Revert "gma500: Fix dependencies"
[zen-stable.git] / drivers / net / qlge / qlge_main.c
blob930ae45457bbc11df0316f07ab803a347fc5b75d
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
44 #include "qlge.h"
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = -1; /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
81 "Default is OFF - Do Not allocate memory. ");
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
89 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 /* required last entry */
93 {0,}
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98 static int ql_wol(struct ql_adapter *qdev);
99 static void qlge_set_multicast_list(struct net_device *ndev);
101 /* This hardware semaphore causes exclusive access to
102 * resources shared between the NIC driver, MPI firmware,
103 * FCOE firmware and the FC driver.
105 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107 u32 sem_bits = 0;
109 switch (sem_mask) {
110 case SEM_XGMAC0_MASK:
111 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
112 break;
113 case SEM_XGMAC1_MASK:
114 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
115 break;
116 case SEM_ICB_MASK:
117 sem_bits = SEM_SET << SEM_ICB_SHIFT;
118 break;
119 case SEM_MAC_ADDR_MASK:
120 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
121 break;
122 case SEM_FLASH_MASK:
123 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
124 break;
125 case SEM_PROBE_MASK:
126 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
127 break;
128 case SEM_RT_IDX_MASK:
129 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
130 break;
131 case SEM_PROC_REG_MASK:
132 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
133 break;
134 default:
135 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
136 return -EINVAL;
139 ql_write32(qdev, SEM, sem_bits | sem_mask);
140 return !(ql_read32(qdev, SEM) & sem_bits);
143 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145 unsigned int wait_count = 30;
146 do {
147 if (!ql_sem_trylock(qdev, sem_mask))
148 return 0;
149 udelay(100);
150 } while (--wait_count);
151 return -ETIMEDOUT;
154 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156 ql_write32(qdev, SEM, sem_mask);
157 ql_read32(qdev, SEM); /* flush */
160 /* This function waits for a specific bit to come ready
161 * in a given register. It is used mostly by the initialize
162 * process, but is also used in kernel thread API such as
163 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167 u32 temp;
168 int count = UDELAY_COUNT;
170 while (count) {
171 temp = ql_read32(qdev, reg);
173 /* check for errors */
174 if (temp & err_bit) {
175 netif_alert(qdev, probe, qdev->ndev,
176 "register 0x%.08x access error, value = 0x%.08x!.\n",
177 reg, temp);
178 return -EIO;
179 } else if (temp & bit)
180 return 0;
181 udelay(UDELAY_DELAY);
182 count--;
184 netif_alert(qdev, probe, qdev->ndev,
185 "Timed out waiting for reg %x to come ready.\n", reg);
186 return -ETIMEDOUT;
189 /* The CFG register is used to download TX and RX control blocks
190 * to the chip. This function waits for an operation to complete.
192 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194 int count = UDELAY_COUNT;
195 u32 temp;
197 while (count) {
198 temp = ql_read32(qdev, CFG);
199 if (temp & CFG_LE)
200 return -EIO;
201 if (!(temp & bit))
202 return 0;
203 udelay(UDELAY_DELAY);
204 count--;
206 return -ETIMEDOUT;
210 /* Used to issue init control blocks to hw. Maps control block,
211 * sets address, triggers download, waits for completion.
213 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
214 u16 q_id)
216 u64 map;
217 int status = 0;
218 int direction;
219 u32 mask;
220 u32 value;
222 direction =
223 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
224 PCI_DMA_FROMDEVICE;
226 map = pci_map_single(qdev->pdev, ptr, size, direction);
227 if (pci_dma_mapping_error(qdev->pdev, map)) {
228 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
229 return -ENOMEM;
232 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
233 if (status)
234 return status;
236 status = ql_wait_cfg(qdev, bit);
237 if (status) {
238 netif_err(qdev, ifup, qdev->ndev,
239 "Timed out waiting for CFG to come ready.\n");
240 goto exit;
243 ql_write32(qdev, ICB_L, (u32) map);
244 ql_write32(qdev, ICB_H, (u32) (map >> 32));
246 mask = CFG_Q_MASK | (bit << 16);
247 value = bit | (q_id << CFG_Q_SHIFT);
248 ql_write32(qdev, CFG, (mask | value));
251 * Wait for the bit to clear after signaling hw.
253 status = ql_wait_cfg(qdev, bit);
254 exit:
255 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
256 pci_unmap_single(qdev->pdev, map, size, direction);
257 return status;
260 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
261 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
262 u32 *value)
264 u32 offset = 0;
265 int status;
267 switch (type) {
268 case MAC_ADDR_TYPE_MULTI_MAC:
269 case MAC_ADDR_TYPE_CAM_MAC:
271 status =
272 ql_wait_reg_rdy(qdev,
273 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
274 if (status)
275 goto exit;
276 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277 (index << MAC_ADDR_IDX_SHIFT) | /* index */
278 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279 status =
280 ql_wait_reg_rdy(qdev,
281 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
282 if (status)
283 goto exit;
284 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285 status =
286 ql_wait_reg_rdy(qdev,
287 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
288 if (status)
289 goto exit;
290 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
291 (index << MAC_ADDR_IDX_SHIFT) | /* index */
292 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
293 status =
294 ql_wait_reg_rdy(qdev,
295 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
296 if (status)
297 goto exit;
298 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
299 if (type == MAC_ADDR_TYPE_CAM_MAC) {
300 status =
301 ql_wait_reg_rdy(qdev,
302 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
303 if (status)
304 goto exit;
305 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
306 (index << MAC_ADDR_IDX_SHIFT) | /* index */
307 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
308 status =
309 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
310 MAC_ADDR_MR, 0);
311 if (status)
312 goto exit;
313 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315 break;
317 case MAC_ADDR_TYPE_VLAN:
318 case MAC_ADDR_TYPE_MULTI_FLTR:
319 default:
320 netif_crit(qdev, ifup, qdev->ndev,
321 "Address type %d not yet supported.\n", type);
322 status = -EPERM;
324 exit:
325 return status;
328 /* Set up a MAC, multicast or VLAN address for the
329 * inbound frame matching.
331 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
332 u16 index)
334 u32 offset = 0;
335 int status = 0;
337 switch (type) {
338 case MAC_ADDR_TYPE_MULTI_MAC:
340 u32 upper = (addr[0] << 8) | addr[1];
341 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
342 (addr[4] << 8) | (addr[5]);
344 status =
345 ql_wait_reg_rdy(qdev,
346 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
347 if (status)
348 goto exit;
349 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
350 (index << MAC_ADDR_IDX_SHIFT) |
351 type | MAC_ADDR_E);
352 ql_write32(qdev, MAC_ADDR_DATA, lower);
353 status =
354 ql_wait_reg_rdy(qdev,
355 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
356 if (status)
357 goto exit;
358 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
359 (index << MAC_ADDR_IDX_SHIFT) |
360 type | MAC_ADDR_E);
362 ql_write32(qdev, MAC_ADDR_DATA, upper);
363 status =
364 ql_wait_reg_rdy(qdev,
365 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
366 if (status)
367 goto exit;
368 break;
370 case MAC_ADDR_TYPE_CAM_MAC:
372 u32 cam_output;
373 u32 upper = (addr[0] << 8) | addr[1];
374 u32 lower =
375 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
376 (addr[5]);
378 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
379 "Adding %s address %pM at index %d in the CAM.\n",
380 type == MAC_ADDR_TYPE_MULTI_MAC ?
381 "MULTICAST" : "UNICAST",
382 addr, index);
384 status =
385 ql_wait_reg_rdy(qdev,
386 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
387 if (status)
388 goto exit;
389 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
390 (index << MAC_ADDR_IDX_SHIFT) | /* index */
391 type); /* type */
392 ql_write32(qdev, MAC_ADDR_DATA, lower);
393 status =
394 ql_wait_reg_rdy(qdev,
395 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
396 if (status)
397 goto exit;
398 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
399 (index << MAC_ADDR_IDX_SHIFT) | /* index */
400 type); /* type */
401 ql_write32(qdev, MAC_ADDR_DATA, upper);
402 status =
403 ql_wait_reg_rdy(qdev,
404 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
405 if (status)
406 goto exit;
407 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
408 (index << MAC_ADDR_IDX_SHIFT) | /* index */
409 type); /* type */
410 /* This field should also include the queue id
411 and possibly the function id. Right now we hardcode
412 the route field to NIC core.
414 cam_output = (CAM_OUT_ROUTE_NIC |
415 (qdev->
416 func << CAM_OUT_FUNC_SHIFT) |
417 (0 << CAM_OUT_CQ_ID_SHIFT));
418 if (qdev->vlgrp)
419 cam_output |= CAM_OUT_RV;
420 /* route to NIC core */
421 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
422 break;
424 case MAC_ADDR_TYPE_VLAN:
426 u32 enable_bit = *((u32 *) &addr[0]);
427 /* For VLAN, the addr actually holds a bit that
428 * either enables or disables the vlan id we are
429 * addressing. It's either MAC_ADDR_E on or off.
430 * That's bit-27 we're talking about.
432 netif_info(qdev, ifup, qdev->ndev,
433 "%s VLAN ID %d %s the CAM.\n",
434 enable_bit ? "Adding" : "Removing",
435 index,
436 enable_bit ? "to" : "from");
438 status =
439 ql_wait_reg_rdy(qdev,
440 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
441 if (status)
442 goto exit;
443 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
444 (index << MAC_ADDR_IDX_SHIFT) | /* index */
445 type | /* type */
446 enable_bit); /* enable/disable */
447 break;
449 case MAC_ADDR_TYPE_MULTI_FLTR:
450 default:
451 netif_crit(qdev, ifup, qdev->ndev,
452 "Address type %d not yet supported.\n", type);
453 status = -EPERM;
455 exit:
456 return status;
459 /* Set or clear MAC address in hardware. We sometimes
460 * have to clear it to prevent wrong frame routing
461 * especially in a bonding environment.
463 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
465 int status;
466 char zero_mac_addr[ETH_ALEN];
467 char *addr;
469 if (set) {
470 addr = &qdev->current_mac_addr[0];
471 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
472 "Set Mac addr %pM\n", addr);
473 } else {
474 memset(zero_mac_addr, 0, ETH_ALEN);
475 addr = &zero_mac_addr[0];
476 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
477 "Clearing MAC address\n");
479 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
480 if (status)
481 return status;
482 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
483 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
484 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
485 if (status)
486 netif_err(qdev, ifup, qdev->ndev,
487 "Failed to init mac address.\n");
488 return status;
491 void ql_link_on(struct ql_adapter *qdev)
493 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
494 netif_carrier_on(qdev->ndev);
495 ql_set_mac_addr(qdev, 1);
498 void ql_link_off(struct ql_adapter *qdev)
500 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
501 netif_carrier_off(qdev->ndev);
502 ql_set_mac_addr(qdev, 0);
505 /* Get a specific frame routing value from the CAM.
506 * Used for debug and reg dump.
508 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
510 int status = 0;
512 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
513 if (status)
514 goto exit;
516 ql_write32(qdev, RT_IDX,
517 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
518 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
519 if (status)
520 goto exit;
521 *value = ql_read32(qdev, RT_DATA);
522 exit:
523 return status;
526 /* The NIC function for this chip has 16 routing indexes. Each one can be used
527 * to route different frame types to various inbound queues. We send broadcast/
528 * multicast/error frames to the default queue for slow handling,
529 * and CAM hit/RSS frames to the fast handling queues.
531 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
532 int enable)
534 int status = -EINVAL; /* Return error if no mask match. */
535 u32 value = 0;
537 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
538 "%s %s mask %s the routing reg.\n",
539 enable ? "Adding" : "Removing",
540 index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
541 index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
542 index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
543 index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
544 index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
545 index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
546 index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
547 index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
548 index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
549 index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
550 index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
551 index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
552 index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
553 index == RT_IDX_UNUSED013 ? "UNUSED13" :
554 index == RT_IDX_UNUSED014 ? "UNUSED14" :
555 index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
556 "(Bad index != RT_IDX)",
557 enable ? "to" : "from");
559 switch (mask) {
560 case RT_IDX_CAM_HIT:
562 value = RT_IDX_DST_CAM_Q | /* dest */
563 RT_IDX_TYPE_NICQ | /* type */
564 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
565 break;
567 case RT_IDX_VALID: /* Promiscuous Mode frames. */
569 value = RT_IDX_DST_DFLT_Q | /* dest */
570 RT_IDX_TYPE_NICQ | /* type */
571 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
572 break;
574 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
576 value = RT_IDX_DST_DFLT_Q | /* dest */
577 RT_IDX_TYPE_NICQ | /* type */
578 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
579 break;
581 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
583 value = RT_IDX_DST_DFLT_Q | /* dest */
584 RT_IDX_TYPE_NICQ | /* type */
585 (RT_IDX_IP_CSUM_ERR_SLOT <<
586 RT_IDX_IDX_SHIFT); /* index */
587 break;
589 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
591 value = RT_IDX_DST_DFLT_Q | /* dest */
592 RT_IDX_TYPE_NICQ | /* type */
593 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
594 RT_IDX_IDX_SHIFT); /* index */
595 break;
597 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
599 value = RT_IDX_DST_DFLT_Q | /* dest */
600 RT_IDX_TYPE_NICQ | /* type */
601 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
602 break;
604 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
606 value = RT_IDX_DST_DFLT_Q | /* dest */
607 RT_IDX_TYPE_NICQ | /* type */
608 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
609 break;
611 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
613 value = RT_IDX_DST_DFLT_Q | /* dest */
614 RT_IDX_TYPE_NICQ | /* type */
615 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
616 break;
618 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
620 value = RT_IDX_DST_RSS | /* dest */
621 RT_IDX_TYPE_NICQ | /* type */
622 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
623 break;
625 case 0: /* Clear the E-bit on an entry. */
627 value = RT_IDX_DST_DFLT_Q | /* dest */
628 RT_IDX_TYPE_NICQ | /* type */
629 (index << RT_IDX_IDX_SHIFT);/* index */
630 break;
632 default:
633 netif_err(qdev, ifup, qdev->ndev,
634 "Mask type %d not yet supported.\n", mask);
635 status = -EPERM;
636 goto exit;
639 if (value) {
640 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
641 if (status)
642 goto exit;
643 value |= (enable ? RT_IDX_E : 0);
644 ql_write32(qdev, RT_IDX, value);
645 ql_write32(qdev, RT_DATA, enable ? mask : 0);
647 exit:
648 return status;
651 static void ql_enable_interrupts(struct ql_adapter *qdev)
653 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
656 static void ql_disable_interrupts(struct ql_adapter *qdev)
658 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
661 /* If we're running with multiple MSI-X vectors then we enable on the fly.
662 * Otherwise, we may have multiple outstanding workers and don't want to
663 * enable until the last one finishes. In this case, the irq_cnt gets
664 * incremented every time we queue a worker and decremented every time
665 * a worker finishes. Once it hits zero we enable the interrupt.
667 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
669 u32 var = 0;
670 unsigned long hw_flags = 0;
671 struct intr_context *ctx = qdev->intr_context + intr;
673 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
674 /* Always enable if we're MSIX multi interrupts and
675 * it's not the default (zeroeth) interrupt.
677 ql_write32(qdev, INTR_EN,
678 ctx->intr_en_mask);
679 var = ql_read32(qdev, STS);
680 return var;
683 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
684 if (atomic_dec_and_test(&ctx->irq_cnt)) {
685 ql_write32(qdev, INTR_EN,
686 ctx->intr_en_mask);
687 var = ql_read32(qdev, STS);
689 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
690 return var;
693 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
695 u32 var = 0;
696 struct intr_context *ctx;
698 /* HW disables for us if we're MSIX multi interrupts and
699 * it's not the default (zeroeth) interrupt.
701 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
702 return 0;
704 ctx = qdev->intr_context + intr;
705 spin_lock(&qdev->hw_lock);
706 if (!atomic_read(&ctx->irq_cnt)) {
707 ql_write32(qdev, INTR_EN,
708 ctx->intr_dis_mask);
709 var = ql_read32(qdev, STS);
711 atomic_inc(&ctx->irq_cnt);
712 spin_unlock(&qdev->hw_lock);
713 return var;
716 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
718 int i;
719 for (i = 0; i < qdev->intr_count; i++) {
720 /* The enable call does a atomic_dec_and_test
721 * and enables only if the result is zero.
722 * So we precharge it here.
724 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
725 i == 0))
726 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
727 ql_enable_completion_interrupt(qdev, i);
732 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
734 int status, i;
735 u16 csum = 0;
736 __le16 *flash = (__le16 *)&qdev->flash;
738 status = strncmp((char *)&qdev->flash, str, 4);
739 if (status) {
740 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
741 return status;
744 for (i = 0; i < size; i++)
745 csum += le16_to_cpu(*flash++);
747 if (csum)
748 netif_err(qdev, ifup, qdev->ndev,
749 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
751 return csum;
754 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
756 int status = 0;
757 /* wait for reg to come ready */
758 status = ql_wait_reg_rdy(qdev,
759 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
760 if (status)
761 goto exit;
762 /* set up for reg read */
763 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
764 /* wait for reg to come ready */
765 status = ql_wait_reg_rdy(qdev,
766 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
767 if (status)
768 goto exit;
769 /* This data is stored on flash as an array of
770 * __le32. Since ql_read32() returns cpu endian
771 * we need to swap it back.
