1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
32 #include <asm/uaccess.h>
34 enum {NETDEV_STATS
, E1000_STATS
};
37 char stat_string
[ETH_GSTRING_LEN
];
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
50 static const struct e1000_stats e1000_gstrings_stats
[] = {
51 { "rx_packets", E1000_STAT(stats
.gprc
) },
52 { "tx_packets", E1000_STAT(stats
.gptc
) },
53 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
54 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
55 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
56 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
57 { "rx_multicast", E1000_STAT(stats
.mprc
) },
58 { "tx_multicast", E1000_STAT(stats
.mptc
) },
59 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
60 { "tx_errors", E1000_STAT(stats
.txerrc
) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats
.tx_dropped
) },
62 { "multicast", E1000_STAT(stats
.mprc
) },
63 { "collisions", E1000_STAT(stats
.colc
) },
64 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats
.rx_over_errors
) },
66 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats
.rx_frame_errors
) },
68 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
69 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
70 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
71 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats
.tx_fifo_errors
) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats
.tx_heartbeat_errors
) },
74 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
75 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
76 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
77 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
78 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
80 { "tx_restart_queue", E1000_STAT(restart_queue
) },
81 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
82 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
83 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
84 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
86 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
87 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
88 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
89 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
90 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
94 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
95 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
96 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 static int e1000_get_settings(struct net_device
*netdev
,
110 struct ethtool_cmd
*ecmd
)
112 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
113 struct e1000_hw
*hw
= &adapter
->hw
;
115 if (hw
->media_type
== e1000_media_type_copper
) {
117 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
118 SUPPORTED_10baseT_Full
|
119 SUPPORTED_100baseT_Half
|
120 SUPPORTED_100baseT_Full
|
121 SUPPORTED_1000baseT_Full
|
124 ecmd
->advertising
= ADVERTISED_TP
;
126 if (hw
->autoneg
== 1) {
127 ecmd
->advertising
|= ADVERTISED_Autoneg
;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd
->advertising
|= hw
->autoneg_advertised
;
132 ecmd
->port
= PORT_TP
;
133 ecmd
->phy_address
= hw
->phy_addr
;
135 if (hw
->mac_type
== e1000_82543
)
136 ecmd
->transceiver
= XCVR_EXTERNAL
;
138 ecmd
->transceiver
= XCVR_INTERNAL
;
141 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
145 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
149 ecmd
->port
= PORT_FIBRE
;
151 if (hw
->mac_type
>= e1000_82545
)
152 ecmd
->transceiver
= XCVR_INTERNAL
;
154 ecmd
->transceiver
= XCVR_EXTERNAL
;
157 if (er32(STATUS
) & E1000_STATUS_LU
) {
159 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
160 &adapter
->link_duplex
);
161 ethtool_cmd_speed_set(ecmd
, adapter
->link_speed
);
163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
166 if (adapter
->link_duplex
== FULL_DUPLEX
)
167 ecmd
->duplex
= DUPLEX_FULL
;
169 ecmd
->duplex
= DUPLEX_HALF
;
171 ethtool_cmd_speed_set(ecmd
, -1);
175 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
176 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
180 static int e1000_set_settings(struct net_device
*netdev
,
181 struct ethtool_cmd
*ecmd
)
183 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
184 struct e1000_hw
*hw
= &adapter
->hw
;
186 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
189 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
191 if (hw
->media_type
== e1000_media_type_fiber
)
192 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
196 hw
->autoneg_advertised
= ecmd
->advertising
|
199 ecmd
->advertising
= hw
->autoneg_advertised
;
201 u32 speed
= ethtool_cmd_speed(ecmd
);
202 if (e1000_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
203 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
210 if (netif_running(adapter
->netdev
)) {
214 e1000_reset(adapter
);
216 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
220 static u32
e1000_get_link(struct net_device
*netdev
)
222 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
225 * If the link is not reported up to netdev, interrupts are disabled,
226 * and so the physical link state may have changed since we last
227 * looked. Set get_link_status to make sure that the true link
228 * state is interrogated, rather than pulling a cached and possibly
229 * stale link state from the driver.
