Revert "gma500: Fix dependencies"
[zen-stable.git] / drivers / net / natsemi.c
blobb78be088c4ad53b54be4c61b37cb0cb7d93c9373
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h> /* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
60 #define RX_OFFSET 2
62 /* Updated to recommendations in pci-skeleton v2.03. */
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72 static int debug = -1;
74 static int mtu;
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78 static const int multicast_filter_limit = 100;
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
84 static int dspcfg_workaround = 1;
86 /* Used to pass the media type, etc.
87 Both 'options[]' and 'full_duplex[]' should exist for driver
88 interoperability.
89 The media type is usually passed in 'options[]'.
91 #define MAX_UNITS 8 /* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
95 /* Operational parameters that are set at compile time. */
97 /* Keep the ring sizes a power of two for compile efficiency.
98 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99 Making the Tx ring too large decreases the effectiveness of channel
100 bonding and packet priority.
101 There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE 16
103 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE 32
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT (2*HZ)
110 #define NATSEMI_HW_TIMEOUT 400
111 #define NATSEMI_TIMER_FREQ 5*HZ
112 #define NATSEMI_PG0_NREGS 64
113 #define NATSEMI_RFDR_NREGS 8
114 #define NATSEMI_PG1_NREGS 4
115 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
120 /* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
124 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
127 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] __devinitconst =
131 KERN_INFO DRV_NAME " dp8381x driver, version "
132 DRV_VERSION ", " DRV_RELDATE "\n"
133 " originally by Donald Becker <becker@scyld.com>\n"
134 " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 1);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 "DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
156 Theory of Operation
158 I. Board Compatibility
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
163 II. Board-specific settings
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
168 III. Driver operation
170 IIIa. Ring buffers
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
178 IIIb/c. Transmit/Receive Structure
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack. Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames. New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets. When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine. Copying also preloads the cache, which is
196 most useful with small frames.
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing. On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
203 IIId. Synchronization
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 receive and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
209 IVb. References
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
216 IVc. Errata
218 None characterised.
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
228 #define PHYID_AM79C874 0x0022561b
230 enum {
231 MII_MCTRL = 0x15, /* mode control register */
232 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
233 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
236 enum {
237 NATSEMI_FLAG_IGNORE_PHY = 0x1,
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 const char *name;
243 unsigned long flags;
244 unsigned int eeprom_size;
245 } natsemi_pci_info[] __devinitdata = {
246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 { "NatSemi DP8381[56]", 0, 24 },
250 static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
251 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
252 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 { } /* terminate list */
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
257 /* Offsets to the device registers.
258 Unlike software-only systems, device drivers interact with complex hardware.
259 It's not useful to define symbolic names for every register bit in the
260 device.
262 enum register_offsets {
263 ChipCmd = 0x00,
264 ChipConfig = 0x04,
265 EECtrl = 0x08,
266 PCIBusCfg = 0x0C,
267 IntrStatus = 0x10,
268 IntrMask = 0x14,
269 IntrEnable = 0x18,
270 IntrHoldoff = 0x1C, /* DP83816 only */
271 TxRingPtr = 0x20,
272 TxConfig = 0x24,
273 RxRingPtr = 0x30,
274 RxConfig = 0x34,
275 ClkRun = 0x3C,
276 WOLCmd = 0x40,
277 PauseCmd = 0x44,
278 RxFilterAddr = 0x48,
279 RxFilterData = 0x4C,
280 BootRomAddr = 0x50,
281 BootRomData = 0x54,
282 SiliconRev = 0x58,
283 StatsCtrl = 0x5C,
284 StatsData = 0x60,
285 RxPktErrs = 0x60,
286 RxMissed = 0x68,
287 RxCRCErrs = 0x64,
288 BasicControl = 0x80,
289 BasicStatus = 0x84,
290 AnegAdv = 0x90,
291 AnegPeer = 0x94,
292 PhyStatus = 0xC0,
293 MIntrCtrl = 0xC4,
294 MIntrStatus = 0xC8,
295 PhyCtrl = 0xE4,
297 /* These are from the spec, around page 78... on a separate table.
298 * The meaning of these registers depend on the value of PGSEL. */
299 PGSEL = 0xCC,
300 PMDCSR = 0xE4,
301 TSTDAT = 0xFC,
302 DSPCFG = 0xF4,
303 SDCFG = 0xF8
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL 0x0
308 #define DSPCFG_VAL 0x5040
309 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 PCIPM = 0x44,
319 enum ChipCmd_bits {
320 ChipReset = 0x100,
321 RxReset = 0x20,
322 TxReset = 0x10,
323 RxOff = 0x08,
324 RxOn = 0x04,
325 TxOff = 0x02,
326 TxOn = 0x01,
329 enum ChipConfig_bits {
330 CfgPhyDis = 0x200,
331 CfgPhyRst = 0x400,
332 CfgExtPhy = 0x1000,
333 CfgAnegEnable = 0x2000,
334 CfgAneg100 = 0x4000,
335 CfgAnegFull = 0x8000,
336 CfgAnegDone = 0x8000000,
337 CfgFullDuplex = 0x20000000,
338 CfgSpeed100 = 0x40000000,
339 CfgLink = 0x80000000,
342 enum EECtrl_bits {
343 EE_ShiftClk = 0x04,
344 EE_DataIn = 0x01,
345 EE_ChipSelect = 0x08,
346 EE_DataOut = 0x02,
347 MII_Data = 0x10,
348 MII_Write = 0x20,
349 MII_ShiftClk = 0x40,
352 enum PCIBusCfg_bits {
353 EepromReload = 0x4,
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 IntrRxDone = 0x0001,
359 IntrRxIntr = 0x0002,
360 IntrRxErr = 0x0004,
361 IntrRxEarly = 0x0008,
362 IntrRxIdle = 0x0010,
363 IntrRxOverrun = 0x0020,
364 IntrTxDone = 0x0040,
365 IntrTxIntr = 0x0080,
366 IntrTxErr = 0x0100,
367 IntrTxIdle = 0x0200,
368 IntrTxUnderrun = 0x0400,
369 StatsMax = 0x0800,
370 SWInt = 0x1000,
371 WOLPkt = 0x2000,
372 LinkChange = 0x4000,
373 IntrHighBits = 0x8000,
374 RxStatusFIFOOver = 0x10000,
375 IntrPCIErr = 0xf00000,
376 RxResetDone = 0x1000000,
377 TxResetDone = 0x2000000,
378 IntrAbnormalSummary = 0xCD20,
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
390 #define DEFAULT_INTR 0x00f1cd65
392 enum TxConfig_bits {
393 TxDrthMask = 0x3f,
394 TxFlthMask = 0x3f00,
395 TxMxdmaMask = 0x700000,
396 TxMxdma_512 = 0x0,
397 TxMxdma_4 = 0x100000,
398 TxMxdma_8 = 0x200000,
399 TxMxdma_16 = 0x300000,
400 TxMxdma_32 = 0x400000,
401 TxMxdma_64 = 0x500000,
402 TxMxdma_128 = 0x600000,
403 TxMxdma_256 = 0x700000,
404 TxCollRetry = 0x800000,
405 TxAutoPad = 0x10000000,
406 TxMacLoop = 0x20000000,
407 TxHeartIgn = 0x40000000,
408 TxCarrierIgn = 0x80000000
412 * Tx Configuration:
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 * when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 * threshold and the drain threshold must be less than 2016 bytes.
422 #define TX_FLTH_VAL ((512/32) << 8)
423 #define TX_DRTH_VAL_START (64/32)
424 #define TX_DRTH_VAL_INC 2
425 #define TX_DRTH_VAL_LIMIT (1472/32)
427 enum RxConfig_bits {
428 RxDrthMask = 0x3e,
429 RxMxdmaMask = 0x700000,
430 RxMxdma_512 = 0x0,
431 RxMxdma_4 = 0x100000,
432 RxMxdma_8 = 0x200000,
433 RxMxdma_16 = 0x300000,
434 RxMxdma_32 = 0x400000,
435 RxMxdma_64 = 0x500000,
436 RxMxdma_128 = 0x600000,
437 RxMxdma_256 = 0x700000,
438 RxAcceptLong = 0x8000000,
439 RxAcceptTx = 0x10000000,
440 RxAcceptRunt = 0x40000000,
441 RxAcceptErr = 0x80000000
443 #define RX_DRTH_VAL (128/8)
445 enum ClkRun_bits {
446 PMEEnable = 0x100,
447 PMEStatus = 0x8000,
450 enum WolCmd_bits {
451 WakePhy = 0x1,
452 WakeUnicast = 0x2,
453 WakeMulticast = 0x4,
454 WakeBroadcast = 0x8,
455 WakeArp = 0x10,
456 WakePMatch0 = 0x20,
457 WakePMatch1 = 0x40,
458 WakePMatch2 = 0x80,
459 WakePMatch3 = 0x100,
460 WakeMagic = 0x200,
461 WakeMagicSecure = 0x400,
462 SecureHack = 0x100000,
463 WokePhy = 0x400000,
464 WokeUnicast = 0x800000,
465 WokeMulticast = 0x1000000,
466 WokeBroadcast = 0x2000000,
467 WokeArp = 0x4000000,
468 WokePMatch0 = 0x8000000,
469 WokePMatch1 = 0x10000000,
470 WokePMatch2 = 0x20000000,
471 WokePMatch3 = 0x40000000,
472 WokeMagic = 0x80000000,
473 WakeOptsSummary = 0x7ff
476 enum RxFilterAddr_bits {
477 RFCRAddressMask = 0x3ff,
478 AcceptMulticast = 0x00200000,
479 AcceptMyPhys = 0x08000000,
480 AcceptAllPhys = 0x10000000,
481 AcceptAllMulticast = 0x20000000,
482 AcceptBroadcast = 0x40000000,
483 RxFilterEnable = 0x80000000
486 enum StatsCtrl_bits {
487 StatsWarn = 0x1,
488 StatsFreeze = 0x2,
489 StatsClear = 0x4,
490 StatsStrobe = 0x8,
493 enum MIntrCtrl_bits {
494 MICRIntEn = 0x2,
497 enum PhyCtrl_bits {
498 PhyAddrMask = 0x1f,
501 #define PHY_ADDR_NONE 32
502 #define PHY_ADDR_INTERNAL 1
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C 0x0302
506 #define SRR_DP83815_D 0x0403
507 #define SRR_DP83816_A4 0x0504
508 #define SRR_DP83816_A5 0x0505
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512 architectures. */
513 struct netdev_desc {
514 __le32 next_desc;
515 __le32 cmd_status;
516 __le32 addr;
517 __le32 software_use;
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 DescSizeMask=0xfff,
526 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
531 DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 DescRxDest=0x01800000, DescRxLong=0x00400000,
533 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 DescRxLoop=0x00020000, DesRxColl=0x00010000,
538 struct netdev_private {
539 /* Descriptor rings first for alignment */
540 dma_addr_t ring_dma;
541 struct netdev_desc *rx_ring;
542 struct netdev_desc *tx_ring;
543 /* The addresses of receive-in-place skbuffs */
544 struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 dma_addr_t rx_dma[RX_RING_SIZE];
546 /* address of a sent-in-place packet/buffer, for later free() */
547 struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 dma_addr_t tx_dma[TX_RING_SIZE];
549 struct net_device *dev;
550 struct napi_struct napi;
551 /* Media monitoring timer */
552 struct timer_list timer;
553 /* Frequently used values: keep some adjacent for cache effect */
554 struct pci_dev *pci_dev;
555 struct netdev_desc *rx_head_desc;
556 /* Producer/consumer ring indices */
557 unsigned int cur_rx, dirty_rx;
558 unsigned int cur_tx, dirty_tx;
559 /* Based on MTU+slack. */
560 unsigned int rx_buf_sz;
561 int oom;
562 /* Interrupt status */
563 u32 intr_status;
564 /* Do not touch the nic registers */
565 int hands_off;
566 /* Don't pay attention to the reported link state. */
567 int ignore_phy;
568 /* external phy that is used: only valid if dev->if_port != PORT_TP */
569 int mii;
570 int phy_addr_external;
571 unsigned int full_duplex;
572 /* Rx filter */
573 u32 cur_rx_mode;
574 u32 rx_filter[16];
575 /* FIFO and PCI burst thresholds */
576 u32 tx_config, rx_config;
577 /* original contents of ClkRun register */
578 u32 SavedClkRun;
579 /* silicon revision */
580 u32 srr;
581 /* expected DSPCFG value */
582 u16 dspcfg;
583 int dspcfg_workaround;
584 /* parms saved in ethtool format */
585 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
586 u8 duplex; /* Duplex, half or full */
587 u8 autoneg; /* Autonegotiation enabled */
588 /* MII transceiver section */
589 u16 advertising;
590 unsigned int iosize;
591 spinlock_t lock;
592 u32 msg_enable;
593 /* EEPROM data */
594 int eeprom_size;
597 static void move_int_phy(struct net_device *dev, int addr);
598 static int eeprom_read(void __iomem *ioaddr, int location);
599 static int mdio_read(struct net_device *dev, int reg);
600 static void mdio_write(struct net_device *dev, int reg, u16 data);
601 static void init_phy_fixup(struct net_device *dev);
602 static int miiport_read(struct net_device *dev, int phy_id, int reg);
603 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
604 static int find_mii(struct net_device *dev);
