Revert "gma500: Fix dependencies"
[zen-stable.git] / drivers / net / s2io.c
blobdf0d2c8ecc09dd60cb32c19cd562cddb8951705c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
84 #include <asm/system.h>
85 #include <asm/div64.h>
86 #include <asm/irq.h>
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
92 #define DRV_VERSION "2.0.26.28"
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 int ret;
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108 return ret;
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
210 {"rmac_pause_cnt"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
232 {"rxf_wr_cnt"}
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
251 {"link_fault_cnt"}
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
359 /* Add the vlan */
360 static void s2io_vlan_rx_register(struct net_device *dev,
361 struct vlan_group *grp)
363 int i;
364 struct s2io_nic *nic = netdev_priv(dev);
365 unsigned long flags[MAX_TX_FIFOS];
366 struct config_param *config = &nic->config;
367 struct mac_info *mac_control = &nic->mac_control;
369 for (i = 0; i < config->tx_fifo_num; i++) {
370 struct fifo_info *fifo = &mac_control->fifos[i];
372 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
375 nic->vlgrp = grp;
377 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
378 struct fifo_info *fifo = &mac_control->fifos[i];
380 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
384 /* Unregister the vlan */
385 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
387 int i;
388 struct s2io_nic *nic = netdev_priv(dev);
389 unsigned long flags[MAX_TX_FIFOS];
390 struct config_param *config = &nic->config;
391 struct mac_info *mac_control = &nic->mac_control;
393 for (i = 0; i < config->tx_fifo_num; i++) {
394 struct fifo_info *fifo = &mac_control->fifos[i];
396 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
399 if (nic->vlgrp)
400 vlan_group_set_device(nic->vlgrp, vid, NULL);
402 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
403 struct fifo_info *fifo = &mac_control->fifos[i];
405 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
410 * Constants to be programmed into the Xena's registers, to configure
411 * the XAUI.
414 #define END_SIGN 0x0
415 static const u64 herc_act_dtx_cfg[] = {
416 /* Set address */
417 0x8000051536750000ULL, 0x80000515367500E0ULL,
418 /* Write data */
419 0x8000051536750004ULL, 0x80000515367500E4ULL,
420 /* Set address */
421 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
422 /* Write data */
423 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
424 /* Set address */
425 0x801205150D440000ULL, 0x801205150D4400E0ULL,
426 /* Write data */
427 0x801205150D440004ULL, 0x801205150D4400E4ULL,
428 /* Set address */
429 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
430 /* Write data */
431 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
432 /* Done */
433 END_SIGN
436 static const u64 xena_dtx_cfg[] = {
437 /* Set address */
438 0x8000051500000000ULL, 0x80000515000000E0ULL,
439 /* Write data */
440 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
441 /* Set address */
442 0x8001051500000000ULL, 0x80010515000000E0ULL,
443 /* Write data */
444 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
445 /* Set address */
446 0x8002051500000000ULL, 0x80020515000000E0ULL,
447 /* Write data */
448 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
449 END_SIGN
453 * Constants for Fixing the MacAddress problem seen mostly on
454 * Alpha machines.
456 static const u64 fix_mac[] = {
457 0x0060000000000000ULL, 0x0060600000000000ULL,
458 0x0040600000000000ULL, 0x0000600000000000ULL,
459 0x0020600000000000ULL, 0x0060600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0000600000000000ULL,
470 0x0040600000000000ULL, 0x0060600000000000ULL,
471 END_SIGN
474 MODULE_LICENSE("GPL");
475 MODULE_VERSION(DRV_VERSION);
478 /* Module Loadable parameters. */
479 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
480 S2IO_PARM_INT(rx_ring_num, 1);
481 S2IO_PARM_INT(multiq, 0);
482 S2IO_PARM_INT(rx_ring_mode, 1);
483 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
484 S2IO_PARM_INT(rmac_pause_time, 0x100);
485 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
486 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
487 S2IO_PARM_INT(shared_splits, 0);
488 S2IO_PARM_INT(tmac_util_period, 5);
489 S2IO_PARM_INT(rmac_util_period, 5);
490 S2IO_PARM_INT(l3l4hdr_size, 128);
491 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
493 /* Frequency of Rx desc syncs expressed as power of 2 */
494 S2IO_PARM_INT(rxsync_frequency, 3);
495 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
496 S2IO_PARM_INT(intr_type, 2);
497 /* Large receive offload feature */
499 /* Max pkts to be aggregated by LRO at one time. If not specified,
500 * aggregation happens until we hit max IP pkt size(64K)
502 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
503 S2IO_PARM_INT(indicate_max_pkts, 0);
505 S2IO_PARM_INT(napi, 1);
506 S2IO_PARM_INT(ufo, 0);
507 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
509 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
510 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
511 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
512 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
513 static unsigned int rts_frm_len[MAX_RX_RINGS] =
514 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
516 module_param_array(tx_fifo_len, uint, NULL, 0);
517 module_param_array(rx_ring_sz, uint, NULL, 0);
518 module_param_array(rts_frm_len, uint, NULL, 0);
521 * S2IO device table.
522 * This table lists all the devices that this driver supports.
524 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
525 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
526 PCI_ANY_ID, PCI_ANY_ID},
527 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
528 PCI_ANY_ID, PCI_ANY_ID},
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
532 PCI_ANY_ID, PCI_ANY_ID},
533 {0,}
536 MODULE_DEVICE_TABLE(pci, s2io_tbl);
538 static struct pci_error_handlers s2io_err_handler = {
539 .error_detected = s2io_io_error_detected,
540 .slot_reset = s2io_io_slot_reset,
541 .resume = s2io_io_resume,
544 static struct pci_driver s2io_driver = {
545 .name = "S2IO",
546 .id_table = s2io_tbl,
547 .probe = s2io_init_nic,
548 .remove = __devexit_p(s2io_rem_nic),
549 .err_handler = &s2io_err_handler,
552 /* A simplifier macro used both by init and free shared_mem Fns(). */
553 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
555 /* netqueue manipulation helper functions */
556 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
558 if (!sp->config.multiq) {
559 int i;
561 for (i = 0; i < sp->config.tx_fifo_num; i++)
562 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
564 netif_tx_stop_all_queues(sp->dev);
567 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
569 if (!sp->config.multiq)
570 sp->mac_control.fifos[fifo_no].queue_state =
571 FIFO_QUEUE_STOP;
573 netif_tx_stop_all_queues(sp->dev);
576 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
578 if (!sp->config.multiq) {
579 int i;
581 for (i = 0; i < sp->config.tx_fifo_num; i++)
582 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
584 netif_tx_start_all_queues(sp->dev);
587 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
589 if (!sp->config.multiq)
590 sp->mac_control.fifos[fifo_no].queue_state =
591 FIFO_QUEUE_START;
593 netif_tx_start_all_queues(sp->dev);
596 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
598 if (!sp->config.multiq) {
599 int i;
601 for (i = 0; i < sp->config.tx_fifo_num; i++)
602 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
604 netif_tx_wake_all_queues(sp->dev);
607 static inline void s2io_wake_tx_queue(
608 struct fifo_info *fifo, int cnt, u8 multiq)
611 if (multiq) {
612 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
613 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
614 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
615 if (netif_queue_stopped(fifo->dev)) {
616 fifo->queue_state = FIFO_QUEUE_START;
617 netif_wake_queue(fifo->dev);
623 * init_shared_mem - Allocation and Initialization of Memory
624 * @nic: Device private variable.
625 * Description: The function allocates all the memory areas shared
626 * between the NIC and the driver. This includes Tx descriptors,
627 * Rx descriptors and the statistics block.
630 static int init_shared_mem(struct s2io_nic *nic)
632 u32 size;
633 void *tmp_v_addr, *tmp_v_addr_next;
634 dma_addr_t tmp_p_addr, tmp_p_addr_next;
635 struct RxD_block *pre_rxd_blk = NULL;
636 int i, j, blk_cnt;
637 int lst_size, lst_per_page;
638 struct net_device *dev = nic->dev;
639 unsigned long tmp;
640 struct buffAdd *ba;
641 struct config_param *config = &nic->config;
642 struct mac_info *mac_control = &nic->mac_control;
643 unsigned long long mem_allocated = 0;
645 /* Allocation and initialization of TXDLs in FIFOs */
646 size = 0;
647 for (i = 0; i < config->tx_fifo_num; i++) {
648 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
650 size += tx_cfg->fifo_len;
652 if (size > MAX_AVAILABLE_TXDS) {
653 DBG_PRINT(ERR_DBG,
654 "Too many TxDs requested: %d, max supported: %d\n",
655 size, MAX_AVAILABLE_TXDS);
656 return -EINVAL;
659 size = 0;
660 for (i = 0; i < config->tx_fifo_num; i++) {
661 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
663 size = tx_cfg->fifo_len;
665 * Legal values are from 2 to 8192
667 if (size < 2) {
668 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
669 "Valid lengths are 2 through 8192\n",
670 i, size);
671 return -EINVAL;
675 lst_size = (sizeof(struct TxD) * config->max_txds);
676 lst_per_page = PAGE_SIZE / lst_size;
678 for (i = 0; i < config->tx_fifo_num; i++) {
679 struct fifo_info *fifo = &mac_control->fifos[i];
680 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
681 int fifo_len = tx_cfg->fifo_len;
682 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
684 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
685 if (!fifo->list_info) {
686 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
687 return -ENOMEM;
689 mem_allocated += list_holder_size;
691 for (i = 0; i < config->tx_fifo_num; i++) {
692 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
693 lst_per_page);
694 struct fifo_info *fifo = &mac_control->fifos[i];
695 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
697 fifo->tx_curr_put_info.offset = 0;
698 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
699 fifo->tx_curr_get_info.offset = 0;
700 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
701 fifo->fifo_no = i;
702 fifo->nic = nic;
703 fifo->max_txds = MAX_SKB_FRAGS + 2;
704 fifo->dev = dev;
706 for (j = 0; j < page_num; j++) {
707 int k = 0;
708 dma_addr_t tmp_p;
709 void *tmp_v;
710 tmp_v = pci_alloc_consistent(nic->pdev,
711 PAGE_SIZE, &tmp_p);
712 if (!tmp_v) {
713 DBG_PRINT(INFO_DBG,
714 "pci_alloc_consistent failed for TxDL\n");
715 return -ENOMEM;
717 /* If we got a zero DMA address(can happen on
718 * certain platforms like PPC), reallocate.
719 * Store virtual address of page we don't want,
720 * to be freed later.
722 if (!tmp_p) {
723 mac_control->zerodma_virt_addr = tmp_v;
724 DBG_PRINT(INIT_DBG,
725 "%s: Zero DMA address for TxDL. "
726 "Virtual address %p\n",
727 dev->name, tmp_v);
728 tmp_v = pci_alloc_consistent(nic->pdev,
729 PAGE_SIZE, &tmp_p);
730 if (!tmp_v) {
731 DBG_PRINT(INFO_DBG,
732 "pci_alloc_consistent failed for TxDL\n");
733 return -ENOMEM;
735 mem_allocated += PAGE_SIZE;
737 while (k < lst_per_page) {
738 int l = (j * lst_per_page) + k;
739 if (l == tx_cfg->fifo_len)
740 break;
741 fifo->list_info[l].list_virt_addr =
742 tmp_v + (k * lst_size);
743 fifo->list_info[l].list_phy_addr =
744 tmp_p + (k * lst_size);
745 k++;
750 for (i = 0; i < config->tx_fifo_num; i++) {
751 struct fifo_info *fifo = &mac_control->fifos[i];
752 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
754 size = tx_cfg->fifo_len;
755 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
756 if (!fifo->ufo_in_band_v)
757 return -ENOMEM;
758 mem_allocated += (size * sizeof(u64));
761 /* Allocation and initialization of RXDs in Rings */
762 size = 0;
763 for (i = 0; i < config->rx_ring_num; i++) {
764 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
765 struct ring_info *ring = &mac_control->rings[i];
767 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
768 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
769 "multiple of RxDs per Block\n",
770 dev->name, i);
771 return FAILURE;
773 size += rx_cfg->num_rxd;
774 ring->block_count = rx_cfg->num_rxd /
775 (rxd_count[nic->rxd_mode] + 1);
776 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
778 if (nic->rxd_mode == RXD_MODE_1)
779 size = (size * (sizeof(struct RxD1)));
780 else
781 size = (size * (sizeof(struct RxD3)));
783 for (i = 0; i < config->rx_ring_num; i++) {
784 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
785 struct ring_info *ring = &mac_control->rings[i];
787 ring->rx_curr_get_info.block_index = 0;
788 ring->rx_curr_get_info.offset = 0;
789 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
790 ring->rx_curr_put_info.block_index = 0;
791 ring->rx_curr_put_info.offset = 0;
792 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
793 ring->nic = nic;
794 ring->ring_no = i;
796 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
797 /* Allocating all the Rx blocks */
798 for (j = 0; j < blk_cnt; j++) {
799 struct rx_block_info *rx_blocks;
800 int l;
802 rx_blocks = &ring->rx_blocks[j];
803 size = SIZE_OF_BLOCK; /* size is always page size */
804 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
805 &tmp_p_addr);
806 if (tmp_v_addr == NULL) {
808 * In case of failure, free_shared_mem()
809 * is called, which should free any
810 * memory that was alloced till the
811 * failure happened.
813 rx_blocks->block_virt_addr = tmp_v_addr;
814 return -ENOMEM;
816 mem_allocated += size;
817 memset(tmp_v_addr, 0, size);
819 size = sizeof(struct rxd_info) *
820 rxd_count[nic->rxd_mode];
821 rx_blocks->block_virt_addr = tmp_v_addr;
822 rx_blocks->block_dma_addr = tmp_p_addr;
823 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
824 if (!rx_blocks->rxds)
825 return -ENOMEM;
826 mem_allocated += size;
827 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
828 rx_blocks->rxds[l].virt_addr =
829 rx_blocks->block_virt_addr +
830 (rxd_size[nic->rxd_mode] * l);
831 rx_blocks->rxds[l].dma_addr =
832 rx_blocks->block_dma_addr +
833 (rxd_size[nic->rxd_mode] * l);
836 /* Interlinking all Rx Blocks */
837 for (j = 0; j < blk_cnt; j++) {
838 int next = (j + 1) % blk_cnt;
839 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
840 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
841 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
842 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
844 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
845 pre_rxd_blk->reserved_2_pNext_RxD_block =
846 (unsigned long)tmp_v_addr_next;
847 pre_rxd_blk->pNext_RxD_Blk_physical =
848 (u64)tmp_p_addr_next;
851 if (nic->rxd_mode == RXD_MODE_3B) {
853 * Allocation of Storages for buffer addresses in 2BUFF mode
854 * and the buffers as well.
856 for (i = 0; i < config->rx_ring_num; i++) {
857 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
858 struct ring_info *ring = &mac_control->rings[i];
860 blk_cnt = rx_cfg->num_rxd /
861 (rxd_count[nic->rxd_mode] + 1);
862 size = sizeof(struct buffAdd *) * blk_cnt;
863 ring->ba = kmalloc(size, GFP_KERNEL);
864 if (!ring->ba)
865 return -ENOMEM;
866 mem_allocated += size;
867 for (j = 0; j < blk_cnt; j++) {
868 int k = 0;
870 size = sizeof(struct buffAdd) *
871 (rxd_count[nic->rxd_mode] + 1);
872 ring->ba[j] = kmalloc(size, GFP_KERNEL);
873 if (!ring->ba[j])
874 return -ENOMEM;
875 mem_allocated += size;
876 while (k != rxd_count[nic->rxd_mode]) {
877 ba = &ring->ba[j][k];
878 size = BUF0_LEN + ALIGN_SIZE;
879 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
880 if (!ba->ba_0_org)
881 return -ENOMEM;
882 mem_allocated += size;
883 tmp = (unsigned long)ba->ba_0_org;
884 tmp += ALIGN_SIZE;
885 tmp &= ~((unsigned long)ALIGN_SIZE);
886 ba->ba_0 = (void *)tmp;
888 size = BUF1_LEN + ALIGN_SIZE;
889 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
890 if (!ba->ba_1_org)
891 return -ENOMEM;
892 mem_allocated += size;
893 tmp = (unsigned long)ba->ba_1_org;
894 tmp += ALIGN_SIZE;
895 tmp &= ~((unsigned long)ALIGN_SIZE);
896 ba->ba_1 = (void *)tmp;
897 k++;
903 /* Allocation and initialization of Statistics block */
904 size = sizeof(struct stat_block);
905 mac_control->stats_mem =
906 pci_alloc_consistent(nic->pdev, size,
907 &mac_control->stats_mem_phy);
909 if (!mac_control->stats_mem) {
911 * In case of failure, free_shared_mem() is called, which
912 * should free any memory that was alloced till the
913 * failure happened.
915 return -ENOMEM;
917 mem_allocated += size;
918 mac_control->stats_mem_sz = size;
920 tmp_v_addr = mac_control->stats_mem;
921 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
922 memset(tmp_v_addr, 0, size);
923 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
924 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
925 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
926 return SUCCESS;
930 * free_shared_mem - Free the allocated Memory
931 * @nic: Device private variable.
932 * Description: This function is to free all memory locations allocated by
933 * the init_shared_mem() function and return it to the kernel.