231 if (!netif_carrier_ok(netdev
))
232 adapter
->hw
.get_link_status
= 1;
234 return e1000_has_link(adapter
);
237 static void e1000_get_pauseparam(struct net_device
*netdev
,
238 struct ethtool_pauseparam
*pause
)
240 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
241 struct e1000_hw
*hw
= &adapter
->hw
;
244 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
246 if (hw
->fc
== E1000_FC_RX_PAUSE
)
248 else if (hw
->fc
== E1000_FC_TX_PAUSE
)
250 else if (hw
->fc
== E1000_FC_FULL
) {
256 static int e1000_set_pauseparam(struct net_device
*netdev
,
257 struct ethtool_pauseparam
*pause
)
259 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
260 struct e1000_hw
*hw
= &adapter
->hw
;
263 adapter
->fc_autoneg
= pause
->autoneg
;
265 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
268 if (pause
->rx_pause
&& pause
->tx_pause
)
269 hw
->fc
= E1000_FC_FULL
;
270 else if (pause
->rx_pause
&& !pause
->tx_pause
)
271 hw
->fc
= E1000_FC_RX_PAUSE
;
272 else if (!pause
->rx_pause
&& pause
->tx_pause
)
273 hw
->fc
= E1000_FC_TX_PAUSE
;
274 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
275 hw
->fc
= E1000_FC_NONE
;
277 hw
->original_fc
= hw
->fc
;
279 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
280 if (netif_running(adapter
->netdev
)) {
284 e1000_reset(adapter
);
286 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
287 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
289 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
293 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
295 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
296 return adapter
->rx_csum
;
299 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
301 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
302 adapter
->rx_csum
= data
;
304 if (netif_running(netdev
))
305 e1000_reinit_locked(adapter
);
307 e1000_reset(adapter
);
311 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
313 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
316 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
318 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
319 struct e1000_hw
*hw
= &adapter
->hw
;
321 if (hw
->mac_type
< e1000_82543
) {
328 netdev
->features
|= NETIF_F_HW_CSUM
;
330 netdev
->features
&= ~NETIF_F_HW_CSUM
;
335 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
337 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
338 struct e1000_hw
*hw
= &adapter
->hw
;
340 if ((hw
->mac_type
< e1000_82544
) ||
341 (hw
->mac_type
== e1000_82547
))
342 return data
? -EINVAL
: 0;
345 netdev
->features
|= NETIF_F_TSO
;
347 netdev
->features
&= ~NETIF_F_TSO
;
349 netdev
->features
&= ~NETIF_F_TSO6
;
351 e_info(probe
, "TSO is %s\n", data
? "Enabled" : "Disabled");
352 adapter
->tso_force
= true;
356 static u32
e1000_get_msglevel(struct net_device
*netdev
)
358 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
359 return adapter
->msg_enable
;
362 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
364 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
365 adapter
->msg_enable
= data
;
368 static int e1000_get_regs_len(struct net_device
*netdev
)
370 #define E1000_REGS_LEN 32
371 return E1000_REGS_LEN
* sizeof(u32
);
374 static void e1000_get_regs(struct net_device
*netdev
, struct ethtool_regs
*regs
,
377 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
378 struct e1000_hw
*hw
= &adapter
->hw
;
382 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
384 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
386 regs_buff
[0] = er32(CTRL
);
387 regs_buff
[1] = er32(STATUS
);
389 regs_buff
[2] = er32(RCTL
);
390 regs_buff
[3] = er32(RDLEN
);
391 regs_buff
[4] = er32(RDH
);
392 regs_buff
[5] = er32(RDT
);
393 regs_buff
[6] = er32(RDTR
);
395 regs_buff
[7] = er32(TCTL
);
396 regs_buff
[8] = er32(TDLEN
);
397 regs_buff
[9] = er32(TDH
);
398 regs_buff
[10] = er32(TDT
);
399 regs_buff
[11] = er32(TIDV
);
401 regs_buff
[12] = hw
->phy_type
; /* PHY type (IGP=1, M88=0) */
402 if (hw
->phy_type
== e1000_phy_igp
) {
403 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
404 IGP01E1000_PHY_AGC_A
);
405 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
406 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
407 regs_buff
[13] = (u32
)phy_data
; /* cable length */
408 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
409 IGP01E1000_PHY_AGC_B
);
410 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
411 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
412 regs_buff
[14] = (u32
)phy_data
; /* cable length */
413 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
414 IGP01E1000_PHY_AGC_C
);
415 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
416 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
417 regs_buff
[15] = (u32
)phy_data
; /* cable length */
418 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
419 IGP01E1000_PHY_AGC_D
);
420 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
421 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
422 regs_buff
[16] = (u32
)phy_data
; /* cable length */
423 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
424 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
425 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
426 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
427 regs_buff
[18] = (u32
)phy_data
; /* cable polarity */
428 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
429 IGP01E1000_PHY_PCS_INIT_REG
);
430 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
431 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
432 regs_buff
[19] = (u32
)phy_data
; /* cable polarity */
433 regs_buff
[20] = 0; /* polarity correction enabled (always) */
434 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
435 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
436 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
438 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
439 regs_buff
[13] = (u32
)phy_data
; /* cable length */
440 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
441 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
442 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
443 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
444 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
445 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
446 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
447 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
448 /* phy receive errors */
449 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
450 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
452 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
453 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
454 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
455 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
456 if (hw
->mac_type
>= e1000_82540
&&
457 hw
->media_type
== e1000_media_type_copper
) {
458 regs_buff
[26] = er32(MANC
);
462 static int e1000_get_eeprom_len(struct net_device
*netdev
)
464 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
465 struct e1000_hw
*hw
= &adapter
->hw
;
467 return hw
->eeprom
.word_size
* 2;
470 static int e1000_get_eeprom(struct net_device
*netdev
,
471 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
473 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
474 struct e1000_hw
*hw
= &adapter
->hw
;
476 int first_word
, last_word