605 static void natsemi_reset(struct net_device *dev);
606 static void natsemi_reload_eeprom(struct net_device *dev);
607 static void natsemi_stop_rxtx(struct net_device *dev);
608 static int netdev_open(struct net_device *dev);
609 static void do_cable_magic(struct net_device *dev);
610 static void undo_cable_magic(struct net_device *dev);
611 static void check_link(struct net_device *dev);
612 static void netdev_timer(unsigned long data);
613 static void dump_ring(struct net_device *dev);
614 static void ns_tx_timeout(struct net_device *dev);
615 static int alloc_ring(struct net_device *dev);
616 static void refill_rx(struct net_device *dev);
617 static void init_ring(struct net_device *dev);
618 static void drain_tx(struct net_device *dev);
619 static void drain_ring(struct net_device *dev);
620 static void free_ring(struct net_device *dev);
621 static void reinit_ring(struct net_device *dev);
622 static void init_registers(struct net_device *dev);
623 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
624 static irqreturn_t intr_handler(int irq, void *dev_instance);
625 static void netdev_error(struct net_device *dev, int intr_status);
626 static int natsemi_poll(struct napi_struct *napi, int budget);
627 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
628 static void netdev_tx_done(struct net_device *dev);
629 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
630 #ifdef CONFIG_NET_POLL_CONTROLLER
631 static void natsemi_poll_controller(struct net_device *dev);
632 #endif
633 static void __set_rx_mode(struct net_device *dev);
634 static void set_rx_mode(struct net_device *dev);
635 static void __get_stats(struct net_device *dev);
636 static struct net_device_stats *get_stats(struct net_device *dev);
637 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
638 static int netdev_set_wol(struct net_device *dev, u32 newval);
639 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
640 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
641 static int netdev_get_sopass(struct net_device *dev, u8 *data);
642 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
643 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644 static void enable_wol_mode(struct net_device *dev, int enable_intr);
645 static int netdev_close(struct net_device *dev);
646 static int netdev_get_regs(struct net_device *dev, u8 *buf);
647 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
648 static const struct ethtool_ops ethtool_ops;
650 #define NATSEMI_ATTR(_name) \
651 static ssize_t natsemi_show_##_name(struct device *dev, \
652 struct device_attribute *attr, char *buf); \
653 static ssize_t natsemi_set_##_name(struct device *dev, \
654 struct device_attribute *attr, \
655 const char *buf, size_t count); \
656 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
658 #define NATSEMI_CREATE_FILE(_dev, _name) \
659 device_create_file(&_dev->dev, &dev_attr_##_name)
660 #define NATSEMI_REMOVE_FILE(_dev, _name) \
661 device_remove_file(&_dev->dev, &dev_attr_##_name)
663 NATSEMI_ATTR(dspcfg_workaround);
665 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
666 struct device_attribute *attr,
667 char *buf)
669 struct netdev_private *np = netdev_priv(to_net_dev(dev));
671 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
674 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
675 struct device_attribute *attr,
676 const char *buf, size_t count)
678 struct netdev_private *np = netdev_priv(to_net_dev(dev));
679 int new_setting;
680 unsigned long flags;
682 /* Find out the new setting */
683 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
684 new_setting = 1;
685 else if (!strncmp("off", buf, count - 1) ||
686 !strncmp("0", buf, count - 1))
687 new_setting = 0;
688 else
689 return count;
691 spin_lock_irqsave(&np->lock, flags);
693 np->dspcfg_workaround = new_setting;
695 spin_unlock_irqrestore(&np->lock, flags);
697 return count;
700 static inline void __iomem *ns_ioaddr(struct net_device *dev)
702 return (void __iomem *) dev->base_addr;
705 static inline void natsemi_irq_enable(struct net_device *dev)
707 writel(1, ns_ioaddr(dev) + IntrEnable);
708 readl(ns_ioaddr(dev) + IntrEnable);
711 static inline void natsemi_irq_disable(struct net_device *dev)
713 writel(0, ns_ioaddr(dev) + IntrEnable);
714 readl(ns_ioaddr(dev) + IntrEnable);
717 static void move_int_phy(struct net_device *dev, int addr)
719 struct netdev_private *np = netdev_priv(dev);
720 void __iomem *ioaddr = ns_ioaddr(dev);
721 int target = 31;
724 * The internal phy is visible on the external mii bus. Therefore we must
725 * move it away before we can send commands to an external phy.
726 * There are two addresses we must avoid:
727 * - the address on the external phy that is used for transmission.
728 * - the address that we want to access. User space can access phys
729 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
730 * phy that is used for transmission.
733 if (target == addr)
734 target--;
735 if (target == np->phy_addr_external)
736 target--;
737 writew(target, ioaddr + PhyCtrl);
738 readw(ioaddr + PhyCtrl);
739 udelay(1);
742 static void __devinit natsemi_init_media (struct net_device *dev)
744 struct netdev_private *np = netdev_priv(dev);
745 u32 tmp;
747 if (np->ignore_phy)
748 netif_carrier_on(dev);
749 else
750 netif_carrier_off(dev);
752 /* get the initial settings from hardware */
753 tmp = mdio_read(dev, MII_BMCR);
754 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
755 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
756 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
757 np->advertising= mdio_read(dev, MII_ADVERTISE);
759 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
760 netif_msg_probe(np)) {
761 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
762 "10%s %s duplex.\n",
763 pci_name(np->pci_dev),
764 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
765 "enabled, advertise" : "disabled, force",
766 (np->advertising &
767 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
768 "0" : "",
769 (np->advertising &
770 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
771 "full" : "half");
773 if (netif_msg_probe(np))
774 printk(KERN_INFO
775 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
776 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
777 np->advertising);
781 static const struct net_device_ops natsemi_netdev_ops = {
782 .ndo_open = netdev_open,
783 .ndo_stop = netdev_close,
784 .ndo_start_xmit = start_tx,
785 .ndo_get_stats = get_stats,
786 .ndo_set_multicast_list = set_rx_mode,
787 .ndo_change_mtu = natsemi_change_mtu,
788 .ndo_do_ioctl = netdev_ioctl,
789 .ndo_tx_timeout = ns_tx_timeout,
790 .ndo_set_mac_address = eth_mac_addr,
791 .ndo_validate_addr = eth_validate_addr,
792 #ifdef CONFIG_NET_POLL_CONTROLLER
793 .ndo_poll_controller = natsemi_poll_controller,
794 #endif
797 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
798 const struct pci_device_id *ent)
800 struct net_device *dev;
801 struct netdev_private *np;
802 int i, option, irq, chip_idx = ent->driver_data;
803 static int find_cnt = -1;
804 resource_size_t iostart;
805 unsigned long iosize;
806 void __iomem *ioaddr;
807 const int pcibar = 1; /* PCI base address register */
808 int prev_eedata;
809 u32 tmp;
811 /* when built into the kernel, we only print version if device is found */
812 #ifndef MODULE
813 static int printed_version;
814 if (!printed_version++)
815 printk(version);
816 #endif
818 i = pci_enable_device(pdev);
819 if (i) return i;
821 /* natsemi has a non-standard PM control register
822 * in PCI config space. Some boards apparently need
823 * to be brought to D0 in this manner.
825 pci_read_config_dword(pdev, PCIPM, &tmp);
826 if (tmp & PCI_PM_CTRL_STATE_MASK) {
827 /* D0 state, disable PME assertion */
828 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
829 pci_write_config_dword(pdev, PCIPM, newtmp);
832 find_cnt++;
833 iostart = pci_resource_start(pdev, pcibar);
834 iosize = pci_resource_len(pdev, pcibar);
835 irq = pdev->irq;
837 pci_set_master(pdev);
839 dev = alloc_etherdev(sizeof (struct netdev_private));
840 if (!dev)
841 return -ENOMEM;
842 SET_NETDEV_DEV(dev, &pdev->dev);
844 i = pci_request_regions(pdev, DRV_NAME);
845 if (i)
846 goto err_pci_request_regions;
848 ioaddr = ioremap(iostart, iosize);
849 if (!ioaddr) {
850 i = -ENOMEM;
851 goto err_ioremap;
854 /* Work around the dropped serial bit. */
855 prev_eedata = eeprom_read(ioaddr, 6);
856 for (i = 0; i < 3; i++) {
857 int eedata = eeprom_read(ioaddr, i + 7);
858 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
859 dev->dev_addr[i*2+1] = eedata >> 7;
860 prev_eedata = eedata;
863 /* Store MAC Address in perm_addr */
864 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
866 dev->base_addr = (unsigned long __force) ioaddr;
867 dev->irq = irq;
869 np = netdev_priv(dev);
870 netif_napi_add(dev, &np->napi, natsemi_poll, 64);
871 np->dev = dev;
873 np->pci_dev = pdev;
874 pci_set_drvdata(pdev, dev);
875 np->iosize = iosize;
876 spin_lock_init(&np->lock);
877 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
878 np->hands_off = 0;
879 np->intr_status = 0;
880 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
881 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
882 np->ignore_phy = 1;
883 else
884 np->ignore_phy = 0;
885 np->dspcfg_workaround = dspcfg_workaround;
887 /* Initial port:
888 * - If configured to ignore the PHY set up for external.
889 * - If the nic was configured to use an external phy and if find_mii
890 * finds a phy: use external port, first phy that replies.
891 * - Otherwise: internal port.
892 * Note that the phy address for the internal phy doesn't matter:
893 * The address would be used to access a phy over the mii bus, but
894 * the internal phy is accessed through mapped registers.
896 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
897 dev->if_port = PORT_MII;
898 else
899 dev->if_port = PORT_TP;
900 /* Reset the chip to erase previous misconfiguration. */
901 natsemi_reload_eeprom(dev);
902 natsemi_reset(dev);
904 if (dev->if_port != PORT_TP) {
905 np->phy_addr_external = find_mii(dev);
906 /* If we're ignoring the PHY it doesn't matter if we can't
907 * find one. */
908 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
909 dev->if_port = PORT_TP;
910 np->phy_addr_external = PHY_ADDR_INTERNAL;
912 } else {
913 np->phy_addr_external = PHY_ADDR_INTERNAL;
916 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
917 if (dev->mem_start)
918 option = dev->mem_start;
920 /* The lower four bits are the media type. */
921 if (option) {
922 if (option & 0x200)
923 np->full_duplex = 1;
924 if (option & 15)
925 printk(KERN_INFO
926 "natsemi %s: ignoring user supplied media type %d",
927 pci_name(np->pci_dev), option & 15);
929 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
930 np->full_duplex = 1;
932 dev->netdev_ops = &natsemi_netdev_ops;
933 dev->watchdog_timeo = TX_TIMEOUT;
935 SET_ETHTOOL_OPS(dev, &ethtool_ops);
937 if (mtu)
938 dev->mtu = mtu;
940 natsemi_init_media(dev);
942 /* save the silicon revision for later querying */
943 np->srr = readl(ioaddr + SiliconRev);
944 if (netif_msg_hw(np))
945 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
946 pci_name(np->pci_dev), np->srr);
948 i = register_netdev(dev);
949 if (i)
950 goto err_register_netdev;
952 if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
953 goto err_create_file;
955 if (netif_msg_drv(np)) {
956 printk(KERN_INFO "natsemi %s: %s at %#08llx "
957 "(%s), %pM, IRQ %d",
958 dev->name, natsemi_pci_info[chip_idx].name,
959 (unsigned long long)iostart, pci_name(np->pci_dev),
960 dev->dev_addr, irq);
961 if (dev->if_port == PORT_TP)
962 printk(", port TP.\n");
963 else if (np->ignore_phy)
964 printk(", port MII, ignoring PHY\n");
965 else
966 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
968 return 0;
970 err_create_file:
971 unregister_netdev(dev);
973 err_register_netdev:
974 iounmap(ioaddr);
976 err_ioremap:
977 pci_release_regions(pdev);
978 pci_set_drvdata(pdev, NULL);
980 err_pci_request_regions:
981 free_netdev(dev);
982 return i;
986 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
987 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
989 /* Delay between EEPROM clock transitions.