936 static void free_shared_mem(struct s2io_nic *nic)
938 int i, j, blk_cnt, size;
939 void *tmp_v_addr;
940 dma_addr_t tmp_p_addr;
941 int lst_size, lst_per_page;
942 struct net_device *dev;
943 int page_num = 0;
944 struct config_param *config;
945 struct mac_info *mac_control;
946 struct stat_block *stats;
947 struct swStat *swstats;
949 if (!nic)
950 return;
952 dev = nic->dev;
954 config = &nic->config;
955 mac_control = &nic->mac_control;
956 stats = mac_control->stats_info;
957 swstats = &stats->sw_stat;
959 lst_size = sizeof(struct TxD) * config->max_txds;
960 lst_per_page = PAGE_SIZE / lst_size;
962 for (i = 0; i < config->tx_fifo_num; i++) {
963 struct fifo_info *fifo = &mac_control->fifos[i];
964 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
966 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
967 for (j = 0; j < page_num; j++) {
968 int mem_blks = (j * lst_per_page);
969 struct list_info_hold *fli;
971 if (!fifo->list_info)
972 return;
974 fli = &fifo->list_info[mem_blks];
975 if (!fli->list_virt_addr)
976 break;
977 pci_free_consistent(nic->pdev, PAGE_SIZE,
978 fli->list_virt_addr,
979 fli->list_phy_addr);
980 swstats->mem_freed += PAGE_SIZE;
982 /* If we got a zero DMA address during allocation,
983 * free the page now
985 if (mac_control->zerodma_virt_addr) {
986 pci_free_consistent(nic->pdev, PAGE_SIZE,
987 mac_control->zerodma_virt_addr,
988 (dma_addr_t)0);
989 DBG_PRINT(INIT_DBG,
990 "%s: Freeing TxDL with zero DMA address. "
991 "Virtual address %p\n",
992 dev->name, mac_control->zerodma_virt_addr);
993 swstats->mem_freed += PAGE_SIZE;
995 kfree(fifo->list_info);
996 swstats->mem_freed += tx_cfg->fifo_len *
997 sizeof(struct list_info_hold);
1000 size = SIZE_OF_BLOCK;
1001 for (i = 0; i < config->rx_ring_num; i++) {
1002 struct ring_info *ring = &mac_control->rings[i];
1004 blk_cnt = ring->block_count;
1005 for (j = 0; j < blk_cnt; j++) {
1006 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1007 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1008 if (tmp_v_addr == NULL)
1009 break;
1010 pci_free_consistent(nic->pdev, size,
1011 tmp_v_addr, tmp_p_addr);
1012 swstats->mem_freed += size;
1013 kfree(ring->rx_blocks[j].rxds);
1014 swstats->mem_freed += sizeof(struct rxd_info) *
1015 rxd_count[nic->rxd_mode];
1019 if (nic->rxd_mode == RXD_MODE_3B) {
1020 /* Freeing buffer storage addresses in 2BUFF mode. */
1021 for (i = 0; i < config->rx_ring_num; i++) {
1022 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1023 struct ring_info *ring = &mac_control->rings[i];
1025 blk_cnt = rx_cfg->num_rxd /
1026 (rxd_count[nic->rxd_mode] + 1);
1027 for (j = 0; j < blk_cnt; j++) {
1028 int k = 0;
1029 if (!ring->ba[j])
1030 continue;
1031 while (k != rxd_count[nic->rxd_mode]) {
1032 struct buffAdd *ba = &ring->ba[j][k];
1033 kfree(ba->ba_0_org);
1034 swstats->mem_freed +=
1035 BUF0_LEN + ALIGN_SIZE;
1036 kfree(ba->ba_1_org);
1037 swstats->mem_freed +=
1038 BUF1_LEN + ALIGN_SIZE;
1039 k++;
1041 kfree(ring->ba[j]);
1042 swstats->mem_freed += sizeof(struct buffAdd) *
1043 (rxd_count[nic->rxd_mode] + 1);
1045 kfree(ring->ba);
1046 swstats->mem_freed += sizeof(struct buffAdd *) *
1047 blk_cnt;
1051 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1052 struct fifo_info *fifo = &mac_control->fifos[i];
1053 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1055 if (fifo->ufo_in_band_v) {
1056 swstats->mem_freed += tx_cfg->fifo_len *
1057 sizeof(u64);
1058 kfree(fifo->ufo_in_band_v);
1062 if (mac_control->stats_mem) {
1063 swstats->mem_freed += mac_control->stats_mem_sz;
1064 pci_free_consistent(nic->pdev,
1065 mac_control->stats_mem_sz,
1066 mac_control->stats_mem,
1067 mac_control->stats_mem_phy);
1072 * s2io_verify_pci_mode -
1075 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1077 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1078 register u64 val64 = 0;
1079 int mode;
1081 val64 = readq(&bar0->pci_mode);
1082 mode = (u8)GET_PCI_MODE(val64);
1084 if (val64 & PCI_MODE_UNKNOWN_MODE)
1085 return -1; /* Unknown PCI mode */
1086 return mode;
1089 #define NEC_VENID 0x1033
1090 #define NEC_DEVID 0x0125
1091 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1093 struct pci_dev *tdev = NULL;
1094 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1095 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1096 if (tdev->bus == s2io_pdev->bus->parent) {
1097 pci_dev_put(tdev);
1098 return 1;
1102 return 0;
1105 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1107 * s2io_print_pci_mode -
1109 static int s2io_print_pci_mode(struct s2io_nic *nic)
1111 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1112 register u64 val64 = 0;
1113 int mode;
1114 struct config_param *config = &nic->config;
1115 const char *pcimode;
1117 val64 = readq(&bar0->pci_mode);
1118 mode = (u8)GET_PCI_MODE(val64);
1120 if (val64 & PCI_MODE_UNKNOWN_MODE)
1121 return -1; /* Unknown PCI mode */
1123 config->bus_speed = bus_speed[mode];
1125 if (s2io_on_nec_bridge(nic->pdev)) {
1126 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1127 nic->dev->name);
1128 return mode;
1131 switch (mode) {
1132 case PCI_MODE_PCI_33:
1133 pcimode = "33MHz PCI bus";
1134 break;
1135 case PCI_MODE_PCI_66:
1136 pcimode = "66MHz PCI bus";
1137 break;
1138 case PCI_MODE_PCIX_M1_66:
1139 pcimode = "66MHz PCIX(M1) bus";
1140 break;
1141 case PCI_MODE_PCIX_M1_100:
1142 pcimode = "100MHz PCIX(M1) bus";
1143 break;
1144 case PCI_MODE_PCIX_M1_133:
1145 pcimode = "133MHz PCIX(M1) bus";
1146 break;
1147 case PCI_MODE_PCIX_M2_66:
1148 pcimode = "133MHz PCIX(M2) bus";
1149 break;
1150 case PCI_MODE_PCIX_M2_100:
1151 pcimode = "200MHz PCIX(M2) bus";
1152 break;
1153 case PCI_MODE_PCIX_M2_133:
1154 pcimode = "266MHz PCIX(M2) bus";
1155 break;
1156 default:
1157 pcimode = "unsupported bus!";
1158 mode = -1;
1161 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1162 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1164 return mode;
1168 * init_tti - Initialization transmit traffic interrupt scheme
1169 * @nic: device private variable
1170 * @link: link status (UP/DOWN) used to enable/disable continuous
1171 * transmit interrupts
1172 * Description: The function configures transmit traffic interrupts
1173 * Return Value: SUCCESS on success and
1174 * '-1' on failure
1177 static int init_tti(struct s2io_nic *nic, int link)
1179 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1180 register u64 val64 = 0;
1181 int i;
1182 struct config_param *config = &nic->config;
1184 for (i = 0; i < config->tx_fifo_num; i++) {
1186 * TTI Initialization. Default Tx timer gets us about
1187 * 250 interrupts per sec. Continuous interrupts are enabled
1188 * by default.
1190 if (nic->device_type == XFRAME_II_DEVICE) {
1191 int count = (nic->config.bus_speed * 125)/2;
1192 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1193 } else
1194 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1196 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1197 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1198 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1199 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1200 if (i == 0)
1201 if (use_continuous_tx_intrs && (link == LINK_UP))
1202 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1203 writeq(val64, &bar0->tti_data1_mem);
1205 if (nic->config.intr_type == MSI_X) {
1206 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1207 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1208 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1209 TTI_DATA2_MEM_TX_UFC_D(0x300);
1210 } else {
1211 if ((nic->config.tx_steering_type ==
1212 TX_DEFAULT_STEERING) &&
1213 (config->tx_fifo_num > 1) &&
1214 (i >= nic->udp_fifo_idx) &&
1215 (i < (nic->udp_fifo_idx +
1216 nic->total_udp_fifos)))
1217 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1218 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1219 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1220 TTI_DATA2_MEM_TX_UFC_D(0x120);
1221 else
1222 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1223 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1224 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1225 TTI_DATA2_MEM_TX_UFC_D(0x80);
1228 writeq(val64, &bar0->tti_data2_mem);
1230 val64 = TTI_CMD_MEM_WE |
1231 TTI_CMD_MEM_STROBE_NEW_CMD |
1232 TTI_CMD_MEM_OFFSET(i);
1233 writeq(val64, &bar0->tti_command_mem);
1235 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1236 TTI_CMD_MEM_STROBE_NEW_CMD,
1237 S2IO_BIT_RESET) != SUCCESS)
1238 return FAILURE;
1241 return SUCCESS;
1245 * init_nic - Initialization of hardware
1246 * @nic: device private variable
1247 * Description: The function sequentially configures every block
1248 * of the H/W from their reset values.
1249 * Return Value: SUCCESS on success and
1250 * '-1' on failure (endian settings incorrect).
1253 static int init_nic(struct s2io_nic *nic)
1255 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1256 struct net_device *dev = nic->dev;
1257 register u64 val64 = 0;
1258 void __iomem *add;
1259 u32 time;
1260 int i, j;
1261 int dtx_cnt = 0;
1262 unsigned long long mem_share;
1263 int mem_size;
1264 struct config_param *config = &nic->config;
1265 struct mac_info *mac_control = &nic->mac_control;
1267 /* to set the swapper controle on the card */
1268 if (s2io_set_swapper(nic)) {
1269 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1270 return -EIO;
1274 * Herc requires EOI to be removed from reset before XGXS, so..
1276 if (nic->device_type & XFRAME_II_DEVICE) {
1277 val64 = 0xA500000000ULL;
1278 writeq(val64, &bar0->sw_reset);
1279 msleep(500);
1280 val64 = readq(&bar0->sw_reset);
1283 /* Remove XGXS from reset state */
1284 val64 = 0;
1285 writeq(val64, &bar0->sw_reset);
1286 msleep(500);
1287 val64 = readq(&bar0->sw_reset);
1289 /* Ensure that it's safe to access registers by checking
1290 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1292 if (nic->device_type == XFRAME_II_DEVICE) {
1293 for (i = 0; i < 50; i++) {
1294 val64 = readq(&bar0->adapter_status);
1295 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1296 break;
1297 msleep(10);
1299 if (i == 50)
1300 return -ENODEV;
1303 /* Enable Receiving broadcasts */
1304 add = &bar0->mac_cfg;
1305 val64 = readq(&bar0->mac_cfg);
1306 val64 |= MAC_RMAC_BCAST_ENABLE;
1307 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1308 writel((u32)val64, add);
1309 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1310 writel((u32) (val64 >> 32), (add + 4));
1312 /* Read registers in all blocks */
1313 val64 = readq(&bar0->mac_int_mask);
1314 val64 = readq(&bar0->mc_int_mask);
1315 val64 = readq(&bar0->xgxs_int_mask);
1317 /* Set MTU */
1318 val64 = dev->mtu;
1319 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1321 if (nic->device_type & XFRAME_II_DEVICE) {
1322 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1323 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1324 &bar0->dtx_control, UF);
1325 if (dtx_cnt & 0x1)
1326 msleep(1); /* Necessary!! */
1327 dtx_cnt++;
1329 } else {
1330 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1331 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1332 &bar0->dtx_control, UF);
1333 val64 = readq(&bar0->dtx_control);
1334 dtx_cnt++;
1338 /* Tx DMA Initialization */
1339 val64 = 0;
1340 writeq(val64, &bar0->tx_fifo_partition_0);
1341 writeq(val64, &bar0->tx_fifo_partition_1);
1342 writeq(val64, &bar0->tx_fifo_partition_2);
1343 writeq(val64, &bar0->tx_fifo_partition_3);
1345 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1346 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1348 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1349 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1351 if (i == (config->tx_fifo_num - 1)) {
1352 if (i % 2 == 0)
1353 i++;
1356 switch (i) {
1357 case 1:
1358 writeq(val64, &bar0->tx_fifo_partition_0);
1359 val64 = 0;
1360 j = 0;
1361 break;
1362 case 3:
1363 writeq(val64, &bar0->tx_fifo_partition_1);
1364 val64 = 0;
1365 j = 0;
1366 break;
1367 case 5:
1368 writeq(val64, &bar0->tx_fifo_partition_2);
1369 val64 = 0;
1370 j = 0;
1371 break;
1372 case 7:
1373 writeq(val64, &bar0->tx_fifo_partition_3);
1374 val64 = 0;
1375 j = 0;
1376 break;
1377 default:
1378 j++;
1379 break;
1384 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1385 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1387 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1388 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1390 val64 = readq(&bar0->tx_fifo_partition_0);
1391 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1392 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1395 * Initialization of Tx_PA_CONFIG register to ignore packet
1396 * integrity checking.
1398 val64 = readq(&bar0->tx_pa_cfg);
1399 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1400 TX_PA_CFG_IGNORE_SNAP_OUI |
1401 TX_PA_CFG_IGNORE_LLC_CTRL |
1402 TX_PA_CFG_IGNORE_L2_ERR;
1403 writeq(val64, &bar0->tx_pa_cfg);
1405 /* Rx DMA intialization. */
1406 val64 = 0;
1407 for (i = 0; i < config->rx_ring_num; i++) {
1408 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1410 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1412 writeq(val64, &bar0->rx_queue_priority);
1415 * Allocating equal share of memory to all the
1416 * configured Rings.
1418 val64 = 0;
1419 if (nic->device_type & XFRAME_II_DEVICE)
1420 mem_size = 32;
1421 else
1422 mem_size = 64;
1424 for (i = 0; i < config->rx_ring_num; i++) {
1425 switch (i) {
1426 case 0:
1427 mem_share = (mem_size / config->rx_ring_num +
1428 mem_size % config->rx_ring_num);
1429 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1430 continue;
1431 case 1:
1432 mem_share = (mem_size / config->rx_ring_num);
1433 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1434 continue;
1435 case 2:
1436 mem_share = (mem_size / config->rx_ring_num);
1437 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1438 continue;
1439 case 3:
1440 mem_share = (mem_size / config->rx_ring_num);
1441 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1442 continue;
1443 case 4:
1444 mem_share = (mem_size / config->rx_ring_num);
1445 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1446 continue;
1447 case 5:
1448 mem_share = (mem_size / config->rx_ring_num);
1449 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1450 continue;
1451 case 6:
1452 mem_share = (mem_size / config->rx_ring_num);
1453 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1454 continue;
1455 case 7:
1456 mem_share = (mem_size / config->rx_ring_num);
1457 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1458 continue;
1461 writeq(val64, &bar0->rx_queue_cfg);
1464 * Filling Tx round robin registers
1465 * as per the number of FIFOs for equal scheduling priority
1467 switch (config->tx_fifo_num) {
1468 case 1:
1469 val64 = 0x0;
1470 writeq(val64, &bar0->tx_w_round_robin_0);
1471 writeq(val64, &bar0->tx_w_round_robin_1);
1472 writeq(val64, &bar0->tx_w_round_robin_2);
1473 writeq(val64, &bar0->tx_w_round_robin_3);
1474 writeq(val64, &bar0->tx_w_round_robin_4);
1475 break;
1476 case 2:
1477 val64 = 0x0001000100010001ULL;
1478 writeq(val64, &bar0->tx_w_round_robin_0);
1479 writeq(val64, &bar0->tx_w_round_robin_1);
1480 writeq(val64, &bar0->tx_w_round_robin_2);
1481 writeq(val64, &bar0->tx_w_round_robin_3);
1482 val64 = 0x0001000100000000ULL;
1483 writeq(val64, &bar0->tx_w_round_robin_4);
1484 break;
1485 case 3:
1486 val64 = 0x0001020001020001ULL;
1487 writeq(val64, &bar0->tx_w_round_robin_0);
1488 val64 = 0x0200010200010200ULL;
1489 writeq(val64, &bar0->tx_w_round_robin_1);
1490 val64 = 0x0102000102000102ULL;
1491 writeq(val64, &bar0->tx_w_round_robin_2);
1492 val64 = 0x0001020001020001ULL;
1493 writeq(val64, &bar0->tx_w_round_robin_3);
1494 val64 = 0x0200010200000000ULL;
1495 writeq(val64, &bar0->tx_w_round_robin_4);
1496 break;
1497 case 4:
1498 val64 = 0x0001020300010203ULL;
1499 writeq(val64, &bar0->tx_w_round_robin_0);
1500 writeq(val64, &bar0->tx_w_round_robin_1);
1501 writeq(val64, &bar0->tx_w_round_robin_2);
1502 writeq(val64, &bar0->tx_w_round_robin_3);
1503 val64 = 0x0001020300000000ULL;
1504 writeq(val64, &bar0->tx_w_round_robin_4);
1505 break;
1506 case 5:
1507 val64 = 0x0001020304000102ULL;
1508 writeq(val64, &bar0->tx_w_round_robin_0);
1509 val64 = 0x0304000102030400ULL;
1510 writeq(val64, &bar0->tx_w_round_robin_1);
1511 val64 = 0x0102030400010203ULL;
1512 writeq(val64, &bar0->tx_w_round_robin_2);
1513 val64 = 0x0400010203040001ULL;
1514 writeq(val64, &bar0->tx_w_round_robin_3);
1515 val64 = 0x0203040000000000ULL;
1516 writeq(val64, &bar0->tx_w_round_robin_4);
1517 break;
1518 case 6:
1519 val64 = 0x0001020304050001ULL;
1520 writeq(val64, &bar0->tx_w_round_robin_0);
1521 val64 = 0x0203040500010203ULL;
1522 writeq(val64, &bar0->tx_w_round_robin_1);
1523 val64 = 0x0405000102030405ULL;
1524 writeq(val64, &bar0->tx_w_round_robin_2);
1525 val64 = 0x0001020304050001ULL;
1526 writeq(val64, &bar0->tx_w_round_robin_3);
1527 val64 = 0x0203040500000000ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_4);
1529 break;
1530 case 7:
1531 val64 = 0x0001020304050600ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_0);
1533 val64 = 0x0102030405060001ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_1);
1535 val64 = 0x0203040506000102ULL;
1536 writeq(val64, &bar0->tx_w_round_robin_2);
1537 val64 = 0x0304050600010203ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_3);
1539 val64 = 0x0405060000000000ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_4);
1541 break;
1542 case 8:
1543 val64 = 0x0001020304050607ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_0);
1545 writeq(val64, &bar0->tx_w_round_robin_1);
1546 writeq(val64, &bar0->tx_w_round_robin_2);
1547 writeq(val64, &bar0->tx_w_round_robin_3);
1548 val64 = 0x0001020300000000ULL;
1549 writeq(val64, &bar0->tx_w_round_robin_4);
1550 break;
1553 /* Enable all configured Tx FIFO partitions */
1554 val64 = readq(&bar0->tx_fifo_partition_0);
1555 val64 |= (TX_FIFO_PARTITION_EN);
1556 writeq(val64, &bar0->tx_fifo_partition_0);
1558 /* Filling the Rx round robin registers as per the
1559 * number of Rings and steering based on QoS with
1560 * equal priority.