773 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
774 exit:
775 return status;
778 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
780 u32 i, size;
781 int status;
782 __le32 *p = (__le32 *)&qdev->flash;
783 u32 offset;
784 u8 mac_addr[6];
786 /* Get flash offset for function and adjust
787 * for dword access.
789 if (!qdev->port)
790 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
791 else
792 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
794 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
795 return -ETIMEDOUT;
797 size = sizeof(struct flash_params_8000) / sizeof(u32);
798 for (i = 0; i < size; i++, p++) {
799 status = ql_read_flash_word(qdev, i+offset, p);
800 if (status) {
801 netif_err(qdev, ifup, qdev->ndev,
802 "Error reading flash.\n");
803 goto exit;
807 status = ql_validate_flash(qdev,
808 sizeof(struct flash_params_8000) / sizeof(u16),
809 "8000");
810 if (status) {
811 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
812 status = -EINVAL;
813 goto exit;
816 /* Extract either manufacturer or BOFM modified
817 * MAC address.
819 if (qdev->flash.flash_params_8000.data_type1 == 2)
820 memcpy(mac_addr,
821 qdev->flash.flash_params_8000.mac_addr1,
822 qdev->ndev->addr_len);
823 else
824 memcpy(mac_addr,
825 qdev->flash.flash_params_8000.mac_addr,
826 qdev->ndev->addr_len);
828 if (!is_valid_ether_addr(mac_addr)) {
829 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
830 status = -EINVAL;
831 goto exit;
834 memcpy(qdev->ndev->dev_addr,
835 mac_addr,
836 qdev->ndev->addr_len);
838 exit:
839 ql_sem_unlock(qdev, SEM_FLASH_MASK);
840 return status;
843 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
845 int i;
846 int status;
847 __le32 *p = (__le32 *)&qdev->flash;
848 u32 offset = 0;
849 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
851 /* Second function's parameters follow the first
852 * function's.
854 if (qdev->port)
855 offset = size;
857 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
858 return -ETIMEDOUT;
860 for (i = 0; i < size; i++, p++) {
861 status = ql_read_flash_word(qdev, i+offset, p);
862 if (status) {
863 netif_err(qdev, ifup, qdev->ndev,
864 "Error reading flash.\n");
865 goto exit;
870 status = ql_validate_flash(qdev,
871 sizeof(struct flash_params_8012) / sizeof(u16),
872 "8012");
873 if (status) {
874 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
875 status = -EINVAL;
876 goto exit;
879 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
880 status = -EINVAL;
881 goto exit;
884 memcpy(qdev->ndev->dev_addr,
885 qdev->flash.flash_params_8012.mac_addr,
886 qdev->ndev->addr_len);
888 exit:
889 ql_sem_unlock(qdev, SEM_FLASH_MASK);
890 return status;
893 /* xgmac register are located behind the xgmac_addr and xgmac_data
894 * register pair. Each read/write requires us to wait for the ready
895 * bit before reading/writing the data.
897 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
899 int status;
900 /* wait for reg to come ready */
901 status = ql_wait_reg_rdy(qdev,
902 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
903 if (status)
904 return status;
905 /* write the data to the data reg */
906 ql_write32(qdev, XGMAC_DATA, data);
907 /* trigger the write */
908 ql_write32(qdev, XGMAC_ADDR, reg);
909 return status;
912 /* xgmac register are located behind the xgmac_addr and xgmac_data
913 * register pair. Each read/write requires us to wait for the ready
914 * bit before reading/writing the data.
916 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
918 int status = 0;
919 /* wait for reg to come ready */
920 status = ql_wait_reg_rdy(qdev,
921 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
922 if (status)
923 goto exit;
924 /* set up for reg read */
925 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
926 /* wait for reg to come ready */
927 status = ql_wait_reg_rdy(qdev,
928 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
929 if (status)
930 goto exit;
931 /* get the data */
932 *data = ql_read32(qdev, XGMAC_DATA);
933 exit:
934 return status;
937 /* This is used for reading the 64-bit statistics regs. */
938 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
940 int status = 0;
941 u32 hi = 0;
942 u32 lo = 0;
944 status = ql_read_xgmac_reg(qdev, reg, &lo);
945 if (status)
946 goto exit;
948 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
949 if (status)
950 goto exit;
952 *data = (u64) lo | ((u64) hi << 32);
954 exit:
955 return status;
958 static int ql_8000_port_initialize(struct ql_adapter *qdev)
960 int status;
962 * Get MPI firmware version for driver banner
963 * and ethool info.
965 status = ql_mb_about_fw(qdev);
966 if (status)
967 goto exit;
968 status = ql_mb_get_fw_state(qdev);
969 if (status)
970 goto exit;
971 /* Wake up a worker to get/set the TX/RX frame sizes. */
972 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
973 exit:
974 return status;
977 /* Take the MAC Core out of reset.
978 * Enable statistics counting.
979 * Take the transmitter/receiver out of reset.
980 * This functionality may be done in the MPI firmware at a
981 * later date.
983 static int ql_8012_port_initialize(struct ql_adapter *qdev)
985 int status = 0;
986 u32 data;
988 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
989 /* Another function has the semaphore, so
990 * wait for the port init bit to come ready.
992 netif_info(qdev, link, qdev->ndev,
993 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
994 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
995 if (status) {
996 netif_crit(qdev, link, qdev->ndev,
997 "Port initialize timed out.\n");
999 return status;
1002 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
1003 /* Set the core reset. */
1004 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
1005 if (status)
1006 goto end;
1007 data |= GLOBAL_CFG_RESET;
1008 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
1009 if (status)
1010 goto end;
1012 /* Clear the core reset and turn on jumbo for receiver. */
1013 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
1014 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
1015 data |= GLOBAL_CFG_TX_STAT_EN;
1016 data |= GLOBAL_CFG_RX_STAT_EN;
1017 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
1018 if (status)
1019 goto end;
1021 /* Enable transmitter, and clear it's reset. */
1022 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
1023 if (status)
1024 goto end;
1025 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
1026 data |= TX_CFG_EN; /* Enable the transmitter. */
1027 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
1028 if (status)
1029 goto end;
1031 /* Enable receiver and clear it's reset. */
1032 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1033 if (status)
1034 goto end;
1035 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1036 data |= RX_CFG_EN; /* Enable the receiver. */
1037 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1038 if (status)
1039 goto end;
1041 /* Turn on jumbo. */
1042 status =
1043 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1044 if (status)
1045 goto end;
1046 status =
1047 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1048 if (status)
1049 goto end;
1051 /* Signal to the world that the port is enabled. */
1052 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1053 end:
1054 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1055 return status;
1058 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1060 return PAGE_SIZE << qdev->lbq_buf_order;
1063 /* Get the next large buffer. */
1064 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1066 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1067 rx_ring->lbq_curr_idx++;
1068 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1069 rx_ring->lbq_curr_idx = 0;
1070 rx_ring->lbq_free_cnt++;
1071 return lbq_desc;
1074 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1075 struct rx_ring *rx_ring)
1077 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1079 pci_dma_sync_single_for_cpu(qdev->pdev,
1080 dma_unmap_addr(lbq_desc, mapaddr),
1081 rx_ring->lbq_buf_size,
1082 PCI_DMA_FROMDEVICE);
1084 /* If it's the last chunk of our master page then
1085 * we unmap it.
1087 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1088 == ql_lbq_block_size(qdev))
1089 pci_unmap_page(qdev->pdev,
1090 lbq_desc->p.pg_chunk.map,
1091 ql_lbq_block_size(qdev),
1092 PCI_DMA_FROMDEVICE);
1093 return lbq_desc;
1096 /* Get the next small buffer. */
1097 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1099 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1100 rx_ring->sbq_curr_idx++;
1101 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1102 rx_ring->sbq_curr_idx = 0;
1103 rx_ring->sbq_free_cnt++;
1104 return sbq_desc;
1107 /* Update an rx ring index. */
1108 static void ql_update_cq(struct rx_ring *rx_ring)
1110 rx_ring->cnsmr_idx++;
1111 rx_ring->curr_entry++;
1112 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1113 rx_ring->cnsmr_idx = 0;
1114 rx_ring->curr_entry = rx_ring->cq_base;
1118 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1120 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1123 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1124 struct bq_desc *lbq_desc)
1126 if (!rx_ring->pg_chunk.page) {
1127 u64 map;
1128 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1129 GFP_ATOMIC,
1130 qdev->lbq_buf_order);
1131 if (unlikely(!rx_ring->pg_chunk.page)) {
1132 netif_err(qdev, drv, qdev->ndev,
1133 "page allocation failed.\n");
1134 return -ENOMEM;
1136 rx_ring->pg_chunk.offset = 0;
1137 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1138 0, ql_lbq_block_size(qdev),
1139 PCI_DMA_FROMDEVICE);
1140 if (pci_dma_mapping_error(qdev->pdev, map)) {
1141 __free_pages(rx_ring->pg_chunk.page,
1142 qdev->lbq_buf_order);
1143 netif_err(qdev, drv, qdev->ndev,
1144 "PCI mapping failed.\n");
1145 return -ENOMEM;
1147 rx_ring->pg_chunk.map = map;
1148 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1151 /* Copy the current master pg_chunk info
1152 * to the current descriptor.
1154 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1156 /* Adjust the master page chunk for next
1157 * buffer get.
1159 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1160 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1161 rx_ring->pg_chunk.page = NULL;
1162 lbq_desc->p.pg_chunk.last_flag = 1;
1163 } else {
1164 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1165 get_page(rx_ring->pg_chunk.page);
1166 lbq_desc->p.pg_chunk.last_flag = 0;
1168 return 0;
1170 /* Process (refill) a large buffer queue. */
1171 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1173 u32 clean_idx = rx_ring->lbq_clean_idx;
1174 u32 start_idx = clean_idx;
1175 struct bq_desc *lbq_desc;
1176 u64 map;
1177 int i;
1179 while (rx_ring->lbq_free_cnt > 32) {
1180 for (i = 0; i < 16; i++) {
1181 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1182 "lbq: try cleaning clean_idx = %d.\n",
1183 clean_idx);
1184 lbq_desc = &rx_ring->lbq[clean_idx];
1185 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1186 netif_err(qdev, ifup, qdev->ndev,
1187 "Could not get a page chunk.\n");
1188 return;
1191 map = lbq_desc->p.pg_chunk.map +
1192 lbq_desc->p.pg_chunk.offset;
1193 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1194 dma_unmap_len_set(lbq_desc, maplen,
1195 rx_ring->lbq_buf_size);
1196 *lbq_desc->addr = cpu_to_le64(map);
1198 pci_dma_sync_single_for_device(qdev->pdev, map,
1199 rx_ring->lbq_buf_size,
1200 PCI_DMA_FROMDEVICE);
1201 clean_idx++;
1202 if (clean_idx == rx_ring->lbq_len)
1203 clean_idx = 0;
1206 rx_ring->lbq_clean_idx = clean_idx;
1207 rx_ring->lbq_prod_idx += 16;
1208 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1209 rx_ring->lbq_prod_idx = 0;
1210 rx_ring->lbq_free_cnt -= 16;
1213 if (start_idx != clean_idx) {
1214 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1215 "lbq: updating prod idx = %d.\n",
1216 rx_ring->lbq_prod_idx);
1217 ql_write_db_reg(rx_ring->lbq_prod_idx,
1218 rx_ring->lbq_prod_idx_db_reg);
1222 /* Process (refill) a small buffer queue. */
1223 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1225 u32 clean_idx = rx_ring->sbq_clean_idx;
1226 u32 start_idx = clean_idx;
1227 struct bq_desc *sbq_desc;
1228 u64 map;
1229 int i;
1231 while (rx_ring->sbq_free_cnt > 16) {
1232 for (i = 0; i < 16; i++) {
1233 sbq_desc = &rx_ring->sbq[clean_idx];
1234 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1235 "sbq: try cleaning clean_idx = %d.\n",
1236 clean_idx);
1237 if (sbq_desc->p.skb == NULL) {
1238 netif_printk(qdev, rx_status, KERN_DEBUG,
1239 qdev->ndev,
1240 "sbq: getting new skb for index %d.\n",
1241 sbq_desc->index);
1242 sbq_desc->p.skb =
1243 netdev_alloc_skb(qdev->ndev,
1244 SMALL_BUFFER_SIZE);
1245 if (sbq_desc->p.skb == NULL) {
1246 netif_err(qdev, probe, qdev->ndev,
1247 "Couldn't get an skb.\n");
1248 rx_ring->sbq_clean_idx = clean_idx;
1249 return;
1251 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1252 map = pci_map_single(qdev->pdev,
1253 sbq_desc->p.skb->data,
1254 rx_ring->sbq_buf_size,
1255 PCI_DMA_FROMDEVICE);
1256 if (pci_dma_mapping_error(qdev->pdev, map)) {
1257 netif_err(qdev, ifup, qdev->ndev,
1258 "PCI mapping failed.\n");
1259 rx_ring->sbq_clean_idx = clean_idx;
1260 dev_kfree_skb_any(sbq_desc->p.skb);
1261 sbq_desc->p.skb = NULL;
1262 return;
1264 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1265 dma_unmap_len_set(sbq_desc, maplen,
1266 rx_ring->sbq_buf_size);
1267 *sbq_desc->addr = cpu_to_le64(map);
1270 clean_idx++;
1271 if (clean_idx == rx_ring->sbq_len)
1272 clean_idx = 0;
1274 rx_ring->sbq_clean_idx = clean_idx;
1275 rx_ring->sbq_prod_idx += 16;
1276 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1277 rx_ring->sbq_prod_idx = 0;
1278 rx_ring->sbq_free_cnt -= 16;
1281 if (start_idx != clean_idx) {
1282 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1283 "sbq: updating prod idx = %d.\n",
1284 rx_ring->sbq_prod_idx);
1285 ql_write_db_reg(rx_ring->sbq_prod_idx,
1286 rx_ring->sbq_prod_idx_db_reg);
1290 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1291 struct rx_ring *rx_ring)
1293 ql_update_sbq(qdev, rx_ring);
1294 ql_update_lbq(qdev, rx_ring);
1297 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1298 * fails at some stage, or from the interrupt when a tx completes.
1300 static void ql_unmap_send(struct ql_adapter *qdev,
1301 struct tx_ring_desc *tx_ring_desc, int mapped)
1303 int i;
1304 for (i = 0; i < mapped; i++) {
1305 if (i == 0 || (i == 7 && mapped > 7)) {
1307 * Unmap the skb->data area, or the
1308 * external sglist (AKA the Outbound
1309 * Address List (OAL)).
1310 * If its the zeroeth element, then it's
1311 * the skb->data area. If it's the 7th
1312 * element and there is more than 6 frags,
1313 * then its an OAL.
1315 if (i == 7) {
1316 netif_printk(qdev, tx_done, KERN_DEBUG,
1317 qdev->ndev,
1318 "unmapping OAL area.\n");
1320 pci_unmap_single(qdev->pdev,
1321 dma_unmap_addr(&tx_ring_desc->map[i],
1322 mapaddr),
1323 dma_unmap_len(&tx_ring_desc->map[i],
1324 maplen),
1325 PCI_DMA_TODEVICE);
1326 } else {
1327 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1328 "unmapping frag %d.\n", i);
1329 pci_unmap_page(qdev->pdev,
1330 dma_unmap_addr(&tx_ring_desc->map[i],
1331 mapaddr),
1332 dma_unmap_len(&tx_ring_desc->map[i],
1333 maplen), PCI_DMA_TODEVICE);
1339 /* Map the buffers for this transmit. This will return
1340 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1342 static int ql_map_send(struct ql_adapter *qdev,
1343 struct ob_mac_iocb_req *mac_iocb_ptr,
1344 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1346 int len = skb_headlen(skb);
1347 dma_addr_t map;
1348 int frag_idx, err, map_idx = 0;
1349 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1350 int frag_cnt = skb_shinfo(skb)->nr_frags;
1352 if (frag_cnt) {
1353 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1354 "frag_cnt = %d.\n", frag_cnt);
1357 * Map the skb buffer first.
1359 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1361 err = pci_dma_mapping_error(qdev->pdev, map);
1362 if (err) {
1363 netif_err(qdev, tx_queued, qdev->ndev,
1364 "PCI mapping failed with error: %d\n", err);
1366 return NETDEV_TX_BUSY;
1369 tbd->len = cpu_to_le32(len);
1370 tbd->addr = cpu_to_le64(map);
1371 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1372 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1373 map_idx++;
1376 * This loop fills the remainder of the 8 address descriptors
1377 * in the IOCB. If there are more than 7 fragments, then the
1378 * eighth address desc will point to an external list (OAL).