990 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
991 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
992 made udelay() unreliable.
993 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
994 deprecated.
996 #define eeprom_delay(ee_addr) readl(ee_addr)
998 #define EE_Write0 (EE_ChipSelect)
999 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1001 /* The EEPROM commands include the alway-set leading bit. */
1002 enum EEPROM_Cmds {
1003 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1006 static int eeprom_read(void __iomem *addr, int location)
1008 int i;
1009 int retval = 0;
1010 void __iomem *ee_addr = addr + EECtrl;
1011 int read_cmd = location | EE_ReadCmd;
1013 writel(EE_Write0, ee_addr);
1015 /* Shift the read command bits out. */
1016 for (i = 10; i >= 0; i--) {
1017 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018 writel(dataval, ee_addr);
1019 eeprom_delay(ee_addr);
1020 writel(dataval | EE_ShiftClk, ee_addr);
1021 eeprom_delay(ee_addr);
1023 writel(EE_ChipSelect, ee_addr);
1024 eeprom_delay(ee_addr);
1026 for (i = 0; i < 16; i++) {
1027 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028 eeprom_delay(ee_addr);
1029 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030 writel(EE_ChipSelect, ee_addr);
1031 eeprom_delay(ee_addr);
1034 /* Terminate the EEPROM access. */
1035 writel(EE_Write0, ee_addr);
1036 writel(0, ee_addr);
1037 return retval;
1040 /* MII transceiver control section.
1041 * The 83815 series has an internal transceiver, and we present the
1042 * internal management registers as if they were MII connected.
1043 * External Phy registers are referenced through the MII interface.
1046 /* clock transitions >= 20ns (25MHz)
1047 * One readl should be good to PCI @ 100MHz
1049 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1051 static int mii_getbit (struct net_device *dev)
1053 int data;
1054 void __iomem *ioaddr = ns_ioaddr(dev);
1056 writel(MII_ShiftClk, ioaddr + EECtrl);
1057 data = readl(ioaddr + EECtrl);
1058 writel(0, ioaddr + EECtrl);
1059 mii_delay(ioaddr);
1060 return (data & MII_Data)? 1 : 0;
1063 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1065 u32 i;
1066 void __iomem *ioaddr = ns_ioaddr(dev);
1068 for (i = (1 << (len-1)); i; i >>= 1)
1070 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071 writel(mdio_val, ioaddr + EECtrl);
1072 mii_delay(ioaddr);
1073 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074 mii_delay(ioaddr);
1076 writel(0, ioaddr + EECtrl);
1077 mii_delay(ioaddr);
1080 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1082 u32 cmd;
1083 int i;
1084 u32 retval = 0;
1086 /* Ensure sync */
1087 mii_send_bits (dev, 0xffffffff, 32);
1088 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1089 /* ST,OP = 0110'b for read operation */
1090 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091 mii_send_bits (dev, cmd, 14);
1092 /* Turnaround */
1093 if (mii_getbit (dev))
1094 return 0;
1095 /* Read data */
1096 for (i = 0; i < 16; i++) {
1097 retval <<= 1;
1098 retval |= mii_getbit (dev);
1100 /* End cycle */
1101 mii_getbit (dev);
1102 return retval;
1105 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1107 u32 cmd;
1109 /* Ensure sync */
1110 mii_send_bits (dev, 0xffffffff, 32);
1111 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1113 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114 mii_send_bits (dev, cmd, 32);
1115 /* End cycle */
1116 mii_getbit (dev);
1119 static int mdio_read(struct net_device *dev, int reg)
1121 struct netdev_private *np = netdev_priv(dev);
1122 void __iomem *ioaddr = ns_ioaddr(dev);
1124 /* The 83815 series has two ports:
1125 * - an internal transceiver
1126 * - an external mii bus
1128 if (dev->if_port == PORT_TP)
1129 return readw(ioaddr+BasicControl+(reg<<2));
1130 else
1131 return miiport_read(dev, np->phy_addr_external, reg);
1134 static void mdio_write(struct net_device *dev, int reg, u16 data)
1136 struct netdev_private *np = netdev_priv(dev);
1137 void __iomem *ioaddr = ns_ioaddr(dev);
1139 /* The 83815 series has an internal transceiver; handle separately */
1140 if (dev->if_port == PORT_TP)
1141 writew(data, ioaddr+BasicControl+(reg<<2));
1142 else
1143 miiport_write(dev, np->phy_addr_external, reg, data);
1146 static void init_phy_fixup(struct net_device *dev)
1148 struct netdev_private *np = netdev_priv(dev);
1149 void __iomem *ioaddr = ns_ioaddr(dev);
1150 int i;
1151 u32 cfg;
1152 u16 tmp;
1154 /* restore stuff lost when power was out */
1155 tmp = mdio_read(dev, MII_BMCR);
1156 if (np->autoneg == AUTONEG_ENABLE) {
1157 /* renegotiate if something changed */
1158 if ((tmp & BMCR_ANENABLE) == 0 ||
1159 np->advertising != mdio_read(dev, MII_ADVERTISE))
1161 /* turn on autonegotiation and force negotiation */
1162 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163 mdio_write(dev, MII_ADVERTISE, np->advertising);
1165 } else {
1166 /* turn off auto negotiation, set speed and duplexity */
1167 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168 if (np->speed == SPEED_100)
1169 tmp |= BMCR_SPEED100;
1170 if (np->duplex == DUPLEX_FULL)
1171 tmp |= BMCR_FULLDPLX;
1173 * Note: there is no good way to inform the link partner
1174 * that our capabilities changed. The user has to unplug
1175 * and replug the network cable after some changes, e.g.
1176 * after switching from 10HD, autoneg off to 100 HD,
1177 * autoneg off.
1180 mdio_write(dev, MII_BMCR, tmp);
1181 readl(ioaddr + ChipConfig);
1182 udelay(1);
1184 /* find out what phy this is */
1185 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186 + mdio_read(dev, MII_PHYSID2);
1188 /* handle external phys here */
1189 switch (np->mii) {
1190 case PHYID_AM79C874:
1191 /* phy specific configuration for fibre/tp operation */
1192 tmp = mdio_read(dev, MII_MCTRL);
1193 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194 if (dev->if_port == PORT_FIBRE)
1195 tmp |= MII_FX_SEL;
1196 else
1197 tmp |= MII_EN_SCRM;
1198 mdio_write(dev, MII_MCTRL, tmp);
1199 break;
1200 default:
1201 break;
1203 cfg = readl(ioaddr + ChipConfig);
1204 if (cfg & CfgExtPhy)
1205 return;
1207 /* On page 78 of the spec, they recommend some settings for "optimum
1208 performance" to be done in sequence. These settings optimize some
1209 of the 100Mbit autodetection circuitry. They say we only want to
1210 do this for rev C of the chip, but engineers at NSC (Bradley
1211 Kennedy) recommends always setting them. If you don't, you get
1212 errors on some autonegotiations that make the device unusable.
1214 It seems that the DSP needs a few usec to reinitialize after
1215 the start of the phy. Just retry writing these values until they
1216 stick.
1218 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1220 int dspcfg;
1221 writew(1, ioaddr + PGSEL);
1222 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226 writew(np->dspcfg, ioaddr + DSPCFG);
1227 writew(SDCFG_VAL, ioaddr + SDCFG);
1228 writew(0, ioaddr + PGSEL);
1229 readl(ioaddr + ChipConfig);
1230 udelay(10);
1232 writew(1, ioaddr + PGSEL);
1233 dspcfg = readw(ioaddr + DSPCFG);
1234 writew(0, ioaddr + PGSEL);
1235 if (np->dspcfg == dspcfg)
1236 break;
1239 if (netif_msg_link(np)) {
1240 if (i==NATSEMI_HW_TIMEOUT) {
1241 printk(KERN_INFO
1242 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1243 dev->name, i*10);
1244 } else {
1245 printk(KERN_INFO
1246 "%s: DSPCFG accepted after %d usec.\n",
1247 dev->name, i*10);
1251 * Enable PHY Specific event based interrupts. Link state change
1252 * and Auto-Negotiation Completion are among the affected.
1253 * Read the intr status to clear it (needed for wake events).
1255 readw(ioaddr + MIntrStatus);
1256 writew(MICRIntEn, ioaddr + MIntrCtrl);
1259 static int switch_port_external(struct net_device *dev)
1261 struct netdev_private *np = netdev_priv(dev);
1262 void __iomem *ioaddr = ns_ioaddr(dev);
1263 u32 cfg;
1265 cfg = readl(ioaddr + ChipConfig);
1266 if (cfg & CfgExtPhy)
1267 return 0;
1269 if (netif_msg_link(np)) {
1270 printk(KERN_INFO "%s: switching to external transceiver.\n",
1271 dev->name);
1274 /* 1) switch back to external phy */
1275 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276 readl(ioaddr + ChipConfig);
1277 udelay(1);
1279 /* 2) reset the external phy: */
1280 /* resetting the external PHY has been known to cause a hub supplying
1281 * power over Ethernet to kill the power. We don't want to kill
1282 * power to this computer, so we avoid resetting the phy.
1285 /* 3) reinit the phy fixup, it got lost during power down. */
1286 move_int_phy(dev, np->phy_addr_external);
1287 init_phy_fixup(dev);
1289 return 1;
1292 static int switch_port_internal(struct net_device *dev)
1294 struct netdev_private *np = netdev_priv(dev);
1295 void __iomem *ioaddr = ns_ioaddr(dev);
1296 int i;
1297 u32 cfg;
1298 u16 bmcr;
1300 cfg = readl(ioaddr + ChipConfig);
1301 if (!(cfg &CfgExtPhy))
1302 return 0;
1304 if (netif_msg_link(np)) {
1305 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306 dev->name);
1308 /* 1) switch back to internal phy: */
1309 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310 writel(cfg, ioaddr + ChipConfig);
1311 readl(ioaddr + ChipConfig);
1312 udelay(1);
1314 /* 2) reset the internal phy: */
1315 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317 readl(ioaddr + ChipConfig);
1318 udelay(10);
1319 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321 if (!(bmcr & BMCR_RESET))
1322 break;
1323 udelay(10);
1325 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326 printk(KERN_INFO
1327 "%s: phy reset did not complete in %d usec.\n",
1328 dev->name, i*10);
1330 /* 3) reinit the phy fixup, it got lost during power down. */
1331 init_phy_fixup(dev);
1333 return 1;
1336 /* Scan for a PHY on the external mii bus.
1337 * There are two tricky points:
1338 * - Do not scan while the internal phy is enabled. The internal phy will
1339 * crash: e.g. reads from the DSPCFG register will return odd values and
1340 * the nasty random phy reset code will reset the nic every few seconds.
1341 * - The internal phy must be moved around, an external phy could
1342 * have the same address as the internal phy.
1344 static int find_mii(struct net_device *dev)
1346 struct netdev_private *np = netdev_priv(dev);
1347 int tmp;
1348 int i;
1349 int did_switch;
1351 /* Switch to external phy */
1352 did_switch = switch_port_external(dev);
1354 /* Scan the possible phy addresses:
1356 * PHY address 0 means that the phy is in isolate mode. Not yet
1357 * supported due to lack of test hardware. User space should
1358 * handle it through ethtool.