;
480 if (eeprom
->len
== 0)
483 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
485 first_word
= eeprom
->offset
>> 1;
486 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
488 eeprom_buff
= kmalloc(sizeof(u16
) *
489 (last_word
- first_word
+ 1), GFP_KERNEL
);
493 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
494 ret_val
= e1000_read_eeprom(hw
, first_word
,
495 last_word
- first_word
+ 1,
498 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
499 ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
506 /* Device's eeprom is always little-endian, word addressable */
507 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
508 le16_to_cpus(&eeprom_buff
[i
]);
510 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
517 static int e1000_set_eeprom(struct net_device
*netdev
,
518 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
520 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
521 struct e1000_hw
*hw
= &adapter
->hw
;
524 int max_len
, first_word
, last_word
, ret_val
= 0;
527 if (eeprom
->len
== 0)
530 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
533 max_len
= hw
->eeprom
.word_size
* 2;
535 first_word
= eeprom
->offset
>> 1;
536 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
537 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
541 ptr
= (void *)eeprom_buff
;
543 if (eeprom
->offset
& 1) {
544 /* need read/modify/write of first changed EEPROM word */
545 /* only the second byte of the word is being modified */
546 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
550 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
551 /* need read/modify/write of last changed EEPROM word */
552 /* only the first byte of the word is being modified */
553 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
554 &eeprom_buff
[last_word
- first_word
]);
557 /* Device's eeprom is always little-endian, word addressable */
558 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
559 le16_to_cpus(&eeprom_buff
[i
]);
561 memcpy(ptr
, bytes
, eeprom
->len
);
563 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
564 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
566 ret_val
= e1000_write_eeprom(hw
, first_word
,
567 last_word
- first_word
+ 1, eeprom_buff
);
569 /* Update the checksum over the first part of the EEPROM if needed */
570 if ((ret_val
== 0) && (first_word
<= EEPROM_CHECKSUM_REG
))
571 e1000_update_eeprom_checksum(hw
);
577 static void e1000_get_drvinfo(struct net_device
*netdev
,
578 struct ethtool_drvinfo
*drvinfo
)
580 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
581 char firmware_version
[32];
583 strncpy(drvinfo
->driver
, e1000_driver_name
, 32);
584 strncpy(drvinfo
->version
, e1000_driver_version
, 32);
586 sprintf(firmware_version
, "N/A");
587 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
588 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
589 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
590 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
593 static void e1000_get_ringparam(struct net_device
*netdev
,
594 struct ethtool_ringparam
*ring
)
596 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
597 struct e1000_hw
*hw
= &adapter
->hw
;
598 e1000_mac_type mac_type
= hw
->mac_type
;
599 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
600 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
602 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
604 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
606 ring
->rx_mini_max_pending
= 0;
607 ring
->rx_jumbo_max_pending
= 0;
608 ring
->rx_pending
= rxdr
->count
;
609 ring
->tx_pending
= txdr
->count
;
610 ring
->rx_mini_pending
= 0;
611 ring
->rx_jumbo_pending
= 0;
614 static int e1000_set_ringparam(struct net_device
*netdev
,
615 struct ethtool_ringparam
*ring
)
617 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
618 struct e1000_hw
*hw
= &adapter
->hw
;
619 e1000_mac_type mac_type
= hw
->mac_type
;
620 struct e1000_tx_ring
*txdr
, *tx_old
;
621 struct e1000_rx_ring
*rxdr
, *rx_old
;
624 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
627 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
630 if (netif_running(adapter
->netdev
))
633 tx_old
= adapter
->tx_ring
;
634 rx_old
= adapter
->rx_ring
;
637 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
641 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
645 adapter
->tx_ring
= txdr
;
646 adapter
->rx_ring
= rxdr
;
648 rxdr
->count
= max(ring
->rx_pending
,(u32
)E1000_MIN_RXD
);
649 rxdr
->count
= min(rxdr
->count
,(u32
)(mac_type
< e1000_82544
?
650 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
651 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
653 txdr
->count
= max(ring
->tx_pending
,(u32
)E1000_MIN_TXD
);
654 txdr
->count
= min(txdr
->count
,(u32
)(mac_type
< e1000_82544
?
655 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
656 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
658 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
659 txdr
[i
].count
= txdr
->count
;
660 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
661 rxdr
[i
].count
= rxdr
->count
;
663 if (netif_running(adapter
->netdev
)) {
664 /* Try to get new resources before deleting old */
665 err
= e1000_setup_all_rx_resources(adapter
);
668 err
= e1000_setup_all_tx_resources(adapter
);
672 /* save the new, restore the old in order to free it,
673 * then restore the new back again */
675 adapter
->rx_ring
= rx_old
;
676 adapter
->tx_ring
= tx_old
;
677 e1000_free_all_rx_resources(adapter
);
678 e1000_free_all_tx_resources(adapter
);
681 adapter
->rx_ring
= rxdr
;
682 adapter
->tx_ring
= txdr
;
683 err
= e1000_up(adapter
);
688 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
691 e1000_free_all_rx_resources(adapter
);
693 adapter
->rx_ring
= rx_old
;
694 adapter
->tx_ring
= tx_old
;
701 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
705 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
708 struct e1000_hw
*hw
= &adapter
->hw
;
709 static const u32 test
[] =
710 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
711 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
715 for (i
= 0; i
< ARRAY_SIZE(test
); i
++) {
716 writel(write
& test
[i
], address
);
717 read
= readl(address
);
718 if (read
!= (write
& test
[i
] & mask
)) {
719 e_err(drv
, "pattern test reg %04X failed: "
720 "got 0x%08X expected 0x%08X\n",
721 reg
, read
, (write
& test
[i
] & mask
));
729 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
732 struct e1000_hw
*hw
= &adapter
->hw
;
733 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
736 writel(write
& mask
, address
);
737 read
= readl(address
);
738 if ((read
& mask
) != (write
& mask
)) {
739 e_err(drv
, "set/check reg %04X test failed: "
740 "got 0x%08X expected 0x%08X\n",
741 reg
, (read
& mask
), (write
& mask
));
748 #define REG_PATTERN_TEST(reg, mask, write) \
750 if (reg_pattern_test(adapter, data, \
751 (hw->mac_type >= e1000_82543) \
752 ? E1000_##reg : E1000_82542_##reg, \
757 #define REG_SET_AND_CHECK(reg, mask, write) \
759 if (reg_set_and_check(adapter, data, \
760 (hw->mac_type >= e1000_82543) \
761 ? E1000_##reg : E1000_82542_##reg, \
766 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
768 u32 value
, before
, after
;
770 struct e1000_hw
*hw
= &adapter
->hw
;
772 /* The status register is Read Only, so a write should fail.
