]) {
4528 hc
->created
[pt
] = 0;
4529 mISDN_unregister_device(&dch
->dev
);
4532 spin_lock_irqsave(&hc
->lock
, flags
);
4534 if (dch
->timer
.function
) {
4535 del_timer(&dch
->timer
);
4536 dch
->timer
.function
= NULL
;
4539 if (hc
->ctype
== HFC_TYPE_E1
) { /* E1 */
4541 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4542 hc
->syncronized
= 0;
4543 plxsd_checksync(hc
, 1);
4546 for (i
= 0; i
<= 31; i
++) {
4547 if (hc
->chan
[i
].bch
) {
4548 if (debug
& DEBUG_HFCMULTI_INIT
)
4550 "%s: free port %d channel %d\n",
4551 __func__
, hc
->chan
[i
].port
+1, i
);
4552 pb
= hc
->chan
[i
].bch
;
4553 hc
->chan
[i
].bch
= NULL
;
4554 spin_unlock_irqrestore(&hc
->lock
, flags
);
4555 mISDN_freebchannel(pb
);
4557 kfree(hc
->chan
[i
].coeff
);
4558 spin_lock_irqsave(&hc
->lock
, flags
);
4563 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4565 ~(1 << hc
->chan
[ci
].port
);
4566 plxsd_checksync(hc
, 1);
4569 if (hc
->chan
[ci
- 2].bch
) {
4570 if (debug
& DEBUG_HFCMULTI_INIT
)
4572 "%s: free port %d channel %d\n",
4573 __func__
, hc
->chan
[ci
- 2].port
+1,
4575 pb
= hc
->chan
[ci
- 2].bch
;
4576 hc
->chan
[ci
- 2].bch
= NULL
;
4577 spin_unlock_irqrestore(&hc
->lock
, flags
);
4578 mISDN_freebchannel(pb
);
4580 kfree(hc
->chan
[ci
- 2].coeff
);
4581 spin_lock_irqsave(&hc
->lock
, flags
);
4583 if (hc
->chan
[ci
- 1].bch
) {
4584 if (debug
& DEBUG_HFCMULTI_INIT
)
4586 "%s: free port %d channel %d\n",
4587 __func__
, hc
->chan
[ci
- 1].port
+1,
4589 pb
= hc
->chan
[ci
- 1].bch
;
4590 hc
->chan
[ci
- 1].bch
= NULL
;
4591 spin_unlock_irqrestore(&hc
->lock
, flags
);
4592 mISDN_freebchannel(pb
);
4594 kfree(hc
->chan
[ci
- 1].coeff
);
4595 spin_lock_irqsave(&hc
->lock
, flags
);
4599 spin_unlock_irqrestore(&hc
->lock
, flags
);
4601 if (debug
& DEBUG_HFCMULTI_INIT
)
4602 printk(KERN_DEBUG
"%s: free port %d channel D\n", __func__
, pt
);
4603 mISDN_freedchannel(dch
);
4606 if (debug
& DEBUG_HFCMULTI_INIT
)
4607 printk(KERN_DEBUG
"%s: done!\n", __func__
);
4611 release_card(struct hfc_multi
*hc
)
4616 if (debug
& DEBUG_HFCMULTI_INIT
)
4617 printk(KERN_DEBUG
"%s: release card (%d) entered\n",
4620 /* unregister clock source */
4622 mISDN_unregister_clock(hc
->iclock
);
4625 spin_lock_irqsave(&hc
->lock
, flags
);
4627 spin_unlock_irqrestore(&hc
->lock
, flags
);
4634 /* disable D-channels & B-channels */
4635 if (debug
& DEBUG_HFCMULTI_INIT
)
4636 printk(KERN_DEBUG
"%s: disable all channels (d and b)\n",
4638 for (ch
= 0; ch
<= 31; ch
++) {
4639 if (hc
->chan
[ch
].dch
)
4640 release_port(hc
, hc
->chan
[ch
].dch
);
4643 /* release hardware & irq */
4645 if (debug
& DEBUG_HFCMULTI_INIT
)
4646 printk(KERN_DEBUG
"%s: free irq %d\n",
4648 free_irq(hc
->irq
, hc
);
4652 release_io_hfcmulti(hc
);
4654 if (debug
& DEBUG_HFCMULTI_INIT
)
4655 printk(KERN_DEBUG
"%s: remove instance from list\n",
4657 list_del(&hc
->list
);
4659 if (debug
& DEBUG_HFCMULTI_INIT
)
4660 printk(KERN_DEBUG