1562 switch (config->rx_ring_num) {
1563 case 1:
1564 val64 = 0x0;
1565 writeq(val64, &bar0->rx_w_round_robin_0);
1566 writeq(val64, &bar0->rx_w_round_robin_1);
1567 writeq(val64, &bar0->rx_w_round_robin_2);
1568 writeq(val64, &bar0->rx_w_round_robin_3);
1569 writeq(val64, &bar0->rx_w_round_robin_4);
1571 val64 = 0x8080808080808080ULL;
1572 writeq(val64, &bar0->rts_qos_steering);
1573 break;
1574 case 2:
1575 val64 = 0x0001000100010001ULL;
1576 writeq(val64, &bar0->rx_w_round_robin_0);
1577 writeq(val64, &bar0->rx_w_round_robin_1);
1578 writeq(val64, &bar0->rx_w_round_robin_2);
1579 writeq(val64, &bar0->rx_w_round_robin_3);
1580 val64 = 0x0001000100000000ULL;
1581 writeq(val64, &bar0->rx_w_round_robin_4);
1583 val64 = 0x8080808040404040ULL;
1584 writeq(val64, &bar0->rts_qos_steering);
1585 break;
1586 case 3:
1587 val64 = 0x0001020001020001ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_0);
1589 val64 = 0x0200010200010200ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_1);
1591 val64 = 0x0102000102000102ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_2);
1593 val64 = 0x0001020001020001ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_3);
1595 val64 = 0x0200010200000000ULL;
1596 writeq(val64, &bar0->rx_w_round_robin_4);
1598 val64 = 0x8080804040402020ULL;
1599 writeq(val64, &bar0->rts_qos_steering);
1600 break;
1601 case 4:
1602 val64 = 0x0001020300010203ULL;
1603 writeq(val64, &bar0->rx_w_round_robin_0);
1604 writeq(val64, &bar0->rx_w_round_robin_1);
1605 writeq(val64, &bar0->rx_w_round_robin_2);
1606 writeq(val64, &bar0->rx_w_round_robin_3);
1607 val64 = 0x0001020300000000ULL;
1608 writeq(val64, &bar0->rx_w_round_robin_4);
1610 val64 = 0x8080404020201010ULL;
1611 writeq(val64, &bar0->rts_qos_steering);
1612 break;
1613 case 5:
1614 val64 = 0x0001020304000102ULL;
1615 writeq(val64, &bar0->rx_w_round_robin_0);
1616 val64 = 0x0304000102030400ULL;
1617 writeq(val64, &bar0->rx_w_round_robin_1);
1618 val64 = 0x0102030400010203ULL;
1619 writeq(val64, &bar0->rx_w_round_robin_2);
1620 val64 = 0x0400010203040001ULL;
1621 writeq(val64, &bar0->rx_w_round_robin_3);
1622 val64 = 0x0203040000000000ULL;
1623 writeq(val64, &bar0->rx_w_round_robin_4);
1625 val64 = 0x8080404020201008ULL;
1626 writeq(val64, &bar0->rts_qos_steering);
1627 break;
1628 case 6:
1629 val64 = 0x0001020304050001ULL;
1630 writeq(val64, &bar0->rx_w_round_robin_0);
1631 val64 = 0x0203040500010203ULL;
1632 writeq(val64, &bar0->rx_w_round_robin_1);
1633 val64 = 0x0405000102030405ULL;
1634 writeq(val64, &bar0->rx_w_round_robin_2);
1635 val64 = 0x0001020304050001ULL;
1636 writeq(val64, &bar0->rx_w_round_robin_3);
1637 val64 = 0x0203040500000000ULL;
1638 writeq(val64, &bar0->rx_w_round_robin_4);
1640 val64 = 0x8080404020100804ULL;
1641 writeq(val64, &bar0->rts_qos_steering);
1642 break;
1643 case 7:
1644 val64 = 0x0001020304050600ULL;
1645 writeq(val64, &bar0->rx_w_round_robin_0);
1646 val64 = 0x0102030405060001ULL;
1647 writeq(val64, &bar0->rx_w_round_robin_1);
1648 val64 = 0x0203040506000102ULL;
1649 writeq(val64, &bar0->rx_w_round_robin_2);
1650 val64 = 0x0304050600010203ULL;
1651 writeq(val64, &bar0->rx_w_round_robin_3);
1652 val64 = 0x0405060000000000ULL;
1653 writeq(val64, &bar0->rx_w_round_robin_4);
1655 val64 = 0x8080402010080402ULL;
1656 writeq(val64, &bar0->rts_qos_steering);
1657 break;
1658 case 8:
1659 val64 = 0x0001020304050607ULL;
1660 writeq(val64, &bar0->rx_w_round_robin_0);
1661 writeq(val64, &bar0->rx_w_round_robin_1);
1662 writeq(val64, &bar0->rx_w_round_robin_2);
1663 writeq(val64, &bar0->rx_w_round_robin_3);
1664 val64 = 0x0001020300000000ULL;
1665 writeq(val64, &bar0->rx_w_round_robin_4);
1667 val64 = 0x8040201008040201ULL;
1668 writeq(val64, &bar0->rts_qos_steering);
1669 break;
1672 /* UDP Fix */
1673 val64 = 0;
1674 for (i = 0; i < 8; i++)
1675 writeq(val64, &bar0->rts_frm_len_n[i]);
1677 /* Set the default rts frame length for the rings configured */
1678 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1679 for (i = 0 ; i < config->rx_ring_num ; i++)
1680 writeq(val64, &bar0->rts_frm_len_n[i]);
1682 /* Set the frame length for the configured rings
1683 * desired by the user
1685 for (i = 0; i < config->rx_ring_num; i++) {
1686 /* If rts_frm_len[i] == 0 then it is assumed that user not
1687 * specified frame length steering.
1688 * If the user provides the frame length then program
1689 * the rts_frm_len register for those values or else
1690 * leave it as it is.
1692 if (rts_frm_len[i] != 0) {
1693 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1694 &bar0->rts_frm_len_n[i]);
1698 /* Disable differentiated services steering logic */
1699 for (i = 0; i < 64; i++) {
1700 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1701 DBG_PRINT(ERR_DBG,
1702 "%s: rts_ds_steer failed on codepoint %d\n",
1703 dev->name, i);
1704 return -ENODEV;
1708 /* Program statistics memory */
1709 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1711 if (nic->device_type == XFRAME_II_DEVICE) {
1712 val64 = STAT_BC(0x320);
1713 writeq(val64, &bar0->stat_byte_cnt);
1717 * Initializing the sampling rate for the device to calculate the
1718 * bandwidth utilization.
1720 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1721 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1722 writeq(val64, &bar0->mac_link_util);
1725 * Initializing the Transmit and Receive Traffic Interrupt
1726 * Scheme.
1729 /* Initialize TTI */
1730 if (SUCCESS != init_tti(nic, nic->last_link_state))
1731 return -ENODEV;
1733 /* RTI Initialization */
1734 if (nic->device_type == XFRAME_II_DEVICE) {
1736 * Programmed to generate Apprx 500 Intrs per
1737 * second
1739 int count = (nic->config.bus_speed * 125)/4;
1740 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1741 } else
1742 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1743 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1744 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1745 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1746 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1748 writeq(val64, &bar0->rti_data1_mem);
1750 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1751 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1752 if (nic->config.intr_type == MSI_X)
1753 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1754 RTI_DATA2_MEM_RX_UFC_D(0x40));
1755 else
1756 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x80));
1758 writeq(val64, &bar0->rti_data2_mem);
1760 for (i = 0; i < config->rx_ring_num; i++) {
1761 val64 = RTI_CMD_MEM_WE |
1762 RTI_CMD_MEM_STROBE_NEW_CMD |
1763 RTI_CMD_MEM_OFFSET(i);
1764 writeq(val64, &bar0->rti_command_mem);
1767 * Once the operation completes, the Strobe bit of the
1768 * command register will be reset. We poll for this
1769 * particular condition. We wait for a maximum of 500ms
1770 * for the operation to complete, if it's not complete
1771 * by then we return error.
1773 time = 0;
1774 while (true) {
1775 val64 = readq(&bar0->rti_command_mem);
1776 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1777 break;
1779 if (time > 10) {
1780 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1781 dev->name);
1782 return -ENODEV;
1784 time++;
1785 msleep(50);
1790 * Initializing proper values as Pause threshold into all
1791 * the 8 Queues on Rx side.
1793 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1794 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1796 /* Disable RMAC PAD STRIPPING */
1797 add = &bar0->mac_cfg;
1798 val64 = readq(&bar0->mac_cfg);
1799 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1800 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1801 writel((u32) (val64), add);
1802 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1803 writel((u32) (val64 >> 32), (add + 4));
1804 val64 = readq(&bar0->mac_cfg);
1806 /* Enable FCS stripping by adapter */
1807 add = &bar0->mac_cfg;
1808 val64 = readq(&bar0->mac_cfg);
1809 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1810 if (nic->device_type == XFRAME_II_DEVICE)
1811 writeq(val64, &bar0->mac_cfg);
1812 else {
1813 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1814 writel((u32) (val64), add);
1815 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1816 writel((u32) (val64 >> 32), (add + 4));
1820 * Set the time value to be inserted in the pause frame
1821 * generated by xena.
1823 val64 = readq(&bar0->rmac_pause_cfg);
1824 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1825 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1826 writeq(val64, &bar0->rmac_pause_cfg);
1829 * Set the Threshold Limit for Generating the pause frame
1830 * If the amount of data in any Queue exceeds ratio of
1831 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1832 * pause frame is generated
1834 val64 = 0;
1835 for (i = 0; i < 4; i++) {
1836 val64 |= (((u64)0xFF00 |
1837 nic->mac_control.mc_pause_threshold_q0q3)
1838 << (i * 2 * 8));
1840 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1842 val64 = 0;
1843 for (i = 0; i < 4; i++) {
1844 val64 |= (((u64)0xFF00 |
1845 nic->mac_control.mc_pause_threshold_q4q7)
1846 << (i * 2 * 8));
1848 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1851 * TxDMA will stop Read request if the number of read split has
1852 * exceeded the limit pointed by shared_splits
1854 val64 = readq(&bar0->pic_control);
1855 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1856 writeq(val64, &bar0->pic_control);
1858 if (nic->config.bus_speed == 266) {
1859 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1860 writeq(0x0, &bar0->read_retry_delay);
1861 writeq(0x0, &bar0->write_retry_delay);
1865 * Programming the Herc to split every write transaction
1866 * that does not start on an ADB to reduce disconnects.
1868 if (nic->device_type == XFRAME_II_DEVICE) {
1869 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1870 MISC_LINK_STABILITY_PRD(3);
1871 writeq(val64, &bar0->misc_control);
1872 val64 = readq(&bar0->pic_control2);
1873 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1874 writeq(val64, &bar0->pic_control2);
1876 if (strstr(nic->product_name, "CX4")) {
1877 val64 = TMAC_AVG_IPG(0x17);
1878 writeq(val64, &bar0->tmac_avg_ipg);
1881 return SUCCESS;
1883 #define LINK_UP_DOWN_INTERRUPT 1
1884 #define MAC_RMAC_ERR_TIMER 2
1886 static int s2io_link_fault_indication(struct s2io_nic *nic)
1888 if (nic->device_type == XFRAME_II_DEVICE)
1889 return LINK_UP_DOWN_INTERRUPT;
1890 else
1891 return MAC_RMAC_ERR_TIMER;
1895 * do_s2io_write_bits - update alarm bits in alarm register
1896 * @value: alarm bits
1897 * @flag: interrupt status
1898 * @addr: address value
1899 * Description: update alarm bits in alarm register
1900 * Return Value:
1901 * NONE.
1903 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1905 u64 temp64;
1907 temp64 = readq(addr);
1909 if (flag == ENABLE_INTRS)
1910 temp64 &= ~((u64)value);
1911 else
1912 temp64 |= ((u64)value);
1913 writeq(temp64, addr);
1916 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1918 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1919 register u64 gen_int_mask = 0;
1920 u64 interruptible;
1922 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1923 if (mask & TX_DMA_INTR) {
1924 gen_int_mask |= TXDMA_INT_M;
1926 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1927 TXDMA_PCC_INT | TXDMA_TTI_INT |
1928 TXDMA_LSO_INT | TXDMA_TPA_INT |
1929 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1931 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1932 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1933 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1934 &bar0->pfc_err_mask);
1936 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1937 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1938 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1940 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1941 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1942 PCC_N_SERR | PCC_6_COF_OV_ERR |
1943 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1944 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1945 PCC_TXB_ECC_SG_ERR,
1946 flag, &bar0->pcc_err_mask);
1948 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1949 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1951 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1952 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1953 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1954 flag, &bar0->lso_err_mask);
1956 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1957 flag, &bar0->tpa_err_mask);
1959 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1962 if (mask & TX_MAC_INTR) {
1963 gen_int_mask |= TXMAC_INT_M;
1964 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1965 &bar0->mac_int_mask);
1966 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1967 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1968 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1969 flag, &bar0->mac_tmac_err_mask);
1972 if (mask & TX_XGXS_INTR) {
1973 gen_int_mask |= TXXGXS_INT_M;
1974 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1975 &bar0->xgxs_int_mask);
1976 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1977 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1978 flag, &bar0->xgxs_txgxs_err_mask);
1981 if (mask & RX_DMA_INTR) {
1982 gen_int_mask |= RXDMA_INT_M;
1983 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1984 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1985 flag, &bar0->rxdma_int_mask);
1986 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1987 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1988 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1989 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1990 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1991 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1992 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1993 &bar0->prc_pcix_err_mask);
1994 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1995 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1996 &bar0->rpa_err_mask);
1997 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1998 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1999 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2000 RDA_FRM_ECC_SG_ERR |
2001 RDA_MISC_ERR|RDA_PCIX_ERR,
2002 flag, &bar0->rda_err_mask);
2003 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2004 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2005 flag, &bar0->rti_err_mask);
2008 if (mask & RX_MAC_INTR) {
2009 gen_int_mask |= RXMAC_INT_M;
2010 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2011 &bar0->mac_int_mask);
2012 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2013 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2014 RMAC_DOUBLE_ECC_ERR);
2015 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2016 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2017 do_s2io_write_bits(interruptible,
2018 flag, &bar0->mac_rmac_err_mask);
2021 if (mask & RX_XGXS_INTR) {
2022 gen_int_mask |= RXXGXS_INT_M;
2023 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2024 &bar0->xgxs_int_mask);
2025 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2026 &bar0->xgxs_rxgxs_err_mask);
2029 if (mask & MC_INTR) {
2030 gen_int_mask |= MC_INT_M;
2031 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2032 flag, &bar0->mc_int_mask);
2033 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2034 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2035 &bar0->mc_err_mask);
2037 nic->general_int_mask = gen_int_mask;
2039 /* Remove this line when alarm interrupts are enabled */
2040 nic->general_int_mask = 0;
2044 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2045 * @nic: device private variable,
2046 * @mask: A mask indicating which Intr block must be modified and,
2047 * @flag: A flag indicating whether to enable or disable the Intrs.
2048 * Description: This function will either disable or enable the interrupts
2049 * depending on the flag argument. The mask argument can be used to
2050 * enable/disable any Intr block.
2051 * Return Value: NONE.
2054 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2056 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2057 register u64 temp64 = 0, intr_mask = 0;
2059 intr_mask = nic->general_int_mask;
2061 /* Top level interrupt classification */
2062 /* PIC Interrupts */
2063 if (mask & TX_PIC_INTR) {
2064 /* Enable PIC Intrs in the general intr mask register */
2065 intr_mask |= TXPIC_INT_M;
2066 if (flag == ENABLE_INTRS) {
2068 * If Hercules adapter enable GPIO otherwise
2069 * disable all PCIX, Flash, MDIO, IIC and GPIO
2070 * interrupts for now.
2071 * TODO
2073 if (s2io_link_fault_indication(nic) ==
2074 LINK_UP_DOWN_INTERRUPT) {
2075 do_s2io_write_bits(PIC_INT_GPIO, flag,
2076 &bar0->pic_int_mask);
2077 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2078 &bar0->gpio_int_mask);
2079 } else
2080 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2081 } else if (flag == DISABLE_INTRS) {
2083 * Disable PIC Intrs in the general
2084 * intr mask register
2086 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2090 /* Tx traffic interrupts */
2091 if (mask & TX_TRAFFIC_INTR) {
2092 intr_mask |= TXTRAFFIC_INT_M;
2093 if (flag == ENABLE_INTRS) {
2095 * Enable all the Tx side interrupts
2096 * writing 0 Enables all 64 TX interrupt levels
2098 writeq(0x0, &bar0->tx_traffic_mask);
2099 } else if (flag == DISABLE_INTRS) {
2101 * Disable Tx Traffic Intrs in the general intr mask
2102 * register.
2104 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2108 /* Rx traffic interrupts */
2109 if (mask & RX_TRAFFIC_INTR) {
2110 intr_mask |= RXTRAFFIC_INT_M;
2111 if (flag == ENABLE_INTRS) {
2112 /* writing 0 Enables all 8 RX interrupt levels */
2113 writeq(0x0, &bar0->rx_traffic_mask);
2114 } else if (flag == DISABLE_INTRS) {
2116 * Disable Rx Traffic Intrs in the general intr mask
2117 * register.
2119 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2123 temp64 = readq(&bar0->general_int_mask);
2124 if (flag == ENABLE_INTRS)
2125 temp64 &= ~((u64)intr_mask);
2126 else
2127 temp64 = DISABLE_ALL_INTRS;
2128 writeq(temp64, &bar0->general_int_mask);
2130 nic->general_int_mask = readq(&bar0->general_int_mask);
2134 * verify_pcc_quiescent- Checks for PCC quiescent state
2135 * Return: 1 If PCC is quiescence
2136 * 0 If PCC is not quiescence
2138 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2140 int ret = 0, herc;
2141 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2142 u64 val64 = readq(&bar0->adapter_status);
2144 herc = (sp->device_type == XFRAME_II_DEVICE);
2146 if (flag == false) {
2147 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2148 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2149 ret = 1;
2150 } else {
2151 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2152 ret = 1;
2154 } else {
2155 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2156 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2157 ADAPTER_STATUS_RMAC_PCC_IDLE))
2158 ret = 1;
2159 } else {
2160 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2161 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2162 ret = 1;
2166 return ret;
2169 * verify_xena_quiescence - Checks whether the H/W is ready
2170 * Description: Returns whether the H/W is ready to go or not. Depending
2171 * on whether adapter enable bit was written or not the comparison
2172 * differs and the calling function passes the input argument flag to
2173 * indicate this.
2174 * Return: 1 If xena is quiescence
2175 * 0 If Xena is not quiescence
2178 static int verify_xena_quiescence(struct s2io_nic *sp)
2180 int mode;
2181 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2182 u64 val64 = readq(&bar0->adapter_status);
2183 mode = s2io_verify_pci_mode(sp);
2185 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2186 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2187 return 0;
2189 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2190 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2191 return 0;
2193 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2194 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2195 return 0;
2197 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2198 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2199 return 0;
2201 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2202 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2203 return 0;
2205 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2206 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2207 return 0;
2209 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2210 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2211 return 0;
2213 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2214 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2215 return 0;
2219 * In PCI 33 mode, the P_PLL is not used, and therefore,
2220 * the the P_PLL_LOCK bit in the adapter_status register will
2221 * not be asserted.
2223 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2224 sp->device_type == XFRAME_II_DEVICE &&
2225 mode != PCI_MODE_PCI_33) {
2226 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2227 return 0;
2229 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2230 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2231 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2232 return 0;
2234 return 1;
2238 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2239 * @sp: Pointer to device specifc structure
2240 * Description :
2241 * New procedure to clear mac address reading problems on Alpha platforms
2245 static void fix_mac_address(struct s2io_nic *sp)
2247 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2248 int i = 0;
2250 while (fix_mac[i] != END_SIGN) {
2251 writeq(fix_mac[i++], &bar0->gpio_control);
2252 udelay(10);
2253 (void) readq(&bar0->gpio_control);
2258 * start_nic - Turns the device on
2259 * @nic : device private variable.
2260 * Description:
2261 * This function actually turns the device on. Before this function is
2262 * called,all Registers are configured from their reset states
2263 * and shared memory is allocated but the NIC is still quiescent. On
2264 * calling this function, the device interrupts are cleared and the NIC is
2265 * literally switched on by writing into the adapter control register.