1379 * When this happens, the remainder of the frags will be stored
1380 * in this list.
1382 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1383 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1384 tbd++;
1385 if (frag_idx == 6 && frag_cnt > 7) {
1386 /* Let's tack on an sglist.
1387 * Our control block will now
1388 * look like this:
1389 * iocb->seg[0] = skb->data
1390 * iocb->seg[1] = frag[0]
1391 * iocb->seg[2] = frag[1]
1392 * iocb->seg[3] = frag[2]
1393 * iocb->seg[4] = frag[3]
1394 * iocb->seg[5] = frag[4]
1395 * iocb->seg[6] = frag[5]
1396 * iocb->seg[7] = ptr to OAL (external sglist)
1397 * oal->seg[0] = frag[6]
1398 * oal->seg[1] = frag[7]
1399 * oal->seg[2] = frag[8]
1400 * oal->seg[3] = frag[9]
1401 * oal->seg[4] = frag[10]
1402 * etc...
1404 /* Tack on the OAL in the eighth segment of IOCB. */
1405 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1406 sizeof(struct oal),
1407 PCI_DMA_TODEVICE);
1408 err = pci_dma_mapping_error(qdev->pdev, map);
1409 if (err) {
1410 netif_err(qdev, tx_queued, qdev->ndev,
1411 "PCI mapping outbound address list with error: %d\n",
1412 err);
1413 goto map_error;
1416 tbd->addr = cpu_to_le64(map);
1418 * The length is the number of fragments
1419 * that remain to be mapped times the length
1420 * of our sglist (OAL).
1422 tbd->len =
1423 cpu_to_le32((sizeof(struct tx_buf_desc) *
1424 (frag_cnt - frag_idx)) | TX_DESC_C);
1425 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1426 map);
1427 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1428 sizeof(struct oal));
1429 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1430 map_idx++;
1433 map =
1434 pci_map_page(qdev->pdev, frag->page,
1435 frag->page_offset, frag->size,
1436 PCI_DMA_TODEVICE);
1438 err = pci_dma_mapping_error(qdev->pdev, map);
1439 if (err) {
1440 netif_err(qdev, tx_queued, qdev->ndev,
1441 "PCI mapping frags failed with error: %d.\n",
1442 err);
1443 goto map_error;
1446 tbd->addr = cpu_to_le64(map);
1447 tbd->len = cpu_to_le32(frag->size);
1448 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1449 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1450 frag->size);
1453 /* Save the number of segments we've mapped. */
1454 tx_ring_desc->map_cnt = map_idx;
1455 /* Terminate the last segment. */
1456 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1457 return NETDEV_TX_OK;
1459 map_error:
1461 * If the first frag mapping failed, then i will be zero.
1462 * This causes the unmap of the skb->data area. Otherwise
1463 * we pass in the number of frags that mapped successfully
1464 * so they can be umapped.
1466 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1467 return NETDEV_TX_BUSY;
1470 /* Process an inbound completion from an rx ring. */
1471 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1472 struct rx_ring *rx_ring,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 u32 length,
1475 u16 vlan_id)
1477 struct sk_buff *skb;
1478 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1479 struct skb_frag_struct *rx_frag;
1480 int nr_frags;
1481 struct napi_struct *napi = &rx_ring->napi;
1483 napi->dev = qdev->ndev;
1485 skb = napi_get_frags(napi);
1486 if (!skb) {
1487 netif_err(qdev, drv, qdev->ndev,
1488 "Couldn't get an skb, exiting.\n");
1489 rx_ring->rx_dropped++;
1490 put_page(lbq_desc->p.pg_chunk.page);
1491 return;
1493 prefetch(lbq_desc->p.pg_chunk.va);
1494 rx_frag = skb_shinfo(skb)->frags;
1495 nr_frags = skb_shinfo(skb)->nr_frags;
1496 rx_frag += nr_frags;
1497 rx_frag->page = lbq_desc->p.pg_chunk.page;
1498 rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
1499 rx_frag->size = length;
1501 skb->len += length;
1502 skb->data_len += length;
1503 skb->truesize += length;
1504 skb_shinfo(skb)->nr_frags++;
1506 rx_ring->rx_packets++;
1507 rx_ring->rx_bytes += length;
1508 skb->ip_summed = CHECKSUM_UNNECESSARY;
1509 skb_record_rx_queue(skb, rx_ring->cq_id);
1510 if (qdev->vlgrp && (vlan_id != 0xffff))
1511 vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
1512 else
1513 napi_gro_frags(napi);
1516 /* Process an inbound completion from an rx ring. */
1517 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1518 struct rx_ring *rx_ring,
1519 struct ib_mac_iocb_rsp *ib_mac_rsp,
1520 u32 length,
1521 u16 vlan_id)
1523 struct net_device *ndev = qdev->ndev;
1524 struct sk_buff *skb = NULL;
1525 void *addr;
1526 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1527 struct napi_struct *napi = &rx_ring->napi;
1529 skb = netdev_alloc_skb(ndev, length);
1530 if (!skb) {
1531 netif_err(qdev, drv, qdev->ndev,
1532 "Couldn't get an skb, need to unwind!.\n");
1533 rx_ring->rx_dropped++;
1534 put_page(lbq_desc->p.pg_chunk.page);
1535 return;
1538 addr = lbq_desc->p.pg_chunk.va;
1539 prefetch(addr);
1542 /* Frame error, so drop the packet. */
1543 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1544 netif_info(qdev, drv, qdev->ndev,
1545 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1546 rx_ring->rx_errors++;
1547 goto err_out;
1550 /* The max framesize filter on this chip is set higher than
1551 * MTU since FCoE uses 2k frames.
1553 if (skb->len > ndev->mtu + ETH_HLEN) {
1554 netif_err(qdev, drv, qdev->ndev,
1555 "Segment too small, dropping.\n");
1556 rx_ring->rx_dropped++;
1557 goto err_out;
1559 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1560 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1561 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1562 length);
1563 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1564 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1565 length-ETH_HLEN);
1566 skb->len += length-ETH_HLEN;
1567 skb->data_len += length-ETH_HLEN;
1568 skb->truesize += length-ETH_HLEN;
1570 rx_ring->rx_packets++;
1571 rx_ring->rx_bytes += skb->len;
1572 skb->protocol = eth_type_trans(skb, ndev);
1573 skb_checksum_none_assert(skb);
1575 if ((ndev->features & NETIF_F_RXCSUM) &&
1576 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1577 /* TCP frame. */
1578 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1579 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1580 "TCP checksum done!\n");
1581 skb->ip_summed = CHECKSUM_UNNECESSARY;
1582 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1583 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1584 /* Unfragmented ipv4 UDP frame. */
1585 struct iphdr *iph = (struct iphdr *) skb->data;
1586 if (!(iph->frag_off &
1587 cpu_to_be16(IP_MF|IP_OFFSET))) {
1588 skb->ip_summed = CHECKSUM_UNNECESSARY;
1589 netif_printk(qdev, rx_status, KERN_DEBUG,
1590 qdev->ndev,
1591 "TCP checksum done!\n");
1596 skb_record_rx_queue(skb, rx_ring->cq_id);
1597 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1598 if (qdev->vlgrp && (vlan_id != 0xffff))
1599 vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
1600 else
1601 napi_gro_receive(napi, skb);
1602 } else {
1603 if (qdev->vlgrp && (vlan_id != 0xffff))
1604 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1605 else
1606 netif_receive_skb(skb);
1608 return;
1609 err_out:
1610 dev_kfree_skb_any(skb);
1611 put_page(lbq_desc->p.pg_chunk.page);
1614 /* Process an inbound completion from an rx ring. */
1615 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1616 struct rx_ring *rx_ring,
1617 struct ib_mac_iocb_rsp *ib_mac_rsp,
1618 u32 length,
1619 u16 vlan_id)
1621 struct net_device *ndev = qdev->ndev;
1622 struct sk_buff *skb = NULL;
1623 struct sk_buff *new_skb = NULL;
1624 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1626 skb = sbq_desc->p.skb;
1627 /* Allocate new_skb and copy */
1628 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1629 if (new_skb == NULL) {
1630 netif_err(qdev, probe, qdev->ndev,
1631 "No skb available, drop the packet.\n");
1632 rx_ring->rx_dropped++;
1633 return;
1635 skb_reserve(new_skb, NET_IP_ALIGN);
1636 memcpy(skb_put(new_skb, length), skb->data, length);
1637 skb = new_skb;
1639 /* Frame error, so drop the packet. */
1640 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1641 netif_info(qdev, drv, qdev->ndev,
1642 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1643 dev_kfree_skb_any(skb);
1644 rx_ring->rx_errors++;
1645 return;
1648 /* loopback self test for ethtool */
1649 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1650 ql_check_lb_frame(qdev, skb);
1651 dev_kfree_skb_any(skb);
1652 return;
1655 /* The max framesize filter on this chip is set higher than
1656 * MTU since FCoE uses 2k frames.
1658 if (skb->len > ndev->mtu + ETH_HLEN) {
1659 dev_kfree_skb_any(skb);
1660 rx_ring->rx_dropped++;
1661 return;
1664 prefetch(skb->data);
1665 skb->dev = ndev;
1666 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1667 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1668 "%s Multicast.\n",
1669 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1670 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1671 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1672 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1673 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1674 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1676 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1677 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1678 "Promiscuous Packet.\n");
1680 rx_ring->rx_packets++;
1681 rx_ring->rx_bytes += skb->len;
1682 skb->protocol = eth_type_trans(skb, ndev);
1683 skb_checksum_none_assert(skb);
1685 /* If rx checksum is on, and there are no
1686 * csum or frame errors.
1688 if ((ndev->features & NETIF_F_RXCSUM) &&
1689 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1690 /* TCP frame. */
1691 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1692 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1693 "TCP checksum done!\n");
1694 skb->ip_summed = CHECKSUM_UNNECESSARY;
1695 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1696 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1697 /* Unfragmented ipv4 UDP frame. */
1698 struct iphdr *iph = (struct iphdr *) skb->data;
1699 if (!(iph->frag_off &
1700 ntohs(IP_MF|IP_OFFSET))) {
1701 skb->ip_summed = CHECKSUM_UNNECESSARY;
1702 netif_printk(qdev, rx_status, KERN_DEBUG,
1703 qdev->ndev,
1704 "TCP checksum done!\n");
1709 skb_record_rx_queue(skb, rx_ring->cq_id);
1710 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1711 if (qdev->vlgrp && (vlan_id != 0xffff))
1712 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1713 vlan_id, skb);
1714 else
1715 napi_gro_receive(&rx_ring->napi, skb);
1716 } else {
1717 if (qdev->vlgrp && (vlan_id != 0xffff))
1718 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1719 else
1720 netif_receive_skb(skb);
1724 static void ql_realign_skb(struct sk_buff *skb, int len)
1726 void *temp_addr = skb->data;
1728 /* Undo the skb_reserve(skb,32) we did before
1729 * giving to hardware, and realign data on
1730 * a 2-byte boundary.
1732 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1733 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1734 skb_copy_to_linear_data(skb, temp_addr,
1735 (unsigned int)len);
1739 * This function builds an skb for the given inbound
1740 * completion. It will be rewritten for readability in the near
1741 * future, but for not it works well.
1743 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1744 struct rx_ring *rx_ring,
1745 struct ib_mac_iocb_rsp *ib_mac_rsp)
1747 struct bq_desc *lbq_desc;
1748 struct bq_desc *sbq_desc;
1749 struct sk_buff *skb = NULL;
1750 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1751 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1754 * Handle the header buffer if present.
1756 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1757 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1758 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1759 "Header of %d bytes in small buffer.\n", hdr_len);
1761 * Headers fit nicely into a small buffer.
1763 sbq_desc = ql_get_curr_sbuf(rx_ring);
1764 pci_unmap_single(qdev->pdev,
1765 dma_unmap_addr(sbq_desc, mapaddr),
1766 dma_unmap_len(sbq_desc, maplen),
1767 PCI_DMA_FROMDEVICE);
1768 skb = sbq_desc->p.skb;
1769 ql_realign_skb(skb, hdr_len);
1770 skb_put(skb, hdr_len);
1771 sbq_desc->p.skb = NULL;
1775 * Handle the data buffer(s).
1777 if (unlikely(!length)) { /* Is there data too? */
1778 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1779 "No Data buffer in this packet.\n");
1780 return skb;
1783 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1784 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1785 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786 "Headers in small, data of %d bytes in small, combine them.\n",
1787 length);
1789 * Data is less than small buffer size so it's
1790 * stuffed in a small buffer.
1791 * For this case we append the data
1792 * from the "data" small buffer to the "header" small
1793 * buffer.
1795 sbq_desc = ql_get_curr_sbuf(rx_ring);
1796 pci_dma_sync_single_for_cpu(qdev->pdev,
1797 dma_unmap_addr
1798 (sbq_desc, mapaddr),
1799 dma_unmap_len
1800 (sbq_desc, maplen),
1801 PCI_DMA_FROMDEVICE);
1802 memcpy(skb_put(skb, length),
1803 sbq_desc->p.skb->data, length);
1804 pci_dma_sync_single_for_device(qdev->pdev,
1805 dma_unmap_addr
1806 (sbq_desc,
1807 mapaddr),
1808 dma_unmap_len
1809 (sbq_desc,
1810 maplen),
1811 PCI_DMA_FROMDEVICE);
1812 } else {
1813 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1814 "%d bytes in a single small buffer.\n",
1815 length);
1816 sbq_desc = ql_get_curr_sbuf(rx_ring);
1817 skb = sbq_desc->p.skb;
1818 ql_realign_skb(skb, length);
1819 skb_put(skb, length);
1820 pci_unmap_single(qdev->pdev,
1821 dma_unmap_addr(sbq_desc,
1822 mapaddr),
1823 dma_unmap_len(sbq_desc,
1824 maplen),
1825 PCI_DMA_FROMDEVICE);
1826 sbq_desc->p.skb = NULL;
1828 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1829 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1830 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1831 "Header in small, %d bytes in large. Chain large to small!\n",
1832 length);
1834 * The data is in a single large buffer. We
1835 * chain it to the header buffer's skb and let
1836 * it rip.
1838 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1839 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1840 "Chaining page at offset = %d, for %d bytes to skb.\n",
1841 lbq_desc->p.pg_chunk.offset, length);
1842 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1843 lbq_desc->p.pg_chunk.offset,
1844 length);
1845 skb->len += length;
1846 skb->data_len += length;
1847 skb->truesize += length;
1848 } else {
1850 * The headers and data are in a single large buffer. We
1851 * copy it to a new skb and let it go. This can happen with
1852 * jumbo mtu on a non-TCP/UDP frame.
1854 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1855 skb = netdev_alloc_skb(qdev->ndev, length);
1856 if (skb == NULL) {
1857 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1858 "No skb available, drop the packet.\n");
1859 return NULL;
1861 pci_unmap_page(qdev->pdev,
1862 dma_unmap_addr(lbq_desc,
1863 mapaddr),
1864 dma_unmap_len(lbq_desc, maplen),
1865 PCI_DMA_FROMDEVICE);
1866 skb_reserve(skb, NET_IP_ALIGN);
1867 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1868 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1869 length);
1870 skb_fill_page_desc(skb, 0,
1871 lbq_desc->p.pg_chunk.page,
1872 lbq_desc->p.pg_chunk.offset,
1873 length);
1874 skb->len += length;
1875 skb->data_len += length;
1876 skb->truesize += length;
1877 length -= length;
1878 __pskb_pull_tail(skb,
1879 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1880 VLAN_ETH_HLEN : ETH_HLEN);
1882 } else {
1884 * The data is in a chain of large buffers
1885 * pointed to by a small buffer. We loop
1886 * thru and chain them to the our small header
1887 * buffer's skb.
1888 * frags: There are 18 max frags and our small
1889 * buffer will hold 32 of them. The thing is,
1890 * we'll use 3 max for our 9000 byte jumbo
1891 * frames. If the MTU goes up we could
1892 * eventually be in trouble.
1894 int size, i = 0;
1895 sbq_desc = ql_get_curr_sbuf(rx_ring);
1896 pci_unmap_single(qdev->pdev,
1897 dma_unmap_addr(sbq_desc, mapaddr),
1898 dma_unmap_len(sbq_desc, maplen),
1899 PCI_DMA_FROMDEVICE);
1900 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1902 * This is an non TCP/UDP IP frame, so
1903 * the headers aren't split into a small
1904 * buffer. We have to use the small buffer
1905 * that contains our sg list as our skb to
1906 * send upstairs. Copy the sg list here to
1907 * a local buffer and use it to find the
1908 * pages to chain.