"%s: delete instance\n", __func__
);
4661 if (hc
== syncmaster
)
4664 if (debug
& DEBUG_HFCMULTI_INIT
)
4665 printk(KERN_DEBUG
"%s: card successfully removed\n",
4670 init_e1_port(struct hfc_multi
*hc
, struct hm_map
*m
)
4672 struct dchannel
*dch
;
4673 struct bchannel
*bch
;
4675 char name
[MISDN_MAX_IDLEN
];
4677 dch
= kzalloc(sizeof(struct dchannel
), GFP_KERNEL
);
4681 mISDN_initdchannel(dch
, MAX_DFRAME_LEN_L1
, ph_state_change
);
4683 dch
->dev
.Dprotocols
= (1 << ISDN_P_TE_E1
) | (1 << ISDN_P_NT_E1
);
4684 dch
->dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
4685 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
4686 dch
->dev
.D
.send
= handle_dmsg
;
4687 dch
->dev
.D
.ctrl
= hfcm_dctrl
;
4688 dch
->dev
.nrbchan
= (hc
->dslot
) ? 30 : 31;
4689 dch
->slot
= hc
->dslot
;
4690 hc
->chan
[hc
->dslot
].dch
= dch
;
4691 hc
->chan
[hc
->dslot
].port
= 0;
4692 hc
->chan
[hc
->dslot
].nt_timer
= -1;
4693 for (ch
= 1; ch
<= 31; ch
++) {
4694 if (ch
== hc
->dslot
) /* skip dchannel */
4696 bch
= kzalloc(sizeof(struct bchannel
), GFP_KERNEL
);
4698 printk(KERN_ERR
"%s: no memory for bchannel\n",
4703 hc
->chan
[ch
].coeff
= kzalloc(512, GFP_KERNEL
);
4704 if (!hc
->chan
[ch
].coeff
) {
4705 printk(KERN_ERR
"%s: no memory for coeffs\n",
4714 mISDN_initbchannel(bch
, MAX_DATA_MEM
);
4716 bch
->ch
.send
= handle_bmsg
;
4717 bch
->ch
.ctrl
= hfcm_bctrl
;
4719 list_add(&bch
->ch
.list
, &dch
->dev
.bchannels
);
4720 hc
->chan
[ch
].bch
= bch
;
4721 hc
->chan
[ch
].port
= 0;
4722 set_channelmap(bch
->nr
, dch
->dev
.channelmap
);
4724 /* set optical line type */
4725 if (port
[Port_cnt
] & 0x001) {
4726 if (!m
->opticalsupport
) {
4728 "This board has no optical "
4731 if (debug
& DEBUG_HFCMULTI_INIT
)
4733 "%s: PORT set optical "
4734 "interfacs: card(%d) "
4738 test_and_set_bit(HFC_CFG_OPTICAL
,
4739 &hc
->chan
[hc
->dslot
].cfg
);
4742 /* set LOS report */
4743 if (port
[Port_cnt
] & 0x004) {
4744 if (debug
& DEBUG_HFCMULTI_INIT
)
4745 printk(KERN_DEBUG
"%s: PORT set "
4746 "LOS report: card(%d) port(%d)\n",
4747 __func__
, HFC_cnt
+ 1, 1);
4748 test_and_set_bit(HFC_CFG_REPORT_LOS
,
4749 &hc
->chan
[hc
->dslot
].cfg
);
4751 /* set AIS report */
4752 if (port
[Port_cnt
] & 0x008) {
4753 if (debug
& DEBUG_HFCMULTI_INIT
)
4754 printk(KERN_DEBUG
"%s: PORT set "
4755 "AIS report: card(%d) port(%d)\n",
4756 __func__
, HFC_cnt
+ 1, 1);
4757 test_and_set_bit(HFC_CFG_REPORT_AIS
,
4758 &hc
->chan
[hc
->dslot
].cfg
);
4760 /* set SLIP report */
4761 if (port
[Port_cnt
] & 0x010) {
4762 if (debug
& DEBUG_HFCMULTI_INIT
)
4764 "%s: PORT set SLIP report: "
4765 "card(%d) port(%d)\n",
4766 __func__
, HFC_cnt
+ 1, 1);
4767 test_and_set_bit(HFC_CFG_REPORT_SLIP
,
4768 &hc
->chan
[hc
->dslot
].cfg
);
4770 /* set RDI report */
4771 if (port
[Port_cnt
] & 0x020) {
4772 if (debug
& DEBUG_HFCMULTI_INIT
)
4774 "%s: PORT set RDI report: "
4775 "card(%d) port(%d)\n",
4776 __func__