2266 * Return Value:
2267 * SUCCESS on success and -1 on failure.
2270 static int start_nic(struct s2io_nic *nic)
2272 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2273 struct net_device *dev = nic->dev;
2274 register u64 val64 = 0;
2275 u16 subid, i;
2276 struct config_param *config = &nic->config;
2277 struct mac_info *mac_control = &nic->mac_control;
2279 /* PRC Initialization and configuration */
2280 for (i = 0; i < config->rx_ring_num; i++) {
2281 struct ring_info *ring = &mac_control->rings[i];
2283 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2284 &bar0->prc_rxd0_n[i]);
2286 val64 = readq(&bar0->prc_ctrl_n[i]);
2287 if (nic->rxd_mode == RXD_MODE_1)
2288 val64 |= PRC_CTRL_RC_ENABLED;
2289 else
2290 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2291 if (nic->device_type == XFRAME_II_DEVICE)
2292 val64 |= PRC_CTRL_GROUP_READS;
2293 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2294 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2295 writeq(val64, &bar0->prc_ctrl_n[i]);
2298 if (nic->rxd_mode == RXD_MODE_3B) {
2299 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2300 val64 = readq(&bar0->rx_pa_cfg);
2301 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2302 writeq(val64, &bar0->rx_pa_cfg);
2305 if (vlan_tag_strip == 0) {
2306 val64 = readq(&bar0->rx_pa_cfg);
2307 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2308 writeq(val64, &bar0->rx_pa_cfg);
2309 nic->vlan_strip_flag = 0;
2313 * Enabling MC-RLDRAM. After enabling the device, we timeout
2314 * for around 100ms, which is approximately the time required
2315 * for the device to be ready for operation.
2317 val64 = readq(&bar0->mc_rldram_mrs);
2318 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2319 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2320 val64 = readq(&bar0->mc_rldram_mrs);
2322 msleep(100); /* Delay by around 100 ms. */
2324 /* Enabling ECC Protection. */
2325 val64 = readq(&bar0->adapter_control);
2326 val64 &= ~ADAPTER_ECC_EN;
2327 writeq(val64, &bar0->adapter_control);
2330 * Verify if the device is ready to be enabled, if so enable
2331 * it.
2333 val64 = readq(&bar0->adapter_status);
2334 if (!verify_xena_quiescence(nic)) {
2335 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2336 "Adapter status reads: 0x%llx\n",
2337 dev->name, (unsigned long long)val64);
2338 return FAILURE;
2342 * With some switches, link might be already up at this point.
2343 * Because of this weird behavior, when we enable laser,
2344 * we may not get link. We need to handle this. We cannot
2345 * figure out which switch is misbehaving. So we are forced to
2346 * make a global change.
2349 /* Enabling Laser. */
2350 val64 = readq(&bar0->adapter_control);
2351 val64 |= ADAPTER_EOI_TX_ON;
2352 writeq(val64, &bar0->adapter_control);
2354 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2356 * Dont see link state interrupts initially on some switches,
2357 * so directly scheduling the link state task here.
2359 schedule_work(&nic->set_link_task);
2361 /* SXE-002: Initialize link and activity LED */
2362 subid = nic->pdev->subsystem_device;
2363 if (((subid & 0xFF) >= 0x07) &&
2364 (nic->device_type == XFRAME_I_DEVICE)) {
2365 val64 = readq(&bar0->gpio_control);
2366 val64 |= 0x0000800000000000ULL;
2367 writeq(val64, &bar0->gpio_control);
2368 val64 = 0x0411040400000000ULL;
2369 writeq(val64, (void __iomem *)bar0 + 0x2700);
2372 return SUCCESS;
2375 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2377 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2378 struct TxD *txdlp, int get_off)
2380 struct s2io_nic *nic = fifo_data->nic;
2381 struct sk_buff *skb;
2382 struct TxD *txds;
2383 u16 j, frg_cnt;
2385 txds = txdlp;
2386 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2387 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2388 sizeof(u64), PCI_DMA_TODEVICE);
2389 txds++;
2392 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2393 if (!skb) {
2394 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2395 return NULL;
2397 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2398 skb_headlen(skb), PCI_DMA_TODEVICE);
2399 frg_cnt = skb_shinfo(skb)->nr_frags;
2400 if (frg_cnt) {
2401 txds++;
2402 for (j = 0; j < frg_cnt; j++, txds++) {
2403 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404 if (!txds->Buffer_Pointer)
2405 break;
2406 pci_unmap_page(nic->pdev,
2407 (dma_addr_t)txds->Buffer_Pointer,
2408 frag->size, PCI_DMA_TODEVICE);
2411 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2412 return skb;
2416 * free_tx_buffers - Free all queued Tx buffers
2417 * @nic : device private variable.
2418 * Description:
2419 * Free all queued Tx buffers.
2420 * Return Value: void
2423 static void free_tx_buffers(struct s2io_nic *nic)
2425 struct net_device *dev = nic->dev;
2426 struct sk_buff *skb;
2427 struct TxD *txdp;
2428 int i, j;
2429 int cnt = 0;
2430 struct config_param *config = &nic->config;
2431 struct mac_info *mac_control = &nic->mac_control;
2432 struct stat_block *stats = mac_control->stats_info;
2433 struct swStat *swstats = &stats->sw_stat;
2435 for (i = 0; i < config->tx_fifo_num; i++) {
2436 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2437 struct fifo_info *fifo = &mac_control->fifos[i];
2438 unsigned long flags;
2440 spin_lock_irqsave(&fifo->tx_lock, flags);
2441 for (j = 0; j < tx_cfg->fifo_len; j++) {
2442 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2443 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2444 if (skb) {
2445 swstats->mem_freed += skb->truesize;
2446 dev_kfree_skb(skb);
2447 cnt++;
2450 DBG_PRINT(INTR_DBG,
2451 "%s: forcibly freeing %d skbs on FIFO%d\n",
2452 dev->name, cnt, i);
2453 fifo->tx_curr_get_info.offset = 0;
2454 fifo->tx_curr_put_info.offset = 0;
2455 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2460 * stop_nic - To stop the nic
2461 * @nic ; device private variable.
2462 * Description:
2463 * This function does exactly the opposite of what the start_nic()
2464 * function does. This function is called to stop the device.
2465 * Return Value:
2466 * void.
2469 static void stop_nic(struct s2io_nic *nic)
2471 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472 register u64 val64 = 0;
2473 u16 interruptible;
2475 /* Disable all interrupts */
2476 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2477 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2478 interruptible |= TX_PIC_INTR;
2479 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2481 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2482 val64 = readq(&bar0->adapter_control);
2483 val64 &= ~(ADAPTER_CNTL_EN);
2484 writeq(val64, &bar0->adapter_control);
2488 * fill_rx_buffers - Allocates the Rx side skbs
2489 * @ring_info: per ring structure
2490 * @from_card_up: If this is true, we will map the buffer to get
2491 * the dma address for buf0 and buf1 to give it to the card.
2492 * Else we will sync the already mapped buffer to give it to the card.
2493 * Description:
2494 * The function allocates Rx side skbs and puts the physical
2495 * address of these buffers into the RxD buffer pointers, so that the NIC
2496 * can DMA the received frame into these locations.
2497 * The NIC supports 3 receive modes, viz
2498 * 1. single buffer,
2499 * 2. three buffer and
2500 * 3. Five buffer modes.
2501 * Each mode defines how many fragments the received frame will be split
2502 * up into by the NIC. The frame is split into L3 header, L4 Header,
2503 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2504 * is split into 3 fragments. As of now only single buffer mode is
2505 * supported.
2506 * Return Value:
2507 * SUCCESS on success or an appropriate -ve value on failure.
2509 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2510 int from_card_up)
2512 struct sk_buff *skb;
2513 struct RxD_t *rxdp;
2514 int off, size, block_no, block_no1;
2515 u32 alloc_tab = 0;
2516 u32 alloc_cnt;
2517 u64 tmp;
2518 struct buffAdd *ba;
2519 struct RxD_t *first_rxdp = NULL;
2520 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2521 int rxd_index = 0;
2522 struct RxD1 *rxdp1;
2523 struct RxD3 *rxdp3;
2524 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2526 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2528 block_no1 = ring->rx_curr_get_info.block_index;
2529 while (alloc_tab < alloc_cnt) {
2530 block_no = ring->rx_curr_put_info.block_index;
2532 off = ring->rx_curr_put_info.offset;
2534 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2536 rxd_index = off + 1;
2537 if (block_no)
2538 rxd_index += (block_no * ring->rxd_count);
2540 if ((block_no == block_no1) &&
2541 (off == ring->rx_curr_get_info.offset) &&
2542 (rxdp->Host_Control)) {
2543 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2544 ring->dev->name);
2545 goto end;
2547 if (off && (off == ring->rxd_count)) {
2548 ring->rx_curr_put_info.block_index++;
2549 if (ring->rx_curr_put_info.block_index ==
2550 ring->block_count)
2551 ring->rx_curr_put_info.block_index = 0;
2552 block_no = ring->rx_curr_put_info.block_index;
2553 off = 0;
2554 ring->rx_curr_put_info.offset = off;
2555 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2556 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2557 ring->dev->name, rxdp);
2561 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2562 ((ring->rxd_mode == RXD_MODE_3B) &&
2563 (rxdp->Control_2 & s2BIT(0)))) {
2564 ring->rx_curr_put_info.offset = off;
2565 goto end;
2567 /* calculate size of skb based on ring mode */
2568 size = ring->mtu +
2569 HEADER_ETHERNET_II_802_3_SIZE +
2570 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2571 if (ring->rxd_mode == RXD_MODE_1)
2572 size += NET_IP_ALIGN;
2573 else
2574 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2576 /* allocate skb */
2577 skb = dev_alloc_skb(size);
2578 if (!skb) {
2579 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2580 ring->dev->name);
2581 if (first_rxdp) {
2582 wmb();
2583 first_rxdp->Control_1 |= RXD_OWN_XENA;
2585 swstats->mem_alloc_fail_cnt++;
2587 return -ENOMEM ;
2589 swstats->mem_allocated += skb->truesize;
2591 if (ring->rxd_mode == RXD_MODE_1) {
2592 /* 1 buffer mode - normal operation mode */
2593 rxdp1 = (struct RxD1 *)rxdp;
2594 memset(rxdp, 0, sizeof(struct RxD1));
2595 skb_reserve(skb, NET_IP_ALIGN);
2596 rxdp1->Buffer0_ptr =
2597 pci_map_single(ring->pdev, skb->data,
2598 size - NET_IP_ALIGN,
2599 PCI_DMA_FROMDEVICE);
2600 if (pci_dma_mapping_error(nic->pdev,
2601 rxdp1->Buffer0_ptr))
2602 goto pci_map_failed;
2604 rxdp->Control_2 =
2605 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2606 rxdp->Host_Control = (unsigned long)skb;
2607 } else if (ring->rxd_mode == RXD_MODE_3B) {
2609 * 2 buffer mode -
2610 * 2 buffer mode provides 128
2611 * byte aligned receive buffers.
2614 rxdp3 = (struct RxD3 *)rxdp;
2615 /* save buffer pointers to avoid frequent dma mapping */
2616 Buffer0_ptr = rxdp3->Buffer0_ptr;
2617 Buffer1_ptr = rxdp3->Buffer1_ptr;
2618 memset(rxdp, 0, sizeof(struct RxD3));
2619 /* restore the buffer pointers for dma sync*/
2620 rxdp3->Buffer0_ptr = Buffer0_ptr;
2621 rxdp3->Buffer1_ptr = Buffer1_ptr;
2623 ba = &ring->ba[block_no][off];
2624 skb_reserve(skb, BUF0_LEN);
2625 tmp = (u64)(unsigned long)skb->data;
2626 tmp += ALIGN_SIZE;
2627 tmp &= ~ALIGN_SIZE;
2628 skb->data = (void *) (unsigned long)tmp;
2629 skb_reset_tail_pointer(skb);
2631 if (from_card_up) {
2632 rxdp3->Buffer0_ptr =
2633 pci_map_single(ring->pdev, ba->ba_0,
2634 BUF0_LEN,
2635 PCI_DMA_FROMDEVICE);
2636 if (pci_dma_mapping_error(nic->pdev,
2637 rxdp3->Buffer0_ptr))
2638 goto pci_map_failed;
2639 } else
2640 pci_dma_sync_single_for_device(ring->pdev,
2641 (dma_addr_t)rxdp3->Buffer0_ptr,
2642 BUF0_LEN,
2643 PCI_DMA_FROMDEVICE);
2645 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2646 if (ring->rxd_mode == RXD_MODE_3B) {
2647 /* Two buffer mode */
2650 * Buffer2 will have L3/L4 header plus
2651 * L4 payload
2653 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2654 skb->data,
2655 ring->mtu + 4,
2656 PCI_DMA_FROMDEVICE);
2658 if (pci_dma_mapping_error(nic->pdev,
2659 rxdp3->Buffer2_ptr))
2660 goto pci_map_failed;
2662 if (from_card_up) {
2663 rxdp3->Buffer1_ptr =
2664 pci_map_single(ring->pdev,
2665 ba->ba_1,
2666 BUF1_LEN,
2667 PCI_DMA_FROMDEVICE);
2669 if (pci_dma_mapping_error(nic->pdev,
2670 rxdp3->Buffer1_ptr)) {
2671 pci_unmap_single(ring->pdev,
2672 (dma_addr_t)(unsigned long)
2673 skb->data,
2674 ring->mtu + 4,
2675 PCI_DMA_FROMDEVICE);
2676 goto pci_map_failed;
2679 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2681 (ring->mtu + 4);
2683 rxdp->Control_2 |= s2BIT(0);
2684 rxdp->Host_Control = (unsigned long) (skb);
2686 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687 rxdp->Control_1 |= RXD_OWN_XENA;
2688 off++;
2689 if (off == (ring->rxd_count + 1))
2690 off = 0;
2691 ring->rx_curr_put_info.offset = off;
2693 rxdp->Control_2 |= SET_RXD_MARKER;
2694 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695 if (first_rxdp) {
2696 wmb();
2697 first_rxdp->Control_1 |= RXD_OWN_XENA;
2699 first_rxdp = rxdp;
2701 ring->rx_bufs_left += 1;
2702 alloc_tab++;
2705 end:
2706 /* Transfer ownership of first descriptor to adapter just before
2707 * exiting. Before that, use memory barrier so that ownership
2708 * and other fields are seen by adapter correctly.
2710 if (first_rxdp) {
2711 wmb();
2712 first_rxdp->Control_1 |= RXD_OWN_XENA;
2715 return SUCCESS;
2717 pci_map_failed:
2718 swstats->pci_map_fail_cnt++;
2719 swstats->mem_freed += skb->truesize;
2720 dev_kfree_skb_irq(skb);
2721 return -ENOMEM;
2724 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2726 struct net_device *dev = sp->dev;
2727 int j;
2728 struct sk_buff *skb;
2729 struct RxD_t *rxdp;
2730 struct RxD1 *rxdp1;
2731 struct RxD3 *rxdp3;
2732 struct mac_info *mac_control = &sp->mac_control;
2733 struct stat_block *stats = mac_control->stats_info;
2734 struct swStat *swstats = &stats->sw_stat;
2736 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2737 rxdp = mac_control->rings[ring_no].
2738 rx_blocks[blk].rxds[j].virt_addr;
2739 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2740 if (!skb)
2741 continue;
2742 if (sp->rxd_mode == RXD_MODE_1) {
2743 rxdp1 = (struct RxD1 *)rxdp;
2744 pci_unmap_single(sp->pdev,
2745 (dma_addr_t)rxdp1->Buffer0_ptr,
2746 dev->mtu +
2747 HEADER_ETHERNET_II_802_3_SIZE +
2748 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2749 PCI_DMA_FROMDEVICE);
2750 memset(rxdp, 0, sizeof(struct RxD1));
2751 } else if (sp->rxd_mode == RXD_MODE_3B) {
2752 rxdp3 = (struct RxD3 *)rxdp;
2753 pci_unmap_single(sp->pdev,
2754 (dma_addr_t)rxdp3->Buffer0_ptr,
2755 BUF0_LEN,
2756 PCI_DMA_FROMDEVICE);
2757 pci_unmap_single(sp->pdev,
2758 (dma_addr_t)rxdp3->Buffer1_ptr,
2759 BUF1_LEN,
2760 PCI_DMA_FROMDEVICE);
2761 pci_unmap_single(sp->pdev,
2762 (dma_addr_t)rxdp3->Buffer2_ptr,
2763 dev->mtu + 4,
2764 PCI_DMA_FROMDEVICE);
2765 memset(rxdp, 0, sizeof(struct RxD3));
2767 swstats->mem_freed += skb->truesize;
2768 dev_kfree_skb(skb);
2769 mac_control->rings[ring_no].rx_bufs_left -= 1;
2774 * free_rx_buffers - Frees all Rx buffers
2775 * @sp: device private variable.
2776 * Description:
2777 * This function will free all Rx buffers allocated by host.
2778 * Return Value:
2779 * NONE.
2782 static void free_rx_buffers(struct s2io_nic *sp)
2784 struct net_device *dev = sp->dev;
2785 int i, blk = 0, buf_cnt = 0;
2786 struct config_param *config = &sp->config;
2787 struct mac_info *mac_control = &sp->mac_control;
2789 for (i = 0; i < config->rx_ring_num; i++) {
2790 struct ring_info *ring = &mac_control->rings[i];
2792 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2793 free_rxd_blk(sp, i, blk);
2795 ring->rx_curr_put_info.block_index = 0;
2796 ring->rx_curr_get_info.block_index = 0;
2797 ring->rx_curr_put_info.offset = 0;
2798 ring->rx_curr_get_info.offset = 0;
2799 ring->rx_bufs_left = 0;
2800 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2801 dev->name, buf_cnt, i);
2805 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2807 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2808 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2809 ring->dev->name);
2811 return 0;
2815 * s2io_poll - Rx interrupt handler for NAPI support
2816 * @napi : pointer to the napi structure.
2817 * @budget : The number of packets that were budgeted to be processed
2818 * during one pass through the 'Poll" function.
2819 * Description:
2820 * Comes into picture only if NAPI support has been incorporated. It does
2821 * the same thing that rx_intr_handler does, but not in a interrupt context
2822 * also It will process only a given number of packets.
2823 * Return value:
2824 * 0 on success and 1 if there are No Rx packets to be processed.