1360 for (i = 1; i <= 31; i++) {
1361 move_int_phy(dev, i);
1362 tmp = miiport_read(dev, i, MII_BMSR);
1363 if (tmp != 0xffff && tmp != 0x0000) {
1364 /* found something! */
1365 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366 + mdio_read(dev, MII_PHYSID2);
1367 if (netif_msg_probe(np)) {
1368 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369 pci_name(np->pci_dev), np->mii, i);
1371 break;
1374 /* And switch back to internal phy: */
1375 if (did_switch)
1376 switch_port_internal(dev);
1377 return i;
1380 /* CFG bits [13:16] [18:23] */
1381 #define CFG_RESET_SAVE 0xfde000
1382 /* WCSR bits [0:4] [9:10] */
1383 #define WCSR_RESET_SAVE 0x61f
1384 /* RFCR bits [20] [22] [27:31] */
1385 #define RFCR_RESET_SAVE 0xf8500000;
1387 static void natsemi_reset(struct net_device *dev)
1389 int i;
1390 u32 cfg;
1391 u32 wcsr;
1392 u32 rfcr;
1393 u16 pmatch[3];
1394 u16 sopass[3];
1395 struct netdev_private *np = netdev_priv(dev);
1396 void __iomem *ioaddr = ns_ioaddr(dev);
1399 * Resetting the chip causes some registers to be lost.
1400 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1401 * we save the state that would have been loaded from EEPROM
1402 * on a normal power-up (see the spec EEPROM map). This assumes
1403 * whoever calls this will follow up with init_registers() eventually.
1406 /* CFG */
1407 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408 /* WCSR */
1409 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410 /* RFCR */
1411 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412 /* PMATCH */
1413 for (i = 0; i < 3; i++) {
1414 writel(i*2, ioaddr + RxFilterAddr);
1415 pmatch[i] = readw(ioaddr + RxFilterData);
1417 /* SOPAS */
1418 for (i = 0; i < 3; i++) {
1419 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420 sopass[i] = readw(ioaddr + RxFilterData);
1423 /* now whack the chip */
1424 writel(ChipReset, ioaddr + ChipCmd);
1425 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427 break;
1428 udelay(5);
1430 if (i==NATSEMI_HW_TIMEOUT) {
1431 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432 dev->name, i*5);
1433 } else if (netif_msg_hw(np)) {
1434 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435 dev->name, i*5);
1438 /* restore CFG */
1439 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440 /* turn on external phy if it was selected */
1441 if (dev->if_port == PORT_TP)
1442 cfg &= ~(CfgExtPhy | CfgPhyDis);
1443 else
1444 cfg |= (CfgExtPhy | CfgPhyDis);
1445 writel(cfg, ioaddr + ChipConfig);
1446 /* restore WCSR */
1447 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448 writel(wcsr, ioaddr + WOLCmd);
1449 /* read RFCR */
1450 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451 /* restore PMATCH */
1452 for (i = 0; i < 3; i++) {
1453 writel(i*2, ioaddr + RxFilterAddr);
1454 writew(pmatch[i], ioaddr + RxFilterData);
1456 for (i = 0; i < 3; i++) {
1457 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458 writew(sopass[i], ioaddr + RxFilterData);
1460 /* restore RFCR */
1461 writel(rfcr, ioaddr + RxFilterAddr);
1464 static void reset_rx(struct net_device *dev)
1466 int i;
1467 struct netdev_private *np = netdev_priv(dev);
1468 void __iomem *ioaddr = ns_ioaddr(dev);
1470 np->intr_status &= ~RxResetDone;
1472 writel(RxReset, ioaddr + ChipCmd);
1474 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475 np->intr_status |= readl(ioaddr + IntrStatus);
1476 if (np->intr_status & RxResetDone)
1477 break;
1478 udelay(15);
1480 if (i==NATSEMI_HW_TIMEOUT) {
1481 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482 dev->name, i*15);
1483 } else if (netif_msg_hw(np)) {
1484 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485 dev->name, i*15);
1489 static void natsemi_reload_eeprom(struct net_device *dev)
1491 struct netdev_private *np = netdev_priv(dev);
1492 void __iomem *ioaddr = ns_ioaddr(dev);
1493 int i;
1495 writel(EepromReload, ioaddr + PCIBusCfg);
1496 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497 udelay(50);
1498 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499 break;
1501 if (i==NATSEMI_HW_TIMEOUT) {
1502 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503 pci_name(np->pci_dev), i*50);
1504 } else if (netif_msg_hw(np)) {
1505 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506 pci_name(np->pci_dev), i*50);
1510 static void natsemi_stop_rxtx(struct net_device *dev)
1512 void __iomem * ioaddr = ns_ioaddr(dev);
1513 struct netdev_private *np = netdev_priv(dev);
1514 int i;
1516 writel(RxOff | TxOff, ioaddr + ChipCmd);
1517 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519 break;
1520 udelay(5);
1522 if (i==NATSEMI_HW_TIMEOUT) {
1523 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524 dev->name, i*5);
1525 } else if (netif_msg_hw(np)) {
1526 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527 dev->name, i*5);
1531 static int netdev_open(struct net_device *dev)
1533 struct netdev_private *np = netdev_priv(dev);
1534 void __iomem * ioaddr = ns_ioaddr(dev);
1535 int i;
1537 /* Reset the chip, just in case. */
1538 natsemi_reset(dev);
1540 i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1541 if (i) return i;
1543 if (netif_msg_ifup(np))
1544 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1545 dev->name, dev->irq);
1546 i = alloc_ring(dev);
1547 if (i < 0) {
1548 free_irq(dev->irq, dev);
1549 return i;
1551 napi_enable(&np->napi);
1553 init_ring(dev);
1554 spin_lock_irq(&np->lock);
1555 init_registers(dev);
1556 /* now set the MAC address according to dev->dev_addr */
1557 for (i = 0; i < 3; i++) {
1558 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1560 writel(i*2, ioaddr + RxFilterAddr);
1561 writew(mac, ioaddr + RxFilterData);
1563 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1564 spin_unlock_irq(&np->lock);
1566 netif_start_queue(dev);
1568 if (netif_msg_ifup(np))
1569 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1570 dev->name, (int)readl(ioaddr + ChipCmd));
1572 /* Set the timer to check for link beat. */
1573 init_timer(&np->timer);
1574 np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1575 np->timer.data = (unsigned long)dev;
1576 np->timer.function = netdev_timer; /* timer handler */
1577 add_timer(&np->timer);
1579 return 0;
1582 static void do_cable_magic(struct net_device *dev)
1584 struct netdev_private *np = netdev_priv(dev);
1585 void __iomem *ioaddr = ns_ioaddr(dev);
1587 if (dev->if_port != PORT_TP)
1588 return;
1590 if (np->srr >= SRR_DP83816_A5)
1591 return;
1594 * 100 MBit links with short cables can trip an issue with the chip.
1595 * The problem manifests as lots of CRC errors and/or flickering
1596 * activity LED while idle. This process is based on instructions
1597 * from engineers at National.
1599 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1600 u16 data;
1602 writew(1, ioaddr + PGSEL);
1604 * coefficient visibility should already be enabled via
1605 * DSPCFG | 0x1000
1607 data = readw(ioaddr + TSTDAT) & 0xff;
1609 * the value must be negative, and within certain values
1610 * (these values all come from National)
1612 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1613 np = netdev_priv(dev);
1615 /* the bug has been triggered - fix the coefficient */
1616 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1617 /* lock the value */
1618 data = readw(ioaddr + DSPCFG);
1619 np->dspcfg = data | DSPCFG_LOCK;
1620 writew(np->dspcfg, ioaddr + DSPCFG);
1622 writew(0, ioaddr + PGSEL);
1626 static void undo_cable_magic(struct net_device *dev)
1628 u16 data;
1629 struct netdev_private *np = netdev_priv(dev);
1630 void __iomem * ioaddr = ns_ioaddr(dev);
1632 if (dev->if_port != PORT_TP)
1633 return;
1635 if (np->srr >= SRR_DP83816_A5)
1636 return;
1638 writew(1, ioaddr + PGSEL);
1639 /* make sure the lock bit is clear */
1640 data = readw(ioaddr + DSPCFG);
1641 np->dspcfg = data & ~DSPCFG_LOCK;
1642 writew(np->dspcfg, ioaddr + DSPCFG);
1643 writew(0, ioaddr + PGSEL);
1646 static void check_link(struct net_device *dev)
1648 struct netdev_private *np = netdev_priv(dev);
1649 void __iomem * ioaddr = ns_ioaddr(dev);
1650 int duplex = np->duplex;
1651 u16 bmsr;
1653 /* If we are ignoring the PHY then don't try reading it. */
1654 if (np->ignore_phy)
1655 goto propagate_state;
1657 /* The link status field is latched: it remains low after a temporary
1658 * link failure until it's read. We need the current link status,
1659 * thus read twice.
1661 mdio_read(dev, MII_BMSR);
1662 bmsr = mdio_read(dev, MII_BMSR);
1664 if (!(bmsr & BMSR_LSTATUS)) {
1665 if (netif_carrier_ok(dev)) {
1666 if (netif_msg_link(np))
1667 printk(KERN_NOTICE "%s: link down.\n",
1668 dev->name);
1669 netif_carrier_off(dev);
1670 undo_cable_magic(dev);
1672 return;
1674 if (!netif_carrier_ok(dev)) {
1675 if (netif_msg_link(np))
1676 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1677 netif_carrier_on(dev);
1678 do_cable_magic(dev);
1681 duplex = np->full_duplex;
1682 if (!duplex) {
1683 if (bmsr & BMSR_ANEGCOMPLETE) {
1684 int tmp = mii_nway_result(
1685 np->advertising & mdio_read(dev, MII_LPA));
1686 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1687 duplex = 1;
1688 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1689 duplex = 1;
1692 propagate_state:
1693 /* if duplex is set then bit 28 must be set, too */
1694 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1695 if (netif_msg_link(np))
1696 printk(KERN_INFO
1697 "%s: Setting %s-duplex based on negotiated "
1698 "link capability.\n", dev->name,
1699 duplex ? "full" : "half");
1700 if (duplex) {
1701 np->rx_config |= RxAcceptTx;
1702 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1703 } else {
1704 np->rx_config &= ~RxAcceptTx;
1705 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1707 writel(np->tx_config, ioaddr + TxConfig);
1708 writel(np->rx_config, ioaddr + RxConfig);
1712 static void init_registers(struct net_device *dev)
1714 struct netdev_private *np = netdev_priv(dev);
1715 void __iomem * ioaddr = ns_ioaddr(dev);
1717 init_phy_fixup(dev);
1719 /* clear any interrupts that are pending, such as wake events */
1720 readl(ioaddr + IntrStatus);
1722 writel(np->ring_dma, ioaddr + RxRingPtr);
1723 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1724 ioaddr + TxRingPtr);
1726 /* Initialize other registers.
1727 * Configure the PCI bus bursts and FIFO thresholds.
1728 * Configure for standard, in-spec Ethernet.
1729 * Start with half-duplex. check_link will update
1730 * to the correct settings.
1733 /* DRTH: 2: start tx if 64 bytes are in the fifo
1734 * FLTH: 0x10: refill with next packet if 512 bytes are free
1735 * MXDMA: 0: up to 256 byte bursts.
1736 * MXDMA must be <= FLTH
1737 * ECRETRY=1
1738 * ATP=1
1740 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1741 TX_FLTH_VAL | TX_DRTH_VAL_START;
1742 writel(np->tx_config, ioaddr + TxConfig);
1744 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1745 * MXDMA 0: up to 256 byte bursts
1747 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1748 /* if receive ring now has bigger buffers than normal, enable jumbo */
1749 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1750 np->rx_config |= RxAcceptLong;
1752 writel(np->rx_config, ioaddr + RxConfig);
1754 /* Disable PME:
1755 * The PME bit is initialized from the EEPROM contents.
1756 * PCI cards probably have PME disabled, but motherboard
1757 * implementations may have PME set to enable WakeOnLan.
1758 * With PME set the chip will scan incoming packets but
1759 * nothing will be written to memory. */
1760 np->SavedClkRun = readl(ioaddr + ClkRun);
1761 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1762 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1763 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1764 dev->name, readl(ioaddr + WOLCmd));
1767 check_link(dev);
1768 __set_rx_mode(dev);
1770 /* Enable interrupts by setting the interrupt mask. */
1771 writel(DEFAULT_INTR, ioaddr + IntrMask);
1772 natsemi_irq_enable(dev);
1774 writel(RxOn | TxOn, ioaddr + ChipCmd);
1775 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1779 * netdev_timer:
1780 * Purpose:
1781 * 1) check for link changes. Usually they are handled by the MII interrupt
1782 * but it doesn't hurt to check twice.