1910 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1911 "%d bytes of headers & data in chain of large.\n",
1912 length);
1913 skb = sbq_desc->p.skb;
1914 sbq_desc->p.skb = NULL;
1915 skb_reserve(skb, NET_IP_ALIGN);
1917 while (length > 0) {
1918 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1919 size = (length < rx_ring->lbq_buf_size) ? length :
1920 rx_ring->lbq_buf_size;
1922 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1923 "Adding page %d to skb for %d bytes.\n",
1924 i, size);
1925 skb_fill_page_desc(skb, i,
1926 lbq_desc->p.pg_chunk.page,
1927 lbq_desc->p.pg_chunk.offset,
1928 size);
1929 skb->len += size;
1930 skb->data_len += size;
1931 skb->truesize += size;
1932 length -= size;
1933 i++;
1935 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1936 VLAN_ETH_HLEN : ETH_HLEN);
1938 return skb;
1941 /* Process an inbound completion from an rx ring. */
1942 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1943 struct rx_ring *rx_ring,
1944 struct ib_mac_iocb_rsp *ib_mac_rsp,
1945 u16 vlan_id)
1947 struct net_device *ndev = qdev->ndev;
1948 struct sk_buff *skb = NULL;
1950 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1952 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1953 if (unlikely(!skb)) {
1954 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1955 "No skb available, drop packet.\n");
1956 rx_ring->rx_dropped++;
1957 return;
1960 /* Frame error, so drop the packet. */
1961 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1962 netif_info(qdev, drv, qdev->ndev,
1963 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1964 dev_kfree_skb_any(skb);
1965 rx_ring->rx_errors++;
1966 return;
1969 /* The max framesize filter on this chip is set higher than
1970 * MTU since FCoE uses 2k frames.
1972 if (skb->len > ndev->mtu + ETH_HLEN) {
1973 dev_kfree_skb_any(skb);
1974 rx_ring->rx_dropped++;
1975 return;
1978 /* loopback self test for ethtool */
1979 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1980 ql_check_lb_frame(qdev, skb);
1981 dev_kfree_skb_any(skb);
1982 return;
1985 prefetch(skb->data);
1986 skb->dev = ndev;
1987 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1988 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1989 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1990 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1991 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1992 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1993 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1994 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1995 rx_ring->rx_multicast++;
1997 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1998 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1999 "Promiscuous Packet.\n");
2002 skb->protocol = eth_type_trans(skb, ndev);
2003 skb_checksum_none_assert(skb);
2005 /* If rx checksum is on, and there are no
2006 * csum or frame errors.
2008 if ((ndev->features & NETIF_F_RXCSUM) &&
2009 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2010 /* TCP frame. */
2011 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2012 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2013 "TCP checksum done!\n");
2014 skb->ip_summed = CHECKSUM_UNNECESSARY;
2015 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2016 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2017 /* Unfragmented ipv4 UDP frame. */
2018 struct iphdr *iph = (struct iphdr *) skb->data;
2019 if (!(iph->frag_off &
2020 ntohs(IP_MF|IP_OFFSET))) {
2021 skb->ip_summed = CHECKSUM_UNNECESSARY;
2022 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2023 "TCP checksum done!\n");
2028 rx_ring->rx_packets++;
2029 rx_ring->rx_bytes += skb->len;
2030 skb_record_rx_queue(skb, rx_ring->cq_id);
2031 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2032 if (qdev->vlgrp &&
2033 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2034 (vlan_id != 0))
2035 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
2036 vlan_id, skb);
2037 else
2038 napi_gro_receive(&rx_ring->napi, skb);
2039 } else {
2040 if (qdev->vlgrp &&
2041 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2042 (vlan_id != 0))
2043 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
2044 else
2045 netif_receive_skb(skb);
2049 /* Process an inbound completion from an rx ring. */
2050 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2051 struct rx_ring *rx_ring,
2052 struct ib_mac_iocb_rsp *ib_mac_rsp)
2054 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2055 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
2056 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2057 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2059 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2061 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2062 /* The data and headers are split into
2063 * separate buffers.
2065 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2066 vlan_id);
2067 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2068 /* The data fit in a single small buffer.
2069 * Allocate a new skb, copy the data and
2070 * return the buffer to the free pool.
2072 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2073 length, vlan_id);
2074 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2075 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2076 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2077 /* TCP packet in a page chunk that's been checksummed.
2078 * Tack it on to our GRO skb and let it go.
2080 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2081 length, vlan_id);
2082 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2083 /* Non-TCP packet in a page chunk. Allocate an
2084 * skb, tack it on frags, and send it up.
2086 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2087 length, vlan_id);
2088 } else {
2089 /* Non-TCP/UDP large frames that span multiple buffers
2090 * can be processed corrrectly by the split frame logic.
2092 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2093 vlan_id);
2096 return (unsigned long)length;
2099 /* Process an outbound completion from an rx ring. */
2100 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2101 struct ob_mac_iocb_rsp *mac_rsp)
2103 struct tx_ring *tx_ring;
2104 struct tx_ring_desc *tx_ring_desc;
2106 QL_DUMP_OB_MAC_RSP(mac_rsp);
2107 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2108 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2109 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2110 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2111 tx_ring->tx_packets++;
2112 dev_kfree_skb(tx_ring_desc->skb);
2113 tx_ring_desc->skb = NULL;
2115 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2116 OB_MAC_IOCB_RSP_S |
2117 OB_MAC_IOCB_RSP_L |
2118 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2119 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2120 netif_warn(qdev, tx_done, qdev->ndev,
2121 "Total descriptor length did not match transfer length.\n");
2123 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2124 netif_warn(qdev, tx_done, qdev->ndev,
2125 "Frame too short to be valid, not sent.\n");
2127 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2128 netif_warn(qdev, tx_done, qdev->ndev,
2129 "Frame too long, but sent anyway.\n");
2131 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2132 netif_warn(qdev, tx_done, qdev->ndev,
2133 "PCI backplane error. Frame not sent.\n");
2136 atomic_inc(&tx_ring->tx_count);
2139 /* Fire up a handler to reset the MPI processor. */
2140 void ql_queue_fw_error(struct ql_adapter *qdev)
2142 ql_link_off(qdev);
2143 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2146 void ql_queue_asic_error(struct ql_adapter *qdev)
2148 ql_link_off(qdev);
2149 ql_disable_interrupts(qdev);
2150 /* Clear adapter up bit to signal the recovery
2151 * process that it shouldn't kill the reset worker
2152 * thread
2154 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2155 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2158 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2159 struct ib_ae_iocb_rsp *ib_ae_rsp)
2161 switch (ib_ae_rsp->event) {
2162 case MGMT_ERR_EVENT:
2163 netif_err(qdev, rx_err, qdev->ndev,
2164 "Management Processor Fatal Error.\n");
2165 ql_queue_fw_error(qdev);
2166 return;
2168 case CAM_LOOKUP_ERR_EVENT:
2169 netif_err(qdev, link, qdev->ndev,
2170 "Multiple CAM hits lookup occurred.\n");
2171 netif_err(qdev, drv, qdev->ndev,
2172 "This event shouldn't occur.\n");
2173 ql_queue_asic_error(qdev);
2174 return;
2176 case SOFT_ECC_ERROR_EVENT:
2177 netif_err(qdev, rx_err, qdev->ndev,
2178 "Soft ECC error detected.\n");
2179 ql_queue_asic_error(qdev);
2180 break;
2182 case PCI_ERR_ANON_BUF_RD:
2183 netif_err(qdev, rx_err, qdev->ndev,
2184 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
2185 ib_ae_rsp->q_id);
2186 ql_queue_asic_error(qdev);
2187 break;
2189 default:
2190 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2191 ib_ae_rsp->event);
2192 ql_queue_asic_error(qdev);
2193 break;
2197 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2199 struct ql_adapter *qdev = rx_ring->qdev;
2200 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2201 struct ob_mac_iocb_rsp *net_rsp = NULL;
2202 int count = 0;
2204 struct tx_ring *tx_ring;
2205 /* While there are entries in the completion queue. */
2206 while (prod != rx_ring->cnsmr_idx) {
2208 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2209 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2210 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2212 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2213 rmb();
2214 switch (net_rsp->opcode) {
2216 case OPCODE_OB_MAC_TSO_IOCB:
2217 case OPCODE_OB_MAC_IOCB:
2218 ql_process_mac_tx_intr(qdev, net_rsp);
2219 break;
2220 default:
2221 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2222 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2223 net_rsp->opcode);
2225 count++;
2226 ql_update_cq(rx_ring);
2227 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2229 if (!net_rsp)
2230 return 0;
2231 ql_write_cq_idx(rx_ring);
2232 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2233 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2234 if (atomic_read(&tx_ring->queue_stopped) &&
2235 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2237 * The queue got stopped because the tx_ring was full.
2238 * Wake it up, because it's now at least 25% empty.
2240 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2243 return count;
2246 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2248 struct ql_adapter *qdev = rx_ring->qdev;
2249 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2250 struct ql_net_rsp_iocb *net_rsp;
2251 int count = 0;
2253 /* While there are entries in the completion queue. */
2254 while (prod != rx_ring->cnsmr_idx) {
2256 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2257 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2258 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2260 net_rsp = rx_ring->curr_entry;
2261 rmb();
2262 switch (net_rsp->opcode) {
2263 case OPCODE_IB_MAC_IOCB:
2264 ql_process_mac_rx_intr(qdev, rx_ring,
2265 (struct ib_mac_iocb_rsp *)
2266 net_rsp);
2267 break;
2269 case OPCODE_IB_AE_IOCB:
2270 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2271 net_rsp);
2272 break;
2273 default:
2274 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2275 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2276 net_rsp->opcode);
2277 break;
2279 count++;
2280 ql_update_cq(rx_ring);
2281 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2282 if (count == budget)
2283 break;
2285 ql_update_buffer_queues(qdev, rx_ring);
2286 ql_write_cq_idx(rx_ring);
2287 return count;
2290 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2292 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2293 struct ql_adapter *qdev = rx_ring->qdev;
2294 struct rx_ring *trx_ring;
2295 int i, work_done = 0;
2296 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2298 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2299 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2301 /* Service the TX rings first. They start
2302 * right after the RSS rings. */
2303 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2304 trx_ring = &qdev->rx_ring[i];
2305 /* If this TX completion ring belongs to this vector and
2306 * it's not empty then service it.
2308 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2309 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2310 trx_ring->cnsmr_idx)) {
2311 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2312 "%s: Servicing TX completion ring %d.\n",
2313 __func__, trx_ring->cq_id);
2314 ql_clean_outbound_rx_ring(trx_ring);
2319 * Now service the RSS ring if it's active.
2321 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2322 rx_ring->cnsmr_idx) {
2323 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2324 "%s: Servicing RX completion ring %d.\n",
2325 __func__, rx_ring->cq_id);
2326 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2329 if (work_done < budget) {
2330 napi_complete(napi);
2331 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2333 return work_done;
2336 static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
2338 struct ql_adapter *qdev = netdev_priv(ndev);
2340 qdev->vlgrp = grp;
2341 if (grp) {
2342 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
2343 "Turning on VLAN in NIC_RCV_CFG.\n");
2344 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2345 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2346 } else {
2347 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
2348 "Turning off VLAN in NIC_RCV_CFG.\n");
2349 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2353 static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2355 struct ql_adapter *qdev = netdev_priv(ndev);
2356 u32 enable_bit = MAC_ADDR_E;
2357 int status;
2359 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2360 if (status)
2361 return;
2362 if (ql_set_mac_addr_reg
2363 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
2364 netif_err(qdev, ifup, qdev->ndev,
2365 "Failed to init vlan address.\n");
2367 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2370 static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2372 struct ql_adapter *qdev = netdev_priv(ndev);
2373 u32 enable_bit = 0;
2374 int status;
2376 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2377 if (status)
2378 return;
2380 if (ql_set_mac_addr_reg
2381 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
2382 netif_err(qdev, ifup, qdev->ndev,
2383 "Failed to clear vlan address.\n");
2385 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2389 static void qlge_restore_vlan(struct ql_adapter *qdev)
2391 qlge_vlan_rx_register(qdev->ndev, qdev->vlgrp);
2393 if (qdev->vlgrp) {
2394 u16 vid;
2395 for (vid = 0; vid < VLAN_N_VID; vid++) {
2396 if (!vlan_group_get_device(qdev->vlgrp, vid))
2397 continue;
2398 qlge_vlan_rx_add_vid(qdev->ndev, vid);
2403 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2404 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2406 struct rx_ring *rx_ring = dev_id;
2407 napi_schedule(&rx_ring->napi);
2408 return IRQ_HANDLED;
2411 /* This handles a fatal error, MPI activity, and the default
2412 * rx_ring in an MSI-X multiple vector environment.
2413 * In MSI/Legacy environment it also process the rest of
2414 * the rx_rings.
2416 static irqreturn_t qlge_isr(int irq, void *dev_id)
2418 struct rx_ring *rx_ring = dev_id;
2419 struct ql_adapter *qdev = rx_ring->qdev;
2420 struct intr_context *intr_context = &qdev->intr_context[0];
2421 u32 var;
2422 int work_done = 0;
2424 spin_lock(&qdev->hw_lock);
2425 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2426 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2427 "Shared Interrupt, Not ours!\n");
2428 spin_unlock(&qdev->hw_lock);
2429 return IRQ_NONE;
2431 spin_unlock(&qdev->hw_lock);
2433 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2436 * Check for fatal error.
2438 if (var & STS_FE) {
2439 ql_queue_asic_error(qdev);
2440 netif_err(qdev, intr, qdev->ndev,
2441 "Got fatal error, STS = %x.\n", var);
2442 var = ql_read32(qdev, ERR_STS);
2443 netif_err(qdev, intr, qdev->ndev,
2444 "Resetting chip. Error Status Register = 0x%x\n", var);
2445 return IRQ_HANDLED;
2449 * Check MPI processor activity.
2451 if ((var & STS_PI) &&
2452 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2454 * We've got an async event or mailbox completion.
2455 * Handle it and clear the source of the interrupt.
2457 netif_err(qdev, intr, qdev->ndev,
2458 "Got MPI processor interrupt.\n");
2459 ql_disable_completion_interrupt(qdev, intr_context->intr);
2460 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2461 queue_delayed_work_on(smp_processor_id(),
2462 qdev->workqueue, &qdev->mpi_work, 0);
2463 work_done++;
2467 * Get the bit-mask that shows the active queues for this
2468 * pass. Compare it to the queues that this irq services
2469 * and call napi if there's a match.
2471 var = ql_read32(qdev, ISR1);
2472 if (var & intr_context->irq_mask) {
2473 netif_info(qdev, intr, qdev->ndev,
2474 "Waking handler for rx_ring[0].\n");
2475 ql_disable_completion_interrupt(qdev, intr_context->intr);
2476 napi_schedule(&rx_ring->napi);
2477 work_done++;
2479 ql_enable_completion_interrupt(qdev, intr_context->intr);
2480 return work_done ? IRQ_HANDLED : IRQ_NONE;
2483 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2486 if (skb_is_gso(skb)) {
2487 int err;
2488 if (skb_header_cloned(skb)) {
2489 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2490 if (err)
2491 return err;
2494 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2495 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2496 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2497 mac_iocb_ptr->total_hdrs_len =
2498 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2499 mac_iocb_ptr->net_trans_offset =
2500 cpu_to_le16(skb_network_offset(skb) |
2501 skb_transport_offset(skb)
2502 << OB_MAC_TRANSPORT_HDR_SHIFT);
2503 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2504 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2505 if (likely(skb->protocol == htons(ETH_P_IP))) {
2506 struct iphdr *iph = ip_hdr(skb);
2507 iph->check = 0;
2508 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2509 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2510 iph->daddr, 0,
2511 IPPROTO_TCP,
2513 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2514 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2515 tcp_hdr(skb)->check =
2516 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2517 &ipv6_hdr(skb)->daddr,
2518 0, IPPROTO_TCP, 0);
2520 return 1;
2522 return 0;
2525 static void ql_hw_csum_setup(struct sk_buff *skb,
2526 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2528 int len;
2529 struct iphdr *iph = ip_hdr(skb);
2530 __sum16 *check;
2531 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2532 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2533 mac_iocb_ptr->net_trans_offset =
2534 cpu_to_le16(skb_network_offset(skb) |
2535 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2537 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2538 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2539 if (likely(iph->protocol == IPPROTO_TCP)) {
2540 check = &(tcp_hdr(skb)->check);
2541 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2542 mac_iocb_ptr->total_hdrs_len =
2543 cpu_to_le16(skb_transport_offset(skb) +
2544 (tcp_hdr(skb)->doff << 2));
2545 } else {
2546 check = &(udp_hdr(skb)->check);
2547 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2548 mac_iocb_ptr->total_hdrs_len =
2549 cpu_to_le16(skb_transport_offset(skb) +
2550 sizeof(struct udphdr));
2552 *check = ~csum_tcpudp_magic(iph->saddr,
2553 iph->daddr, len, iph->protocol, 0);
2556 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2558 struct tx_ring_desc *tx_ring_desc;
2559 struct ob_mac_iocb_req *mac_iocb_ptr;
2560 struct ql_adapter *qdev = netdev_priv(ndev);
2561 int tso;
2562 struct tx_ring *tx_ring;
2563 u32 tx_ring_idx = (u32) skb->queue_mapping;
2565 tx_ring = &qdev->tx_ring[tx_ring_idx];
2567 if (skb_padto(skb, ETH_ZLEN))
2568 return NETDEV_TX_OK;
2570 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2571 netif_info(qdev, tx_queued, qdev->ndev,
2572 "%s: shutting down tx queue %d du to lack of resources.\n",
2573 __func__, tx_ring_idx);
2574 netif_stop_subqueue(ndev, tx_ring->wq_id);
2575 atomic_inc(&tx_ring->queue_stopped);
2576 tx_ring->tx_errors++;
2577 return NETDEV_TX_BUSY;
2579 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2580 mac_iocb_ptr = tx_ring_desc->queue_entry;
2581 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2583 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2584 mac_iocb_ptr->tid = tx_ring_desc->index;
2585 /* We use the upper 32-bits to store the tx queue for this IO.