2827 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2829 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2830 struct net_device *dev = ring->dev;
2831 int pkts_processed = 0;
2832 u8 __iomem *addr = NULL;
2833 u8 val8 = 0;
2834 struct s2io_nic *nic = netdev_priv(dev);
2835 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2836 int budget_org = budget;
2838 if (unlikely(!is_s2io_card_up(nic)))
2839 return 0;
2841 pkts_processed = rx_intr_handler(ring, budget);
2842 s2io_chk_rx_buffers(nic, ring);
2844 if (pkts_processed < budget_org) {
2845 napi_complete(napi);
2846 /*Re Enable MSI-Rx Vector*/
2847 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2848 addr += 7 - ring->ring_no;
2849 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2850 writeb(val8, addr);
2851 val8 = readb(addr);
2853 return pkts_processed;
2856 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2858 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2859 int pkts_processed = 0;
2860 int ring_pkts_processed, i;
2861 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2862 int budget_org = budget;
2863 struct config_param *config = &nic->config;
2864 struct mac_info *mac_control = &nic->mac_control;
2866 if (unlikely(!is_s2io_card_up(nic)))
2867 return 0;
2869 for (i = 0; i < config->rx_ring_num; i++) {
2870 struct ring_info *ring = &mac_control->rings[i];
2871 ring_pkts_processed = rx_intr_handler(ring, budget);
2872 s2io_chk_rx_buffers(nic, ring);
2873 pkts_processed += ring_pkts_processed;
2874 budget -= ring_pkts_processed;
2875 if (budget <= 0)
2876 break;
2878 if (pkts_processed < budget_org) {
2879 napi_complete(napi);
2880 /* Re enable the Rx interrupts for the ring */
2881 writeq(0, &bar0->rx_traffic_mask);
2882 readl(&bar0->rx_traffic_mask);
2884 return pkts_processed;
2887 #ifdef CONFIG_NET_POLL_CONTROLLER
2889 * s2io_netpoll - netpoll event handler entry point
2890 * @dev : pointer to the device structure.
2891 * Description:
2892 * This function will be called by upper layer to check for events on the
2893 * interface in situations where interrupts are disabled. It is used for
2894 * specific in-kernel networking tasks, such as remote consoles and kernel
2895 * debugging over the network (example netdump in RedHat).
2897 static void s2io_netpoll(struct net_device *dev)
2899 struct s2io_nic *nic = netdev_priv(dev);
2900 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2901 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2902 int i;
2903 struct config_param *config = &nic->config;
2904 struct mac_info *mac_control = &nic->mac_control;
2906 if (pci_channel_offline(nic->pdev))
2907 return;
2909 disable_irq(dev->irq);
2911 writeq(val64, &bar0->rx_traffic_int);
2912 writeq(val64, &bar0->tx_traffic_int);
2914 /* we need to free up the transmitted skbufs or else netpoll will
2915 * run out of skbs and will fail and eventually netpoll application such
2916 * as netdump will fail.
2918 for (i = 0; i < config->tx_fifo_num; i++)
2919 tx_intr_handler(&mac_control->fifos[i]);
2921 /* check for received packet and indicate up to network */
2922 for (i = 0; i < config->rx_ring_num; i++) {
2923 struct ring_info *ring = &mac_control->rings[i];
2925 rx_intr_handler(ring, 0);
2928 for (i = 0; i < config->rx_ring_num; i++) {
2929 struct ring_info *ring = &mac_control->rings[i];
2931 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2932 DBG_PRINT(INFO_DBG,
2933 "%s: Out of memory in Rx Netpoll!!\n",
2934 dev->name);
2935 break;
2938 enable_irq(dev->irq);
2940 #endif
2943 * rx_intr_handler - Rx interrupt handler
2944 * @ring_info: per ring structure.
2945 * @budget: budget for napi processing.
2946 * Description:
2947 * If the interrupt is because of a received frame or if the
2948 * receive ring contains fresh as yet un-processed frames,this function is
2949 * called. It picks out the RxD at which place the last Rx processing had
2950 * stopped and sends the skb to the OSM's Rx handler and then increments
2951 * the offset.
2952 * Return Value:
2953 * No. of napi packets processed.
2955 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2957 int get_block, put_block;
2958 struct rx_curr_get_info get_info, put_info;
2959 struct RxD_t *rxdp;
2960 struct sk_buff *skb;
2961 int pkt_cnt = 0, napi_pkts = 0;
2962 int i;
2963 struct RxD1 *rxdp1;
2964 struct RxD3 *rxdp3;
2966 get_info = ring_data->rx_curr_get_info;
2967 get_block = get_info.block_index;
2968 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2969 put_block = put_info.block_index;
2970 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2972 while (RXD_IS_UP2DT(rxdp)) {
2974 * If your are next to put index then it's
2975 * FIFO full condition
2977 if ((get_block == put_block) &&
2978 (get_info.offset + 1) == put_info.offset) {
2979 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2980 ring_data->dev->name);
2981 break;
2983 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2984 if (skb == NULL) {
2985 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2986 ring_data->dev->name);
2987 return 0;
2989 if (ring_data->rxd_mode == RXD_MODE_1) {
2990 rxdp1 = (struct RxD1 *)rxdp;
2991 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2992 rxdp1->Buffer0_ptr,
2993 ring_data->mtu +
2994 HEADER_ETHERNET_II_802_3_SIZE +
2995 HEADER_802_2_SIZE +
2996 HEADER_SNAP_SIZE,
2997 PCI_DMA_FROMDEVICE);
2998 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2999 rxdp3 = (struct RxD3 *)rxdp;
3000 pci_dma_sync_single_for_cpu(ring_data->pdev,
3001 (dma_addr_t)rxdp3->Buffer0_ptr,
3002 BUF0_LEN,
3003 PCI_DMA_FROMDEVICE);
3004 pci_unmap_single(ring_data->pdev,
3005 (dma_addr_t)rxdp3->Buffer2_ptr,
3006 ring_data->mtu + 4,
3007 PCI_DMA_FROMDEVICE);
3009 prefetch(skb->data);
3010 rx_osm_handler(ring_data, rxdp);
3011 get_info.offset++;
3012 ring_data->rx_curr_get_info.offset = get_info.offset;
3013 rxdp = ring_data->rx_blocks[get_block].
3014 rxds[get_info.offset].virt_addr;
3015 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3016 get_info.offset = 0;
3017 ring_data->rx_curr_get_info.offset = get_info.offset;
3018 get_block++;
3019 if (get_block == ring_data->block_count)
3020 get_block = 0;
3021 ring_data->rx_curr_get_info.block_index = get_block;
3022 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3025 if (ring_data->nic->config.napi) {
3026 budget--;
3027 napi_pkts++;
3028 if (!budget)
3029 break;
3031 pkt_cnt++;
3032 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3033 break;
3035 if (ring_data->lro) {
3036 /* Clear all LRO sessions before exiting */
3037 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3038 struct lro *lro = &ring_data->lro0_n[i];
3039 if (lro->in_use) {
3040 update_L3L4_header(ring_data->nic, lro);
3041 queue_rx_frame(lro->parent, lro->vlan_tag);
3042 clear_lro_session(lro);
3046 return napi_pkts;
3050 * tx_intr_handler - Transmit interrupt handler
3051 * @nic : device private variable
3052 * Description:
3053 * If an interrupt was raised to indicate DMA complete of the
3054 * Tx packet, this function is called. It identifies the last TxD
3055 * whose buffer was freed and frees all skbs whose data have already
3056 * DMA'ed into the NICs internal memory.
3057 * Return Value:
3058 * NONE
3061 static void tx_intr_handler(struct fifo_info *fifo_data)
3063 struct s2io_nic *nic = fifo_data->nic;
3064 struct tx_curr_get_info get_info, put_info;
3065 struct sk_buff *skb = NULL;
3066 struct TxD *txdlp;
3067 int pkt_cnt = 0;
3068 unsigned long flags = 0;
3069 u8 err_mask;
3070 struct stat_block *stats = nic->mac_control.stats_info;
3071 struct swStat *swstats = &stats->sw_stat;
3073 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3074 return;
3076 get_info = fifo_data->tx_curr_get_info;
3077 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3078 txdlp = (struct TxD *)
3079 fifo_data->list_info[get_info.offset].list_virt_addr;
3080 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3081 (get_info.offset != put_info.offset) &&
3082 (txdlp->Host_Control)) {
3083 /* Check for TxD errors */
3084 if (txdlp->Control_1 & TXD_T_CODE) {
3085 unsigned long long err;
3086 err = txdlp->Control_1 & TXD_T_CODE;
3087 if (err & 0x1) {
3088 swstats->parity_err_cnt++;
3091 /* update t_code statistics */
3092 err_mask = err >> 48;
3093 switch (err_mask) {
3094 case 2:
3095 swstats->tx_buf_abort_cnt++;
3096 break;
3098 case 3:
3099 swstats->tx_desc_abort_cnt++;
3100 break;
3102 case 7:
3103 swstats->tx_parity_err_cnt++;
3104 break;
3106 case 10:
3107 swstats->tx_link_loss_cnt++;
3108 break;
3110 case 15:
3111 swstats->tx_list_proc_err_cnt++;
3112 break;
3116 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3117 if (skb == NULL) {
3118 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3119 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3120 __func__);
3121 return;
3123 pkt_cnt++;
3125 /* Updating the statistics block */
3126 swstats->mem_freed += skb->truesize;
3127 dev_kfree_skb_irq(skb);
3129 get_info.offset++;
3130 if (get_info.offset == get_info.fifo_len + 1)
3131 get_info.offset = 0;
3132 txdlp = (struct TxD *)
3133 fifo_data->list_info[get_info.offset].list_virt_addr;
3134 fifo_data->tx_curr_get_info.offset = get_info.offset;
3137 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3139 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3143 * s2io_mdio_write - Function to write in to MDIO registers
3144 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3145 * @addr : address value
3146 * @value : data value
3147 * @dev : pointer to net_device structure
3148 * Description:
3149 * This function is used to write values to the MDIO registers
3150 * NONE
3152 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3153 struct net_device *dev)
3155 u64 val64;
3156 struct s2io_nic *sp = netdev_priv(dev);
3157 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3159 /* address transaction */
3160 val64 = MDIO_MMD_INDX_ADDR(addr) |
3161 MDIO_MMD_DEV_ADDR(mmd_type) |
3162 MDIO_MMS_PRT_ADDR(0x0);
3163 writeq(val64, &bar0->mdio_control);
3164 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3165 writeq(val64, &bar0->mdio_control);
3166 udelay(100);
3168 /* Data transaction */
3169 val64 = MDIO_MMD_INDX_ADDR(addr) |
3170 MDIO_MMD_DEV_ADDR(mmd_type) |
3171 MDIO_MMS_PRT_ADDR(0x0) |
3172 MDIO_MDIO_DATA(value) |
3173 MDIO_OP(MDIO_OP_WRITE_TRANS);
3174 writeq(val64, &bar0->mdio_control);
3175 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3176 writeq(val64, &bar0->mdio_control);
3177 udelay(100);
3179 val64 = MDIO_MMD_INDX_ADDR(addr) |
3180 MDIO_MMD_DEV_ADDR(mmd_type) |
3181 MDIO_MMS_PRT_ADDR(0x0) |
3182 MDIO_OP(MDIO_OP_READ_TRANS);
3183 writeq(val64, &bar0->mdio_control);
3184 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3185 writeq(val64, &bar0->mdio_control);
3186 udelay(100);
3190 * s2io_mdio_read - Function to write in to MDIO registers
3191 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3192 * @addr : address value
3193 * @dev : pointer to net_device structure
3194 * Description:
3195 * This function is used to read values to the MDIO registers
3196 * NONE
3198 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3200 u64 val64 = 0x0;
3201 u64 rval64 = 0x0;
3202 struct s2io_nic *sp = netdev_priv(dev);
3203 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3205 /* address transaction */
3206 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3207 | MDIO_MMD_DEV_ADDR(mmd_type)
3208 | MDIO_MMS_PRT_ADDR(0x0));
3209 writeq(val64, &bar0->mdio_control);
3210 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3211 writeq(val64, &bar0->mdio_control);
3212 udelay(100);
3214 /* Data transaction */
3215 val64 = MDIO_MMD_INDX_ADDR(addr) |
3216 MDIO_MMD_DEV_ADDR(mmd_type) |
3217 MDIO_MMS_PRT_ADDR(0x0) |
3218 MDIO_OP(MDIO_OP_READ_TRANS);
3219 writeq(val64, &bar0->mdio_control);
3220 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3221 writeq(val64, &bar0->mdio_control);
3222 udelay(100);
3224 /* Read the value from regs */
3225 rval64 = readq(&bar0->mdio_control);
3226 rval64 = rval64 & 0xFFFF0000;
3227 rval64 = rval64 >> 16;
3228 return rval64;
3232 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3233 * @counter : counter value to be updated
3234 * @flag : flag to indicate the status
3235 * @type : counter type
3236 * Description:
3237 * This function is to check the status of the xpak counters value
3238 * NONE
3241 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3242 u16 flag, u16 type)
3244 u64 mask = 0x3;
3245 u64 val64;
3246 int i;
3247 for (i = 0; i < index; i++)
3248 mask = mask << 0x2;
3250 if (flag > 0) {
3251 *counter = *counter + 1;
3252 val64 = *regs_stat & mask;
3253 val64 = val64 >> (index * 0x2);
3254 val64 = val64 + 1;
3255 if (val64 == 3) {
3256 switch (type) {
3257 case 1:
3258 DBG_PRINT(ERR_DBG,
3259 "Take Xframe NIC out of service.\n");
3260 DBG_PRINT(ERR_DBG,
3261 "Excessive temperatures may result in premature transceiver failure.\n");
3262 break;
3263 case 2:
3264 DBG_PRINT(ERR_DBG,
3265 "Take Xframe NIC out of service.\n");
3266 DBG_PRINT(ERR_DBG,
3267 "Excessive bias currents may indicate imminent laser diode failure.\n");
3268 break;
3269 case 3:
3270 DBG_PRINT(ERR_DBG,
3271 "Take Xframe NIC out of service.\n");
3272 DBG_PRINT(ERR_DBG,
3273 "Excessive laser output power may saturate far-end receiver.\n");
3274 break;
3275 default:
3276 DBG_PRINT(ERR_DBG,
3277 "Incorrect XPAK Alarm type\n");
3279 val64 = 0x0;
3281 val64 = val64 << (index * 0x2);
3282 *regs_stat = (*regs_stat & (~mask)) | (val64);
3284 } else {
3285 *regs_stat = *regs_stat & (~mask);
3290 * s2io_updt_xpak_counter - Function to update the xpak counters
3291 * @dev : pointer to net_device struct
3292 * Description:
3293 * This function is to upate the status of the xpak counters value
3294 * NONE
3296 static void s2io_updt_xpak_counter(struct net_device *dev)
3298 u16 flag = 0x0;
3299 u16 type = 0x0;
3300 u16 val16 = 0x0;
3301 u64 val64 = 0x0;
3302 u64 addr = 0x0;
3304 struct s2io_nic *sp = netdev_priv(dev);
3305 struct stat_block *stats = sp->mac_control.stats_info;
3306 struct xpakStat *xstats = &stats->xpak_stat;
3308 /* Check the communication with the MDIO slave */
3309 addr = MDIO_CTRL1;
3310 val64 = 0x0;
3311 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3312 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3313 DBG_PRINT(ERR_DBG,
3314 "ERR: MDIO slave access failed - Returned %llx\n",
3315 (unsigned long long)val64);
3316 return;
3319 /* Check for the expected value of control reg 1 */
3320 if (val64 != MDIO_CTRL1_SPEED10G) {
3321 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3322 "Returned: %llx- Expected: 0x%x\n",
3323 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3324 return;
3327 /* Loading the DOM register to MDIO register */
3328 addr = 0xA100;
3329 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3330 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3332 /* Reading the Alarm flags */
3333 addr = 0xA070;
3334 val64 = 0x0;
3335 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3337 flag = CHECKBIT(val64, 0x7);
3338 type = 1;
3339 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3340 &xstats->xpak_regs_stat,
3341 0x0, flag, type);
3343 if (CHECKBIT(val64, 0x6))
3344 xstats->alarm_transceiver_temp_low++;
3346 flag = CHECKBIT(val64, 0x3);
3347 type = 2;
3348 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3349 &xstats->xpak_regs_stat,
3350 0x2, flag, type);
3352 if (CHECKBIT(val64, 0x2))
3353 xstats->alarm_laser_bias_current_low++;
3355 flag = CHECKBIT(val64, 0x1);
3356 type = 3;
3357 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3358 &xstats->xpak_regs_stat,
3359 0x4, flag, type);
3361 if (CHECKBIT(val64, 0x0))
3362 xstats->alarm_laser_output_power_low++;
3364 /* Reading the Warning flags */
3365 addr = 0xA074;
3366 val64 = 0x0;
3367 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3369 if (CHECKBIT(val64, 0x7))
3370 xstats->warn_transceiver_temp_high++;
3372 if (CHECKBIT(val64, 0x6))
3373 xstats->warn_transceiver_temp_low++;
3375 if (CHECKBIT(val64, 0x3))
3376 xstats->warn_laser_bias_current_high++;
3378 if (CHECKBIT(val64, 0x2))
3379 xstats->warn_laser_bias_current_low++;
3381 if (CHECKBIT(val64, 0x1))
3382 xstats->warn_laser_output_power_high++;
3384 if (CHECKBIT(val64, 0x0))
3385 xstats->warn_laser_output_power_low++;
3389 * wait_for_cmd_complete - waits for a command to complete.
3390 * @sp : private member of the device structure, which is a pointer to the
3391 * s2io_nic structure.
3392 * Description: Function that waits for a command to Write into RMAC
3393 * ADDR DATA registers to be completed and returns either success or
3394 * error depending on whether the command was complete or not.
3395 * Return value:
3396 * SUCCESS on success and FAILURE on failure.
3399 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3400 int bit_state)
3402 int ret = FAILURE, cnt = 0, delay = 1;
3403 u64 val64;
3405 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3406 return FAILURE;
3408 do {
3409 val64 = readq(addr);
3410 if (bit_state == S2IO_BIT_RESET) {
3411 if (!(val64 & busy_bit)) {
3412 ret = SUCCESS;
3413 break;
3415 } else {
3416 if (val64 & busy_bit) {
3417 ret = SUCCESS;
3418 break;
3422 if (in_interrupt())
3423 mdelay(delay);
3424 else
3425 msleep(delay);
3427 if (++cnt >= 10)
3428 delay = 50;
3429 } while (cnt < 20);
3430 return ret;
3433 * check_pci_device_id - Checks if the device id is supported
3434 * @id : device id
3435 * Description: Function to check if the pci device id is supported by driver.
3436 * Return value: Actual device id if supported else PCI_ANY_ID
3438 static u16 check_pci_device_id(u16 id)
3440 switch (id) {
3441 case PCI_DEVICE_ID_HERC_WIN:
3442 case PCI_DEVICE_ID_HERC_UNI:
3443 return XFRAME_II_DEVICE;
3444 case PCI_DEVICE_ID_S2IO_UNI:
3445 case PCI_DEVICE_ID_S2IO_WIN:
3446 return XFRAME_I_DEVICE;
3447 default:
3448 return PCI_ANY_ID;
3453 * s2io_reset - Resets the card.
3454 * @sp : private member of the device structure.
3455 * Description: Function to Reset the card. This function then also
3456 * restores the previously saved PCI configuration space registers as
3457 * the card reset also resets the configuration space.
3458 * Return value:
3459 * void.