773 * Some bits that get toggled are ignored.
776 /* there are several bits on newer hardware that are r/w */
779 before
= er32(STATUS
);
780 value
= (er32(STATUS
) & toggle
);
781 ew32(STATUS
, toggle
);
782 after
= er32(STATUS
) & toggle
;
783 if (value
!= after
) {
784 e_err(drv
, "failed STATUS register test got: "
785 "0x%08X expected: 0x%08X\n", after
, value
);
789 /* restore previous status */
790 ew32(STATUS
, before
);
792 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
793 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
794 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
795 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
797 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
798 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
799 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
800 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
801 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
802 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
803 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
804 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
805 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
806 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
808 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
811 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
812 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
814 if (hw
->mac_type
>= e1000_82543
) {
816 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
817 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
818 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
819 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
820 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
821 value
= E1000_RAR_ENTRIES
;
822 for (i
= 0; i
< value
; i
++) {
823 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
829 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
830 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
831 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
832 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
836 value
= E1000_MC_TBL_SIZE
;
837 for (i
= 0; i
< value
; i
++)
838 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
844 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
846 struct e1000_hw
*hw
= &adapter
->hw
;
852 /* Read and add up the contents of the EEPROM */
853 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
854 if ((e1000_read_eeprom(hw
, i
, 1, &temp
)) < 0) {
861 /* If Checksum is not Correct return error else test passed */
862 if ((checksum
!= (u16
)EEPROM_SUM
) && !(*data
))
868 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
870 struct net_device
*netdev
= (struct net_device
*)data
;
871 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
872 struct e1000_hw
*hw
= &adapter
->hw
;
874 adapter
->test_icr
|= er32(ICR
);
879 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
881 struct net_device
*netdev
= adapter
->netdev
;
883 bool shared_int
= true;
884 u32 irq
= adapter
->pdev
->irq
;
885 struct e1000_hw
*hw
= &adapter
->hw
;
889 /* NOTE: we don't test MSI interrupts here, yet */
890 /* Hook up test interrupt handler just for this test */
891 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
894 else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
,
895 netdev
->name
, netdev
)) {
899 e_info(hw
, "testing %s interrupt\n", (shared_int
?
900 "shared" : "unshared"));
902 /* Disable all the interrupts */
903 ew32(IMC
, 0xFFFFFFFF);
906 /* Test each interrupt */
907 for (; i
< 10; i
++) {
909 /* Interrupt to test */
913 /* Disable the interrupt to be reported in
914 * the cause register and then force the same
915 * interrupt and see if one gets posted. If
916 * an interrupt was posted to the bus, the
919 adapter
->test_icr
= 0;
924 if (adapter
->test_icr
& mask
) {
930 /* Enable the interrupt to be reported in
931 * the cause register and then force the same
932 * interrupt and see if one gets posted. If
933 * an interrupt was not posted to the bus, the
936 adapter
->test_icr
= 0;
941 if (!(adapter
->test_icr
& mask
)) {
947 /* Disable the other interrupts to be reported in
948 * the cause register and then force the other
949 * interrupts and see if any get posted. If
950 * an interrupt was posted to the bus, the
953 adapter
->test_icr
= 0;
954 ew32(IMC
, ~mask
& 0x00007FFF);
955 ew32(ICS
, ~mask
& 0x00007FFF);
958 if (adapter
->test_icr
) {
965 /* Disable all the interrupts */
966 ew32(IMC
, 0xFFFFFFFF);
969 /* Unhook test interrupt handler */
970 free_irq(irq
, netdev
);
975 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
977 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
978 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
979 struct pci_dev
*pdev
= adapter
->pdev
;
982 if (txdr
->desc
&& txdr
->buffer_info
) {
983 for (i
= 0; i
< txdr
->count
; i
++) {
984 if (txdr
->buffer_info
[i
].dma
)
985 dma_unmap_single(&pdev
->dev
,
986 txdr
->buffer_info
[i
].dma
,
987 txdr
->buffer_info
[i
].length
,
989 if (txdr
->buffer_info
[i
].skb
)
990 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
994 if (rxdr
->desc
&& rxdr
->buffer_info
) {
995 for (i
= 0; i
< rxdr
->count
; i
++) {
996 if (rxdr
->buffer_info
[i
].dma
)
997 dma_unmap_single(&pdev
->dev
,
998 rxdr
->buffer_info
[i
].dma
,
999 rxdr
->buffer_info
[i
].length
,
1001 if (rxdr
->buffer_info
[i
].skb
)
1002 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
1007 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
1012 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
1017 kfree(txdr
->buffer_info
);
1018 txdr
->buffer_info
= NULL
;
1019 kfree(rxdr
->buffer_info
);
1020 rxdr
->buffer_info
= NULL
;
1023 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1025 struct e1000_hw
*hw
= &adapter
->hw
;
1026 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1027 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1028 struct pci_dev
*pdev
= adapter
->pdev
;
1032 /* Setup Tx descriptor ring and Tx buffers */
1035 txdr
->count
= E1000_DEFAULT_TXD
;
1037 txdr
->buffer_info
= kcalloc(txdr
->count
, sizeof(struct e1000_buffer
),
1039 if (!txdr
->buffer_info
) {
1044 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1045 txdr
->size
= ALIGN(txdr
->size
, 4096);
1046 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1052 memset(txdr
->desc
, 0, txdr
->size
);
1053 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1055 ew32(TDBAL
, ((u64
)txdr
->dma
& 0x00000000FFFFFFFF));
1056 ew32(TDBAH
, ((u64
)txdr
->dma
>> 32));
1057 ew32(TDLEN
, txdr
->count
* sizeof(struct e1000_tx_desc
));
1060 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
|
1061 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1062 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1064 for (i
= 0; i
< txdr
->count
; i
++) {