, HFC_cnt
+ 1, 1);
4777 test_and_set_bit(HFC_CFG_REPORT_RDI
,
4778 &hc
->chan
[hc
->dslot
].cfg
);
4780 /* set CRC-4 Mode */
4781 if (!(port
[Port_cnt
] & 0x100)) {
4782 if (debug
& DEBUG_HFCMULTI_INIT
)
4783 printk(KERN_DEBUG
"%s: PORT turn on CRC4 report:"
4784 " card(%d) port(%d)\n",
4785 __func__
, HFC_cnt
+ 1, 1);
4786 test_and_set_bit(HFC_CFG_CRC4
,
4787 &hc
->chan
[hc
->dslot
].cfg
);
4789 if (debug
& DEBUG_HFCMULTI_INIT
)
4790 printk(KERN_DEBUG
"%s: PORT turn off CRC4"
4791 " report: card(%d) port(%d)\n",
4792 __func__
, HFC_cnt
+ 1, 1);
4794 /* set forced clock */
4795 if (port
[Port_cnt
] & 0x0200) {
4796 if (debug
& DEBUG_HFCMULTI_INIT
)
4797 printk(KERN_DEBUG
"%s: PORT force getting clock from "
4798 "E1: card(%d) port(%d)\n",
4799 __func__
, HFC_cnt
+ 1, 1);
4800 test_and_set_bit(HFC_CHIP_E1CLOCK_GET
, &hc
->chip
);
4802 if (port
[Port_cnt
] & 0x0400) {
4803 if (debug
& DEBUG_HFCMULTI_INIT
)
4804 printk(KERN_DEBUG
"%s: PORT force putting clock to "
4805 "E1: card(%d) port(%d)\n",
4806 __func__
, HFC_cnt
+ 1, 1);
4807 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT
, &hc
->chip
);
4810 if (port
[Port_cnt
] & 0x0800) {
4811 if (debug
& DEBUG_HFCMULTI_INIT
)
4812 printk(KERN_DEBUG
"%s: PORT disable JATT PLL on "
4813 "E1: card(%d) port(%d)\n",
4814 __func__
, HFC_cnt
+ 1, 1);
4815 test_and_set_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
);
4817 /* set elastic jitter buffer */
4818 if (port
[Port_cnt
] & 0x3000) {
4819 hc
->chan
[hc
->dslot
].jitter
= (port
[Port_cnt
]>>12) & 0x3;
4820 if (debug
& DEBUG_HFCMULTI_INIT
)
4822 "%s: PORT set elastic "
4823 "buffer to %d: card(%d) port(%d)\n",
4824 __func__
, hc
->chan
[hc
->dslot
].jitter
,
4827 hc
->chan
[hc
->dslot
].jitter
= 2; /* default */
4828 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-e1.%d", HFC_cnt
+ 1);
4829 ret
= mISDN_register_device(&dch
->dev
, &hc
->pci_dev
->dev
, name
);
4835 release_port(hc
, dch
);
4840 init_multi_port(struct hfc_multi
*hc
, int pt
)
4842 struct dchannel
*dch
;
4843 struct bchannel
*bch
;
4845 char name
[MISDN_MAX_IDLEN
];
4847 dch
= kzalloc(sizeof(struct dchannel
), GFP_KERNEL
);
4851 mISDN_initdchannel(dch
, MAX_DFRAME_LEN_L1
, ph_state_change
);
4853 dch
->dev
.Dprotocols
= (1 << ISDN_P_TE_S0
) | (1 << ISDN_P_NT_S0
);
4854 dch
->dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
4855 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
4856 dch
->dev
.D
.send
= handle_dmsg
;
4857 dch
->dev
.D
.ctrl
= hfcm_dctrl
;
4858 dch
->dev
.nrbchan
= 2;
4861 hc
->chan
[i
+ 2].dch
= dch
;
4862 hc
->chan
[i
+ 2].port
= pt
;
4863 hc
->chan
[i
+ 2].nt_timer
= -1;
4864 for (ch
= 0; ch
< dch
->dev
.nrbchan
; ch
++) {
4865 bch
= kzalloc(sizeof(struct bchannel
), GFP_KERNEL
);
4867 printk(KERN_ERR
"%s: no memory for bchannel\n",
4872 hc
->chan
[i
+ ch
].coeff
= kzalloc(512, GFP_KERNEL
);
4873 if (!hc
->chan
[i
+ ch
].coeff
) {
4874 printk(KERN_ERR
"%s: no memory for coeffs\n",