3462 static void s2io_reset(struct s2io_nic *sp)
3464 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3465 u64 val64;
3466 u16 subid, pci_cmd;
3467 int i;
3468 u16 val16;
3469 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3470 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3471 struct stat_block *stats;
3472 struct swStat *swstats;
3474 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3475 __func__, pci_name(sp->pdev));
3477 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3478 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3480 val64 = SW_RESET_ALL;
3481 writeq(val64, &bar0->sw_reset);
3482 if (strstr(sp->product_name, "CX4"))
3483 msleep(750);
3484 msleep(250);
3485 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3487 /* Restore the PCI state saved during initialization. */
3488 pci_restore_state(sp->pdev);
3489 pci_save_state(sp->pdev);
3490 pci_read_config_word(sp->pdev, 0x2, &val16);
3491 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3492 break;
3493 msleep(200);
3496 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3497 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3499 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3501 s2io_init_pci(sp);
3503 /* Set swapper to enable I/O register access */
3504 s2io_set_swapper(sp);
3506 /* restore mac_addr entries */
3507 do_s2io_restore_unicast_mc(sp);
3509 /* Restore the MSIX table entries from local variables */
3510 restore_xmsi_data(sp);
3512 /* Clear certain PCI/PCI-X fields after reset */
3513 if (sp->device_type == XFRAME_II_DEVICE) {
3514 /* Clear "detected parity error" bit */
3515 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3517 /* Clearing PCIX Ecc status register */
3518 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3520 /* Clearing PCI_STATUS error reflected here */
3521 writeq(s2BIT(62), &bar0->txpic_int_reg);
3524 /* Reset device statistics maintained by OS */
3525 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3527 stats = sp->mac_control.stats_info;
3528 swstats = &stats->sw_stat;
3530 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3531 up_cnt = swstats->link_up_cnt;
3532 down_cnt = swstats->link_down_cnt;
3533 up_time = swstats->link_up_time;
3534 down_time = swstats->link_down_time;
3535 reset_cnt = swstats->soft_reset_cnt;
3536 mem_alloc_cnt = swstats->mem_allocated;
3537 mem_free_cnt = swstats->mem_freed;
3538 watchdog_cnt = swstats->watchdog_timer_cnt;
3540 memset(stats, 0, sizeof(struct stat_block));
3542 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3543 swstats->link_up_cnt = up_cnt;
3544 swstats->link_down_cnt = down_cnt;
3545 swstats->link_up_time = up_time;
3546 swstats->link_down_time = down_time;
3547 swstats->soft_reset_cnt = reset_cnt;
3548 swstats->mem_allocated = mem_alloc_cnt;
3549 swstats->mem_freed = mem_free_cnt;
3550 swstats->watchdog_timer_cnt = watchdog_cnt;
3552 /* SXE-002: Configure link and activity LED to turn it off */
3553 subid = sp->pdev->subsystem_device;
3554 if (((subid & 0xFF) >= 0x07) &&
3555 (sp->device_type == XFRAME_I_DEVICE)) {
3556 val64 = readq(&bar0->gpio_control);
3557 val64 |= 0x0000800000000000ULL;
3558 writeq(val64, &bar0->gpio_control);
3559 val64 = 0x0411040400000000ULL;
3560 writeq(val64, (void __iomem *)bar0 + 0x2700);
3564 * Clear spurious ECC interrupts that would have occurred on
3565 * XFRAME II cards after reset.
3567 if (sp->device_type == XFRAME_II_DEVICE) {
3568 val64 = readq(&bar0->pcc_err_reg);
3569 writeq(val64, &bar0->pcc_err_reg);
3572 sp->device_enabled_once = false;
3576 * s2io_set_swapper - to set the swapper controle on the card
3577 * @sp : private member of the device structure,
3578 * pointer to the s2io_nic structure.
3579 * Description: Function to set the swapper control on the card
3580 * correctly depending on the 'endianness' of the system.
3581 * Return value:
3582 * SUCCESS on success and FAILURE on failure.
3585 static int s2io_set_swapper(struct s2io_nic *sp)
3587 struct net_device *dev = sp->dev;
3588 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3589 u64 val64, valt, valr;
3592 * Set proper endian settings and verify the same by reading
3593 * the PIF Feed-back register.
3596 val64 = readq(&bar0->pif_rd_swapper_fb);
3597 if (val64 != 0x0123456789ABCDEFULL) {
3598 int i = 0;
3599 static const u64 value[] = {
3600 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3601 0x8100008181000081ULL, /* FE=1, SE=0 */
3602 0x4200004242000042ULL, /* FE=0, SE=1 */
3603 0 /* FE=0, SE=0 */
3606 while (i < 4) {
3607 writeq(value[i], &bar0->swapper_ctrl);
3608 val64 = readq(&bar0->pif_rd_swapper_fb);
3609 if (val64 == 0x0123456789ABCDEFULL)
3610 break;
3611 i++;
3613 if (i == 4) {
3614 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3615 "feedback read %llx\n",
3616 dev->name, (unsigned long long)val64);
3617 return FAILURE;
3619 valr = value[i];
3620 } else {
3621 valr = readq(&bar0->swapper_ctrl);
3624 valt = 0x0123456789ABCDEFULL;
3625 writeq(valt, &bar0->xmsi_address);
3626 val64 = readq(&bar0->xmsi_address);
3628 if (val64 != valt) {
3629 int i = 0;
3630 static const u64 value[] = {
3631 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3632 0x0081810000818100ULL, /* FE=1, SE=0 */
3633 0x0042420000424200ULL, /* FE=0, SE=1 */
3634 0 /* FE=0, SE=0 */
3637 while (i < 4) {
3638 writeq((value[i] | valr), &bar0->swapper_ctrl);
3639 writeq(valt, &bar0->xmsi_address);
3640 val64 = readq(&bar0->xmsi_address);
3641 if (val64 == valt)
3642 break;
3643 i++;
3645 if (i == 4) {
3646 unsigned long long x = val64;
3647 DBG_PRINT(ERR_DBG,
3648 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3649 return FAILURE;
3652 val64 = readq(&bar0->swapper_ctrl);
3653 val64 &= 0xFFFF000000000000ULL;
3655 #ifdef __BIG_ENDIAN
3657 * The device by default set to a big endian format, so a
3658 * big endian driver need not set anything.
3660 val64 |= (SWAPPER_CTRL_TXP_FE |
3661 SWAPPER_CTRL_TXP_SE |
3662 SWAPPER_CTRL_TXD_R_FE |
3663 SWAPPER_CTRL_TXD_W_FE |
3664 SWAPPER_CTRL_TXF_R_FE |
3665 SWAPPER_CTRL_RXD_R_FE |
3666 SWAPPER_CTRL_RXD_W_FE |
3667 SWAPPER_CTRL_RXF_W_FE |
3668 SWAPPER_CTRL_XMSI_FE |
3669 SWAPPER_CTRL_STATS_FE |
3670 SWAPPER_CTRL_STATS_SE);
3671 if (sp->config.intr_type == INTA)
3672 val64 |= SWAPPER_CTRL_XMSI_SE;
3673 writeq(val64, &bar0->swapper_ctrl);
3674 #else
3676 * Initially we enable all bits to make it accessible by the
3677 * driver, then we selectively enable only those bits that
3678 * we want to set.
3680 val64 |= (SWAPPER_CTRL_TXP_FE |
3681 SWAPPER_CTRL_TXP_SE |
3682 SWAPPER_CTRL_TXD_R_FE |
3683 SWAPPER_CTRL_TXD_R_SE |
3684 SWAPPER_CTRL_TXD_W_FE |
3685 SWAPPER_CTRL_TXD_W_SE |
3686 SWAPPER_CTRL_TXF_R_FE |
3687 SWAPPER_CTRL_RXD_R_FE |
3688 SWAPPER_CTRL_RXD_R_SE |
3689 SWAPPER_CTRL_RXD_W_FE |
3690 SWAPPER_CTRL_RXD_W_SE |
3691 SWAPPER_CTRL_RXF_W_FE |
3692 SWAPPER_CTRL_XMSI_FE |
3693 SWAPPER_CTRL_STATS_FE |
3694 SWAPPER_CTRL_STATS_SE);
3695 if (sp->config.intr_type == INTA)
3696 val64 |= SWAPPER_CTRL_XMSI_SE;
3697 writeq(val64, &bar0->swapper_ctrl);
3698 #endif
3699 val64 = readq(&bar0->swapper_ctrl);
3702 * Verifying if endian settings are accurate by reading a
3703 * feedback register.
3705 val64 = readq(&bar0->pif_rd_swapper_fb);
3706 if (val64 != 0x0123456789ABCDEFULL) {
3707 /* Endian settings are incorrect, calls for another dekko. */
3708 DBG_PRINT(ERR_DBG,
3709 "%s: Endian settings are wrong, feedback read %llx\n",
3710 dev->name, (unsigned long long)val64);
3711 return FAILURE;
3714 return SUCCESS;
3717 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3719 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3720 u64 val64;
3721 int ret = 0, cnt = 0;
3723 do {
3724 val64 = readq(&bar0->xmsi_access);
3725 if (!(val64 & s2BIT(15)))
3726 break;
3727 mdelay(1);
3728 cnt++;
3729 } while (cnt < 5);
3730 if (cnt == 5) {
3731 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3732 ret = 1;
3735 return ret;
3738 static void restore_xmsi_data(struct s2io_nic *nic)
3740 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3741 u64 val64;
3742 int i, msix_index;
3744 if (nic->device_type == XFRAME_I_DEVICE)
3745 return;
3747 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3748 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3749 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3750 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3751 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3752 writeq(val64, &bar0->xmsi_access);
3753 if (wait_for_msix_trans(nic, msix_index)) {
3754 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3755 __func__, msix_index);
3756 continue;
3761 static void store_xmsi_data(struct s2io_nic *nic)
3763 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3764 u64 val64, addr, data;
3765 int i, msix_index;
3767 if (nic->device_type == XFRAME_I_DEVICE)
3768 return;
3770 /* Store and display */
3771 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3772 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3773 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3774 writeq(val64, &bar0->xmsi_access);
3775 if (wait_for_msix_trans(nic, msix_index)) {
3776 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3777 __func__, msix_index);
3778 continue;
3780 addr = readq(&bar0->xmsi_address);
3781 data = readq(&bar0->xmsi_data);
3782 if (addr && data) {
3783 nic->msix_info[i].addr = addr;
3784 nic->msix_info[i].data = data;
3789 static int s2io_enable_msi_x(struct s2io_nic *nic)
3791 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3792 u64 rx_mat;
3793 u16 msi_control; /* Temp variable */
3794 int ret, i, j, msix_indx = 1;
3795 int size;
3796 struct stat_block *stats = nic->mac_control.stats_info;
3797 struct swStat *swstats = &stats->sw_stat;
3799 size = nic->num_entries * sizeof(struct msix_entry);
3800 nic->entries = kzalloc(size, GFP_KERNEL);
3801 if (!nic->entries) {
3802 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3803 __func__);
3804 swstats->mem_alloc_fail_cnt++;
3805 return -ENOMEM;
3807 swstats->mem_allocated += size;
3809 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3810 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3811 if (!nic->s2io_entries) {
3812 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3813 __func__);
3814 swstats->mem_alloc_fail_cnt++;
3815 kfree(nic->entries);
3816 swstats->mem_freed
3817 += (nic->num_entries * sizeof(struct msix_entry));
3818 return -ENOMEM;
3820 swstats->mem_allocated += size;
3822 nic->entries[0].entry = 0;
3823 nic->s2io_entries[0].entry = 0;
3824 nic->s2io_entries[0].in_use = MSIX_FLG;
3825 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3826 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3828 for (i = 1; i < nic->num_entries; i++) {
3829 nic->entries[i].entry = ((i - 1) * 8) + 1;
3830 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3831 nic->s2io_entries[i].arg = NULL;
3832 nic->s2io_entries[i].in_use = 0;
3835 rx_mat = readq(&bar0->rx_mat);
3836 for (j = 0; j < nic->config.rx_ring_num; j++) {
3837 rx_mat |= RX_MAT_SET(j, msix_indx);
3838 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3839 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3840 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3841 msix_indx += 8;
3843 writeq(rx_mat, &bar0->rx_mat);
3844 readq(&bar0->rx_mat);
3846 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3847 /* We fail init if error or we get less vectors than min required */
3848 if (ret) {
3849 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3850 kfree(nic->entries);
3851 swstats->mem_freed += nic->num_entries *
3852 sizeof(struct msix_entry);
3853 kfree(nic->s2io_entries);
3854 swstats->mem_freed += nic->num_entries *
3855 sizeof(struct s2io_msix_entry);
3856 nic->entries = NULL;
3857 nic->s2io_entries = NULL;
3858 return -ENOMEM;
3862 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3863 * in the herc NIC. (Temp change, needs to be removed later)
3865 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3866 msi_control |= 0x1; /* Enable MSI */
3867 pci_write_config_word(nic->pdev, 0x42, msi_control);
3869 return 0;
3872 /* Handle software interrupt used during MSI(X) test */
3873 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3875 struct s2io_nic *sp = dev_id;
3877 sp->msi_detected = 1;
3878 wake_up(&sp->msi_wait);
3880 return IRQ_HANDLED;
3883 /* Test interrupt path by forcing a a software IRQ */
3884 static int s2io_test_msi(struct s2io_nic *sp)
3886 struct pci_dev *pdev = sp->pdev;
3887 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3888 int err;
3889 u64 val64, saved64;
3891 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3892 sp->name, sp);
3893 if (err) {
3894 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3895 sp->dev->name, pci_name(pdev), pdev->irq);
3896 return err;
3899 init_waitqueue_head(&sp->msi_wait);
3900 sp->msi_detected = 0;
3902 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3903 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3904 val64 |= SCHED_INT_CTRL_TIMER_EN;
3905 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3906 writeq(val64, &bar0->scheduled_int_ctrl);
3908 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3910 if (!sp->msi_detected) {
3911 /* MSI(X) test failed, go back to INTx mode */
3912 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3913 "using MSI(X) during test\n",
3914 sp->dev->name, pci_name(pdev));
3916 err = -EOPNOTSUPP;
3919 free_irq(sp->entries[1].vector, sp);
3921 writeq(saved64, &bar0->scheduled_int_ctrl);
3923 return err;
3926 static void remove_msix_isr(struct s2io_nic *sp)
3928 int i;
3929 u16 msi_control;
3931 for (i = 0; i < sp->num_entries; i++) {
3932 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3933 int vector = sp->entries[i].vector;
3934 void *arg = sp->s2io_entries[i].arg;
3935 free_irq(vector, arg);
3939 kfree(sp->entries);
3940 kfree(sp->s2io_entries);
3941 sp->entries = NULL;
3942 sp->s2io_entries = NULL;
3944 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3945 msi_control &= 0xFFFE; /* Disable MSI */
3946 pci_write_config_word(sp->pdev, 0x42, msi_control);
3948 pci_disable_msix(sp->pdev);
3951 static void remove_inta_isr(struct s2io_nic *sp)
3953 struct net_device *dev = sp->dev;
3955 free_irq(sp->pdev->irq, dev);
3958 /* ********************************************************* *
3959 * Functions defined below concern the OS part of the driver *
3960 * ********************************************************* */
3963 * s2io_open - open entry point of the driver
3964 * @dev : pointer to the device structure.
3965 * Description:
3966 * This function is the open entry point of the driver. It mainly calls a
3967 * function to allocate Rx buffers and inserts them into the buffer
3968 * descriptors and then enables the Rx part of the NIC.
3969 * Return value:
3970 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3971 * file on failure.
3974 static int s2io_open(struct net_device *dev)
3976 struct s2io_nic *sp = netdev_priv(dev);
3977 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3978 int err = 0;
3981 * Make sure you have link off by default every time
3982 * Nic is initialized
3984 netif_carrier_off(dev);
3985 sp->last_link_state = 0;
3987 /* Initialize H/W and enable interrupts */
3988 err = s2io_card_up(sp);
3989 if (err) {
3990 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3991 dev->name);
3992 goto hw_init_failed;
3995 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3996 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3997 s2io_card_down(sp);
3998 err = -ENODEV;
3999 goto hw_init_failed;
4001 s2io_start_all_tx_queue(sp);
4002 return 0;
4004 hw_init_failed:
4005 if (sp->config.intr_type == MSI_X) {
4006 if (sp->entries) {
4007 kfree(sp->entries);
4008 swstats->mem_freed += sp->num_entries *
4009 sizeof(struct msix_entry);
4011 if (sp->s2io_entries) {
4012 kfree(sp->s2io_entries);
4013 swstats->mem_freed += sp->num_entries *
4014 sizeof(struct s2io_msix_entry);
4017 return err;
4021 * s2io_close -close entry point of the driver
4022 * @dev : device pointer.
4023 * Description:
4024 * This is the stop entry point of the driver. It needs to undo exactly
4025 * whatever was done by the open entry point,thus it's usually referred to
4026 * as the close function.Among other things this function mainly stops the
4027 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4028 * Return value:
4029 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4030 * file on failure.
4033 static int s2io_close(struct net_device *dev)
4035 struct s2io_nic *sp = netdev_priv(dev);
4036 struct config_param *config = &sp->config;
4037 u64 tmp64;
4038 int offset;
4040 /* Return if the device is already closed *
4041 * Can happen when s2io_card_up failed in change_mtu *
4043 if (!is_s2io_card_up(sp))
4044 return 0;
4046 s2io_stop_all_tx_queue(sp);
4047 /* delete all populated mac entries */
4048 for (offset = 1; offset < config->max_mc_addr; offset++) {
4049 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4050 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4051 do_s2io_delete_unicast_mc(sp, tmp64);
4054 s2io_card_down(sp);
4056 return 0;
4060 * s2io_xmit - Tx entry point of te driver
4061 * @skb : the socket buffer containing the Tx data.
4062 * @dev : device pointer.
4063 * Description :
4064 * This function is the Tx entry point of the driver. S2IO NIC supports
4065 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4066 * NOTE: when device can't queue the pkt,just the trans_start variable will
4067 * not be upadted.
4068 * Return value:
4069 * 0 on success & 1 on failure.