1065 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1066 struct sk_buff
*skb
;
1067 unsigned int size
= 1024;
1069 skb
= alloc_skb(size
, GFP_KERNEL
);
1075 txdr
->buffer_info
[i
].skb
= skb
;
1076 txdr
->buffer_info
[i
].length
= skb
->len
;
1077 txdr
->buffer_info
[i
].dma
=
1078 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1080 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1081 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1082 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1083 E1000_TXD_CMD_IFCS
|
1085 tx_desc
->upper
.data
= 0;
1088 /* Setup Rx descriptor ring and Rx buffers */
1091 rxdr
->count
= E1000_DEFAULT_RXD
;
1093 rxdr
->buffer_info
= kcalloc(rxdr
->count
, sizeof(struct e1000_buffer
),
1095 if (!rxdr
->buffer_info
) {
1100 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1101 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1107 memset(rxdr
->desc
, 0, rxdr
->size
);
1108 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1111 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1112 ew32(RDBAL
, ((u64
)rxdr
->dma
& 0xFFFFFFFF));
1113 ew32(RDBAH
, ((u64
)rxdr
->dma
>> 32));
1114 ew32(RDLEN
, rxdr
->size
);
1117 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1118 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1119 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1122 for (i
= 0; i
< rxdr
->count
; i
++) {
1123 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1124 struct sk_buff
*skb
;
1126 skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
, GFP_KERNEL
);
1131 skb_reserve(skb
, NET_IP_ALIGN
);
1132 rxdr
->buffer_info
[i
].skb
= skb
;
1133 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1134 rxdr
->buffer_info
[i
].dma
=
1135 dma_map_single(&pdev
->dev
, skb
->data
,
1136 E1000_RXBUFFER_2048
, DMA_FROM_DEVICE
);
1137 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1138 memset(skb
->data
, 0x00, skb
->len
);
1144 e1000_free_desc_rings(adapter
);
1148 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1150 struct e1000_hw
*hw
= &adapter
->hw
;
1152 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1153 e1000_write_phy_reg(hw
, 29, 0x001F);
1154 e1000_write_phy_reg(hw
, 30, 0x8FFC);
1155 e1000_write_phy_reg(hw
, 29, 0x001A);
1156 e1000_write_phy_reg(hw
, 30, 0x8FF0);
1159 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1161 struct e1000_hw
*hw
= &adapter
->hw
;
1164 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1165 * Extended PHY Specific Control Register to 25MHz clock. This
1166 * value defaults back to a 2.5MHz clock when the PHY is reset.
1168 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1169 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1170 e1000_write_phy_reg(hw
,
1171 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1173 /* In addition, because of the s/w reset above, we need to enable
1174 * CRS on TX. This must be set for both full and half duplex
1177 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1178 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1179 e1000_write_phy_reg(hw
,
1180 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1183 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1185 struct e1000_hw
*hw
= &adapter
->hw
;
1189 /* Setup the Device Control Register for PHY loopback test. */
1191 ctrl_reg
= er32(CTRL
);
1192 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1193 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1194 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1195 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1196 E1000_CTRL_FD
); /* Force Duplex to FULL */
1198 ew32(CTRL
, ctrl_reg
);
1200 /* Read the PHY Specific Control Register (0x10) */
1201 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1203 /* Clear Auto-Crossover bits in PHY Specific Control Register
1206 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1207 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1209 /* Perform software reset on the PHY */
1210 e1000_phy_reset(hw
);
1212 /* Have to setup TX_CLK and TX_CRS after software reset */
1213 e1000_phy_reset_clk_and_crs(adapter
);
1215 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8100);
1217 /* Wait for reset to complete. */
1220 /* Have to setup TX_CLK and TX_CRS after software reset */
1221 e1000_phy_reset_clk_and_crs(adapter
);
1223 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1224 e1000_phy_disable_receiver(adapter
);
1226 /* Set the loopback bit in the PHY control register. */
1227 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1228 phy_reg
|= MII_CR_LOOPBACK
;
1229 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1231 /* Setup TX_CLK and TX_CRS one more time. */
1232 e1000_phy_reset_clk_and_crs(adapter
);
1234 /* Check Phy Configuration */
1235 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1236 if (phy_reg
!= 0x4100)
1239 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1240 if (phy_reg
!= 0x0070)
1243 e1000_read_phy_reg(hw
, 29, &phy_reg
);
1244 if (phy_reg
!= 0x001A)
1250 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1252 struct e1000_hw
*hw
= &adapter
->hw
;
1256 hw
->autoneg
= false;
1258 if (hw
->phy_type
== e1000_phy_m88
) {
1259 /* Auto-MDI/MDIX Off */
1260 e1000_write_phy_reg(hw
,
1261 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1262 /* reset to update Auto-MDI/MDIX */
1263 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x9140);
1265 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8140);
1268 ctrl_reg
= er32(CTRL
);
1270 /* force 1000, set loopback */
1271 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x4140);
1273 /* Now set up the MAC to the same speed/duplex as the PHY. */
1274 ctrl_reg
= er32(CTRL
);
1275 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1276 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1277 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1278 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1279 E1000_CTRL_FD
); /* Force Duplex to FULL */
1281 if (hw
->media_type
== e1000_media_type_copper
&&
1282 hw
->phy_type
== e1000_phy_m88
)
1283 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1285 /* Set the ILOS bit on the fiber Nic is half
1286 * duplex link is detected. */
1287 stat_reg
= er32(STATUS
);
1288 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1289 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1292 ew32(CTRL
, ctrl_reg
);
1294 /* Disable the receiver on the PHY so when a cable is plugged in, the
1295 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1297 if (hw
->phy_type
== e1000_phy_m88
)
1298 e1000_phy_disable_receiver(adapter
);
1305 static int e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1307 struct e1000_hw
*hw
= &adapter
->hw
;
1311 switch (hw
->mac_type
) {
1313 if (hw
->media_type
== e1000_media_type_copper
) {
1314 /* Attempt to setup Loopback mode on Non-integrated PHY.