1783 * 2) check for sudden death of the NIC:
1784 * It seems that a reference set for this chip went out with incorrect info,
1785 * and there exist boards that aren't quite right. An unexpected voltage
1786 * drop can cause the PHY to get itself in a weird state (basically reset).
1787 * NOTE: this only seems to affect revC chips. The user can disable
1788 * this check via dspcfg_workaround sysfs option.
1789 * 3) check of death of the RX path due to OOM
1791 static void netdev_timer(unsigned long data)
1793 struct net_device *dev = (struct net_device *)data;
1794 struct netdev_private *np = netdev_priv(dev);
1795 void __iomem * ioaddr = ns_ioaddr(dev);
1796 int next_tick = NATSEMI_TIMER_FREQ;
1798 if (netif_msg_timer(np)) {
1799 /* DO NOT read the IntrStatus register,
1800 * a read clears any pending interrupts.
1802 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803 dev->name);
1806 if (dev->if_port == PORT_TP) {
1807 u16 dspcfg;
1809 spin_lock_irq(&np->lock);
1810 /* check for a nasty random phy-reset - use dspcfg as a flag */
1811 writew(1, ioaddr+PGSEL);
1812 dspcfg = readw(ioaddr+DSPCFG);
1813 writew(0, ioaddr+PGSEL);
1814 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815 if (!netif_queue_stopped(dev)) {
1816 spin_unlock_irq(&np->lock);
1817 if (netif_msg_drv(np))
1818 printk(KERN_NOTICE "%s: possible phy reset: "
1819 "re-initializing\n", dev->name);
1820 disable_irq(dev->irq);
1821 spin_lock_irq(&np->lock);
1822 natsemi_stop_rxtx(dev);
1823 dump_ring(dev);
1824 reinit_ring(dev);
1825 init_registers(dev);
1826 spin_unlock_irq(&np->lock);
1827 enable_irq(dev->irq);
1828 } else {
1829 /* hurry back */
1830 next_tick = HZ;
1831 spin_unlock_irq(&np->lock);
1833 } else {
1834 /* init_registers() calls check_link() for the above case */
1835 check_link(dev);
1836 spin_unlock_irq(&np->lock);
1838 } else {
1839 spin_lock_irq(&np->lock);
1840 check_link(dev);
1841 spin_unlock_irq(&np->lock);
1843 if (np->oom) {
1844 disable_irq(dev->irq);
1845 np->oom = 0;
1846 refill_rx(dev);
1847 enable_irq(dev->irq);
1848 if (!np->oom) {
1849 writel(RxOn, ioaddr + ChipCmd);
1850 } else {
1851 next_tick = 1;
1855 if (next_tick > 1)
1856 mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857 else
1858 mod_timer(&np->timer, jiffies + next_tick);
1861 static void dump_ring(struct net_device *dev)
1863 struct netdev_private *np = netdev_priv(dev);
1865 if (netif_msg_pktdata(np)) {
1866 int i;
1867 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1868 for (i = 0; i < TX_RING_SIZE; i++) {
1869 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870 i, np->tx_ring[i].next_desc,
1871 np->tx_ring[i].cmd_status,
1872 np->tx_ring[i].addr);
1874 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1875 for (i = 0; i < RX_RING_SIZE; i++) {
1876 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877 i, np->rx_ring[i].next_desc,
1878 np->rx_ring[i].cmd_status,
1879 np->rx_ring[i].addr);
1884 static void ns_tx_timeout(struct net_device *dev)
1886 struct netdev_private *np = netdev_priv(dev);
1887 void __iomem * ioaddr = ns_ioaddr(dev);
1889 disable_irq(dev->irq);
1890 spin_lock_irq(&np->lock);
1891 if (!np->hands_off) {
1892 if (netif_msg_tx_err(np))
1893 printk(KERN_WARNING
1894 "%s: Transmit timed out, status %#08x,"
1895 " resetting...\n",
1896 dev->name, readl(ioaddr + IntrStatus));
1897 dump_ring(dev);
1899 natsemi_reset(dev);
1900 reinit_ring(dev);
1901 init_registers(dev);
1902 } else {
1903 printk(KERN_WARNING
1904 "%s: tx_timeout while in hands_off state?\n",
1905 dev->name);
1907 spin_unlock_irq(&np->lock);
1908 enable_irq(dev->irq);
1910 dev->trans_start = jiffies; /* prevent tx timeout */
1911 dev->stats.tx_errors++;
1912 netif_wake_queue(dev);
1915 static int alloc_ring(struct net_device *dev)
1917 struct netdev_private *np = netdev_priv(dev);
1918 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1919 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1920 &np->ring_dma);
1921 if (!np->rx_ring)
1922 return -ENOMEM;
1923 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1924 return 0;
1927 static void refill_rx(struct net_device *dev)
1929 struct netdev_private *np = netdev_priv(dev);
1931 /* Refill the Rx ring buffers. */
1932 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1933 struct sk_buff *skb;
1934 int entry = np->dirty_rx % RX_RING_SIZE;
1935 if (np->rx_skbuff[entry] == NULL) {
1936 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1937 skb = dev_alloc_skb(buflen);
1938 np->rx_skbuff[entry] = skb;
1939 if (skb == NULL)
1940 break; /* Better luck next round. */
1941 skb->dev = dev; /* Mark as being used by this device. */
1942 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1943 skb->data, buflen, PCI_DMA_FROMDEVICE);
1944 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1946 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1948 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1949 if (netif_msg_rx_err(np))
1950 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1951 np->oom = 1;
1955 static void set_bufsize(struct net_device *dev)
1957 struct netdev_private *np = netdev_priv(dev);
1958 if (dev->mtu <= ETH_DATA_LEN)
1959 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1960 else
1961 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1964 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1965 static void init_ring(struct net_device *dev)
1967 struct netdev_private *np = netdev_priv(dev);
1968 int i;
1970 /* 1) TX ring */
1971 np->dirty_tx = np->cur_tx = 0;
1972 for (i = 0; i < TX_RING_SIZE; i++) {
1973 np->tx_skbuff[i] = NULL;
1974 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1975 +sizeof(struct netdev_desc)
1976 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1977 np->tx_ring[i].cmd_status = 0;
1980 /* 2) RX ring */
1981 np->dirty_rx = 0;
1982 np->cur_rx = RX_RING_SIZE;
1983 np->oom = 0;
1984 set_bufsize(dev);
1986 np->rx_head_desc = &np->rx_ring[0];
1988 /* Please be careful before changing this loop - at least gcc-2.95.1
1989 * miscompiles it otherwise.
1991 /* Initialize all Rx descriptors. */
1992 for (i = 0; i < RX_RING_SIZE; i++) {
1993 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1994 +sizeof(struct netdev_desc)
1995 *((i+1)%RX_RING_SIZE));
1996 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1997 np->rx_skbuff[i] = NULL;
1999 refill_rx(dev);
2000 dump_ring(dev);
2003 static void drain_tx(struct net_device *dev)
2005 struct netdev_private *np = netdev_priv(dev);
2006 int i;
2008 for (i = 0; i < TX_RING_SIZE; i++) {
2009 if (np->tx_skbuff[i]) {
2010 pci_unmap_single(np->pci_dev,
2011 np->tx_dma[i], np->tx_skbuff[i]->len,
2012 PCI_DMA_TODEVICE);
2013 dev_kfree_skb(np->tx_skbuff[i]);
2014 dev->stats.tx_dropped++;
2016 np->tx_skbuff[i] = NULL;
2020 static void drain_rx(struct net_device *dev)
2022 struct netdev_private *np = netdev_priv(dev);
2023 unsigned int buflen = np->rx_buf_sz;
2024 int i;
2026 /* Free all the skbuffs in the Rx queue. */
2027 for (i = 0; i < RX_RING_SIZE; i++) {
2028 np->rx_ring[i].cmd_status = 0;
2029 np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2030 if (np->rx_skbuff[i]) {
2031 pci_unmap_single(np->pci_dev,
2032 np->rx_dma[i], buflen,
2033 PCI_DMA_FROMDEVICE);
2034 dev_kfree_skb(np->rx_skbuff[i]);
2036 np->rx_skbuff[i] = NULL;
2040 static void drain_ring(struct net_device *dev)
2042 drain_rx(dev);
2043 drain_tx(dev);
2046 static void free_ring(struct net_device *dev)
2048 struct netdev_private *np = netdev_priv(dev);
2049 pci_free_consistent(np->pci_dev,
2050 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2051 np->rx_ring, np->ring_dma);
2054 static void reinit_rx(struct net_device *dev)
2056 struct netdev_private *np = netdev_priv(dev);
2057 int i;
2059 /* RX Ring */
2060 np->dirty_rx = 0;
2061 np->cur_rx = RX_RING_SIZE;
2062 np->rx_head_desc = &np->rx_ring[0];
2063 /* Initialize all Rx descriptors. */
2064 for (i = 0; i < RX_RING_SIZE; i++)
2065 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2067 refill_rx(dev);
2070 static void reinit_ring(struct net_device *dev)
2072 struct netdev_private *np = netdev_priv(dev);
2073 int i;
2075 /* drain TX ring */
2076 drain_tx(dev);
2077 np->dirty_tx = np->cur_tx = 0;
2078 for (i=0;i<TX_RING_SIZE;i++)
2079 np->tx_ring[i].cmd_status = 0;
2081 reinit_rx(dev);
2084 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2086 struct netdev_private *np = netdev_priv(dev);
2087 void __iomem * ioaddr = ns_ioaddr(dev);
2088 unsigned entry;
2089 unsigned long flags;
2091 /* Note: Ordering is important here, set the field with the
2092 "ownership" bit last, and only then increment cur_tx. */
2094 /* Calculate the next Tx descriptor entry. */
2095 entry = np->cur_tx % TX_RING_SIZE;
2097 np->tx_skbuff[entry] = skb;
2098 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2099 skb->data,skb->len, PCI_DMA_TODEVICE);
2101 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2103 spin_lock_irqsave(&np->lock, flags);
2105 if (!np->hands_off) {
2106 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2107 /* StrongARM: Explicitly cache flush np->tx_ring and
2108 * skb->data,skb->len. */
2109 wmb();
2110 np->cur_tx++;
2111 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2112 netdev_tx_done(dev);
2113 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2114 netif_stop_queue(dev);
2116 /* Wake the potentially-idle transmit channel. */
2117 writel(TxOn, ioaddr + ChipCmd);
2118 } else {
2119 dev_kfree_skb_irq(skb);
2120 dev->stats.tx_dropped++;
2122 spin_unlock_irqrestore(&np->lock, flags);
2124 if (netif_msg_tx_queued(np)) {
2125 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2126 dev->name, np->cur_tx, entry);
2128 return NETDEV_TX_OK;
2131 static void netdev_tx_done(struct net_device *dev)
2133 struct netdev_private *np = netdev_priv(dev);
2135 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2136 int entry = np->dirty_tx % TX_RING_SIZE;
2137 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2138 break;
2139 if (netif_msg_tx_done(np))
2140 printk(KERN_DEBUG
2141 "%s: tx frame #%d finished, status %#08x.\n",
2142 dev->name, np->dirty_tx,
2143 le32_to_cpu(np->tx_ring[entry].cmd_status));
2144 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2145 dev->stats.tx_packets++;
2146 dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2147 } else { /* Various Tx errors */
2148 int tx_status =
2149 le32_to_cpu(np->tx_ring[entry].cmd_status);
2150 if (tx_status & (DescTxAbort|DescTxExcColl))
2151 dev->stats.tx_aborted_errors++;
2152 if (tx_status & DescTxFIFO)
2153 dev->stats.tx_fifo_errors++;
2154 if (tx_status & DescTxCarrier)
2155 dev->stats.tx_carrier_errors++;
2156 if (tx_status & DescTxOOWCol)
2157 dev->stats.tx_window_errors++;
2158 dev->stats.tx_errors++;
2160 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2161 np->tx_skbuff[entry]->len,
2162 PCI_DMA_TODEVICE);
2163 /* Free the original skb. */
2164 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2165 np->tx_skbuff[entry] = NULL;
2167 if (netif_queue_stopped(dev) &&
2168 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2169 /* The ring is no longer full, wake queue. */
2170 netif_wake_queue(dev);
2174 /* The interrupt handler doesn't actually handle interrupts itself, it
2175 * schedules a NAPI poll if there is anything to do. */
2176 static irqreturn_t intr_handler(int irq, void *dev_instance)
2178 struct net_device *dev = dev_instance;
2179 struct netdev_private *np = netdev_priv(dev);
2180 void __iomem * ioaddr = ns_ioaddr(dev);
2182 /* Reading IntrStatus automatically acknowledges so don't do
2183 * that while interrupts are disabled, (for example, while a
2184 * poll is scheduled). */
2185 if (np->hands_off || !readl(ioaddr + IntrEnable))
2186 return IRQ_NONE;
2188 np->intr_status = readl(ioaddr + IntrStatus);
2190 if (!np->intr_status)
2191 return IRQ_NONE;
2193 if (netif_msg_intr(np))
2194 printk(KERN_DEBUG
2195 "%s: Interrupt, status %#08x, mask %#08x.\n",
2196 dev->name, np->intr_status,
2197 readl(ioaddr + IntrMask));
2199 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2201 if (napi_schedule_prep(&np->napi)) {
2202 /* Disable interrupts and register for poll */
2203 natsemi_irq_disable(dev);
2204 __napi_schedule(&np->napi);
2205 } else
2206 printk(KERN_WARNING
2207 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2208 dev->name, np->intr_status,
2209 readl(ioaddr + IntrMask));
2211 return IRQ_HANDLED;
2214 /* This is the NAPI poll routine. As well as the standard RX handling
2215 * it also handles all other interrupts that the chip might raise.