4883 mISDN_initbchannel(bch
, MAX_DATA_MEM
);
4885 bch
->ch
.send
= handle_bmsg
;
4886 bch
->ch
.ctrl
= hfcm_bctrl
;
4887 bch
->ch
.nr
= ch
+ 1;
4888 list_add(&bch
->ch
.list
, &dch
->dev
.bchannels
);
4889 hc
->chan
[i
+ ch
].bch
= bch
;
4890 hc
->chan
[i
+ ch
].port
= pt
;
4891 set_channelmap(bch
->nr
, dch
->dev
.channelmap
);
4893 /* set master clock */
4894 if (port
[Port_cnt
] & 0x001) {
4895 if (debug
& DEBUG_HFCMULTI_INIT
)
4897 "%s: PROTOCOL set master clock: "
4898 "card(%d) port(%d)\n",
4899 __func__
, HFC_cnt
+ 1, pt
+ 1);
4900 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
4901 printk(KERN_ERR
"Error: Master clock "
4902 "for port(%d) of card(%d) is only"
4903 " possible with TE-mode\n",
4904 pt
+ 1, HFC_cnt
+ 1);
4908 if (hc
->masterclk
>= 0) {
4909 printk(KERN_ERR
"Error: Master clock "
4910 "for port(%d) of card(%d) already "
4911 "defined for port(%d)\n",
4912 pt
+ 1, HFC_cnt
+ 1, hc
->masterclk
+1);
4918 /* set transmitter line to non capacitive */
4919 if (port
[Port_cnt
] & 0x002) {
4920 if (debug
& DEBUG_HFCMULTI_INIT
)
4922 "%s: PROTOCOL set non capacitive "
4923 "transmitter: card(%d) port(%d)\n",
4924 __func__
, HFC_cnt
+ 1, pt
+ 1);
4925 test_and_set_bit(HFC_CFG_NONCAP_TX
,
4926 &hc
->chan
[i
+ 2].cfg
);
4928 /* disable E-channel */
4929 if (port
[Port_cnt
] & 0x004) {
4930 if (debug
& DEBUG_HFCMULTI_INIT
)
4932 "%s: PROTOCOL disable E-channel: "
4933 "card(%d) port(%d)\n",
4934 __func__
, HFC_cnt
+ 1, pt
+ 1);
4935 test_and_set_bit(HFC_CFG_DIS_ECHANNEL
,
4936 &hc
->chan
[i
+ 2].cfg
);
4938 if (hc
->ctype
== HFC_TYPE_XHFC
) {
4939 snprintf(name
, MISDN_MAX_IDLEN
- 1, "xhfc.%d-%d",
4940 HFC_cnt
+ 1, pt
+ 1);
4941 ret
= mISDN_register_device(&dch
->dev
, NULL
, name
);
4943 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-%ds.%d-%d",
4944 hc
->ctype
, HFC_cnt
+ 1, pt
+ 1);
4945 ret
= mISDN_register_device(&dch
->dev
, &hc
->pci_dev
->dev
, name
);
4949 hc
->created
[pt
] = 1;
4952 release_port(hc
, dch
);
4957 hfcmulti_init(struct hm_map
*m
, struct pci_dev
*pdev
,
4958 const struct pci_device_id
*ent
)
4962 struct hfc_multi
*hc
;
4964 u_char dips
= 0, pmj
= 0; /* dip settings, port mode Jumpers */
4967 if (HFC_cnt
>= MAX_CARDS
) {
4968 printk(KERN_ERR
"too many cards (max=%d).\n",
4972 if ((type
[HFC_cnt
] & 0xff) && (type
[HFC_cnt
] & 0xff) != m
->type
) {
4973 printk(KERN_WARNING
"HFC-MULTI: Card '%s:%s' type %d found but "
4974 "type[%d] %d was supplied as module parameter\n",
4975 m
->vendor_name
, m
->card_name
, m
->type
, HFC_cnt
,
4976 type
[HFC_cnt
] & 0xff);
4977 printk(KERN_WARNING
"HFC-MULTI: Load module without parameters "
4978 "first, to see cards and their types.");
4981 if (debug
& DEBUG_HFCMULTI_INIT
)
4982 printk(KERN_DEBUG
"%s: Registering %s:%s chip type %d (0x%x)\n",
4983 __func__
, m
->vendor_name
, m
->card_name
, m
->type
,
4986 /* allocate card+fifo structure */
4987 hc
= kzalloc(sizeof(struct hfc_multi