4072 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4074 struct s2io_nic *sp = netdev_priv(dev);
4075 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4076 register u64 val64;
4077 struct TxD *txdp;
4078 struct TxFIFO_element __iomem *tx_fifo;
4079 unsigned long flags = 0;
4080 u16 vlan_tag = 0;
4081 struct fifo_info *fifo = NULL;
4082 int do_spin_lock = 1;
4083 int offload_type;
4084 int enable_per_list_interrupt = 0;
4085 struct config_param *config = &sp->config;
4086 struct mac_info *mac_control = &sp->mac_control;
4087 struct stat_block *stats = mac_control->stats_info;
4088 struct swStat *swstats = &stats->sw_stat;
4090 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4092 if (unlikely(skb->len <= 0)) {
4093 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4094 dev_kfree_skb_any(skb);
4095 return NETDEV_TX_OK;
4098 if (!is_s2io_card_up(sp)) {
4099 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4100 dev->name);
4101 dev_kfree_skb(skb);
4102 return NETDEV_TX_OK;
4105 queue = 0;
4106 if (vlan_tx_tag_present(skb))
4107 vlan_tag = vlan_tx_tag_get(skb);
4108 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4109 if (skb->protocol == htons(ETH_P_IP)) {
4110 struct iphdr *ip;
4111 struct tcphdr *th;
4112 ip = ip_hdr(skb);
4114 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4115 th = (struct tcphdr *)(((unsigned char *)ip) +
4116 ip->ihl*4);
4118 if (ip->protocol == IPPROTO_TCP) {
4119 queue_len = sp->total_tcp_fifos;
4120 queue = (ntohs(th->source) +
4121 ntohs(th->dest)) &
4122 sp->fifo_selector[queue_len - 1];
4123 if (queue >= queue_len)
4124 queue = queue_len - 1;
4125 } else if (ip->protocol == IPPROTO_UDP) {
4126 queue_len = sp->total_udp_fifos;
4127 queue = (ntohs(th->source) +
4128 ntohs(th->dest)) &
4129 sp->fifo_selector[queue_len - 1];
4130 if (queue >= queue_len)
4131 queue = queue_len - 1;
4132 queue += sp->udp_fifo_idx;
4133 if (skb->len > 1024)
4134 enable_per_list_interrupt = 1;
4135 do_spin_lock = 0;
4139 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4140 /* get fifo number based on skb->priority value */
4141 queue = config->fifo_mapping
4142 [skb->priority & (MAX_TX_FIFOS - 1)];
4143 fifo = &mac_control->fifos[queue];
4145 if (do_spin_lock)
4146 spin_lock_irqsave(&fifo->tx_lock, flags);
4147 else {
4148 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4149 return NETDEV_TX_LOCKED;
4152 if (sp->config.multiq) {
4153 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4154 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4155 return NETDEV_TX_BUSY;
4157 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4158 if (netif_queue_stopped(dev)) {
4159 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4160 return NETDEV_TX_BUSY;
4164 put_off = (u16)fifo->tx_curr_put_info.offset;
4165 get_off = (u16)fifo->tx_curr_get_info.offset;
4166 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4168 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4169 /* Avoid "put" pointer going beyond "get" pointer */
4170 if (txdp->Host_Control ||
4171 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4172 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4173 s2io_stop_tx_queue(sp, fifo->fifo_no);
4174 dev_kfree_skb(skb);
4175 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4176 return NETDEV_TX_OK;
4179 offload_type = s2io_offload_type(skb);
4180 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4181 txdp->Control_1 |= TXD_TCP_LSO_EN;
4182 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4184 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4185 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4186 TXD_TX_CKO_TCP_EN |
4187 TXD_TX_CKO_UDP_EN);
4189 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4190 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4191 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4192 if (enable_per_list_interrupt)
4193 if (put_off & (queue_len >> 5))
4194 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4195 if (vlan_tag) {
4196 txdp->Control_2 |= TXD_VLAN_ENABLE;
4197 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4200 frg_len = skb_headlen(skb);
4201 if (offload_type == SKB_GSO_UDP) {
4202 int ufo_size;
4204 ufo_size = s2io_udp_mss(skb);
4205 ufo_size &= ~7;
4206 txdp->Control_1 |= TXD_UFO_EN;
4207 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4208 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4209 #ifdef __BIG_ENDIAN
4210 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4211 fifo->ufo_in_band_v[put_off] =
4212 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4213 #else
4214 fifo->ufo_in_band_v[put_off] =
4215 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4216 #endif
4217 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4218 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4219 fifo->ufo_in_band_v,
4220 sizeof(u64),
4221 PCI_DMA_TODEVICE);
4222 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4223 goto pci_map_failed;
4224 txdp++;
4227 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4228 frg_len, PCI_DMA_TODEVICE);
4229 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4230 goto pci_map_failed;
4232 txdp->Host_Control = (unsigned long)skb;
4233 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4234 if (offload_type == SKB_GSO_UDP)
4235 txdp->Control_1 |= TXD_UFO_EN;
4237 frg_cnt = skb_shinfo(skb)->nr_frags;
4238 /* For fragmented SKB. */
4239 for (i = 0; i < frg_cnt; i++) {
4240 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4241 /* A '0' length fragment will be ignored */
4242 if (!frag->size)
4243 continue;
4244 txdp++;
4245 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4246 frag->page_offset,
4247 frag->size,
4248 PCI_DMA_TODEVICE);
4249 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4250 if (offload_type == SKB_GSO_UDP)
4251 txdp->Control_1 |= TXD_UFO_EN;
4253 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4255 if (offload_type == SKB_GSO_UDP)
4256 frg_cnt++; /* as Txd0 was used for inband header */
4258 tx_fifo = mac_control->tx_FIFO_start[queue];
4259 val64 = fifo->list_info[put_off].list_phy_addr;
4260 writeq(val64, &tx_fifo->TxDL_Pointer);
4262 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4263 TX_FIFO_LAST_LIST);
4264 if (offload_type)
4265 val64 |= TX_FIFO_SPECIAL_FUNC;
4267 writeq(val64, &tx_fifo->List_Control);
4269 mmiowb();
4271 put_off++;
4272 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4273 put_off = 0;
4274 fifo->tx_curr_put_info.offset = put_off;
4276 /* Avoid "put" pointer going beyond "get" pointer */
4277 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4278 swstats->fifo_full_cnt++;
4279 DBG_PRINT(TX_DBG,
4280 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4281 put_off, get_off);
4282 s2io_stop_tx_queue(sp, fifo->fifo_no);
4284 swstats->mem_allocated += skb->truesize;
4285 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4287 if (sp->config.intr_type == MSI_X)
4288 tx_intr_handler(fifo);
4290 return NETDEV_TX_OK;
4292 pci_map_failed:
4293 swstats->pci_map_fail_cnt++;
4294 s2io_stop_tx_queue(sp, fifo->fifo_no);
4295 swstats->mem_freed += skb->truesize;
4296 dev_kfree_skb(skb);
4297 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4298 return NETDEV_TX_OK;
4301 static void
4302 s2io_alarm_handle(unsigned long data)
4304 struct s2io_nic *sp = (struct s2io_nic *)data;
4305 struct net_device *dev = sp->dev;
4307 s2io_handle_errors(dev);
4308 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4311 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4313 struct ring_info *ring = (struct ring_info *)dev_id;
4314 struct s2io_nic *sp = ring->nic;
4315 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4317 if (unlikely(!is_s2io_card_up(sp)))
4318 return IRQ_HANDLED;
4320 if (sp->config.napi) {
4321 u8 __iomem *addr = NULL;
4322 u8 val8 = 0;
4324 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4325 addr += (7 - ring->ring_no);
4326 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4327 writeb(val8, addr);
4328 val8 = readb(addr);
4329 napi_schedule(&ring->napi);
4330 } else {
4331 rx_intr_handler(ring, 0);
4332 s2io_chk_rx_buffers(sp, ring);
4335 return IRQ_HANDLED;
4338 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4340 int i;
4341 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4342 struct s2io_nic *sp = fifos->nic;
4343 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4344 struct config_param *config = &sp->config;
4345 u64 reason;
4347 if (unlikely(!is_s2io_card_up(sp)))
4348 return IRQ_NONE;
4350 reason = readq(&bar0->general_int_status);
4351 if (unlikely(reason == S2IO_MINUS_ONE))
4352 /* Nothing much can be done. Get out */
4353 return IRQ_HANDLED;
4355 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4356 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4358 if (reason & GEN_INTR_TXPIC)
4359 s2io_txpic_intr_handle(sp);
4361 if (reason & GEN_INTR_TXTRAFFIC)
4362 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4364 for (i = 0; i < config->tx_fifo_num; i++)
4365 tx_intr_handler(&fifos[i]);
4367 writeq(sp->general_int_mask, &bar0->general_int_mask);
4368 readl(&bar0->general_int_status);
4369 return IRQ_HANDLED;
4371 /* The interrupt was not raised by us */
4372 return IRQ_NONE;
4375 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4377 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4378 u64 val64;
4380 val64 = readq(&bar0->pic_int_status);
4381 if (val64 & PIC_INT_GPIO) {
4382 val64 = readq(&bar0->gpio_int_reg);
4383 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4384 (val64 & GPIO_INT_REG_LINK_UP)) {
4386 * This is unstable state so clear both up/down
4387 * interrupt and adapter to re-evaluate the link state.
4389 val64 |= GPIO_INT_REG_LINK_DOWN;
4390 val64 |= GPIO_INT_REG_LINK_UP;
4391 writeq(val64, &bar0->gpio_int_reg);
4392 val64 = readq(&bar0->gpio_int_mask);
4393 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4394 GPIO_INT_MASK_LINK_DOWN);
4395 writeq(val64, &bar0->gpio_int_mask);
4396 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4397 val64 = readq(&bar0->adapter_status);
4398 /* Enable Adapter */
4399 val64 = readq(&bar0->adapter_control);
4400 val64 |= ADAPTER_CNTL_EN;
4401 writeq(val64, &bar0->adapter_control);
4402 val64 |= ADAPTER_LED_ON;
4403 writeq(val64, &bar0->adapter_control);
4404 if (!sp->device_enabled_once)
4405 sp->device_enabled_once = 1;
4407 s2io_link(sp, LINK_UP);
4409 * unmask link down interrupt and mask link-up
4410 * intr
4412 val64 = readq(&bar0->gpio_int_mask);
4413 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4414 val64 |= GPIO_INT_MASK_LINK_UP;
4415 writeq(val64, &bar0->gpio_int_mask);
4417 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4418 val64 = readq(&bar0->adapter_status);
4419 s2io_link(sp, LINK_DOWN);
4420 /* Link is down so unmaks link up interrupt */
4421 val64 = readq(&bar0->gpio_int_mask);
4422 val64 &= ~GPIO_INT_MASK_LINK_UP;
4423 val64 |= GPIO_INT_MASK_LINK_DOWN;
4424 writeq(val64, &bar0->gpio_int_mask);
4426 /* turn off LED */
4427 val64 = readq(&bar0->adapter_control);
4428 val64 = val64 & (~ADAPTER_LED_ON);
4429 writeq(val64, &bar0->adapter_control);
4432 val64 = readq(&bar0->gpio_int_mask);
4436 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4437 * @value: alarm bits
4438 * @addr: address value
4439 * @cnt: counter variable
4440 * Description: Check for alarm and increment the counter
4441 * Return Value:
4442 * 1 - if alarm bit set
4443 * 0 - if alarm bit is not set
4445 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4446 unsigned long long *cnt)
4448 u64 val64;
4449 val64 = readq(addr);
4450 if (val64 & value) {
4451 writeq(val64, addr);
4452 (*cnt)++;
4453 return 1;
4455 return 0;
4460 * s2io_handle_errors - Xframe error indication handler
4461 * @nic: device private variable
4462 * Description: Handle alarms such as loss of link, single or
4463 * double ECC errors, critical and serious errors.
4464 * Return Value:
4465 * NONE
4467 static void s2io_handle_errors(void *dev_id)
4469 struct net_device *dev = (struct net_device *)dev_id;
4470 struct s2io_nic *sp = netdev_priv(dev);
4471 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4472 u64 temp64 = 0, val64 = 0;
4473 int i = 0;
4475 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4476 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4478 if (!is_s2io_card_up(sp))
4479 return;
4481 if (pci_channel_offline(sp->pdev))
4482 return;
4484 memset(&sw_stat->ring_full_cnt, 0,
4485 sizeof(sw_stat->ring_full_cnt));
4487 /* Handling the XPAK counters update */
4488 if (stats->xpak_timer_count < 72000) {
4489 /* waiting for an hour */
4490 stats->xpak_timer_count++;
4491 } else {
4492 s2io_updt_xpak_counter(dev);
4493 /* reset the count to zero */
4494 stats->xpak_timer_count = 0;
4497 /* Handling link status change error Intr */
4498 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4499 val64 = readq(&bar0->mac_rmac_err_reg);
4500 writeq(val64, &bar0->mac_rmac_err_reg);
4501 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4502 schedule_work(&sp->set_link_task);
4505 /* In case of a serious error, the device will be Reset. */
4506 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4507 &sw_stat->serious_err_cnt))
4508 goto reset;
4510 /* Check for data parity error */
4511 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4512 &sw_stat->parity_err_cnt))
4513 goto reset;
4515 /* Check for ring full counter */
4516 if (sp->device_type == XFRAME_II_DEVICE) {
4517 val64 = readq(&bar0->ring_bump_counter1);
4518 for (i = 0; i < 4; i++) {
4519 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4520 temp64 >>= 64 - ((i+1)*16);
4521 sw_stat->ring_full_cnt[i] += temp64;
4524 val64 = readq(&bar0->ring_bump_counter2);
4525 for (i = 0; i < 4; i++) {
4526 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4527 temp64 >>= 64 - ((i+1)*16);
4528 sw_stat->ring_full_cnt[i+4] += temp64;
4532 val64 = readq(&bar0->txdma_int_status);
4533 /*check for pfc_err*/
4534 if (val64 & TXDMA_PFC_INT) {
4535 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4536 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4537 PFC_PCIX_ERR,
4538 &bar0->pfc_err_reg,
4539 &sw_stat->pfc_err_cnt))
4540 goto reset;
4541 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4542 &bar0->pfc_err_reg,
4543 &sw_stat->pfc_err_cnt);
4546 /*check for tda_err*/
4547 if (val64 & TXDMA_TDA_INT) {
4548 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4549 TDA_SM0_ERR_ALARM |
4550 TDA_SM1_ERR_ALARM,
4551 &bar0->tda_err_reg,
4552 &sw_stat->tda_err_cnt))
4553 goto reset;
4554 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4555 &bar0->tda_err_reg,
4556 &sw_stat->tda_err_cnt);
4558 /*check for pcc_err*/
4559 if (val64 & TXDMA_PCC_INT) {
4560 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4561 PCC_N_SERR | PCC_6_COF_OV_ERR |
4562 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4563 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4564 PCC_TXB_ECC_DB_ERR,
4565 &bar0->pcc_err_reg,
4566 &sw_stat->pcc_err_cnt))
4567 goto reset;
4568 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4569 &bar0->pcc_err_reg,
4570 &sw_stat->pcc_err_cnt);
4573 /*check for tti_err*/
4574 if (val64 & TXDMA_TTI_INT) {
4575 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4576 &bar0->tti_err_reg,
4577 &sw_stat->tti_err_cnt))
4578 goto reset;
4579 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4580 &bar0->tti_err_reg,
4581 &sw_stat->tti_err_cnt);
4584 /*check for lso_err*/
4585 if (val64 & TXDMA_LSO_INT) {
4586 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4587 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4588 &bar0->lso_err_reg,
4589 &sw_stat->lso_err_cnt))
4590 goto reset;
4591 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4592 &bar0->lso_err_reg,
4593 &sw_stat->lso_err_cnt);
4596 /*check for tpa_err*/
4597 if (val64 & TXDMA_TPA_INT) {
4598 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4599 &bar0->tpa_err_reg,
4600 &sw_stat->tpa_err_cnt))
4601 goto reset;
4602 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4603 &bar0->tpa_err_reg,
4604 &sw_stat->tpa_err_cnt);
4607 /*check for sm_err*/
4608 if (val64 & TXDMA_SM_INT) {
4609 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4610 &bar0->sm_err_reg,
4611 &sw_stat->sm_err_cnt))
4612 goto reset;
4615 val64 = readq(&bar0->mac_int_status);
4616 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4617 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4618 &bar0->mac_tmac_err_reg,
4619 &sw_stat->mac_tmac_err_cnt))
4620 goto reset;
4621 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4622 TMAC_DESC_ECC_SG_ERR |
4623 TMAC_DESC_ECC_DB_ERR,
4624 &bar0->mac_tmac_err_reg,
4625 &sw_stat->mac_tmac_err_cnt);
4628 val64 = readq(&bar0->xgxs_int_status);
4629 if (val64 & XGXS_INT_STATUS_TXGXS) {
4630 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4631 &bar0->xgxs_txgxs_err_reg,
4632 &sw_stat->xgxs_txgxs_err_cnt))
4633 goto reset;
4634 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4635 &bar0->xgxs_txgxs_err_reg,
4636 &sw_stat->xgxs_txgxs_err_cnt);
4639 val64 = readq(&bar0->rxdma_int_status);
4640 if (val64 & RXDMA_INT_RC_INT_M) {
4641 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4642 RC_FTC_ECC_DB_ERR |
4643 RC_PRCn_SM_ERR_ALARM |
4644 RC_FTC_SM_ERR_ALARM,
4645 &bar0->rc_err_reg,
4646 &sw_stat->rc_err_cnt))
4647 goto reset;
4648 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4649 RC_FTC_ECC_SG_ERR |
4650 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4651 &sw_stat->rc_err_cnt);
4652 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4653 PRC_PCI_AB_WR_Rn |
4654 PRC_PCI_AB_F_WR_Rn,
4655 &bar0->prc_pcix_err_reg,
4656 &sw_stat->prc_pcix_err_cnt))
4657 goto reset;
4658 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4659 PRC_PCI_DP_WR_Rn |
4660 PRC_PCI_DP_F_WR_Rn,
4661 &bar0->prc_pcix_err_reg,
4662 &sw_stat->prc_pcix_err_cnt);
4665 if (val64 & RXDMA_INT_RPA_INT_M) {
4666 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4667 &bar0->rpa_err_reg,
4668 &sw_stat->rpa_err_cnt))
4669 goto reset;
4670 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4671 &bar0->rpa_err_reg,
4672 &sw_stat->rpa_err_cnt);
4675 if (val64 & RXDMA_INT_RDA_INT_M) {
4676 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4677 RDA_FRM_ECC_DB_N_AERR |
4678 RDA_SM1_ERR_ALARM |
4679 RDA_SM0_ERR_ALARM |
4680 RDA_RXD_ECC_DB_SERR,
4681 &bar0->rda_err_reg,
4682 &sw_stat->rda_err_cnt))
4683 goto reset;
4684 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4685 RDA_FRM_ECC_SG_ERR |
4686 RDA_MISC_ERR |
4687 RDA_PCIX_ERR,
4688 &bar0->rda_err_reg,
4689 &sw_stat->rda_err_cnt);
4692 if (val64 & RXDMA_INT_RTI_INT_M) {
4693 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4694 &bar0->rti_err_reg,
4695 &sw_stat->rti_err_cnt))
4696 goto reset;
4697 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4698 &bar0->rti_err_reg,
4699 &sw_stat->rti_err_cnt);
4702 val64 = readq(&bar0->mac_int_status);
4703 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4704 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4705 &bar0->mac_rmac_err_reg,
4706 &sw_stat->mac_rmac_err_cnt))
4707 goto reset;
4708 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4709 RMAC_SINGLE_ECC_ERR |
4710 RMAC_DOUBLE_ECC_ERR,
4711 &bar0->mac_rmac_err_reg,
4712 &sw_stat->mac_rmac_err_cnt);
4715 val64 = readq(&bar0->xgxs_int_status);
4716 if (val64 & XGXS_INT_STATUS_RXGXS) {
4717 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4718 &bar0->xgxs_rxgxs_err_reg,
4719 &sw_stat->xgxs_rxgxs_err_cnt))
4720 goto reset;
4723 val64 = readq(&bar0->mc_int_status);
4724 if (val64 & MC_INT_STATUS_MC_INT) {
4725 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4726 &bar0->mc_err_reg,
4727 &sw_stat->mc_err_cnt))
4728 goto reset;
4730 /* Handling Ecc errors */
4731 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4732 writeq(val64, &bar0->mc_err_reg);
4733 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4734 sw_stat->double_ecc_errs++;
4735 if (sp->device_type != XFRAME_II_DEVICE) {
4737 * Reset XframeI only if critical error
4739 if (val64 &
4740 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4741 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4742 goto reset;
4744 } else
4745 sw_stat->single_ecc_errs++;
4748 return;
4750 reset:
4751 s2io_stop_all_tx_queue(sp);
4752 schedule_work(&sp->rst_timer_task);
4753 sw_stat->soft_reset_cnt++;
4757 * s2io_isr - ISR handler of the device .