2217 static int natsemi_poll(struct napi_struct *napi, int budget)
2219 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2220 struct net_device *dev = np->dev;
2221 void __iomem * ioaddr = ns_ioaddr(dev);
2222 int work_done = 0;
2224 do {
2225 if (netif_msg_intr(np))
2226 printk(KERN_DEBUG
2227 "%s: Poll, status %#08x, mask %#08x.\n",
2228 dev->name, np->intr_status,
2229 readl(ioaddr + IntrMask));
2231 /* netdev_rx() may read IntrStatus again if the RX state
2232 * machine falls over so do it first. */
2233 if (np->intr_status &
2234 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2235 IntrRxErr | IntrRxOverrun)) {
2236 netdev_rx(dev, &work_done, budget);
2239 if (np->intr_status &
2240 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2241 spin_lock(&np->lock);
2242 netdev_tx_done(dev);
2243 spin_unlock(&np->lock);
2246 /* Abnormal error summary/uncommon events handlers. */
2247 if (np->intr_status & IntrAbnormalSummary)
2248 netdev_error(dev, np->intr_status);
2250 if (work_done >= budget)
2251 return work_done;
2253 np->intr_status = readl(ioaddr + IntrStatus);
2254 } while (np->intr_status);
2256 napi_complete(napi);
2258 /* Reenable interrupts providing nothing is trying to shut
2259 * the chip down. */
2260 spin_lock(&np->lock);
2261 if (!np->hands_off)
2262 natsemi_irq_enable(dev);
2263 spin_unlock(&np->lock);
2265 return work_done;
2268 /* This routine is logically part of the interrupt handler, but separated
2269 for clarity and better register allocation. */
2270 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2272 struct netdev_private *np = netdev_priv(dev);
2273 int entry = np->cur_rx % RX_RING_SIZE;
2274 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2275 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2276 unsigned int buflen = np->rx_buf_sz;
2277 void __iomem * ioaddr = ns_ioaddr(dev);
2279 /* If the driver owns the next entry it's a new packet. Send it up. */
2280 while (desc_status < 0) { /* e.g. & DescOwn */
2281 int pkt_len;
2282 if (netif_msg_rx_status(np))
2283 printk(KERN_DEBUG
2284 " netdev_rx() entry %d status was %#08x.\n",
2285 entry, desc_status);
2286 if (--boguscnt < 0)
2287 break;
2289 if (*work_done >= work_to_do)
2290 break;
2292 (*work_done)++;
2294 pkt_len = (desc_status & DescSizeMask) - 4;
2295 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2296 if (desc_status & DescMore) {
2297 unsigned long flags;
2299 if (netif_msg_rx_err(np))
2300 printk(KERN_WARNING
2301 "%s: Oversized(?) Ethernet "
2302 "frame spanned multiple "
2303 "buffers, entry %#08x "
2304 "status %#08x.\n", dev->name,
2305 np->cur_rx, desc_status);
2306 dev->stats.rx_length_errors++;
2308 /* The RX state machine has probably
2309 * locked up beneath us. Follow the
2310 * reset procedure documented in
2311 * AN-1287. */
2313 spin_lock_irqsave(&np->lock, flags);
2314 reset_rx(dev);
2315 reinit_rx(dev);
2316 writel(np->ring_dma, ioaddr + RxRingPtr);
2317 check_link(dev);
2318 spin_unlock_irqrestore(&np->lock, flags);
2320 /* We'll enable RX on exit from this
2321 * function. */
2322 break;
2324 } else {
2325 /* There was an error. */
2326 dev->stats.rx_errors++;
2327 if (desc_status & (DescRxAbort|DescRxOver))
2328 dev->stats.rx_over_errors++;
2329 if (desc_status & (DescRxLong|DescRxRunt))
2330 dev->stats.rx_length_errors++;
2331 if (desc_status & (DescRxInvalid|DescRxAlign))
2332 dev->stats.rx_frame_errors++;
2333 if (desc_status & DescRxCRC)
2334 dev->stats.rx_crc_errors++;
2336 } else if (pkt_len > np->rx_buf_sz) {
2337 /* if this is the tail of a double buffer
2338 * packet, we've already counted the error
2339 * on the first part. Ignore the second half.
2341 } else {
2342 struct sk_buff *skb;
2343 /* Omit CRC size. */
2344 /* Check if the packet is long enough to accept
2345 * without copying to a minimally-sized skbuff. */
2346 if (pkt_len < rx_copybreak &&
2347 (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2348 /* 16 byte align the IP header */
2349 skb_reserve(skb, RX_OFFSET);
2350 pci_dma_sync_single_for_cpu(np->pci_dev,
2351 np->rx_dma[entry],
2352 buflen,
2353 PCI_DMA_FROMDEVICE);
2354 skb_copy_to_linear_data(skb,
2355 np->rx_skbuff[entry]->data, pkt_len);
2356 skb_put(skb, pkt_len);
2357 pci_dma_sync_single_for_device(np->pci_dev,
2358 np->rx_dma[entry],
2359 buflen,
2360 PCI_DMA_FROMDEVICE);
2361 } else {
2362 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2363 buflen, PCI_DMA_FROMDEVICE);
2364 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2365 np->rx_skbuff[entry] = NULL;
2367 skb->protocol = eth_type_trans(skb, dev);
2368 netif_receive_skb(skb);
2369 dev->stats.rx_packets++;
2370 dev->stats.rx_bytes += pkt_len;
2372 entry = (++np->cur_rx) % RX_RING_SIZE;
2373 np->rx_head_desc = &np->rx_ring[entry];
2374 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2376 refill_rx(dev);
2378 /* Restart Rx engine if stopped. */
2379 if (np->oom)
2380 mod_timer(&np->timer, jiffies + 1);
2381 else
2382 writel(RxOn, ioaddr + ChipCmd);
2385 static void netdev_error(struct net_device *dev, int intr_status)
2387 struct netdev_private *np = netdev_priv(dev);
2388 void __iomem * ioaddr = ns_ioaddr(dev);
2390 spin_lock(&np->lock);
2391 if (intr_status & LinkChange) {
2392 u16 lpa = mdio_read(dev, MII_LPA);
2393 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2394 netif_msg_link(np)) {
2395 printk(KERN_INFO
2396 "%s: Autonegotiation advertising"
2397 " %#04x partner %#04x.\n", dev->name,
2398 np->advertising, lpa);
2401 /* read MII int status to clear the flag */
2402 readw(ioaddr + MIntrStatus);
2403 check_link(dev);
2405 if (intr_status & StatsMax) {
2406 __get_stats(dev);
2408 if (intr_status & IntrTxUnderrun) {
2409 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2410 np->tx_config += TX_DRTH_VAL_INC;
2411 if (netif_msg_tx_err(np))
2412 printk(KERN_NOTICE
2413 "%s: increased tx threshold, txcfg %#08x.\n",
2414 dev->name, np->tx_config);
2415 } else {
2416 if (netif_msg_tx_err(np))
2417 printk(KERN_NOTICE
2418 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2419 dev->name, np->tx_config);
2421 writel(np->tx_config, ioaddr + TxConfig);
2423 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2424 int wol_status = readl(ioaddr + WOLCmd);
2425 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2426 dev->name, wol_status);
2428 if (intr_status & RxStatusFIFOOver) {
2429 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2430 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2431 dev->name);
2433 dev->stats.rx_fifo_errors++;
2434 dev->stats.rx_errors++;
2436 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2437 if (intr_status & IntrPCIErr) {
2438 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2439 intr_status & IntrPCIErr);
2440 dev->stats.tx_fifo_errors++;
2441 dev->stats.tx_errors++;
2442 dev->stats.rx_fifo_errors++;
2443 dev->stats.rx_errors++;
2445 spin_unlock(&np->lock);
2448 static void __get_stats(struct net_device *dev)
2450 void __iomem * ioaddr = ns_ioaddr(dev);
2452 /* The chip only need report frame silently dropped. */
2453 dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2454 dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2457 static struct net_device_stats *get_stats(struct net_device *dev)
2459 struct netdev_private *np = netdev_priv(dev);
2461 /* The chip only need report frame silently dropped. */
2462 spin_lock_irq(&np->lock);
2463 if (netif_running(dev) && !np->hands_off)
2464 __get_stats(dev);
2465 spin_unlock_irq(&np->lock);
2467 return &dev->stats;
2470 #ifdef CONFIG_NET_POLL_CONTROLLER
2471 static void natsemi_poll_controller(struct net_device *dev)
2473 disable_irq(dev->irq);
2474 intr_handler(dev->irq, dev);
2475 enable_irq(dev->irq);
2477 #endif
2479 #define HASH_TABLE 0x200
2480 static void __set_rx_mode(struct net_device *dev)
2482 void __iomem * ioaddr = ns_ioaddr(dev);
2483 struct netdev_private *np = netdev_priv(dev);
2484 u8 mc_filter[64]; /* Multicast hash filter */
2485 u32 rx_mode;
2487 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2488 rx_mode = RxFilterEnable | AcceptBroadcast
2489 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2490 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2491 (dev->flags & IFF_ALLMULTI)) {
2492 rx_mode = RxFilterEnable | AcceptBroadcast
2493 | AcceptAllMulticast | AcceptMyPhys;
2494 } else {
2495 struct netdev_hw_addr *ha;
2496 int i;
2498 memset(mc_filter, 0, sizeof(mc_filter));
2499 netdev_for_each_mc_addr(ha, dev) {
2500 int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2501 mc_filter[b/8] |= (1 << (b & 0x07));
2503 rx_mode = RxFilterEnable | AcceptBroadcast
2504 | AcceptMulticast | AcceptMyPhys;
2505 for (i = 0; i < 64; i += 2) {
2506 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2507 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2508 ioaddr + RxFilterData);
2511 writel(rx_mode, ioaddr + RxFilterAddr);
2512 np->cur_rx_mode = rx_mode;
2515 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2517 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2518 return -EINVAL;
2520 dev->mtu = new_mtu;
2522 /* synchronized against open : rtnl_lock() held by caller */
2523 if (netif_running(dev)) {
2524 struct netdev_private *np = netdev_priv(dev);
2525 void __iomem * ioaddr = ns_ioaddr(dev);
2527 disable_irq(dev->irq);
2528 spin_lock(&np->lock);
2529 /* stop engines */
2530 natsemi_stop_rxtx(dev);
2531 /* drain rx queue */
2532 drain_rx(dev);
2533 /* change buffers */
2534 set_bufsize(dev);
2535 reinit_rx(dev);
2536 writel(np->ring_dma, ioaddr + RxRingPtr);
2537 /* restart engines */
2538 writel(RxOn | TxOn, ioaddr + ChipCmd);
2539 spin_unlock(&np->lock);
2540 enable_irq(dev->irq);
2542 return 0;
2545 static void set_rx_mode(struct net_device *dev)
2547 struct netdev_private *np = netdev_priv(dev);
2548 spin_lock_irq(&np->lock);
2549 if (!np->hands_off)
2550 __set_rx_mode(dev);
2551 spin_unlock_irq(&np->lock);
2554 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2556 struct netdev_private *np = netdev_priv(dev);
2557 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2558 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2559 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2562 static int get_regs_len(struct net_device *dev)
2564 return NATSEMI_REGS_SIZE;
2567 static int get_eeprom_len(struct net_device *dev)
2569 struct netdev_private *np = netdev_priv(dev);
2570 return np->eeprom_size;