2586 * When we get the completion we can use it to establish the context.
2588 mac_iocb_ptr->txq_idx = tx_ring_idx;
2589 tx_ring_desc->skb = skb;
2591 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2593 if (vlan_tx_tag_present(skb)) {
2594 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2595 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2596 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2597 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2599 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2600 if (tso < 0) {
2601 dev_kfree_skb_any(skb);
2602 return NETDEV_TX_OK;
2603 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2604 ql_hw_csum_setup(skb,
2605 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2607 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2608 NETDEV_TX_OK) {
2609 netif_err(qdev, tx_queued, qdev->ndev,
2610 "Could not map the segments.\n");
2611 tx_ring->tx_errors++;
2612 return NETDEV_TX_BUSY;
2614 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2615 tx_ring->prod_idx++;
2616 if (tx_ring->prod_idx == tx_ring->wq_len)
2617 tx_ring->prod_idx = 0;
2618 wmb();
2620 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2621 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2622 "tx queued, slot %d, len %d\n",
2623 tx_ring->prod_idx, skb->len);
2625 atomic_dec(&tx_ring->tx_count);
2626 return NETDEV_TX_OK;
2630 static void ql_free_shadow_space(struct ql_adapter *qdev)
2632 if (qdev->rx_ring_shadow_reg_area) {
2633 pci_free_consistent(qdev->pdev,
2634 PAGE_SIZE,
2635 qdev->rx_ring_shadow_reg_area,
2636 qdev->rx_ring_shadow_reg_dma);
2637 qdev->rx_ring_shadow_reg_area = NULL;
2639 if (qdev->tx_ring_shadow_reg_area) {
2640 pci_free_consistent(qdev->pdev,
2641 PAGE_SIZE,
2642 qdev->tx_ring_shadow_reg_area,
2643 qdev->tx_ring_shadow_reg_dma);
2644 qdev->tx_ring_shadow_reg_area = NULL;
2648 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2650 qdev->rx_ring_shadow_reg_area =
2651 pci_alloc_consistent(qdev->pdev,
2652 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2653 if (qdev->rx_ring_shadow_reg_area == NULL) {
2654 netif_err(qdev, ifup, qdev->ndev,
2655 "Allocation of RX shadow space failed.\n");
2656 return -ENOMEM;
2658 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2659 qdev->tx_ring_shadow_reg_area =
2660 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2661 &qdev->tx_ring_shadow_reg_dma);
2662 if (qdev->tx_ring_shadow_reg_area == NULL) {
2663 netif_err(qdev, ifup, qdev->ndev,
2664 "Allocation of TX shadow space failed.\n");
2665 goto err_wqp_sh_area;
2667 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2668 return 0;
2670 err_wqp_sh_area:
2671 pci_free_consistent(qdev->pdev,
2672 PAGE_SIZE,
2673 qdev->rx_ring_shadow_reg_area,
2674 qdev->rx_ring_shadow_reg_dma);
2675 return -ENOMEM;
2678 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2680 struct tx_ring_desc *tx_ring_desc;
2681 int i;
2682 struct ob_mac_iocb_req *mac_iocb_ptr;
2684 mac_iocb_ptr = tx_ring->wq_base;
2685 tx_ring_desc = tx_ring->q;
2686 for (i = 0; i < tx_ring->wq_len; i++) {
2687 tx_ring_desc->index = i;
2688 tx_ring_desc->skb = NULL;
2689 tx_ring_desc->queue_entry = mac_iocb_ptr;
2690 mac_iocb_ptr++;
2691 tx_ring_desc++;
2693 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2694 atomic_set(&tx_ring->queue_stopped, 0);
2697 static void ql_free_tx_resources(struct ql_adapter *qdev,
2698 struct tx_ring *tx_ring)
2700 if (tx_ring->wq_base) {
2701 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2702 tx_ring->wq_base, tx_ring->wq_base_dma);
2703 tx_ring->wq_base = NULL;
2705 kfree(tx_ring->q);
2706 tx_ring->q = NULL;
2709 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2710 struct tx_ring *tx_ring)
2712 tx_ring->wq_base =
2713 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2714 &tx_ring->wq_base_dma);
2716 if ((tx_ring->wq_base == NULL) ||
2717 tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2718 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2719 return -ENOMEM;
2721 tx_ring->q =
2722 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2723 if (tx_ring->q == NULL)
2724 goto err;
2726 return 0;
2727 err:
2728 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2729 tx_ring->wq_base, tx_ring->wq_base_dma);
2730 return -ENOMEM;
2733 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2735 struct bq_desc *lbq_desc;
2737 uint32_t curr_idx, clean_idx;
2739 curr_idx = rx_ring->lbq_curr_idx;
2740 clean_idx = rx_ring->lbq_clean_idx;
2741 while (curr_idx != clean_idx) {
2742 lbq_desc = &rx_ring->lbq[curr_idx];
2744 if (lbq_desc->p.pg_chunk.last_flag) {
2745 pci_unmap_page(qdev->pdev,
2746 lbq_desc->p.pg_chunk.map,
2747 ql_lbq_block_size(qdev),
2748 PCI_DMA_FROMDEVICE);
2749 lbq_desc->p.pg_chunk.last_flag = 0;
2752 put_page(lbq_desc->p.pg_chunk.page);
2753 lbq_desc->p.pg_chunk.page = NULL;
2755 if (++curr_idx == rx_ring->lbq_len)
2756 curr_idx = 0;
2761 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2763 int i;
2764 struct bq_desc *sbq_desc;
2766 for (i = 0; i < rx_ring->sbq_len; i++) {
2767 sbq_desc = &rx_ring->sbq[i];
2768 if (sbq_desc == NULL) {
2769 netif_err(qdev, ifup, qdev->ndev,
2770 "sbq_desc %d is NULL.\n", i);
2771 return;
2773 if (sbq_desc->p.skb) {
2774 pci_unmap_single(qdev->pdev,
2775 dma_unmap_addr(sbq_desc, mapaddr),
2776 dma_unmap_len(sbq_desc, maplen),
2777 PCI_DMA_FROMDEVICE);
2778 dev_kfree_skb(sbq_desc->p.skb);
2779 sbq_desc->p.skb = NULL;
2784 /* Free all large and small rx buffers associated
2785 * with the completion queues for this device.
2787 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2789 int i;
2790 struct rx_ring *rx_ring;
2792 for (i = 0; i < qdev->rx_ring_count; i++) {
2793 rx_ring = &qdev->rx_ring[i];
2794 if (rx_ring->lbq)
2795 ql_free_lbq_buffers(qdev, rx_ring);
2796 if (rx_ring->sbq)
2797 ql_free_sbq_buffers(qdev, rx_ring);
2801 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2803 struct rx_ring *rx_ring;
2804 int i;
2806 for (i = 0; i < qdev->rx_ring_count; i++) {
2807 rx_ring = &qdev->rx_ring[i];
2808 if (rx_ring->type != TX_Q)
2809 ql_update_buffer_queues(qdev, rx_ring);
2813 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2814 struct rx_ring *rx_ring)
2816 int i;
2817 struct bq_desc *lbq_desc;
2818 __le64 *bq = rx_ring->lbq_base;
2820 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2821 for (i = 0; i < rx_ring->lbq_len; i++) {
2822 lbq_desc = &rx_ring->lbq[i];
2823 memset(lbq_desc, 0, sizeof(*lbq_desc));
2824 lbq_desc->index = i;
2825 lbq_desc->addr = bq;
2826 bq++;
2830 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2831 struct rx_ring *rx_ring)
2833 int i;
2834 struct bq_desc *sbq_desc;
2835 __le64 *bq = rx_ring->sbq_base;
2837 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2838 for (i = 0; i < rx_ring->sbq_len; i++) {
2839 sbq_desc = &rx_ring->sbq[i];
2840 memset(sbq_desc, 0, sizeof(*sbq_desc));
2841 sbq_desc->index = i;
2842 sbq_desc->addr = bq;
2843 bq++;
2847 static void ql_free_rx_resources(struct ql_adapter *qdev,
2848 struct rx_ring *rx_ring)
2850 /* Free the small buffer queue. */
2851 if (rx_ring->sbq_base) {
2852 pci_free_consistent(qdev->pdev,
2853 rx_ring->sbq_size,
2854 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2855 rx_ring->sbq_base = NULL;
2858 /* Free the small buffer queue control blocks. */
2859 kfree(rx_ring->sbq);
2860 rx_ring->sbq = NULL;
2862 /* Free the large buffer queue. */
2863 if (rx_ring->lbq_base) {
2864 pci_free_consistent(qdev->pdev,
2865 rx_ring->lbq_size,
2866 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2867 rx_ring->lbq_base = NULL;
2870 /* Free the large buffer queue control blocks. */
2871 kfree(rx_ring->lbq);
2872 rx_ring->lbq = NULL;
2874 /* Free the rx queue. */
2875 if (rx_ring->cq_base) {
2876 pci_free_consistent(qdev->pdev,
2877 rx_ring->cq_size,
2878 rx_ring->cq_base, rx_ring->cq_base_dma);
2879 rx_ring->cq_base = NULL;
2883 /* Allocate queues and buffers for this completions queue based
2884 * on the values in the parameter structure. */
2885 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2886 struct rx_ring *rx_ring)
2890 * Allocate the completion queue for this rx_ring.
2892 rx_ring->cq_base =
2893 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2894 &rx_ring->cq_base_dma);
2896 if (rx_ring->cq_base == NULL) {
2897 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2898 return -ENOMEM;
2901 if (rx_ring->sbq_len) {
2903 * Allocate small buffer queue.
2905 rx_ring->sbq_base =
2906 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2907 &rx_ring->sbq_base_dma);
2909 if (rx_ring->sbq_base == NULL) {
2910 netif_err(qdev, ifup, qdev->ndev,
2911 "Small buffer queue allocation failed.\n");
2912 goto err_mem;
2916 * Allocate small buffer queue control blocks.
2918 rx_ring->sbq =
2919 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2920 GFP_KERNEL);
2921 if (rx_ring->sbq == NULL) {
2922 netif_err(qdev, ifup, qdev->ndev,
2923 "Small buffer queue control block allocation failed.\n");
2924 goto err_mem;
2927 ql_init_sbq_ring(qdev, rx_ring);
2930 if (rx_ring->lbq_len) {
2932 * Allocate large buffer queue.
2934 rx_ring->lbq_base =
2935 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2936 &rx_ring->lbq_base_dma);
2938 if (rx_ring->lbq_base == NULL) {
2939 netif_err(qdev, ifup, qdev->ndev,
2940 "Large buffer queue allocation failed.\n");
2941 goto err_mem;
2944 * Allocate large buffer queue control blocks.
2946 rx_ring->lbq =
2947 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2948 GFP_KERNEL);
2949 if (rx_ring->lbq == NULL) {
2950 netif_err(qdev, ifup, qdev->ndev,
2951 "Large buffer queue control block allocation failed.\n");
2952 goto err_mem;
2955 ql_init_lbq_ring(qdev, rx_ring);
2958 return 0;
2960 err_mem:
2961 ql_free_rx_resources(qdev, rx_ring);
2962 return -ENOMEM;
2965 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2967 struct tx_ring *tx_ring;
2968 struct tx_ring_desc *tx_ring_desc;
2969 int i, j;
2972 * Loop through all queues and free
2973 * any resources.
2975 for (j = 0; j < qdev->tx_ring_count; j++) {
2976 tx_ring = &qdev->tx_ring[j];
2977 for (i = 0; i < tx_ring->wq_len; i++) {
2978 tx_ring_desc = &tx_ring->q[i];
2979 if (tx_ring_desc && tx_ring_desc->skb) {
2980 netif_err(qdev, ifdown, qdev->ndev,
2981 "Freeing lost SKB %p, from queue %d, index %d.\n",
2982 tx_ring_desc->skb, j,
2983 tx_ring_desc->index);
2984 ql_unmap_send(qdev, tx_ring_desc,
2985 tx_ring_desc->map_cnt);
2986 dev_kfree_skb(tx_ring_desc->skb);
2987 tx_ring_desc->skb = NULL;
2993 static void ql_free_mem_resources(struct ql_adapter *qdev)
2995 int i;
2997 for (i = 0; i < qdev->tx_ring_count; i++)
2998 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2999 for (i = 0; i < qdev->rx_ring_count; i++)
3000 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3001 ql_free_shadow_space(qdev);
3004 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3006 int i;
3008 /* Allocate space for our shadow registers and such. */
3009 if (ql_alloc_shadow_space(qdev))
3010 return -ENOMEM;
3012 for (i = 0; i < qdev->rx_ring_count; i++) {
3013 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3014 netif_err(qdev, ifup, qdev->ndev,
3015 "RX resource allocation failed.\n");
3016 goto err_mem;
3019 /* Allocate tx queue resources */
3020 for (i = 0; i < qdev->tx_ring_count; i++) {
3021 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3022 netif_err(qdev, ifup, qdev->ndev,
3023 "TX resource allocation failed.\n");
3024 goto err_mem;
3027 return 0;
3029 err_mem:
3030 ql_free_mem_resources(qdev);
3031 return -ENOMEM;
3034 /* Set up the rx ring control block and pass it to the chip.
3035 * The control block is defined as
3036 * "Completion Queue Initialization Control Block", or cqicb.
3038 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3040 struct cqicb *cqicb = &rx_ring->cqicb;
3041 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3042 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3043 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3044 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3045 void __iomem *doorbell_area =
3046 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3047 int err = 0;
3048 u16 bq_len;
3049 u64 tmp;
3050 __le64 *base_indirect_ptr;
3051 int page_entries;
3053 /* Set up the shadow registers for this ring. */
3054 rx_ring->prod_idx_sh_reg = shadow_reg;
3055 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3056 *rx_ring->prod_idx_sh_reg = 0;
3057 shadow_reg += sizeof(u64);
3058 shadow_reg_dma += sizeof(u64);
3059 rx_ring->lbq_base_indirect = shadow_reg;
3060 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3061 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3062 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3063 rx_ring->sbq_base_indirect = shadow_reg;
3064 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3066 /* PCI doorbell mem area + 0x00 for consumer index register */
3067 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3068 rx_ring->cnsmr_idx = 0;
3069 rx_ring->curr_entry = rx_ring->cq_base;
3071 /* PCI doorbell mem area + 0x04 for valid register */
3072 rx_ring->valid_db_reg = doorbell_area + 0x04;
3074 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3075 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3077 /* PCI doorbell mem area + 0x1c */
3078 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3080 memset((void *)cqicb, 0, sizeof(struct cqicb));
3081 cqicb->msix_vect = rx_ring->irq;
3083 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3084 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3086 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3088 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3091 * Set up the control block load flags.
3093 cqicb->flags = FLAGS_LC | /* Load queue base address */
3094 FLAGS_LV | /* Load MSI-X vector */
3095 FLAGS_LI; /* Load irq delay values */
3096 if (rx_ring->lbq_len) {
3097 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3098 tmp = (u64)rx_ring->lbq_base_dma;
3099 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
3100 page_entries = 0;
3101 do {
3102 *base_indirect_ptr = cpu_to_le64(tmp);
3103 tmp += DB_PAGE_SIZE;
3104 base_indirect_ptr++;
3105 page_entries++;
3106 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3107 cqicb->lbq_addr =
3108 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3109 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3110 (u16) rx_ring->lbq_buf_size;
3111 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3112 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3113 (u16) rx_ring->lbq_len;
3114 cqicb->lbq_len = cpu_to_le16(bq_len);
3115 rx_ring->lbq_prod_idx = 0;
3116 rx_ring->lbq_curr_idx = 0;
3117 rx_ring->lbq_clean_idx = 0;
3118 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3120 if (rx_ring->sbq_len) {
3121 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3122 tmp = (u64)rx_ring->sbq_base_dma;
3123 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
3124 page_entries = 0;
3125 do {
3126 *base_indirect_ptr = cpu_to_le64(tmp);
3127 tmp += DB_PAGE_SIZE;
3128 base_indirect_ptr++;
3129 page_entries++;
3130 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3131 cqicb->sbq_addr =
3132 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3133 cqicb->sbq_buf_size =
3134 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3135 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3136 (u16) rx_ring->sbq_len;
3137 cqicb->sbq_len = cpu_to_le16(bq_len);
3138 rx_ring->sbq_prod_idx = 0;
3139 rx_ring->sbq_curr_idx = 0;
3140 rx_ring->sbq_clean_idx = 0;
3141 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3143 switch (rx_ring->type) {
3144 case TX_Q:
3145 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3146 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3147 break;
3148 case RX_Q:
3149 /* Inbound completion handling rx_rings run in
3150 * separate NAPI contexts.