1315 * Some PHY registers get corrupted at random, so
1316 * attempt this 10 times.
1318 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1328 case e1000_82545_rev_3
:
1330 case e1000_82546_rev_3
:
1332 case e1000_82541_rev_2
:
1334 case e1000_82547_rev_2
:
1335 return e1000_integrated_phy_loopback(adapter
);
1338 /* Default PHY loopback work is to read the MII
1339 * control register and assert bit 14 (loopback mode).
1341 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1342 phy_reg
|= MII_CR_LOOPBACK
;
1343 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1351 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1353 struct e1000_hw
*hw
= &adapter
->hw
;
1356 if (hw
->media_type
== e1000_media_type_fiber
||
1357 hw
->media_type
== e1000_media_type_internal_serdes
) {
1358 switch (hw
->mac_type
) {
1361 case e1000_82545_rev_3
:
1362 case e1000_82546_rev_3
:
1363 return e1000_set_phy_loopback(adapter
);
1367 rctl
|= E1000_RCTL_LBM_TCVR
;
1371 } else if (hw
->media_type
== e1000_media_type_copper
)
1372 return e1000_set_phy_loopback(adapter
);
1377 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1379 struct e1000_hw
*hw
= &adapter
->hw
;
1384 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1387 switch (hw
->mac_type
) {
1390 case e1000_82545_rev_3
:
1391 case e1000_82546_rev_3
:
1394 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1395 if (phy_reg
& MII_CR_LOOPBACK
) {
1396 phy_reg
&= ~MII_CR_LOOPBACK
;
1397 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1398 e1000_phy_reset(hw
);
1404 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1405 unsigned int frame_size
)
1407 memset(skb
->data
, 0xFF, frame_size
);
1409 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1410 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1411 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1414 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1415 unsigned int frame_size
)
1418 if (*(skb
->data
+ 3) == 0xFF) {
1419 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1420 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1427 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1429 struct e1000_hw
*hw
= &adapter
->hw
;
1430 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1431 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1432 struct pci_dev
*pdev
= adapter
->pdev
;
1433 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1436 ew32(RDT
, rxdr
->count
- 1);
1438 /* Calculate the loop count based on the largest descriptor ring
1439 * The idea is to wrap the largest ring a number of times using 64
1440 * send/receive pairs during each loop
1443 if (rxdr
->count
<= txdr
->count
)
1444 lc
= ((txdr
->count
/ 64) * 2) + 1;
1446 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1449 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1450 for (i
= 0; i
< 64; i
++) { /* send the packets */
1451 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1453 dma_sync_single_for_device(&pdev
->dev
,
1454 txdr
->buffer_info
[k
].dma
,
1455 txdr
->buffer_info
[k
].length
,
1457 if (unlikely(++k
== txdr
->count
)) k
= 0;
1461 time
= jiffies
; /* set the start time for the receive */
1463 do { /* receive the sent packets */
1464 dma_sync_single_for_cpu(&pdev
->dev
,
1465 rxdr
->buffer_info
[l
].dma
,
1466 rxdr
->buffer_info
[l
].length
,
1469 ret_val
= e1000_check_lbtest_frame(
1470 rxdr
->buffer_info
[l
].skb
,
1474 if (unlikely(++l
== rxdr
->count
)) l
= 0;
1475 /* time + 20 msecs (200 msecs on 2.4) is more than
1476 * enough time to complete the receives, if it's
1477 * exceeded, break and error off
1479 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1480 if (good_cnt
!= 64) {
1481 ret_val
= 13; /* ret_val is the same as mis-compare */
1484 if (jiffies
>= (time
+ 2)) {
1485 ret_val
= 14; /* error code for time out error */
1488 } /* end loop count loop */
1492 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1494 *data
= e1000_setup_desc_rings(adapter
);
1497 *data
= e1000_setup_loopback_test(adapter
);
1500 *data
= e1000_run_loopback_test(adapter
);
1501 e1000_loopback_cleanup(adapter
);
1504 e1000_free_desc_rings(adapter
);
1509 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1511 struct e1000_hw
*hw
= &adapter
->hw
;
1513 if (hw
->media_type
== e1000_media_type_internal_serdes
) {
1515 hw
->serdes_has_link
= false;
1517 /* On some blade server designs, link establishment
1518 * could take as long as 2-3 minutes */
1520 e1000_check_for_link(hw
);
1521 if (hw
->serdes_has_link
)
1524 } while (i
++ < 3750);
1528 e1000_check_for_link(hw
);
1529 if (hw
->autoneg
) /* if auto_neg is set wait for it */
1532 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
1539 static int e1000_get_sset_count(struct net_device
*netdev
, int sset
)
1543 return E1000_TEST_LEN
;
1545 return E1000_STATS_LEN
;