2573 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2575 struct netdev_private *np = netdev_priv(dev);
2576 spin_lock_irq(&np->lock);
2577 netdev_get_ecmd(dev, ecmd);
2578 spin_unlock_irq(&np->lock);
2579 return 0;
2582 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2584 struct netdev_private *np = netdev_priv(dev);
2585 int res;
2586 spin_lock_irq(&np->lock);
2587 res = netdev_set_ecmd(dev, ecmd);
2588 spin_unlock_irq(&np->lock);
2589 return res;
2592 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2594 struct netdev_private *np = netdev_priv(dev);
2595 spin_lock_irq(&np->lock);
2596 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2597 netdev_get_sopass(dev, wol->sopass);
2598 spin_unlock_irq(&np->lock);
2601 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2603 struct netdev_private *np = netdev_priv(dev);
2604 int res;
2605 spin_lock_irq(&np->lock);
2606 netdev_set_wol(dev, wol->wolopts);
2607 res = netdev_set_sopass(dev, wol->sopass);
2608 spin_unlock_irq(&np->lock);
2609 return res;
2612 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2614 struct netdev_private *np = netdev_priv(dev);
2615 regs->version = NATSEMI_REGS_VER;
2616 spin_lock_irq(&np->lock);
2617 netdev_get_regs(dev, buf);
2618 spin_unlock_irq(&np->lock);
2621 static u32 get_msglevel(struct net_device *dev)
2623 struct netdev_private *np = netdev_priv(dev);
2624 return np->msg_enable;
2627 static void set_msglevel(struct net_device *dev, u32 val)
2629 struct netdev_private *np = netdev_priv(dev);
2630 np->msg_enable = val;
2633 static int nway_reset(struct net_device *dev)
2635 int tmp;
2636 int r = -EINVAL;
2637 /* if autoneg is off, it's an error */
2638 tmp = mdio_read(dev, MII_BMCR);
2639 if (tmp & BMCR_ANENABLE) {
2640 tmp |= (BMCR_ANRESTART);
2641 mdio_write(dev, MII_BMCR, tmp);
2642 r = 0;
2644 return r;
2647 static u32 get_link(struct net_device *dev)
2649 /* LSTATUS is latched low until a read - so read twice */
2650 mdio_read(dev, MII_BMSR);
2651 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2654 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2656 struct netdev_private *np = netdev_priv(dev);
2657 u8 *eebuf;
2658 int res;
2660 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2661 if (!eebuf)
2662 return -ENOMEM;
2664 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2665 spin_lock_irq(&np->lock);
2666 res = netdev_get_eeprom(dev, eebuf);
2667 spin_unlock_irq(&np->lock);
2668 if (!res)
2669 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2670 kfree(eebuf);
2671 return res;
2674 static const struct ethtool_ops ethtool_ops = {
2675 .get_drvinfo = get_drvinfo,
2676 .get_regs_len = get_regs_len,
2677 .get_eeprom_len = get_eeprom_len,
2678 .get_settings = get_settings,
2679 .set_settings = set_settings,
2680 .get_wol = get_wol,
2681 .set_wol = set_wol,
2682 .get_regs = get_regs,
2683 .get_msglevel = get_msglevel,
2684 .set_msglevel = set_msglevel,
2685 .nway_reset = nway_reset,
2686 .get_link = get_link,
2687 .get_eeprom = get_eeprom,
2690 static int netdev_set_wol(struct net_device *dev, u32 newval)
2692 struct netdev_private *np = netdev_priv(dev);
2693 void __iomem * ioaddr = ns_ioaddr(dev);
2694 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2696 /* translate to bitmasks this chip understands */
2697 if (newval & WAKE_PHY)
2698 data |= WakePhy;
2699 if (newval & WAKE_UCAST)
2700 data |= WakeUnicast;
2701 if (newval & WAKE_MCAST)
2702 data |= WakeMulticast;
2703 if (newval & WAKE_BCAST)
2704 data |= WakeBroadcast;
2705 if (newval & WAKE_ARP)
2706 data |= WakeArp;
2707 if (newval & WAKE_MAGIC)
2708 data |= WakeMagic;
2709 if (np->srr >= SRR_DP83815_D) {
2710 if (newval & WAKE_MAGICSECURE) {
2711 data |= WakeMagicSecure;
2715 writel(data, ioaddr + WOLCmd);
2717 return 0;
2720 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2722 struct netdev_private *np = netdev_priv(dev);
2723 void __iomem * ioaddr = ns_ioaddr(dev);
2724 u32 regval = readl(ioaddr + WOLCmd);
2726 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2727 | WAKE_ARP | WAKE_MAGIC);
2729 if (np->srr >= SRR_DP83815_D) {
2730 /* SOPASS works on revD and higher */
2731 *supported |= WAKE_MAGICSECURE;
2733 *cur = 0;
2735 /* translate from chip bitmasks */
2736 if (regval & WakePhy)
2737 *cur |= WAKE_PHY;
2738 if (regval & WakeUnicast)
2739 *cur |= WAKE_UCAST;
2740 if (regval & WakeMulticast)
2741 *cur |= WAKE_MCAST;
2742 if (regval & WakeBroadcast)
2743 *cur |= WAKE_BCAST;
2744 if (regval & WakeArp)
2745 *cur |= WAKE_ARP;
2746 if (regval & WakeMagic)
2747 *cur |= WAKE_MAGIC;
2748 if (regval & WakeMagicSecure) {
2749 /* this can be on in revC, but it's broken */
2750 *cur |= WAKE_MAGICSECURE;
2753 return 0;
2756 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2758 struct netdev_private *np = netdev_priv(dev);
2759 void __iomem * ioaddr = ns_ioaddr(dev);
2760 u16 *sval = (u16 *)newval;
2761 u32 addr;
2763 if (np->srr < SRR_DP83815_D) {
2764 return 0;
2767 /* enable writing to these registers by disabling the RX filter */
2768 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2769 addr &= ~RxFilterEnable;
2770 writel(addr, ioaddr + RxFilterAddr);
2772 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2773 writel(addr | 0xa, ioaddr + RxFilterAddr);
2774 writew(sval[0], ioaddr + RxFilterData);
2776 writel(addr | 0xc, ioaddr + RxFilterAddr);
2777 writew(sval[1], ioaddr + RxFilterData);
2779 writel(addr | 0xe, ioaddr + RxFilterAddr);
2780 writew(sval[2], ioaddr + RxFilterData);
2782 /* re-enable the RX filter */
2783 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2785 return 0;
2788 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2790 struct netdev_private *np = netdev_priv(dev);
2791 void __iomem * ioaddr = ns_ioaddr(dev);
2792 u16 *sval = (u16 *)data;
2793 u32 addr;
2795 if (np->srr < SRR_DP83815_D) {
2796 sval[0] = sval[1] = sval[2] = 0;
2797 return 0;
2800 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2801 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2803 writel(addr | 0xa, ioaddr + RxFilterAddr);
2804 sval[0] = readw(ioaddr + RxFilterData);
2806 writel(addr | 0xc, ioaddr + RxFilterAddr);
2807 sval[1] = readw(ioaddr + RxFilterData);
2809 writel(addr | 0xe, ioaddr + RxFilterAddr);
2810 sval[2] = readw(ioaddr + RxFilterData);
2812 writel(addr, ioaddr + RxFilterAddr);
2814 return 0;
2817 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2819 struct netdev_private *np = netdev_priv(dev);
2820 u32 tmp;
2822 ecmd->port = dev->if_port;
2823 ethtool_cmd_speed_set(ecmd, np->speed);
2824 ecmd->duplex = np->duplex;
2825 ecmd->autoneg = np->autoneg;
2826 ecmd->advertising = 0;
2827 if (np->advertising & ADVERTISE_10HALF)
2828 ecmd->advertising |= ADVERTISED_10baseT_Half;
2829 if (np->advertising & ADVERTISE_10FULL)
2830 ecmd->advertising |= ADVERTISED_10baseT_Full;
2831 if (np->advertising & ADVERTISE_100HALF)
2832 ecmd->advertising |= ADVERTISED_100baseT_Half;
2833 if (np->advertising & ADVERTISE_100FULL)
2834 ecmd->advertising |= ADVERTISED_100baseT_Full;
2835 ecmd->supported = (SUPPORTED_Autoneg |
2836 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2837 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2838 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2839 ecmd->phy_address = np->phy_addr_external;
2841 * We intentionally report the phy address of the external
2842 * phy, even if the internal phy is used. This is necessary
2843 * to work around a deficiency of the ethtool interface:
2844 * It's only possible to query the settings of the active
2845 * port. Therefore
2846 * # ethtool -s ethX port mii
2847 * actually sends an ioctl to switch to port mii with the
2848 * settings that are used for the current active port.
2849 * If we would report a different phy address in this
2850 * command, then
2851 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2852 * would unintentionally change the phy address.
2854 * Fortunately the phy address doesn't matter with the
2855 * internal phy...
2858 /* set information based on active port type */
2859 switch (ecmd->port) {
2860 default:
2861 case PORT_TP:
2862 ecmd->advertising |= ADVERTISED_TP;
2863 ecmd->transceiver = XCVR_INTERNAL;
2864 break;
2865 case PORT_MII:
2866 ecmd->advertising |= ADVERTISED_MII;
2867 ecmd->transceiver = XCVR_EXTERNAL;
2868 break;
2869 case PORT_FIBRE:
2870 ecmd->advertising |= ADVERTISED_FIBRE;
2871 ecmd->transceiver = XCVR_EXTERNAL;
2872 break;
2875 /* if autonegotiation is on, try to return the active speed/duplex */
2876 if (ecmd->autoneg == AUTONEG_ENABLE) {
2877 ecmd->advertising |= ADVERTISED_Autoneg;
2878 tmp = mii_nway_result(
2879 np->advertising & mdio_read(dev, MII_LPA));
2880 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2881 ethtool_cmd_speed_set(ecmd, SPEED_100);
2882 else
2883 ethtool_cmd_speed_set(ecmd, SPEED_10);
2884 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2885 ecmd->duplex = DUPLEX_FULL;
2886 else
2887 ecmd->duplex = DUPLEX_HALF;
2890 /* ignore maxtxpkt, maxrxpkt for now */
2892 return 0;
2895 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2897 struct netdev_private *np = netdev_priv(dev);
2899 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2900 return -EINVAL;
2901 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2902 return -EINVAL;
2903 if (ecmd->autoneg == AUTONEG_ENABLE) {
2904 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2905 ADVERTISED_10baseT_Full |
2906 ADVERTISED_100baseT_Half |
2907 ADVERTISED_100baseT_Full)) == 0) {
2908 return -EINVAL;
2910 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2911 u32 speed = ethtool_cmd_speed(ecmd);
2912 if (speed != SPEED_10 && speed != SPEED_100)
2913 return -EINVAL;
2914 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2915 return -EINVAL;
2916 } else {
2917 return -EINVAL;
2921 * If we're ignoring the PHY then autoneg and the internal
2922 * transciever are really not going to work so don't let the
2923 * user select them.
2925 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2926 ecmd->port == PORT_TP))
2927 return -EINVAL;
2930 * maxtxpkt, maxrxpkt: ignored for now.
2932 * transceiver:
2933 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2934 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2935 * selects based on ecmd->port.
2937 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2938 * phys that are connected to the mii bus. It's used to apply fibre
2939 * specific updates.