3152 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3153 64);
3154 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3155 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3156 break;
3157 default:
3158 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3159 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3161 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3162 "Initializing rx work queue.\n");
3163 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3164 CFG_LCQ, rx_ring->cq_id);
3165 if (err) {
3166 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3167 return err;
3169 return err;
3172 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3174 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3175 void __iomem *doorbell_area =
3176 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3177 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3178 (tx_ring->wq_id * sizeof(u64));
3179 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3180 (tx_ring->wq_id * sizeof(u64));
3181 int err = 0;
3184 * Assign doorbell registers for this tx_ring.
3186 /* TX PCI doorbell mem area for tx producer index */
3187 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3188 tx_ring->prod_idx = 0;
3189 /* TX PCI doorbell mem area + 0x04 */
3190 tx_ring->valid_db_reg = doorbell_area + 0x04;
3193 * Assign shadow registers for this tx_ring.
3195 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3196 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3198 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3199 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3200 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3201 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3202 wqicb->rid = 0;
3203 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3205 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3207 ql_init_tx_ring(qdev, tx_ring);
3209 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3210 (u16) tx_ring->wq_id);
3211 if (err) {
3212 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3213 return err;
3215 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3216 "Successfully loaded WQICB.\n");
3217 return err;
3220 static void ql_disable_msix(struct ql_adapter *qdev)
3222 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3223 pci_disable_msix(qdev->pdev);
3224 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3225 kfree(qdev->msi_x_entry);
3226 qdev->msi_x_entry = NULL;
3227 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3228 pci_disable_msi(qdev->pdev);
3229 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3233 /* We start by trying to get the number of vectors
3234 * stored in qdev->intr_count. If we don't get that
3235 * many then we reduce the count and try again.
3237 static void ql_enable_msix(struct ql_adapter *qdev)
3239 int i, err;
3241 /* Get the MSIX vectors. */
3242 if (qlge_irq_type == MSIX_IRQ) {
3243 /* Try to alloc space for the msix struct,
3244 * if it fails then go to MSI/legacy.
3246 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3247 sizeof(struct msix_entry),
3248 GFP_KERNEL);
3249 if (!qdev->msi_x_entry) {
3250 qlge_irq_type = MSI_IRQ;
3251 goto msi;
3254 for (i = 0; i < qdev->intr_count; i++)
3255 qdev->msi_x_entry[i].entry = i;
3257 /* Loop to get our vectors. We start with
3258 * what we want and settle for what we get.
3260 do {
3261 err = pci_enable_msix(qdev->pdev,
3262 qdev->msi_x_entry, qdev->intr_count);
3263 if (err > 0)
3264 qdev->intr_count = err;
3265 } while (err > 0);
3267 if (err < 0) {
3268 kfree(qdev->msi_x_entry);
3269 qdev->msi_x_entry = NULL;
3270 netif_warn(qdev, ifup, qdev->ndev,
3271 "MSI-X Enable failed, trying MSI.\n");
3272 qdev->intr_count = 1;
3273 qlge_irq_type = MSI_IRQ;
3274 } else if (err == 0) {
3275 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3276 netif_info(qdev, ifup, qdev->ndev,
3277 "MSI-X Enabled, got %d vectors.\n",
3278 qdev->intr_count);
3279 return;
3282 msi:
3283 qdev->intr_count = 1;
3284 if (qlge_irq_type == MSI_IRQ) {
3285 if (!pci_enable_msi(qdev->pdev)) {
3286 set_bit(QL_MSI_ENABLED, &qdev->flags);
3287 netif_info(qdev, ifup, qdev->ndev,
3288 "Running with MSI interrupts.\n");
3289 return;
3292 qlge_irq_type = LEG_IRQ;
3293 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3294 "Running with legacy interrupts.\n");
3297 /* Each vector services 1 RSS ring and and 1 or more
3298 * TX completion rings. This function loops through
3299 * the TX completion rings and assigns the vector that
3300 * will service it. An example would be if there are
3301 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3302 * This would mean that vector 0 would service RSS ring 0
3303 * and TX completion rings 0,1,2 and 3. Vector 1 would
3304 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3306 static void ql_set_tx_vect(struct ql_adapter *qdev)
3308 int i, j, vect;
3309 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3311 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3312 /* Assign irq vectors to TX rx_rings.*/
3313 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3314 i < qdev->rx_ring_count; i++) {
3315 if (j == tx_rings_per_vector) {
3316 vect++;
3317 j = 0;
3319 qdev->rx_ring[i].irq = vect;
3320 j++;
3322 } else {
3323 /* For single vector all rings have an irq
3324 * of zero.
3326 for (i = 0; i < qdev->rx_ring_count; i++)
3327 qdev->rx_ring[i].irq = 0;
3331 /* Set the interrupt mask for this vector. Each vector
3332 * will service 1 RSS ring and 1 or more TX completion
3333 * rings. This function sets up a bit mask per vector
3334 * that indicates which rings it services.
3336 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3338 int j, vect = ctx->intr;
3339 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3341 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3342 /* Add the RSS ring serviced by this vector
3343 * to the mask.
3345 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3346 /* Add the TX ring(s) serviced by this vector
3347 * to the mask. */
3348 for (j = 0; j < tx_rings_per_vector; j++) {
3349 ctx->irq_mask |=
3350 (1 << qdev->rx_ring[qdev->rss_ring_count +
3351 (vect * tx_rings_per_vector) + j].cq_id);
3353 } else {
3354 /* For single vector we just shift each queue's
3355 * ID into the mask.
3357 for (j = 0; j < qdev->rx_ring_count; j++)
3358 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3363 * Here we build the intr_context structures based on
3364 * our rx_ring count and intr vector count.
3365 * The intr_context structure is used to hook each vector
3366 * to possibly different handlers.
3368 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3370 int i = 0;
3371 struct intr_context *intr_context = &qdev->intr_context[0];
3373 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3374 /* Each rx_ring has it's
3375 * own intr_context since we have separate
3376 * vectors for each queue.
3378 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3379 qdev->rx_ring[i].irq = i;
3380 intr_context->intr = i;
3381 intr_context->qdev = qdev;
3382 /* Set up this vector's bit-mask that indicates
3383 * which queues it services.
3385 ql_set_irq_mask(qdev, intr_context);
3387 * We set up each vectors enable/disable/read bits so
3388 * there's no bit/mask calculations in the critical path.
3390 intr_context->intr_en_mask =
3391 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3392 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3393 | i;
3394 intr_context->intr_dis_mask =
3395 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3396 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3397 INTR_EN_IHD | i;
3398 intr_context->intr_read_mask =
3399 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3400 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3402 if (i == 0) {
3403 /* The first vector/queue handles
3404 * broadcast/multicast, fatal errors,
3405 * and firmware events. This in addition
3406 * to normal inbound NAPI processing.
3408 intr_context->handler = qlge_isr;
3409 sprintf(intr_context->name, "%s-rx-%d",
3410 qdev->ndev->name, i);
3411 } else {
3413 * Inbound queues handle unicast frames only.
3415 intr_context->handler = qlge_msix_rx_isr;
3416 sprintf(intr_context->name, "%s-rx-%d",
3417 qdev->ndev->name, i);
3420 } else {
3422 * All rx_rings use the same intr_context since
3423 * there is only one vector.
3425 intr_context->intr = 0;
3426 intr_context->qdev = qdev;
3428 * We set up each vectors enable/disable/read bits so
3429 * there's no bit/mask calculations in the critical path.
3431 intr_context->intr_en_mask =
3432 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3433 intr_context->intr_dis_mask =
3434 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3435 INTR_EN_TYPE_DISABLE;
3436 intr_context->intr_read_mask =
3437 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3439 * Single interrupt means one handler for all rings.
3441 intr_context->handler = qlge_isr;
3442 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3443 /* Set up this vector's bit-mask that indicates
3444 * which queues it services. In this case there is
3445 * a single vector so it will service all RSS and
3446 * TX completion rings.
3448 ql_set_irq_mask(qdev, intr_context);
3450 /* Tell the TX completion rings which MSIx vector
3451 * they will be using.
3453 ql_set_tx_vect(qdev);
3456 static void ql_free_irq(struct ql_adapter *qdev)
3458 int i;
3459 struct intr_context *intr_context = &qdev->intr_context[0];
3461 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3462 if (intr_context->hooked) {
3463 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3464 free_irq(qdev->msi_x_entry[i].vector,
3465 &qdev->rx_ring[i]);
3466 netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
3467 "freeing msix interrupt %d.\n", i);
3468 } else {
3469 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3470 netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
3471 "freeing msi interrupt %d.\n", i);
3475 ql_disable_msix(qdev);
3478 static int ql_request_irq(struct ql_adapter *qdev)
3480 int i;
3481 int status = 0;
3482 struct pci_dev *pdev = qdev->pdev;
3483 struct intr_context *intr_context = &qdev->intr_context[0];
3485 ql_resolve_queues_to_irqs(qdev);
3487 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3488 atomic_set(&intr_context->irq_cnt, 0);
3489 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3490 status = request_irq(qdev->msi_x_entry[i].vector,
3491 intr_context->handler,
3493 intr_context->name,
3494 &qdev->rx_ring[i]);
3495 if (status) {
3496 netif_err(qdev, ifup, qdev->ndev,
3497 "Failed request for MSIX interrupt %d.\n",
3499 goto err_irq;
3500 } else {
3501 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3502 "Hooked intr %d, queue type %s, with name %s.\n",
3504 qdev->rx_ring[i].type == DEFAULT_Q ?
3505 "DEFAULT_Q" :
3506 qdev->rx_ring[i].type == TX_Q ?
3507 "TX_Q" :
3508 qdev->rx_ring[i].type == RX_Q ?
3509 "RX_Q" : "",
3510 intr_context->name);
3512 } else {
3513 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3514 "trying msi or legacy interrupts.\n");
3515 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3516 "%s: irq = %d.\n", __func__, pdev->irq);
3517 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3518 "%s: context->name = %s.\n", __func__,
3519 intr_context->name);
3520 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3521 "%s: dev_id = 0x%p.\n", __func__,
3522 &qdev->rx_ring[0]);
3523 status =
3524 request_irq(pdev->irq, qlge_isr,
3525 test_bit(QL_MSI_ENABLED,
3526 &qdev->
3527 flags) ? 0 : IRQF_SHARED,
3528 intr_context->name, &qdev->rx_ring[0]);
3529 if (status)
3530 goto err_irq;
3532 netif_err(qdev, ifup, qdev->ndev,
3533 "Hooked intr %d, queue type %s, with name %s.\n",
3535 qdev->rx_ring[0].type == DEFAULT_Q ?
3536 "DEFAULT_Q" :
3537 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3538 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3539 intr_context->name);
3541 intr_context->hooked = 1;
3543 return status;
3544 err_irq:
3545 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3546 ql_free_irq(qdev);
3547 return status;
3550 static int ql_start_rss(struct ql_adapter *qdev)
3552 static const u8 init_hash_seed[] = {
3553 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3554 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3555 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3556 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3557 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3559 struct ricb *ricb = &qdev->ricb;
3560 int status = 0;
3561 int i;
3562 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3564 memset((void *)ricb, 0, sizeof(*ricb));
3566 ricb->base_cq = RSS_L4K;
3567 ricb->flags =
3568 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3569 ricb->mask = cpu_to_le16((u16)(0x3ff));
3572 * Fill out the Indirection Table.
3574 for (i = 0; i < 1024; i++)
3575 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3577 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3578 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3580 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
3582 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3583 if (status) {
3584 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3585 return status;
3587 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3588 "Successfully loaded RICB.\n");
3589 return status;
3592 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3594 int i, status = 0;
3596 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3597 if (status)
3598 return status;
3599 /* Clear all the entries in the routing table. */
3600 for (i = 0; i < 16; i++) {
3601 status = ql_set_routing_reg(qdev, i, 0, 0);
3602 if (status) {
3603 netif_err(qdev, ifup, qdev->ndev,
3604 "Failed to init routing register for CAM packets.\n");
3605 break;
3608 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3609 return status;
3612 /* Initialize the frame-to-queue routing. */
3613 static int ql_route_initialize(struct ql_adapter *qdev)
3615 int status = 0;
3617 /* Clear all the entries in the routing table. */
3618 status = ql_clear_routing_entries(qdev);
3619 if (status)
3620 return status;
3622 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3623 if (status)
3624 return status;
3626 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3627 RT_IDX_IP_CSUM_ERR, 1);
3628 if (status) {
3629 netif_err(qdev, ifup, qdev->ndev,
3630 "Failed to init routing register "
3631 "for IP CSUM error packets.\n");
3632 goto exit;
3634 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3635 RT_IDX_TU_CSUM_ERR, 1);
3636 if (status) {
3637 netif_err(qdev, ifup, qdev->ndev,
3638 "Failed to init routing register "
3639 "for TCP/UDP CSUM error packets.\n");
3640 goto exit;
3642 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3643 if (status) {
3644 netif_err(qdev, ifup, qdev->ndev,
3645 "Failed to init routing register for broadcast packets.\n");
3646 goto exit;
3648 /* If we have more than one inbound queue, then turn on RSS in the
3649 * routing block.
3651 if (qdev->rss_ring_count > 1) {
3652 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3653 RT_IDX_RSS_MATCH, 1);
3654 if (status) {
3655 netif_err(qdev, ifup, qdev->ndev,
3656 "Failed to init routing register for MATCH RSS packets.\n");
3657 goto exit;
3661 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3662 RT_IDX_CAM_HIT, 1);
3663 if (status)
3664 netif_err(qdev, ifup, qdev->ndev,
3665 "Failed to init routing register for CAM packets.\n");
3666 exit:
3667 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3668 return status;
3671 int ql_cam_route_initialize(struct ql_adapter *qdev)
3673 int status, set;
3675 /* If check if the link is up and use to
3676 * determine if we are setting or clearing
3677 * the MAC address in the CAM.
3679 set = ql_read32(qdev, STS);
3680 set &= qdev->port_link_up;
3681 status = ql_set_mac_addr(qdev, set);
3682 if (status) {
3683 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3684 return status;
3687 status = ql_route_initialize(qdev);
3688 if (status)
3689 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3691 return status;
3694 static int ql_adapter_initialize(struct ql_adapter *qdev)
3696 u32 value, mask;
3697 int i;
3698 int status = 0;
3701 * Set up the System register to halt on errors.
3703 value = SYS_EFE | SYS_FAE;
3704 mask = value << 16;
3705 ql_write32(qdev, SYS, mask | value);
3707 /* Set the default queue, and VLAN behavior. */
3708 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3709 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3710 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3712 /* Set the MPI interrupt to enabled. */
3713 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3715 /* Enable the function, set pagesize, enable error checking. */
3716 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3717 FSC_EC | FSC_VM_PAGE_4K;
3718 value |= SPLT_SETTING;
3720 /* Set/clear header splitting. */
3721 mask = FSC_VM_PAGESIZE_MASK |
3722 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3723 ql_write32(qdev, FSC, mask | value);
3725 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3727 /* Set RX packet routing to use port/pci function on which the
3728 * packet arrived on in addition to usual frame routing.
3729 * This is helpful on bonding where both interfaces can have
3730 * the same MAC address.
3732 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3733 /* Reroute all packets to our Interface.
3734 * They may have been routed to MPI firmware
3735 * due to WOL.
3737 value = ql_read32(qdev, MGMT_RCV_CFG);
3738 value &= ~MGMT_RCV_CFG_RM;
3739 mask = 0xffff0000;
3741 /* Sticky reg needs clearing due to WOL. */
3742 ql_write32(qdev, MGMT_RCV_CFG, mask);
3743 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3745 /* Default WOL is enable on Mezz cards */
3746 if (qdev->pdev->subsystem_device == 0x0068 ||
3747 qdev->pdev->subsystem_device == 0x0180)
3748 qdev->wol = WAKE_MAGIC;
3750 /* Start up the rx queues. */
3751 for (i = 0; i < qdev->rx_ring_count; i++) {
3752 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3753 if (status) {
3754 netif_err(qdev, ifup, qdev->ndev,
3755 "Failed to start rx ring[%d].\n", i);
3756 return status;
3760 /* If there is more than one inbound completion queue
3761 * then download a RICB to configure RSS.