1551 static void e1000_diag_test(struct net_device
*netdev
,
1552 struct ethtool_test
*eth_test
, u64
*data
)
1554 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1555 struct e1000_hw
*hw
= &adapter
->hw
;
1556 bool if_running
= netif_running(netdev
);
1558 set_bit(__E1000_TESTING
, &adapter
->flags
);
1559 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1562 /* save speed, duplex, autoneg settings */
1563 u16 autoneg_advertised
= hw
->autoneg_advertised
;
1564 u8 forced_speed_duplex
= hw
->forced_speed_duplex
;
1565 u8 autoneg
= hw
->autoneg
;
1567 e_info(hw
, "offline testing starting\n");
1569 /* Link test performed before hardware reset so autoneg doesn't
1570 * interfere with test result */
1571 if (e1000_link_test(adapter
, &data
[4]))
1572 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1575 /* indicate we're in test mode */
1578 e1000_reset(adapter
);
1580 if (e1000_reg_test(adapter
, &data
[0]))
1581 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1583 e1000_reset(adapter
);
1584 if (e1000_eeprom_test(adapter
, &data
[1]))
1585 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1587 e1000_reset(adapter
);
1588 if (e1000_intr_test(adapter
, &data
[2]))
1589 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1591 e1000_reset(adapter
);
1592 /* make sure the phy is powered up */
1593 e1000_power_up_phy(adapter
);
1594 if (e1000_loopback_test(adapter
, &data
[3]))
1595 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1597 /* restore speed, duplex, autoneg settings */
1598 hw
->autoneg_advertised
= autoneg_advertised
;
1599 hw
->forced_speed_duplex
= forced_speed_duplex
;
1600 hw
->autoneg
= autoneg
;
1602 e1000_reset(adapter
);
1603 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1607 e_info(hw
, "online testing starting\n");
1609 if (e1000_link_test(adapter
, &data
[4]))
1610 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1612 /* Online tests aren't run; pass by default */
1618 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1620 msleep_interruptible(4 * 1000);
1623 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
,
1624 struct ethtool_wolinfo
*wol
)
1626 struct e1000_hw
*hw
= &adapter
->hw
;
1627 int retval
= 1; /* fail by default */
1629 switch (hw
->device_id
) {
1630 case E1000_DEV_ID_82542
:
1631 case E1000_DEV_ID_82543GC_FIBER
:
1632 case E1000_DEV_ID_82543GC_COPPER
:
1633 case E1000_DEV_ID_82544EI_FIBER
:
1634 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1635 case E1000_DEV_ID_82545EM_FIBER
:
1636 case E1000_DEV_ID_82545EM_COPPER
:
1637 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1638 case E1000_DEV_ID_82546GB_PCIE
:
1639 /* these don't support WoL at all */
1642 case E1000_DEV_ID_82546EB_FIBER
:
1643 case E1000_DEV_ID_82546GB_FIBER
:
1644 /* Wake events not supported on port B */
1645 if (er32(STATUS
) & E1000_STATUS_FUNC_1
) {
1649 /* return success for non excluded adapter ports */
1652 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1653 /* quad port adapters only support WoL on port A */
1654 if (!adapter
->quad_port_a
) {
1658 /* return success for non excluded adapter ports */
1662 /* dual port cards only support WoL on port A from now on
1663 * unless it was enabled in the eeprom for port B
1664 * so exclude FUNC_1 ports from having WoL enabled */
1665 if (er32(STATUS
) & E1000_STATUS_FUNC_1
&&
1666 !adapter
->eeprom_wol
) {
1677 static void e1000_get_wol(struct net_device
*netdev
,
1678 struct ethtool_wolinfo
*wol
)
1680 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1681 struct e1000_hw
*hw
= &adapter
->hw
;
1683 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1684 WAKE_BCAST
| WAKE_MAGIC
;
1687 /* this function will set ->supported = 0 and return 1 if wol is not
1688 * supported by this hardware */
1689 if (e1000_wol_exclusion(adapter
, wol
) ||
1690 !device_can_wakeup(&adapter
->pdev
->dev
))
1693 /* apply any specific unsupported masks here */
1694 switch (hw
->device_id
) {
1695 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1696 /* KSP3 does not suppport UCAST wake-ups */
1697 wol
->supported
&= ~WAKE_UCAST
;
1699 if (adapter
->wol
& E1000_WUFC_EX
)
1700 e_err(drv
, "Interface does not support directed "
1701 "(unicast) frame wake-up packets\n");
1707 if (adapter
->wol
& E1000_WUFC_EX
)
1708 wol
->wolopts
|= WAKE_UCAST
;
1709 if (adapter
->wol
& E1000_WUFC_MC
)
1710 wol
->wolopts
|= WAKE_MCAST
;
1711 if (adapter
->wol
& E1000_WUFC_BC
)
1712 wol
->wolopts
|= WAKE_BCAST
;
1713 if (adapter
->wol
& E1000_WUFC_MAG
)
1714 wol
->wolopts
|= WAKE_MAGIC
;
1717 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1719 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1720 struct e1000_hw
*hw
= &adapter
->hw
;
1722 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1725 if (e1000_wol_exclusion(adapter
, wol
) ||
1726 !device_can_wakeup(&adapter
->pdev
->dev
))