), GFP_KERNEL
);
4989 printk(KERN_ERR
"No kmem for HFC-Multi card\n");
4992 spin_lock_init(&hc
->lock
);
4994 hc
->ctype
= m
->type
;
4995 hc
->ports
= m
->ports
;
4997 hc
->pcm
= pcm
[HFC_cnt
];
4998 hc
->io_mode
= iomode
[HFC_cnt
];
4999 if (dslot
[HFC_cnt
] < 0 && hc
->ctype
== HFC_TYPE_E1
) {
5001 printk(KERN_INFO
"HFC-E1 card has disabled D-channel, but "
5004 if (dslot
[HFC_cnt
] > 0 && dslot
[HFC_cnt
] < 32
5005 && hc
->ctype
== HFC_TYPE_E1
) {
5006 hc
->dslot
= dslot
[HFC_cnt
];
5007 printk(KERN_INFO
"HFC-E1 card has alternating D-channel on "
5008 "time slot %d\n", dslot
[HFC_cnt
]);
5012 /* set chip specific features */
5014 if (type
[HFC_cnt
] & 0x100) {
5015 test_and_set_bit(HFC_CHIP_ULAW
, &hc
->chip
);
5016 hc
->silence
= 0xff; /* ulaw silence */
5018 hc
->silence
= 0x2a; /* alaw silence */
5019 if ((poll
>> 1) > sizeof(hc
->silence_data
)) {
5020 printk(KERN_ERR
"HFCMULTI error: silence_data too small, "
5024 for (i
= 0; i
< (poll
>> 1); i
++)
5025 hc
->silence_data
[i
] = hc
->silence
;
5027 if (hc
->ctype
!= HFC_TYPE_XHFC
) {
5028 if (!(type
[HFC_cnt
] & 0x200))
5029 test_and_set_bit(HFC_CHIP_DTMF
, &hc
->chip
);
5030 test_and_set_bit(HFC_CHIP_CONF
, &hc
->chip
);
5033 if (type
[HFC_cnt
] & 0x800)
5034 test_and_set_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
5035 if (type
[HFC_cnt
] & 0x1000) {
5036 test_and_set_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
);
5037 test_and_clear_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
5039 if (type
[HFC_cnt
] & 0x4000)
5040 test_and_set_bit(HFC_CHIP_EXRAM_128
, &hc
->chip
);
5041 if (type
[HFC_cnt
] & 0x8000)
5042 test_and_set_bit(HFC_CHIP_EXRAM_512
, &hc
->chip
);
5044 if (type
[HFC_cnt
] & 0x10000)
5046 if (type
[HFC_cnt
] & 0x20000)
5048 if (type
[HFC_cnt
] & 0x80000) {
5049 test_and_set_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
);
5051 hc
->wdbyte
= V_GPIO_OUT2
;
5052 printk(KERN_NOTICE
"Watchdog enabled\n");
5056 /* setup pci, hc->slots may change due to PLXSD */
5057 ret_err
= setup_pci(hc
, pdev
, ent
);
5059 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5060 ret_err
= setup_embedded(hc
, m
);
5063 printk(KERN_WARNING
"Embedded IO Mode not selected\n");
5068 if (hc
== syncmaster
)
5074 hc
->HFC_outb_nodebug
= hc
->HFC_outb
;
5075 hc
->HFC_inb_nodebug
= hc
->HFC_inb
;
5076 hc
->HFC_inw_nodebug
= hc
->HFC_inw
;
5077 hc
->HFC_wait_nodebug
= hc
->HFC_wait
;
5078 #ifdef HFC_REGISTER_DEBUG
5079 hc
->HFC_outb
= HFC_outb_debug
;
5080 hc
->HFC_inb
= HFC_inb_debug
;
5081 hc
->HFC_inw
= HFC_inw_debug
;
5082 hc
->HFC_wait
= HFC_wait_debug
;
5084 /* create channels */
5085 for (pt
= 0; pt
< hc
->ports
; pt
++) {
5086 if (Port_cnt
>= MAX_PORTS
) {
5087 printk(KERN_ERR
"too many ports (max=%d).\n",
5092 if (hc
->ctype
== HFC_TYPE_E1
)
5093 ret_err
= init_e1_port(hc
, m
);
5095 ret_err
= init_multi_port(hc
, pt
);
5096 if (debug
& DEBUG_HFCMULTI_INIT
)