3763 if (qdev->rss_ring_count > 1) {
3764 status = ql_start_rss(qdev);
3765 if (status) {
3766 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3767 return status;
3771 /* Start up the tx queues. */
3772 for (i = 0; i < qdev->tx_ring_count; i++) {
3773 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3774 if (status) {
3775 netif_err(qdev, ifup, qdev->ndev,
3776 "Failed to start tx ring[%d].\n", i);
3777 return status;
3781 /* Initialize the port and set the max framesize. */
3782 status = qdev->nic_ops->port_initialize(qdev);
3783 if (status)
3784 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3786 /* Set up the MAC address and frame routing filter. */
3787 status = ql_cam_route_initialize(qdev);
3788 if (status) {
3789 netif_err(qdev, ifup, qdev->ndev,
3790 "Failed to init CAM/Routing tables.\n");
3791 return status;
3794 /* Start NAPI for the RSS queues. */
3795 for (i = 0; i < qdev->rss_ring_count; i++) {
3796 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3797 "Enabling NAPI for rx_ring[%d].\n", i);
3798 napi_enable(&qdev->rx_ring[i].napi);
3801 return status;
3804 /* Issue soft reset to chip. */
3805 static int ql_adapter_reset(struct ql_adapter *qdev)
3807 u32 value;
3808 int status = 0;
3809 unsigned long end_jiffies;
3811 /* Clear all the entries in the routing table. */
3812 status = ql_clear_routing_entries(qdev);
3813 if (status) {
3814 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3815 return status;
3818 end_jiffies = jiffies +
3819 max((unsigned long)1, usecs_to_jiffies(30));
3821 /* Stop management traffic. */
3822 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3824 /* Wait for the NIC and MGMNT FIFOs to empty. */
3825 ql_wait_fifo_empty(qdev);
3827 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3829 do {
3830 value = ql_read32(qdev, RST_FO);
3831 if ((value & RST_FO_FR) == 0)
3832 break;
3833 cpu_relax();
3834 } while (time_before(jiffies, end_jiffies));
3836 if (value & RST_FO_FR) {
3837 netif_err(qdev, ifdown, qdev->ndev,
3838 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3839 status = -ETIMEDOUT;
3842 /* Resume management traffic. */
3843 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3844 return status;
3847 static void ql_display_dev_info(struct net_device *ndev)
3849 struct ql_adapter *qdev = netdev_priv(ndev);
3851 netif_info(qdev, probe, qdev->ndev,
3852 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3853 "XG Roll = %d, XG Rev = %d.\n",
3854 qdev->func,
3855 qdev->port,
3856 qdev->chip_rev_id & 0x0000000f,
3857 qdev->chip_rev_id >> 4 & 0x0000000f,
3858 qdev->chip_rev_id >> 8 & 0x0000000f,
3859 qdev->chip_rev_id >> 12 & 0x0000000f);
3860 netif_info(qdev, probe, qdev->ndev,
3861 "MAC address %pM\n", ndev->dev_addr);
3864 static int ql_wol(struct ql_adapter *qdev)
3866 int status = 0;
3867 u32 wol = MB_WOL_DISABLE;
3869 /* The CAM is still intact after a reset, but if we
3870 * are doing WOL, then we may need to program the
3871 * routing regs. We would also need to issue the mailbox
3872 * commands to instruct the MPI what to do per the ethtool
3873 * settings.
3876 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3877 WAKE_MCAST | WAKE_BCAST)) {
3878 netif_err(qdev, ifdown, qdev->ndev,
3879 "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
3880 qdev->wol);
3881 return -EINVAL;
3884 if (qdev->wol & WAKE_MAGIC) {
3885 status = ql_mb_wol_set_magic(qdev, 1);
3886 if (status) {
3887 netif_err(qdev, ifdown, qdev->ndev,
3888 "Failed to set magic packet on %s.\n",
3889 qdev->ndev->name);
3890 return status;
3891 } else
3892 netif_info(qdev, drv, qdev->ndev,
3893 "Enabled magic packet successfully on %s.\n",
3894 qdev->ndev->name);
3896 wol |= MB_WOL_MAGIC_PKT;
3899 if (qdev->wol) {
3900 wol |= MB_WOL_MODE_ON;
3901 status = ql_mb_wol_mode(qdev, wol);
3902 netif_err(qdev, drv, qdev->ndev,
3903 "WOL %s (wol code 0x%x) on %s\n",
3904 (status == 0) ? "Successfully set" : "Failed",
3905 wol, qdev->ndev->name);
3908 return status;
3911 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3914 /* Don't kill the reset worker thread if we
3915 * are in the process of recovery.
3917 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3918 cancel_delayed_work_sync(&qdev->asic_reset_work);
3919 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3920 cancel_delayed_work_sync(&qdev->mpi_work);
3921 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3922 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3923 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3926 static int ql_adapter_down(struct ql_adapter *qdev)
3928 int i, status = 0;
3930 ql_link_off(qdev);
3932 ql_cancel_all_work_sync(qdev);
3934 for (i = 0; i < qdev->rss_ring_count; i++)
3935 napi_disable(&qdev->rx_ring[i].napi);
3937 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3939 ql_disable_interrupts(qdev);
3941 ql_tx_ring_clean(qdev);
3943 /* Call netif_napi_del() from common point.
3945 for (i = 0; i < qdev->rss_ring_count; i++)
3946 netif_napi_del(&qdev->rx_ring[i].napi);
3948 status = ql_adapter_reset(qdev);
3949 if (status)
3950 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3951 qdev->func);
3952 ql_free_rx_buffers(qdev);
3954 return status;
3957 static int ql_adapter_up(struct ql_adapter *qdev)
3959 int err = 0;
3961 err = ql_adapter_initialize(qdev);
3962 if (err) {
3963 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3964 goto err_init;
3966 set_bit(QL_ADAPTER_UP, &qdev->flags);
3967 ql_alloc_rx_buffers(qdev);
3968 /* If the port is initialized and the
3969 * link is up the turn on the carrier.
3971 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3972 (ql_read32(qdev, STS) & qdev->port_link_up))
3973 ql_link_on(qdev);
3974 /* Restore rx mode. */
3975 clear_bit(QL_ALLMULTI, &qdev->flags);
3976 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3977 qlge_set_multicast_list(qdev->ndev);
3979 /* Restore vlan setting. */
3980 qlge_restore_vlan(qdev);
3982 ql_enable_interrupts(qdev);
3983 ql_enable_all_completion_interrupts(qdev);
3984 netif_tx_start_all_queues(qdev->ndev);
3986 return 0;
3987 err_init:
3988 ql_adapter_reset(qdev);
3989 return err;
3992 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3994 ql_free_mem_resources(qdev);
3995 ql_free_irq(qdev);
3998 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4000 int status = 0;
4002 if (ql_alloc_mem_resources(qdev)) {
4003 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4004 return -ENOMEM;
4006 status = ql_request_irq(qdev);
4007 return status;
4010 static int qlge_close(struct net_device *ndev)
4012 struct ql_adapter *qdev = netdev_priv(ndev);
4014 /* If we hit pci_channel_io_perm_failure
4015 * failure condition, then we already
4016 * brought the adapter down.
4018 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4019 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4020 clear_bit(QL_EEH_FATAL, &qdev->flags);
4021 return 0;
4025 * Wait for device to recover from a reset.
4026 * (Rarely happens, but possible.)
4028 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4029 msleep(1);
4030 ql_adapter_down(qdev);
4031 ql_release_adapter_resources(qdev);
4032 return 0;
4035 static int ql_configure_rings(struct ql_adapter *qdev)
4037 int i;
4038 struct rx_ring *rx_ring;
4039 struct tx_ring *tx_ring;
4040 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4041 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4042 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4044 qdev->lbq_buf_order = get_order(lbq_buf_len);
4046 /* In a perfect world we have one RSS ring for each CPU
4047 * and each has it's own vector. To do that we ask for
4048 * cpu_cnt vectors. ql_enable_msix() will adjust the
4049 * vector count to what we actually get. We then
4050 * allocate an RSS ring for each.
4051 * Essentially, we are doing min(cpu_count, msix_vector_count).
4053 qdev->intr_count = cpu_cnt;
4054 ql_enable_msix(qdev);
4055 /* Adjust the RSS ring count to the actual vector count. */
4056 qdev->rss_ring_count = qdev->intr_count;
4057 qdev->tx_ring_count = cpu_cnt;
4058 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4060 for (i = 0; i < qdev->tx_ring_count; i++) {
4061 tx_ring = &qdev->tx_ring[i];
4062 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4063 tx_ring->qdev = qdev;
4064 tx_ring->wq_id = i;
4065 tx_ring->wq_len = qdev->tx_ring_size;
4066 tx_ring->wq_size =
4067 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4070 * The completion queue ID for the tx rings start
4071 * immediately after the rss rings.
4073 tx_ring->cq_id = qdev->rss_ring_count + i;
4076 for (i = 0; i < qdev->rx_ring_count; i++) {
4077 rx_ring = &qdev->rx_ring[i];
4078 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4079 rx_ring->qdev = qdev;
4080 rx_ring->cq_id = i;
4081 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4082 if (i < qdev->rss_ring_count) {
4084 * Inbound (RSS) queues.
4086 rx_ring->cq_len = qdev->rx_ring_size;
4087 rx_ring->cq_size =
4088 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4089 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4090 rx_ring->lbq_size =
4091 rx_ring->lbq_len * sizeof(__le64);
4092 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4093 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
4094 "lbq_buf_size %d, order = %d\n",
4095 rx_ring->lbq_buf_size,
4096 qdev->lbq_buf_order);
4097 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4098 rx_ring->sbq_size =
4099 rx_ring->sbq_len * sizeof(__le64);
4100 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4101 rx_ring->type = RX_Q;
4102 } else {
4104 * Outbound queue handles outbound completions only.
4106 /* outbound cq is same size as tx_ring it services. */
4107 rx_ring->cq_len = qdev->tx_ring_size;
4108 rx_ring->cq_size =
4109 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4110 rx_ring->lbq_len = 0;
4111 rx_ring->lbq_size = 0;
4112 rx_ring->lbq_buf_size = 0;
4113 rx_ring->sbq_len = 0;
4114 rx_ring->sbq_size = 0;
4115 rx_ring->sbq_buf_size = 0;
4116 rx_ring->type = TX_Q;
4119 return 0;
4122 static int qlge_open(struct net_device *ndev)
4124 int err = 0;
4125 struct ql_adapter *qdev = netdev_priv(ndev);
4127 err = ql_adapter_reset(qdev);
4128 if (err)
4129 return err;
4131 err = ql_configure_rings(qdev);
4132 if (err)
4133 return err;
4135 err = ql_get_adapter_resources(qdev);
4136 if (err)
4137 goto error_up;
4139 err = ql_adapter_up(qdev);
4140 if (err)
4141 goto error_up;
4143 return err;
4145 error_up:
4146 ql_release_adapter_resources(qdev);
4147 return err;
4150 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4152 struct rx_ring *rx_ring;
4153 int i, status;
4154 u32 lbq_buf_len;
4156 /* Wait for an outstanding reset to complete. */
4157 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4158 int i = 3;
4159 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4160 netif_err(qdev, ifup, qdev->ndev,
4161 "Waiting for adapter UP...\n");
4162 ssleep(1);
4165 if (!i) {
4166 netif_err(qdev, ifup, qdev->ndev,
4167 "Timed out waiting for adapter UP\n");
4168 return -ETIMEDOUT;
4172 status = ql_adapter_down(qdev);
4173 if (status)
4174 goto error;
4176 /* Get the new rx buffer size. */
4177 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4178 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4179 qdev->lbq_buf_order = get_order(lbq_buf_len);
4181 for (i = 0; i < qdev->rss_ring_count; i++) {
4182 rx_ring = &qdev->rx_ring[i];
4183 /* Set the new size. */
4184 rx_ring->lbq_buf_size = lbq_buf_len;
4187 status = ql_adapter_up(qdev);
4188 if (status)
4189 goto error;
4191 return status;
4192 error:
4193 netif_alert(qdev, ifup, qdev->ndev,
4194 "Driver up/down cycle failed, closing device.\n");
4195 set_bit(QL_ADAPTER_UP, &qdev->flags);
4196 dev_close(qdev->ndev);
4197 return status;
4200 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4202 struct ql_adapter *qdev = netdev_priv(ndev);
4203 int status;
4205 if (ndev->mtu == 1500 && new_mtu == 9000) {
4206 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4207 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4208 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4209 } else
4210 return -EINVAL;
4212 queue_delayed_work(qdev->workqueue,
4213 &qdev->mpi_port_cfg_work, 3*HZ);
4215 ndev->mtu = new_mtu;
4217 if (!netif_running(qdev->ndev)) {
4218 return 0;
4221 status = ql_change_rx_buffers(qdev);
4222 if (status) {
4223 netif_err(qdev, ifup, qdev->ndev,
4224 "Changing MTU failed.\n");
4227 return status;
4230 static struct net_device_stats *qlge_get_stats(struct net_device
4231 *ndev)
4233 struct ql_adapter *qdev = netdev_priv(ndev);
4234 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4235 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4236 unsigned long pkts, mcast, dropped, errors, bytes;
4237 int i;
4239 /* Get RX stats. */
4240 pkts = mcast = dropped = errors = bytes = 0;
4241 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4242 pkts += rx_ring->rx_packets;
4243 bytes += rx_ring->rx_bytes;
4244 dropped += rx_ring->rx_dropped;
4245 errors += rx_ring->rx_errors;
4246 mcast += rx_ring->rx_multicast;
4248 ndev->stats.rx_packets = pkts;
4249 ndev->stats.rx_bytes = bytes;
4250 ndev->stats.rx_dropped = dropped;
4251 ndev->stats.rx_errors = errors;
4252 ndev->stats.multicast = mcast;
4254 /* Get TX stats. */
4255 pkts = errors = bytes = 0;
4256 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4257 pkts += tx_ring->tx_packets;
4258 bytes += tx_ring->tx_bytes;
4259 errors += tx_ring->tx_errors;
4261 ndev->stats.tx_packets = pkts;
4262 ndev->stats.tx_bytes = bytes;
4263 ndev->stats.tx_errors = errors;
4264 return &ndev->stats;
4267 static void qlge_set_multicast_list(struct net_device *ndev)
4269 struct ql_adapter *qdev = netdev_priv(ndev);
4270 struct netdev_hw_addr *ha;
4271 int i, status;
4273 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4274 if (status)
4275 return;
4277 * Set or clear promiscuous mode if a
4278 * transition is taking place.
4280 if (ndev->flags & IFF_PROMISC) {
4281 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4282 if (ql_set_routing_reg
4283 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4284 netif_err(qdev, hw, qdev->ndev,
4285 "Failed to set promiscuous mode.\n");
4286 } else {
4287 set_bit(QL_PROMISCUOUS, &qdev->flags);
4290 } else {
4291 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4292 if (ql_set_routing_reg
4293 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4294 netif_err(qdev, hw, qdev->ndev,
4295 "Failed to clear promiscuous mode.\n");
4296 } else {
4297 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4303 * Set or clear all multicast mode if a
4304 * transition is taking place.
4306 if ((ndev->flags & IFF_ALLMULTI) ||
4307 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4308 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4309 if (ql_set_routing_reg
4310 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4311 netif_err(qdev, hw, qdev->ndev,
4312 "Failed to set all-multi mode.\n");
4313 } else {
4314 set_bit(QL_ALLMULTI, &qdev->flags);
4317 } else {
4318 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4319 if (ql_set_routing_reg
4320 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4321 netif_err(qdev, hw, qdev->ndev,
4322 "Failed to clear all-multi mode.\n");
4323 } else {
4324 clear_bit(QL_ALLMULTI, &qdev->flags);
4329 if (!netdev_mc_empty(ndev)) {
4330 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4331 if (status)
4332 goto exit;
4333 i = 0;
4334 netdev_for_each_mc_addr(ha, ndev) {
4335 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4336 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4337 netif_err(qdev, hw, qdev->ndev,
4338 "Failed to loadmulticast address.\n");
4339 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4340 goto exit;
4342 i++;
4344 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4345 if (ql_set_routing_reg
4346 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4347 netif_err(qdev, hw, qdev->ndev,
4348 "Failed to set multicast match mode.\n");
4349 } else {
4350 set_bit(QL_ALLMULTI, &qdev->flags);
4353 exit:
4354 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4357 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4359 struct ql_adapter *qdev = netdev_priv(ndev);
4360 struct sockaddr *addr = p;
4361 int status;
4363 if (!is_valid_ether_addr(addr->sa_data))
4364 return -EADDRNOTAVAIL;
4365 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4366 /* Update local copy of current mac address. */
4367 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4369 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4370 if (status)
4371 return status;
4372 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4373 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4374 if (status)
4375 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4376 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4377 return status;
4380 static void qlge_tx_timeout(struct net_device *ndev)
4382 struct ql_adapter *qdev = netdev_priv(ndev);
4383 ql_queue_asic_error(qdev);
4386 static void ql_asic_reset_work(struct work_struct *work)
4388 struct ql_adapter *qdev =
4389 container_of(work, struct ql_adapter, asic_reset_work.work);
4390 int status;
4391 rtnl_lock();
4392 status = ql_adapter_down(qdev);
4393 if (status)
4394 goto error;
4396 status = ql_adapter_up(qdev);
4397 if (status)
4398 goto error;
4400 /* Restore rx mode. */
4401 clear_bit(QL_ALLMULTI, &qdev->flags);
4402 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4403 qlge_set_multicast_list(qdev->ndev);
4405 rtnl_unlock();
4406 return;
4407 error:
4408 netif_alert(qdev, ifup, qdev->ndev,
4409 "Driver up/down cycle failed, closing device\n");
4411 set_bit(QL_ADAPTER_UP, &qdev->flags);
4412 dev_close(qdev->ndev);
4413 rtnl_unlock();
4416 static const struct nic_operations qla8012_nic_ops = {
4417 .get_flash = ql_get_8012_flash_params,
4418 .port_initialize = ql_8012_port_initialize,
4421 static const struct nic_operations qla8000_nic_ops = {
4422 .get_flash = ql_get_8000_flash_params,
4423 .port_initialize = ql_8000_port_initialize,
4426 /* Find the pcie function number for the other NIC
4427 * on this chip. Since both NIC functions share a
4428 * common firmware we have the lowest enabled function
4429 * do any common work. Examples would be resetting
4430 * after a fatal firmware error, or doing a firmware
4431 * coredump.