1727 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1729 switch (hw
->device_id
) {
1730 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1731 if (wol
->wolopts
& WAKE_UCAST
) {
1732 e_err(drv
, "Interface does not support directed "
1733 "(unicast) frame wake-up packets\n");
1741 /* these settings will always override what we currently have */
1744 if (wol
->wolopts
& WAKE_UCAST
)
1745 adapter
->wol
|= E1000_WUFC_EX
;
1746 if (wol
->wolopts
& WAKE_MCAST
)
1747 adapter
->wol
|= E1000_WUFC_MC
;
1748 if (wol
->wolopts
& WAKE_BCAST
)
1749 adapter
->wol
|= E1000_WUFC_BC
;
1750 if (wol
->wolopts
& WAKE_MAGIC
)
1751 adapter
->wol
|= E1000_WUFC_MAG
;
1753 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1758 static int e1000_set_phys_id(struct net_device
*netdev
,
1759 enum ethtool_phys_id_state state
)
1761 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1762 struct e1000_hw
*hw
= &adapter
->hw
;
1765 case ETHTOOL_ID_ACTIVE
:
1766 e1000_setup_led(hw
);
1773 case ETHTOOL_ID_OFF
:
1777 case ETHTOOL_ID_INACTIVE
:
1778 e1000_cleanup_led(hw
);
1784 static int e1000_get_coalesce(struct net_device
*netdev
,
1785 struct ethtool_coalesce
*ec
)
1787 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1789 if (adapter
->hw
.mac_type
< e1000_82545
)
1792 if (adapter
->itr_setting
<= 4)
1793 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1795 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1800 static int e1000_set_coalesce(struct net_device
*netdev
,
1801 struct ethtool_coalesce
*ec
)
1803 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1804 struct e1000_hw
*hw
= &adapter
->hw
;
1806 if (hw
->mac_type
< e1000_82545
)
1809 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1810 ((ec
->rx_coalesce_usecs
> 4) &&
1811 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1812 (ec
->rx_coalesce_usecs
== 2))
1815 if (ec
->rx_coalesce_usecs
== 4) {
1816 adapter
->itr
= adapter
->itr_setting
= 4;
1817 } else if (ec
->rx_coalesce_usecs
<= 3) {
1818 adapter
->itr
= 20000;
1819 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1821 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1822 adapter
->itr_setting
= adapter
->itr
& ~3;
1825 if (adapter
->itr_setting
!= 0)
1826 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1833 static int e1000_nway_reset(struct net_device
*netdev
)
1835 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1836 if (netif_running(netdev
))
1837 e1000_reinit_locked(adapter
);
1841 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1842 struct ethtool_stats
*stats
, u64
*data
)
1844 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1848 e1000_update_stats(adapter
);
1849 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1850 switch (e1000_gstrings_stats
[i
].type
) {
1852 p
= (char *) netdev
+
1853 e1000_gstrings_stats
[i
].stat_offset
;
1856 p
= (char *) adapter
+
1857 e1000_gstrings_stats
[i
].stat_offset
;
1861 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1862 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1864 /* BUG_ON(i != E1000_STATS_LEN); */
1867 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1873 switch (stringset
) {
1875 memcpy(data
, *e1000_gstrings_test
,
1876 sizeof(e1000_gstrings_test
));
1879 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1880 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1882 p
+= ETH_GSTRING_LEN
;
1884 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1889 static const struct ethtool_ops e1000_ethtool_ops
= {
1890 .get_settings
= e1000_get_settings
,
1891 .set_settings
= e1000_set_settings
,
1892 .get_drvinfo
= e1000_get_drvinfo
,
1893 .get_regs_len
= e1000_get_regs_len
,
1894 .get_regs
= e1000_get_regs
,
1895 .get_wol
= e1000_get_wol
,
1896 .set_wol
= e1000_set_wol
,
1897 .get_msglevel
= e1000_get_msglevel
,
1898 .set_msglevel
= e1000_set_msglevel
,
1899 .nway_reset
= e1000_nway_reset
,
1900 .get_link
= e1000_get_link
,
1901 .get_eeprom_len
= e1000_get_eeprom_len
,
1902 .get_eeprom
= e1000_get_eeprom
,
1903 .set_eeprom
= e1000_set_eeprom
,
1904 .get_ringparam
= e1000_get_ringparam
,
1905 .set_ringparam
= e1000_set_ringparam
,
1906 .get_pauseparam
= e1000_get_pauseparam
,
1907 .set_pauseparam
= e1000_set_pauseparam
,
1908 .get_rx_csum
= e1000_get_rx_csum
,
1909 .set_rx_csum
= e1000_set_rx_csum
,
1910 .get_tx_csum
= e1000_get_tx_csum
,
1911 .set_tx_csum
= e1000_set_tx_csum
,
1912 .set_sg
= ethtool_op_set_sg
,
1913 .set_tso
= e1000_set_tso
,
1914 .self_test
= e1000_diag_test
,
1915 .get_strings
= e1000_get_strings
,
1916 .set_phys_id
= e1000_set_phys_id
,
1917 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1918 .get_sset_count
= e1000_get_sset_count
,
1919 .get_coalesce
= e1000_get_coalesce
,
1920 .set_coalesce
= e1000_set_coalesce
,
1923 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1925 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);