5098 "%s: Registering D-channel, card(%d) port(%d)"
5100 __func__
, HFC_cnt
+ 1, pt
, ret_err
);
5103 while (pt
) { /* release already registered ports */
5105 release_port(hc
, hc
->chan
[(pt
<< 2) + 2].dch
);
5113 switch (m
->dip_type
) {
5116 * Get DIP setting for beroNet 1S/2S/4S cards
5117 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5118 * GPI 19/23 (R_GPI_IN2))
5120 dips
= ((~HFC_inb(hc
, R_GPIO_IN1
) & 0xE0) >> 5) |
5121 ((~HFC_inb(hc
, R_GPI_IN2
) & 0x80) >> 3) |
5122 (~HFC_inb(hc
, R_GPI_IN2
) & 0x08);
5124 /* Port mode (TE/NT) jumpers */
5125 pmj
= ((HFC_inb(hc
, R_GPI_IN3
) >> 4) & 0xf);
5127 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
5130 printk(KERN_INFO
"%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5131 m
->vendor_name
, m
->card_name
, dips
, pmj
);
5135 * Get DIP Setting for beroNet 8S0+ cards
5136 * Enable PCI auxbridge function
5138 HFC_outb(hc
, R_BRG_PCM_CFG
, 1 | V_PCM_CLK
);
5139 /* prepare access to auxport */
5140 outw(0x4000, hc
->pci_iobase
+ 4);
5142 * some dummy reads are required to
5143 * read valid DIP switch data
5145 dips
= inb(hc
->pci_iobase
);
5146 dips
= inb(hc
->pci_iobase
);
5147 dips
= inb(hc
->pci_iobase
);
5148 dips
= ~inb(hc
->pci_iobase
) & 0x3F;
5149 outw(0x0, hc
->pci_iobase
+ 4);
5150 /* disable PCI auxbridge function */
5151 HFC_outb(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
5152 printk(KERN_INFO
"%s: %s DIPs(0x%x)\n",
5153 m
->vendor_name
, m
->card_name
, dips
);
5157 * get DIP Setting for beroNet E1 cards
5158 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5160 dips
= (~HFC_inb(hc
, R_GPI_IN0
) & 0xF0)>>4;
5161 printk(KERN_INFO
"%s: %s DIPs(0x%x)\n",
5162 m
->vendor_name
, m
->card_name
, dips
);
5167 spin_lock_irqsave(&HFClock
, flags
);
5168 list_add_tail(&hc
->list
, &HFClist
);
5169 spin_unlock_irqrestore(&HFClock
, flags
);
5171 /* use as clock source */
5172 if (clock
== HFC_cnt
+ 1)
5173 hc
->iclock
= mISDN_register_clock("HFCMulti", 0, clockctl
, hc
);
5175 /* initialize hardware */
5176 hc
->irq
= (m
->irq
) ? : hc
->pci_dev
->irq
;
5177 ret_err
= init_card(hc
);
5179 printk(KERN_ERR
"init card returns %d\n", ret_err
);
5184 /* start IRQ and return */
5185 spin_lock_irqsave(&hc
->lock
, flags
);
5187 spin_unlock_irqrestore(&hc
->lock
, flags
);
5191 release_io_hfcmulti(hc
);
5192 if (hc
== syncmaster
)
5198 static void __devexit
hfc_remove_pci(struct pci_dev
*pdev
)
5200 struct hfc_multi
*card
= pci_get_drvdata(pdev
);
5204 printk(KERN_INFO
"removing hfc_multi card vendor:%x "
5205 "device:%x subvendor:%x subdevice:%x\n",
5206 pdev
->vendor
, pdev
->device
,
5207 pdev
->subsystem_vendor
, pdev
->subsystem_device
);
5210 spin_lock_irqsave(&HFClock
, flags
);
5212 spin_unlock_irqrestore(&HFClock
, flags
);
5215 printk(KERN_DEBUG
"%s: drvdata already removed\n",
5220 #define VENDOR_CCD "Cologne Chip AG"
5221 #define VENDOR_BN "beroNet GmbH"
5222 #define VENDOR_DIG "Digium Inc."