2942 /* WHEW! now lets bang some bits */
2944 /* save the parms */
2945 dev->if_port = ecmd->port;
2946 np->autoneg = ecmd->autoneg;
2947 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2948 if (np->autoneg == AUTONEG_ENABLE) {
2949 /* advertise only what has been requested */
2950 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2951 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2952 np->advertising |= ADVERTISE_10HALF;
2953 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2954 np->advertising |= ADVERTISE_10FULL;
2955 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2956 np->advertising |= ADVERTISE_100HALF;
2957 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2958 np->advertising |= ADVERTISE_100FULL;
2959 } else {
2960 np->speed = ethtool_cmd_speed(ecmd);
2961 np->duplex = ecmd->duplex;
2962 /* user overriding the initial full duplex parm? */
2963 if (np->duplex == DUPLEX_HALF)
2964 np->full_duplex = 0;
2967 /* get the right phy enabled */
2968 if (ecmd->port == PORT_TP)
2969 switch_port_internal(dev);
2970 else
2971 switch_port_external(dev);
2973 /* set parms and see how this affected our link status */
2974 init_phy_fixup(dev);
2975 check_link(dev);
2976 return 0;
2979 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2981 int i;
2982 int j;
2983 u32 rfcr;
2984 u32 *rbuf = (u32 *)buf;
2985 void __iomem * ioaddr = ns_ioaddr(dev);
2987 /* read non-mii page 0 of registers */
2988 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2989 rbuf[i] = readl(ioaddr + i*4);
2992 /* read current mii registers */
2993 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2994 rbuf[i] = mdio_read(dev, i & 0x1f);
2996 /* read only the 'magic' registers from page 1 */
2997 writew(1, ioaddr + PGSEL);
2998 rbuf[i++] = readw(ioaddr + PMDCSR);
2999 rbuf[i++] = readw(ioaddr + TSTDAT);
3000 rbuf[i++] = readw(ioaddr + DSPCFG);
3001 rbuf[i++] = readw(ioaddr + SDCFG);
3002 writew(0, ioaddr + PGSEL);
3004 /* read RFCR indexed registers */
3005 rfcr = readl(ioaddr + RxFilterAddr);
3006 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3007 writel(j*2, ioaddr + RxFilterAddr);
3008 rbuf[i++] = readw(ioaddr + RxFilterData);
3010 writel(rfcr, ioaddr + RxFilterAddr);
3012 /* the interrupt status is clear-on-read - see if we missed any */
3013 if (rbuf[4] & rbuf[5]) {
3014 printk(KERN_WARNING
3015 "%s: shoot, we dropped an interrupt (%#08x)\n",
3016 dev->name, rbuf[4] & rbuf[5]);
3019 return 0;
3022 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3023 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3024 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3025 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3026 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3027 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3028 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3029 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3031 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3033 int i;
3034 u16 *ebuf = (u16 *)buf;
3035 void __iomem * ioaddr = ns_ioaddr(dev);
3036 struct netdev_private *np = netdev_priv(dev);
3038 /* eeprom_read reads 16 bits, and indexes by 16 bits */
3039 for (i = 0; i < np->eeprom_size/2; i++) {
3040 ebuf[i] = eeprom_read(ioaddr, i);
3041 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3042 * reads it back "sanely". So we swap it back here in order to
3043 * present it to userland as it is stored. */
3044 ebuf[i] = SWAP_BITS(ebuf[i]);
3046 return 0;
3049 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3051 struct mii_ioctl_data *data = if_mii(rq);
3052 struct netdev_private *np = netdev_priv(dev);
3054 switch(cmd) {
3055 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
3056 data->phy_id = np->phy_addr_external;
3057 /* Fall Through */
3059 case SIOCGMIIREG: /* Read MII PHY register. */
3060 /* The phy_id is not enough to uniquely identify
3061 * the intended target. Therefore the command is sent to
3062 * the given mii on the current port.
3064 if (dev->if_port == PORT_TP) {
3065 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3066 data->val_out = mdio_read(dev,
3067 data->reg_num & 0x1f);
3068 else
3069 data->val_out = 0;
3070 } else {
3071 move_int_phy(dev, data->phy_id & 0x1f);
3072 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3073 data->reg_num & 0x1f);
3075 return 0;
3077 case SIOCSMIIREG: /* Write MII PHY register. */
3078 if (dev->if_port == PORT_TP) {
3079 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3080 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3081 np->advertising = data->val_in;
3082 mdio_write(dev, data->reg_num & 0x1f,
3083 data->val_in);
3085 } else {
3086 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3087 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3088 np->advertising = data->val_in;
3090 move_int_phy(dev, data->phy_id & 0x1f);
3091 miiport_write(dev, data->phy_id & 0x1f,
3092 data->reg_num & 0x1f,
3093 data->val_in);
3095 return 0;
3096 default:
3097 return -EOPNOTSUPP;
3101 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3103 void __iomem * ioaddr = ns_ioaddr(dev);
3104 struct netdev_private *np = netdev_priv(dev);
3106 if (netif_msg_wol(np))
3107 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3108 dev->name);
3110 /* For WOL we must restart the rx process in silent mode.
3111 * Write NULL to the RxRingPtr. Only possible if
3112 * rx process is stopped
3114 writel(0, ioaddr + RxRingPtr);
3116 /* read WoL status to clear */
3117 readl(ioaddr + WOLCmd);
3119 /* PME on, clear status */
3120 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3122 /* and restart the rx process */
3123 writel(RxOn, ioaddr + ChipCmd);
3125 if (enable_intr) {
3126 /* enable the WOL interrupt.
3127 * Could be used to send a netlink message.
3129 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3130 natsemi_irq_enable(dev);
3134 static int netdev_close(struct net_device *dev)
3136 void __iomem * ioaddr = ns_ioaddr(dev);
3137 struct netdev_private *np = netdev_priv(dev);
3139 if (netif_msg_ifdown(np))
3140 printk(KERN_DEBUG
3141 "%s: Shutting down ethercard, status was %#04x.\n",
3142 dev->name, (int)readl(ioaddr + ChipCmd));
3143 if (netif_msg_pktdata(np))
3144 printk(KERN_DEBUG
3145 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3146 dev->name, np->cur_tx, np->dirty_tx,
3147 np->cur_rx, np->dirty_rx);
3149 napi_disable(&np->napi);
3152 * FIXME: what if someone tries to close a device
3153 * that is suspended?
3154 * Should we reenable the nic to switch to
3155 * the final WOL settings?
3158 del_timer_sync(&np->timer);
3159 disable_irq(dev->irq);
3160 spin_lock_irq(&np->lock);
3161 natsemi_irq_disable(dev);
3162 np->hands_off = 1;
3163 spin_unlock_irq(&np->lock);
3164 enable_irq(dev->irq);
3166 free_irq(dev->irq, dev);
3168 /* Interrupt disabled, interrupt handler released,
3169 * queue stopped, timer deleted, rtnl_lock held
3170 * All async codepaths that access the driver are disabled.
3172 spin_lock_irq(&np->lock);
3173 np->hands_off = 0;
3174 readl(ioaddr + IntrMask);
3175 readw(ioaddr + MIntrStatus);
3177 /* Freeze Stats */
3178 writel(StatsFreeze, ioaddr + StatsCtrl);
3180 /* Stop the chip's Tx and Rx processes. */
3181 natsemi_stop_rxtx(dev);
3183 __get_stats(dev);
3184 spin_unlock_irq(&np->lock);
3186 /* clear the carrier last - an interrupt could reenable it otherwise */
3187 netif_carrier_off(dev);
3188 netif_stop_queue(dev);
3190 dump_ring(dev);
3191 drain_ring(dev);
3192 free_ring(dev);
3195 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3196 if (wol) {
3197 /* restart the NIC in WOL mode.
3198 * The nic must be stopped for this.
3200 enable_wol_mode(dev, 0);
3201 } else {
3202 /* Restore PME enable bit unmolested */
3203 writel(np->SavedClkRun, ioaddr + ClkRun);
3206 return 0;
3210 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3212 struct net_device *dev = pci_get_drvdata(pdev);
3213 void __iomem * ioaddr = ns_ioaddr(dev);
3215 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3216 unregister_netdev (dev);
3217 pci_release_regions (pdev);
3218 iounmap(ioaddr);
3219 free_netdev (dev);
3220 pci_set_drvdata(pdev, NULL);
3223 #ifdef CONFIG_PM
3226 * The ns83815 chip doesn't have explicit RxStop bits.
3227 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3228 * of the nic, thus this function must be very careful:
3230 * suspend/resume synchronization:
3231 * entry points:
3232 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3233 * start_tx, ns_tx_timeout
3235 * No function accesses the hardware without checking np->hands_off.
3236 * the check occurs under spin_lock_irq(&np->lock);
3237 * exceptions:
3238 * * netdev_ioctl: noncritical access.
3239 * * netdev_open: cannot happen due to the device_detach
3240 * * netdev_close: doesn't hurt.
3241 * * netdev_timer: timer stopped by natsemi_suspend.
3242 * * intr_handler: doesn't acquire the spinlock. suspend calls
3243 * disable_irq() to enforce synchronization.
3244 * * natsemi_poll: checks before reenabling interrupts. suspend
3245 * sets hands_off, disables interrupts and then waits with
3246 * napi_disable().
3248 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3251 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3253 struct net_device *dev = pci_get_drvdata (pdev);
3254 struct netdev_private *np = netdev_priv(dev);
3255 void __iomem * ioaddr = ns_ioaddr(dev);
3257 rtnl_lock();
3258 if (netif_running (dev)) {
3259 del_timer_sync(&np->timer);
3261 disable_irq(dev->irq);
3262 spin_lock_irq(&np->lock);
3264 natsemi_irq_disable(dev);
3265 np->hands_off = 1;
3266 natsemi_stop_rxtx(dev);
3267 netif_stop_queue(dev);
3269 spin_unlock_irq(&np->lock);
3270 enable_irq(dev->irq);
3272 napi_disable(&np->napi);
3274 /* Update the error counts. */
3275 __get_stats(dev);
3277 /* pci_power_off(pdev, -1); */
3278 drain_ring(dev);
3280 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3281 /* Restore PME enable bit */
3282 if (wol) {
3283 /* restart the NIC in WOL mode.
3284 * The nic must be stopped for this.
3285 * FIXME: use the WOL interrupt
3287 enable_wol_mode(dev, 0);
3288 } else {
3289 /* Restore PME enable bit unmolested */
3290 writel(np->SavedClkRun, ioaddr + ClkRun);
3294 netif_device_detach(dev);
3295 rtnl_unlock();
3296 return 0;
3300 static int natsemi_resume (struct pci_dev *pdev)
3302 struct net_device *dev = pci_get_drvdata (pdev);
3303 struct netdev_private *np = netdev_priv(dev);
3304 int ret = 0;
3306 rtnl_lock();
3307 if (netif_device_present(dev))
3308 goto out;
3309 if (netif_running(dev)) {
3310 BUG_ON(!np->hands_off);
3311 ret = pci_enable_device(pdev);
3312 if (ret < 0) {
3313 dev_err(&pdev->dev,
3314 "pci_enable_device() failed: %d\n", ret);
3315 goto out;
3317 /* pci_power_on(pdev); */
3319 napi_enable(&np->napi);
3321 natsemi_reset(dev);
3322 init_ring(dev);
3323 disable_irq(dev->irq);
3324 spin_lock_irq(&np->lock);
3325 np->hands_off = 0;
3326 init_registers(dev);
3327 netif_device_attach(dev);
3328 spin_unlock_irq(&np->lock);
3329 enable_irq(dev->irq);
3331 mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3333 netif_device_attach(dev);
3334 out:
3335 rtnl_unlock();
3336 return ret;
3339 #endif /* CONFIG_PM */
3341 static struct pci_driver natsemi_driver = {
3342 .name = DRV_NAME,
3343 .id_table = natsemi_pci_tbl,
3344 .probe = natsemi_probe1,
3345 .remove = __devexit_p(natsemi_remove1),
3346 #ifdef CONFIG_PM
3347 .suspend = natsemi_suspend,
3348 .resume = natsemi_resume,
3349 #endif
3352 static int __init natsemi_init_mod (void)
3354 /* when a module, this is printed whether or not devices are found in probe */
3355 #ifdef MODULE
3356 printk(version);
3357 #endif
3359 return pci_register_driver(&natsemi_driver);
3362 static void __exit natsemi_exit_mod (void)
3364 pci_unregister_driver (&natsemi_driver);
3367 module_init(natsemi_init_mod);
3368 module_exit(natsemi_exit_mod);