4433 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4435 int status = 0;
4436 u32 temp;
4437 u32 nic_func1, nic_func2;
4439 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4440 &temp);
4441 if (status)
4442 return status;
4444 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4445 MPI_TEST_NIC_FUNC_MASK);
4446 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4447 MPI_TEST_NIC_FUNC_MASK);
4449 if (qdev->func == nic_func1)
4450 qdev->alt_func = nic_func2;
4451 else if (qdev->func == nic_func2)
4452 qdev->alt_func = nic_func1;
4453 else
4454 status = -EIO;
4456 return status;
4459 static int ql_get_board_info(struct ql_adapter *qdev)
4461 int status;
4462 qdev->func =
4463 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4464 if (qdev->func > 3)
4465 return -EIO;
4467 status = ql_get_alt_pcie_func(qdev);
4468 if (status)
4469 return status;
4471 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4472 if (qdev->port) {
4473 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4474 qdev->port_link_up = STS_PL1;
4475 qdev->port_init = STS_PI1;
4476 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4477 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4478 } else {
4479 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4480 qdev->port_link_up = STS_PL0;
4481 qdev->port_init = STS_PI0;
4482 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4483 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4485 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4486 qdev->device_id = qdev->pdev->device;
4487 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4488 qdev->nic_ops = &qla8012_nic_ops;
4489 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4490 qdev->nic_ops = &qla8000_nic_ops;
4491 return status;
4494 static void ql_release_all(struct pci_dev *pdev)
4496 struct net_device *ndev = pci_get_drvdata(pdev);
4497 struct ql_adapter *qdev = netdev_priv(ndev);
4499 if (qdev->workqueue) {
4500 destroy_workqueue(qdev->workqueue);
4501 qdev->workqueue = NULL;
4504 if (qdev->reg_base)
4505 iounmap(qdev->reg_base);
4506 if (qdev->doorbell_area)
4507 iounmap(qdev->doorbell_area);
4508 vfree(qdev->mpi_coredump);
4509 pci_release_regions(pdev);
4510 pci_set_drvdata(pdev, NULL);
4513 static int __devinit ql_init_device(struct pci_dev *pdev,
4514 struct net_device *ndev, int cards_found)
4516 struct ql_adapter *qdev = netdev_priv(ndev);
4517 int err = 0;
4519 memset((void *)qdev, 0, sizeof(*qdev));
4520 err = pci_enable_device(pdev);
4521 if (err) {
4522 dev_err(&pdev->dev, "PCI device enable failed.\n");
4523 return err;
4526 qdev->ndev = ndev;
4527 qdev->pdev = pdev;
4528 pci_set_drvdata(pdev, ndev);
4530 /* Set PCIe read request size */
4531 err = pcie_set_readrq(pdev, 4096);
4532 if (err) {
4533 dev_err(&pdev->dev, "Set readrq failed.\n");
4534 goto err_out1;
4537 err = pci_request_regions(pdev, DRV_NAME);
4538 if (err) {
4539 dev_err(&pdev->dev, "PCI region request failed.\n");
4540 return err;
4543 pci_set_master(pdev);
4544 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4545 set_bit(QL_DMA64, &qdev->flags);
4546 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4547 } else {
4548 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4549 if (!err)
4550 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4553 if (err) {
4554 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4555 goto err_out2;
4558 /* Set PCIe reset type for EEH to fundamental. */
4559 pdev->needs_freset = 1;
4560 pci_save_state(pdev);
4561 qdev->reg_base =
4562 ioremap_nocache(pci_resource_start(pdev, 1),
4563 pci_resource_len(pdev, 1));
4564 if (!qdev->reg_base) {
4565 dev_err(&pdev->dev, "Register mapping failed.\n");
4566 err = -ENOMEM;
4567 goto err_out2;
4570 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4571 qdev->doorbell_area =
4572 ioremap_nocache(pci_resource_start(pdev, 3),
4573 pci_resource_len(pdev, 3));
4574 if (!qdev->doorbell_area) {
4575 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4576 err = -ENOMEM;
4577 goto err_out2;
4580 err = ql_get_board_info(qdev);
4581 if (err) {
4582 dev_err(&pdev->dev, "Register access failed.\n");
4583 err = -EIO;
4584 goto err_out2;
4586 qdev->msg_enable = netif_msg_init(debug, default_msg);
4587 spin_lock_init(&qdev->hw_lock);
4588 spin_lock_init(&qdev->stats_lock);
4590 if (qlge_mpi_coredump) {
4591 qdev->mpi_coredump =
4592 vmalloc(sizeof(struct ql_mpi_coredump));
4593 if (qdev->mpi_coredump == NULL) {
4594 dev_err(&pdev->dev, "Coredump alloc failed.\n");
4595 err = -ENOMEM;
4596 goto err_out2;
4598 if (qlge_force_coredump)
4599 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4601 /* make sure the EEPROM is good */
4602 err = qdev->nic_ops->get_flash(qdev);
4603 if (err) {
4604 dev_err(&pdev->dev, "Invalid FLASH.\n");
4605 goto err_out2;
4608 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4609 /* Keep local copy of current mac address. */
4610 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4612 /* Set up the default ring sizes. */
4613 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4614 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4616 /* Set up the coalescing parameters. */
4617 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4618 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4619 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4620 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4623 * Set up the operating parameters.
4625 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4626 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4627 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4628 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4629 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4630 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4631 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4632 init_completion(&qdev->ide_completion);
4633 mutex_init(&qdev->mpi_mutex);
4635 if (!cards_found) {
4636 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4637 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4638 DRV_NAME, DRV_VERSION);
4640 return 0;
4641 err_out2:
4642 ql_release_all(pdev);
4643 err_out1:
4644 pci_disable_device(pdev);
4645 return err;
4648 static const struct net_device_ops qlge_netdev_ops = {
4649 .ndo_open = qlge_open,
4650 .ndo_stop = qlge_close,
4651 .ndo_start_xmit = qlge_send,
4652 .ndo_change_mtu = qlge_change_mtu,
4653 .ndo_get_stats = qlge_get_stats,
4654 .ndo_set_multicast_list = qlge_set_multicast_list,
4655 .ndo_set_mac_address = qlge_set_mac_address,
4656 .ndo_validate_addr = eth_validate_addr,
4657 .ndo_tx_timeout = qlge_tx_timeout,
4658 .ndo_vlan_rx_register = qlge_vlan_rx_register,
4659 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4660 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4663 static void ql_timer(unsigned long data)
4665 struct ql_adapter *qdev = (struct ql_adapter *)data;
4666 u32 var = 0;
4668 var = ql_read32(qdev, STS);
4669 if (pci_channel_offline(qdev->pdev)) {
4670 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4671 return;
4674 mod_timer(&qdev->timer, jiffies + (5*HZ));
4677 static int __devinit qlge_probe(struct pci_dev *pdev,
4678 const struct pci_device_id *pci_entry)
4680 struct net_device *ndev = NULL;
4681 struct ql_adapter *qdev = NULL;
4682 static int cards_found = 0;
4683 int err = 0;
4685 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4686 min(MAX_CPUS, (int)num_online_cpus()));
4687 if (!ndev)
4688 return -ENOMEM;
4690 err = ql_init_device(pdev, ndev, cards_found);
4691 if (err < 0) {
4692 free_netdev(ndev);
4693 return err;
4696 qdev = netdev_priv(ndev);
4697 SET_NETDEV_DEV(ndev, &pdev->dev);
4698 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4699 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
4700 NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
4701 ndev->features = ndev->hw_features |
4702 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
4704 if (test_bit(QL_DMA64, &qdev->flags))
4705 ndev->features |= NETIF_F_HIGHDMA;
4708 * Set up net_device structure.
4710 ndev->tx_queue_len = qdev->tx_ring_size;
4711 ndev->irq = pdev->irq;
4713 ndev->netdev_ops = &qlge_netdev_ops;
4714 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4715 ndev->watchdog_timeo = 10 * HZ;
4717 err = register_netdev(ndev);
4718 if (err) {
4719 dev_err(&pdev->dev, "net device registration failed.\n");
4720 ql_release_all(pdev);
4721 pci_disable_device(pdev);
4722 return err;
4724 /* Start up the timer to trigger EEH if
4725 * the bus goes dead
4727 init_timer_deferrable(&qdev->timer);
4728 qdev->timer.data = (unsigned long)qdev;
4729 qdev->timer.function = ql_timer;
4730 qdev->timer.expires = jiffies + (5*HZ);
4731 add_timer(&qdev->timer);
4732 ql_link_off(qdev);
4733 ql_display_dev_info(ndev);
4734 atomic_set(&qdev->lb_count, 0);
4735 cards_found++;
4736 return 0;
4739 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4741 return qlge_send(skb, ndev);
4744 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4746 return ql_clean_inbound_rx_ring(rx_ring, budget);
4749 static void __devexit qlge_remove(struct pci_dev *pdev)
4751 struct net_device *ndev = pci_get_drvdata(pdev);
4752 struct ql_adapter *qdev = netdev_priv(ndev);
4753 del_timer_sync(&qdev->timer);
4754 ql_cancel_all_work_sync(qdev);
4755 unregister_netdev(ndev);
4756 ql_release_all(pdev);
4757 pci_disable_device(pdev);
4758 free_netdev(ndev);
4761 /* Clean up resources without touching hardware. */
4762 static void ql_eeh_close(struct net_device *ndev)
4764 int i;
4765 struct ql_adapter *qdev = netdev_priv(ndev);
4767 if (netif_carrier_ok(ndev)) {
4768 netif_carrier_off(ndev);
4769 netif_stop_queue(ndev);
4772 /* Disabling the timer */
4773 del_timer_sync(&qdev->timer);
4774 ql_cancel_all_work_sync(qdev);
4776 for (i = 0; i < qdev->rss_ring_count; i++)
4777 netif_napi_del(&qdev->rx_ring[i].napi);
4779 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4780 ql_tx_ring_clean(qdev);
4781 ql_free_rx_buffers(qdev);
4782 ql_release_adapter_resources(qdev);
4786 * This callback is called by the PCI subsystem whenever
4787 * a PCI bus error is detected.
4789 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4790 enum pci_channel_state state)
4792 struct net_device *ndev = pci_get_drvdata(pdev);
4793 struct ql_adapter *qdev = netdev_priv(ndev);
4795 switch (state) {
4796 case pci_channel_io_normal:
4797 return PCI_ERS_RESULT_CAN_RECOVER;
4798 case pci_channel_io_frozen:
4799 netif_device_detach(ndev);
4800 if (netif_running(ndev))
4801 ql_eeh_close(ndev);
4802 pci_disable_device(pdev);
4803 return PCI_ERS_RESULT_NEED_RESET;
4804 case pci_channel_io_perm_failure:
4805 dev_err(&pdev->dev,
4806 "%s: pci_channel_io_perm_failure.\n", __func__);
4807 ql_eeh_close(ndev);
4808 set_bit(QL_EEH_FATAL, &qdev->flags);
4809 return PCI_ERS_RESULT_DISCONNECT;
4812 /* Request a slot reset. */
4813 return PCI_ERS_RESULT_NEED_RESET;
4817 * This callback is called after the PCI buss has been reset.
4818 * Basically, this tries to restart the card from scratch.
4819 * This is a shortened version of the device probe/discovery code,
4820 * it resembles the first-half of the () routine.
4822 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4824 struct net_device *ndev = pci_get_drvdata(pdev);
4825 struct ql_adapter *qdev = netdev_priv(ndev);
4827 pdev->error_state = pci_channel_io_normal;
4829 pci_restore_state(pdev);
4830 if (pci_enable_device(pdev)) {
4831 netif_err(qdev, ifup, qdev->ndev,
4832 "Cannot re-enable PCI device after reset.\n");
4833 return PCI_ERS_RESULT_DISCONNECT;
4835 pci_set_master(pdev);
4837 if (ql_adapter_reset(qdev)) {
4838 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4839 set_bit(QL_EEH_FATAL, &qdev->flags);
4840 return PCI_ERS_RESULT_DISCONNECT;
4843 return PCI_ERS_RESULT_RECOVERED;
4846 static void qlge_io_resume(struct pci_dev *pdev)
4848 struct net_device *ndev = pci_get_drvdata(pdev);
4849 struct ql_adapter *qdev = netdev_priv(ndev);
4850 int err = 0;
4852 if (netif_running(ndev)) {
4853 err = qlge_open(ndev);
4854 if (err) {
4855 netif_err(qdev, ifup, qdev->ndev,
4856 "Device initialization failed after reset.\n");
4857 return;
4859 } else {
4860 netif_err(qdev, ifup, qdev->ndev,
4861 "Device was not running prior to EEH.\n");
4863 mod_timer(&qdev->timer, jiffies + (5*HZ));
4864 netif_device_attach(ndev);
4867 static struct pci_error_handlers qlge_err_handler = {
4868 .error_detected = qlge_io_error_detected,
4869 .slot_reset = qlge_io_slot_reset,
4870 .resume = qlge_io_resume,
4873 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4875 struct net_device *ndev = pci_get_drvdata(pdev);
4876 struct ql_adapter *qdev = netdev_priv(ndev);
4877 int err;
4879 netif_device_detach(ndev);
4880 del_timer_sync(&qdev->timer);
4882 if (netif_running(ndev)) {
4883 err = ql_adapter_down(qdev);
4884 if (!err)
4885 return err;
4888 ql_wol(qdev);
4889 err = pci_save_state(pdev);
4890 if (err)
4891 return err;
4893 pci_disable_device(pdev);
4895 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4897 return 0;
4900 #ifdef CONFIG_PM
4901 static int qlge_resume(struct pci_dev *pdev)
4903 struct net_device *ndev = pci_get_drvdata(pdev);
4904 struct ql_adapter *qdev = netdev_priv(ndev);
4905 int err;
4907 pci_set_power_state(pdev, PCI_D0);
4908 pci_restore_state(pdev);
4909 err = pci_enable_device(pdev);
4910 if (err) {
4911 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4912 return err;
4914 pci_set_master(pdev);
4916 pci_enable_wake(pdev, PCI_D3hot, 0);
4917 pci_enable_wake(pdev, PCI_D3cold, 0);
4919 if (netif_running(ndev)) {
4920 err = ql_adapter_up(qdev);
4921 if (err)
4922 return err;
4925 mod_timer(&qdev->timer, jiffies + (5*HZ));
4926 netif_device_attach(ndev);
4928 return 0;
4930 #endif /* CONFIG_PM */
4932 static void qlge_shutdown(struct pci_dev *pdev)
4934 qlge_suspend(pdev, PMSG_SUSPEND);
4937 static struct pci_driver qlge_driver = {
4938 .name = DRV_NAME,
4939 .id_table = qlge_pci_tbl,
4940 .probe = qlge_probe,
4941 .remove = __devexit_p(qlge_remove),
4942 #ifdef CONFIG_PM
4943 .suspend = qlge_suspend,
4944 .resume = qlge_resume,
4945 #endif
4946 .shutdown = qlge_shutdown,
4947 .err_handler = &qlge_err_handler
4950 static int __init qlge_init_module(void)
4952 return pci_register_driver(&qlge_driver);
4955 static void __exit qlge_exit(void)
4957 pci_unregister_driver(&qlge_driver);
4960 module_init(qlge_init_module);
4961 module_exit(qlge_exit);