5223 #define VENDOR_JH "Junghanns.NET GmbH"
5224 #define VENDOR_PRIM "PrimuX"
5226 static const struct hm_map hfcm_map
[] = {
5227 /*0*/ {VENDOR_BN
, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S
, 0, 0},
5228 /*1*/ {VENDOR_BN
, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5229 /*2*/ {VENDOR_BN
, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5230 /*3*/ {VENDOR_BN
, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5231 /*4*/ {VENDOR_BN
, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5232 /*5*/ {VENDOR_CCD
, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5233 /*6*/ {VENDOR_CCD
, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5234 /*7*/ {VENDOR_CCD
, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5235 /*8*/ {VENDOR_DIG
, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO
, 0},
5236 /*9*/ {VENDOR_CCD
, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5237 /*10*/ {VENDOR_JH
, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5238 /*11*/ {VENDOR_PRIM
, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5240 /*12*/ {VENDOR_BN
, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5241 /*13*/ {VENDOR_BN
, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S
,
5242 HFC_IO_MODE_REGIO
, 0},
5243 /*14*/ {VENDOR_CCD
, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5244 /*15*/ {VENDOR_CCD
, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5246 /*16*/ {VENDOR_CCD
, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5247 /*17*/ {VENDOR_CCD
, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5248 /*18*/ {VENDOR_CCD
, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5250 /*19*/ {VENDOR_BN
, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5251 /*20*/ {VENDOR_BN
, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5252 /*21*/ {VENDOR_BN
, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5253 /*22*/ {VENDOR_BN
, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5255 /*23*/ {VENDOR_CCD
, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5256 /*24*/ {VENDOR_CCD
, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5257 /*25*/ {VENDOR_CCD
, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5259 /*26*/ {VENDOR_CCD
, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5260 HFC_IO_MODE_PLXSD
, 0},
5261 /*27*/ {VENDOR_CCD
, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5262 HFC_IO_MODE_PLXSD
, 0},
5263 /*28*/ {VENDOR_CCD
, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5264 /*29*/ {VENDOR_CCD
, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5265 /*30*/ {VENDOR_CCD
, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5266 /*31*/ {VENDOR_CCD
, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5267 HFC_IO_MODE_EMBSD
, XHFC_IRQ
},
5268 /*32*/ {VENDOR_JH
, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5269 /*33*/ {VENDOR_BN
, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5270 /*34*/ {VENDOR_BN
, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5274 #define H(x) ((unsigned long)&hfcm_map[x])
5275 static struct pci_device_id hfmultipci_ids
[] __devinitdata
= {
5277 /* Cards with HFC-4S Chip */
5278 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5279 PCI_SUBDEVICE_ID_CCD_BN1SM
, 0, 0, H(0)}, /* BN1S mini PCI */
5280 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5281 PCI_SUBDEVICE_ID_CCD_BN2S
, 0, 0, H(1)}, /* BN2S */
5282 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5283 PCI_SUBDEVICE_ID_CCD_BN2SM
, 0, 0, H(2)}, /* BN2S mini PCI */
5284 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5285 PCI_SUBDEVICE_ID_CCD_BN4S
, 0, 0, H(3)}, /* BN4S */
5286 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5287 PCI_SUBDEVICE_ID_CCD_BN4SM
, 0, 0, H(4)}, /* BN4S mini PCI */
5288 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5289 PCI_DEVICE_ID_CCD_HFC4S
, 0, 0, H(5)}, /* Old Eval */
5290 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5291 PCI_SUBDEVICE_ID_CCD_IOB4ST
, 0, 0, H(6)}, /* IOB4ST */
5292 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5293 PCI_SUBDEVICE_ID_CCD_HFC4S
, 0, 0, H(7)}, /* 4S */
5294 { PCI_VENDOR_ID_DIGIUM
, PCI_DEVICE_ID_DIGIUM_HFC4S
,
5295 PCI_VENDOR_ID_DIGIUM
, PCI_DEVICE_ID_DIGIUM_HFC4S
, 0, 0, H(8)},
5296 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5297 PCI_SUBDEVICE_ID_CCD_SWYX4S
, 0, 0, H(9)}, /* 4S Swyx */
5298 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5299 PCI_SUBDEVICE_ID_CCD_JH4S20
, 0, 0, H(10)},
5300 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5301 PCI_SUBDEVICE_ID_CCD_PMX2S
, 0, 0, H(11)}, /* Primux */
5302 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5303 PCI_SUBDEVICE_ID_CCD_OV4S
, 0, 0, H(28)}, /* OpenVox 4 */
5304 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5305 PCI_SUBDEVICE_ID_CCD_OV2S
, 0, 0, H(29)}, /* OpenVox 2 */
5306 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5307 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5308 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5309 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5311 /* Cards with HFC-8S Chip */
5312 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5313 PCI_SUBDEVICE_ID_CCD_BN8S
, 0, 0, H(12)}, /* BN8S */
5314 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5315 PCI_SUBDEVICE_ID_CCD_BN8SP
, 0, 0, H(13)}, /* BN8S+ */
5316 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5317 PCI_DEVICE_ID_CCD_HFC8S
, 0, 0, H(14)}, /* old Eval */
5318 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5319 PCI_SUBDEVICE_ID_CCD_IOB8STR
, 0, 0, H(15)}, /* IOB8ST Recording */
5320 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5321 PCI_SUBDEVICE_ID_CCD_IOB8ST
, 0, 0, H(16)}, /* IOB8ST */
5322 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5323 PCI_SUBDEVICE_ID_CCD_IOB8ST_1
, 0, 0, H(17)}, /* IOB8ST */
5324 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5325 PCI_SUBDEVICE_ID_CCD_HFC8S
, 0, 0, H(18)}, /* 8S */
5326 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5327 PCI_SUBDEVICE_ID_CCD_OV8S
, 0, 0, H(30)}, /* OpenVox 8 */
5328 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5329 PCI_SUBDEVICE_ID_CCD_JH8S
, 0, 0, H(32)}, /* Junganns 8S */
5332 /* Cards with HFC-E1 Chip */
5333 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5334 PCI_SUBDEVICE_ID_CCD_BNE1
, 0, 0, H(19)}, /* BNE1 */
5335 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5336 PCI_SUBDEVICE_ID_CCD_BNE1M
, 0, 0, H(20)}, /* BNE1 mini PCI */
5337 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5338 PCI_SUBDEVICE_ID_CCD_BNE1DP
, 0, 0, H(21)}, /* BNE1 + (Dual) */
5339 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5340 PCI_SUBDEVICE_ID_CCD_BNE1D
, 0, 0, H(22)}, /* BNE1 (Dual) */
5342 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5343 PCI_DEVICE_ID_CCD_HFCE1
, 0, 0, H(23)}, /* Old Eval */
5344 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5345 PCI_SUBDEVICE_ID_CCD_IOB1E1
, 0, 0, H(24)}, /* IOB1E1 */
5346 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5347 PCI_SUBDEVICE_ID_CCD_HFCE1
, 0, 0, H(25)}, /* E1 */
5349 { PCI_VENDOR_ID_PLX
, PCI_DEVICE_ID_PLX_9030
, PCI_VENDOR_ID_CCD
,
5350 PCI_SUBDEVICE_ID_CCD_SPD4S
, 0, 0, H(26)}, /* PLX PCI Bridge */
5351 { PCI_VENDOR_ID_PLX
, PCI_DEVICE_ID_PLX_9030
, PCI_VENDOR_ID_CCD
,
5352 PCI_SUBDEVICE_ID_CCD_SPDE1
, 0, 0, H(27)}, /* PLX PCI Bridge */
5354 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5355 PCI_SUBDEVICE_ID_CCD_JHSE1
, 0, 0, H(25)}, /* Junghanns E1 */
5357 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFC4S
), 0 },
5358 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFC8S
), 0 },
5359 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFCE1
), 0 },
5364 MODULE_DEVICE_TABLE(pci
, hfmultipci_ids
);
5367 hfcmulti_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
5369 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
5372 if (m
== NULL
&& ent
->vendor
== PCI_VENDOR_ID_CCD
&& (
5373 ent
->device
== PCI_DEVICE_ID_CCD_HFC4S
||
5374 ent
->device
== PCI_DEVICE_ID_CCD_HFC8S
||
5375 ent
->device
== PCI_DEVICE_ID_CCD_HFCE1
)) {
5377 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5378 "subvendor:%04x subdevice:%04x)\n", pdev
->vendor
,
5379 pdev
->device
, pdev
->subsystem_vendor
,
5380 pdev
->subsystem_device
);
5382 "Please contact the driver maintainer for support.\n");
5385 ret
= hfcmulti_init(m
, pdev
, ent
);
5389 printk(KERN_INFO
"%d devices registered\n", HFC_cnt
);
5393 static struct pci_driver hfcmultipci_driver
= {
5394 .name
= "hfc_multi",
5395 .probe
= hfcmulti_probe
,
5396 .remove
= __devexit_p(hfc_remove_pci
),
5397 .id_table
= hfmultipci_ids
,
5401 HFCmulti_cleanup(void)
5403 struct hfc_multi
*card
, *next
;
5405 /* get rid of all devices of this driver */
5406 list_for_each_entry_safe(card
, next
, &HFClist
, list
)
5408 pci_unregister_driver(&hfcmultipci_driver
);
5418 printk(KERN_INFO
"mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION
);
5421 printk(KERN_DEBUG
"%s: IRQ_DEBUG IS ENABLED!\n", __func__
);
5424 spin_lock_init(&HFClock
);
5425 spin_lock_init(&plx_lock
);
5427 if (debug
& DEBUG_HFCMULTI_INIT
)
5428 printk(KERN_DEBUG
"%s: init entered\n", __func__
);
5455 "%s: Wrong poll value (%d).\n", __func__
, poll
);
5464 /* Register the embedded devices.
5465 * This should be done before the PCI cards registration */
5483 for (i
= 0; i
< xhfc
; ++i
) {
5484 err
= hfcmulti_init(&m
, NULL
, NULL
);
5486 printk(KERN_ERR
"error registering embedded driver: "
5491 printk(KERN_INFO
"%d devices registered\n", HFC_cnt
);
5494 /* Register the PCI cards */
5495 err
= pci_register_driver(&hfcmultipci_driver
);
5497 printk(KERN_ERR
"error registering pci driver: %x\n", err
);
5505 module_init(HFCmulti_init
);
5506 module_exit(HFCmulti_cleanup
);