4758 * @irq: the irq of the device.
4759 * @dev_id: a void pointer to the dev structure of the NIC.
4760 * Description: This function is the ISR handler of the device. It
4761 * identifies the reason for the interrupt and calls the relevant
4762 * service routines. As a contongency measure, this ISR allocates the
4763 * recv buffers, if their numbers are below the panic value which is
4764 * presently set to 25% of the original number of rcv buffers allocated.
4765 * Return value:
4766 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4767 * IRQ_NONE: will be returned if interrupt is not from our device
4769 static irqreturn_t s2io_isr(int irq, void *dev_id)
4771 struct net_device *dev = (struct net_device *)dev_id;
4772 struct s2io_nic *sp = netdev_priv(dev);
4773 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4774 int i;
4775 u64 reason = 0;
4776 struct mac_info *mac_control;
4777 struct config_param *config;
4779 /* Pretend we handled any irq's from a disconnected card */
4780 if (pci_channel_offline(sp->pdev))
4781 return IRQ_NONE;
4783 if (!is_s2io_card_up(sp))
4784 return IRQ_NONE;
4786 config = &sp->config;
4787 mac_control = &sp->mac_control;
4790 * Identify the cause for interrupt and call the appropriate
4791 * interrupt handler. Causes for the interrupt could be;
4792 * 1. Rx of packet.
4793 * 2. Tx complete.
4794 * 3. Link down.
4796 reason = readq(&bar0->general_int_status);
4798 if (unlikely(reason == S2IO_MINUS_ONE))
4799 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4801 if (reason &
4802 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4803 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4805 if (config->napi) {
4806 if (reason & GEN_INTR_RXTRAFFIC) {
4807 napi_schedule(&sp->napi);
4808 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4809 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4810 readl(&bar0->rx_traffic_int);
4812 } else {
4814 * rx_traffic_int reg is an R1 register, writing all 1's
4815 * will ensure that the actual interrupt causing bit
4816 * get's cleared and hence a read can be avoided.
4818 if (reason & GEN_INTR_RXTRAFFIC)
4819 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4821 for (i = 0; i < config->rx_ring_num; i++) {
4822 struct ring_info *ring = &mac_control->rings[i];
4824 rx_intr_handler(ring, 0);
4829 * tx_traffic_int reg is an R1 register, writing all 1's
4830 * will ensure that the actual interrupt causing bit get's
4831 * cleared and hence a read can be avoided.
4833 if (reason & GEN_INTR_TXTRAFFIC)
4834 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4836 for (i = 0; i < config->tx_fifo_num; i++)
4837 tx_intr_handler(&mac_control->fifos[i]);
4839 if (reason & GEN_INTR_TXPIC)
4840 s2io_txpic_intr_handle(sp);
4843 * Reallocate the buffers from the interrupt handler itself.
4845 if (!config->napi) {
4846 for (i = 0; i < config->rx_ring_num; i++) {
4847 struct ring_info *ring = &mac_control->rings[i];
4849 s2io_chk_rx_buffers(sp, ring);
4852 writeq(sp->general_int_mask, &bar0->general_int_mask);
4853 readl(&bar0->general_int_status);
4855 return IRQ_HANDLED;
4857 } else if (!reason) {
4858 /* The interrupt was not raised by us */
4859 return IRQ_NONE;
4862 return IRQ_HANDLED;
4866 * s2io_updt_stats -
4868 static void s2io_updt_stats(struct s2io_nic *sp)
4870 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4871 u64 val64;
4872 int cnt = 0;
4874 if (is_s2io_card_up(sp)) {
4875 /* Apprx 30us on a 133 MHz bus */
4876 val64 = SET_UPDT_CLICKS(10) |
4877 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4878 writeq(val64, &bar0->stat_cfg);
4879 do {
4880 udelay(100);
4881 val64 = readq(&bar0->stat_cfg);
4882 if (!(val64 & s2BIT(0)))
4883 break;
4884 cnt++;
4885 if (cnt == 5)
4886 break; /* Updt failed */
4887 } while (1);
4892 * s2io_get_stats - Updates the device statistics structure.
4893 * @dev : pointer to the device structure.
4894 * Description:
4895 * This function updates the device statistics structure in the s2io_nic
4896 * structure and returns a pointer to the same.
4897 * Return value:
4898 * pointer to the updated net_device_stats structure.
4900 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4902 struct s2io_nic *sp = netdev_priv(dev);
4903 struct mac_info *mac_control = &sp->mac_control;
4904 struct stat_block *stats = mac_control->stats_info;
4905 u64 delta;
4907 /* Configure Stats for immediate updt */
4908 s2io_updt_stats(sp);
4910 /* A device reset will cause the on-adapter statistics to be zero'ed.
4911 * This can be done while running by changing the MTU. To prevent the
4912 * system from having the stats zero'ed, the driver keeps a copy of the
4913 * last update to the system (which is also zero'ed on reset). This
4914 * enables the driver to accurately know the delta between the last
4915 * update and the current update.
4917 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4918 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4919 sp->stats.rx_packets += delta;
4920 dev->stats.rx_packets += delta;
4922 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4923 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4924 sp->stats.tx_packets += delta;
4925 dev->stats.tx_packets += delta;
4927 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4928 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4929 sp->stats.rx_bytes += delta;
4930 dev->stats.rx_bytes += delta;
4932 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4933 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4934 sp->stats.tx_bytes += delta;
4935 dev->stats.tx_bytes += delta;
4937 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4938 sp->stats.rx_errors += delta;
4939 dev->stats.rx_errors += delta;
4941 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4942 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4943 sp->stats.tx_errors += delta;
4944 dev->stats.tx_errors += delta;
4946 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4947 sp->stats.rx_dropped += delta;
4948 dev->stats.rx_dropped += delta;
4950 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4951 sp->stats.tx_dropped += delta;
4952 dev->stats.tx_dropped += delta;
4954 /* The adapter MAC interprets pause frames as multicast packets, but
4955 * does not pass them up. This erroneously increases the multicast
4956 * packet count and needs to be deducted when the multicast frame count
4957 * is queried.
4959 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4960 le32_to_cpu(stats->rmac_vld_mcst_frms);
4961 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4962 delta -= sp->stats.multicast;
4963 sp->stats.multicast += delta;
4964 dev->stats.multicast += delta;
4966 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4967 le32_to_cpu(stats->rmac_usized_frms)) +
4968 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4969 sp->stats.rx_length_errors += delta;
4970 dev->stats.rx_length_errors += delta;
4972 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4973 sp->stats.rx_crc_errors += delta;
4974 dev->stats.rx_crc_errors += delta;
4976 return &dev->stats;
4980 * s2io_set_multicast - entry point for multicast address enable/disable.
4981 * @dev : pointer to the device structure
4982 * Description:
4983 * This function is a driver entry point which gets called by the kernel
4984 * whenever multicast addresses must be enabled/disabled. This also gets
4985 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4986 * determine, if multicast address must be enabled or if promiscuous mode
4987 * is to be disabled etc.
4988 * Return value:
4989 * void.
4992 static void s2io_set_multicast(struct net_device *dev)
4994 int i, j, prev_cnt;
4995 struct netdev_hw_addr *ha;
4996 struct s2io_nic *sp = netdev_priv(dev);
4997 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4998 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4999 0xfeffffffffffULL;
5000 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
5001 void __iomem *add;
5002 struct config_param *config = &sp->config;
5004 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5005 /* Enable all Multicast addresses */
5006 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5007 &bar0->rmac_addr_data0_mem);
5008 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5009 &bar0->rmac_addr_data1_mem);
5010 val64 = RMAC_ADDR_CMD_MEM_WE |
5011 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5012 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5013 writeq(val64, &bar0->rmac_addr_cmd_mem);
5014 /* Wait till command completes */
5015 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5016 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5017 S2IO_BIT_RESET);
5019 sp->m_cast_flg = 1;
5020 sp->all_multi_pos = config->max_mc_addr - 1;
5021 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5022 /* Disable all Multicast addresses */
5023 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5024 &bar0->rmac_addr_data0_mem);
5025 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5026 &bar0->rmac_addr_data1_mem);
5027 val64 = RMAC_ADDR_CMD_MEM_WE |
5028 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5029 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5030 writeq(val64, &bar0->rmac_addr_cmd_mem);
5031 /* Wait till command completes */
5032 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5033 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5034 S2IO_BIT_RESET);
5036 sp->m_cast_flg = 0;
5037 sp->all_multi_pos = 0;
5040 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5041 /* Put the NIC into promiscuous mode */
5042 add = &bar0->mac_cfg;
5043 val64 = readq(&bar0->mac_cfg);
5044 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5046 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5047 writel((u32)val64, add);
5048 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5049 writel((u32) (val64 >> 32), (add + 4));
5051 if (vlan_tag_strip != 1) {
5052 val64 = readq(&bar0->rx_pa_cfg);
5053 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5054 writeq(val64, &bar0->rx_pa_cfg);
5055 sp->vlan_strip_flag = 0;
5058 val64 = readq(&bar0->mac_cfg);
5059 sp->promisc_flg = 1;
5060 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5061 dev->name);
5062 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5063 /* Remove the NIC from promiscuous mode */
5064 add = &bar0->mac_cfg;
5065 val64 = readq(&bar0->mac_cfg);
5066 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5068 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5069 writel((u32)val64, add);
5070 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5071 writel((u32) (val64 >> 32), (add + 4));
5073 if (vlan_tag_strip != 0) {
5074 val64 = readq(&bar0->rx_pa_cfg);
5075 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5076 writeq(val64, &bar0->rx_pa_cfg);
5077 sp->vlan_strip_flag = 1;
5080 val64 = readq(&bar0->mac_cfg);
5081 sp->promisc_flg = 0;
5082 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5085 /* Update individual M_CAST address list */
5086 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5087 if (netdev_mc_count(dev) >
5088 (config->max_mc_addr - config->max_mac_addr)) {
5089 DBG_PRINT(ERR_DBG,
5090 "%s: No more Rx filters can be added - "
5091 "please enable ALL_MULTI instead\n",
5092 dev->name);
5093 return;
5096 prev_cnt = sp->mc_addr_count;
5097 sp->mc_addr_count = netdev_mc_count(dev);
5099 /* Clear out the previous list of Mc in the H/W. */
5100 for (i = 0; i < prev_cnt; i++) {
5101 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5102 &bar0->rmac_addr_data0_mem);
5103 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5104 &bar0->rmac_addr_data1_mem);
5105 val64 = RMAC_ADDR_CMD_MEM_WE |
5106 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5107 RMAC_ADDR_CMD_MEM_OFFSET
5108 (config->mc_start_offset + i);
5109 writeq(val64, &bar0->rmac_addr_cmd_mem);
5111 /* Wait for command completes */
5112 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5113 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5114 S2IO_BIT_RESET)) {
5115 DBG_PRINT(ERR_DBG,
5116 "%s: Adding Multicasts failed\n",
5117 dev->name);
5118 return;
5122 /* Create the new Rx filter list and update the same in H/W. */
5123 i = 0;
5124 netdev_for_each_mc_addr(ha, dev) {
5125 mac_addr = 0;
5126 for (j = 0; j < ETH_ALEN; j++) {
5127 mac_addr |= ha->addr[j];
5128 mac_addr <<= 8;
5130 mac_addr >>= 8;
5131 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5132 &bar0->rmac_addr_data0_mem);
5133 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5134 &bar0->rmac_addr_data1_mem);
5135 val64 = RMAC_ADDR_CMD_MEM_WE |
5136 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5137 RMAC_ADDR_CMD_MEM_OFFSET
5138 (i + config->mc_start_offset);
5139 writeq(val64, &bar0->rmac_addr_cmd_mem);
5141 /* Wait for command completes */
5142 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5143 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5144 S2IO_BIT_RESET)) {
5145 DBG_PRINT(ERR_DBG,
5146 "%s: Adding Multicasts failed\n",
5147 dev->name);
5148 return;
5150 i++;
5155 /* read from CAM unicast & multicast addresses and store it in
5156 * def_mac_addr structure
5158 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5160 int offset;
5161 u64 mac_addr = 0x0;
5162 struct config_param *config = &sp->config;
5164 /* store unicast & multicast mac addresses */
5165 for (offset = 0; offset < config->max_mc_addr; offset++) {
5166 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5167 /* if read fails disable the entry */
5168 if (mac_addr == FAILURE)
5169 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5170 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5174 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5175 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5177 int offset;
5178 struct config_param *config = &sp->config;
5179 /* restore unicast mac address */
5180 for (offset = 0; offset < config->max_mac_addr; offset++)
5181 do_s2io_prog_unicast(sp->dev,
5182 sp->def_mac_addr[offset].mac_addr);
5184 /* restore multicast mac address */
5185 for (offset = config->mc_start_offset;
5186 offset < config->max_mc_addr; offset++)
5187 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5190 /* add a multicast MAC address to CAM */
5191 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5193 int i;
5194 u64 mac_addr = 0;
5195 struct config_param *config = &sp->config;
5197 for (i = 0; i < ETH_ALEN; i++) {
5198 mac_addr <<= 8;
5199 mac_addr |= addr[i];
5201 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5202 return SUCCESS;
5204 /* check if the multicast mac already preset in CAM */
5205 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5206 u64 tmp64;
5207 tmp64 = do_s2io_read_unicast_mc(sp, i);
5208 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5209 break;
5211 if (tmp64 == mac_addr)
5212 return SUCCESS;
5214 if (i == config->max_mc_addr) {
5215 DBG_PRINT(ERR_DBG,
5216 "CAM full no space left for multicast MAC\n");
5217 return FAILURE;
5219 /* Update the internal structure with this new mac address */
5220 do_s2io_copy_mac_addr(sp, i, mac_addr);
5222 return do_s2io_add_mac(sp, mac_addr, i);
5225 /* add MAC address to CAM */
5226 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5228 u64 val64;
5229 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5231 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5232 &bar0->rmac_addr_data0_mem);
5234 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5235 RMAC_ADDR_CMD_MEM_OFFSET(off);
5236 writeq(val64, &bar0->rmac_addr_cmd_mem);
5238 /* Wait till command completes */
5239 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5240 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5241 S2IO_BIT_RESET)) {
5242 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5243 return FAILURE;
5245 return SUCCESS;
5247 /* deletes a specified unicast/multicast mac entry from CAM */
5248 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5250 int offset;
5251 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5252 struct config_param *config = &sp->config;
5254 for (offset = 1;
5255 offset < config->max_mc_addr; offset++) {
5256 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5257 if (tmp64 == addr) {
5258 /* disable the entry by writing 0xffffffffffffULL */
5259 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5260 return FAILURE;
5261 /* store the new mac list from CAM */
5262 do_s2io_store_unicast_mc(sp);
5263 return SUCCESS;
5266 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5267 (unsigned long long)addr);
5268 return FAILURE;
5271 /* read mac entries from CAM */
5272 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5274 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5275 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5277 /* read mac addr */
5278 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5279 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5280 writeq(val64, &bar0->rmac_addr_cmd_mem);
5282 /* Wait till command completes */
5283 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5284 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5285 S2IO_BIT_RESET)) {
5286 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5287 return FAILURE;
5289 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5291 return tmp64 >> 16;
5295 * s2io_set_mac_addr driver entry point
5298 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5300 struct sockaddr *addr = p;
5302 if (!is_valid_ether_addr(addr->sa_data))
5303 return -EINVAL;
5305 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5307 /* store the MAC address in CAM */
5308 return do_s2io_prog_unicast(dev, dev->dev_addr);
5311 * do_s2io_prog_unicast - Programs the Xframe mac address
5312 * @dev : pointer to the device structure.
5313 * @addr: a uchar pointer to the new mac address which is to be set.
5314 * Description : This procedure will program the Xframe to receive
5315 * frames with new Mac Address
5316 * Return value: SUCCESS on success and an appropriate (-)ve integer
5317 * as defined in errno.h file on failure.
5320 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5322 struct s2io_nic *sp = netdev_priv(dev);
5323 register u64 mac_addr = 0, perm_addr = 0;
5324 int i;
5325 u64 tmp64;
5326 struct config_param *config = &sp->config;
5329 * Set the new MAC address as the new unicast filter and reflect this
5330 * change on the device address registered with the OS. It will be
5331 * at offset 0.
5333 for (i = 0; i < ETH_ALEN; i++) {
5334 mac_addr <<= 8;
5335 mac_addr |= addr[i];
5336 perm_addr <<= 8;
5337 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5340 /* check if the dev_addr is different than perm_addr */
5341 if (mac_addr == perm_addr)
5342 return SUCCESS;
5344 /* check if the mac already preset in CAM */
5345 for (i = 1; i < config->max_mac_addr; i++) {
5346 tmp64 = do_s2io_read_unicast_mc(sp, i);
5347 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5348 break;
5350 if (tmp64 == mac_addr) {
5351 DBG_PRINT(INFO_DBG,
5352 "MAC addr:0x%llx already present in CAM\n",
5353 (unsigned long long)mac_addr);
5354 return SUCCESS;
5357 if (i == config->max_mac_addr) {
5358 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5359 return FAILURE;
5361 /* Update the internal structure with this new mac address */
5362 do_s2io_copy_mac_addr(sp, i, mac_addr);
5364 return do_s2io_add_mac(sp, mac_addr, i);
5368 * s2io_ethtool_sset - Sets different link parameters.
5369 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5370 * @info: pointer to the structure with parameters given by ethtool to set
5371 * link information.
5372 * Description:
5373 * The function sets different link parameters provided by the user onto
5374 * the NIC.
5375 * Return value:
5376 * 0 on success.
5379 static int s2io_ethtool_sset(struct net_device *dev,
5380 struct ethtool_cmd *info)
5382 struct s2io_nic *sp = netdev_priv(dev);
5383 if ((info->autoneg == AUTONEG_ENABLE) ||
5384 (ethtool_cmd_speed(info) != SPEED_10000) ||
5385 (info->duplex != DUPLEX_FULL))
5386 return -EINVAL;
5387 else {
5388 s2io_close(sp->dev);
5389 s2io_open(sp->dev);
5392 return 0;
5396 * s2io_ethtol_gset - Return link specific information.
5397 * @sp : private member of the device structure, pointer to the
5398 * s2io_nic structure.
5399 * @info : pointer to the structure with parameters given by ethtool
5400 * to return link information.
5401 * Description:
5402 * Returns link specific information like speed, duplex etc.. to ethtool.
5403 * Return value :
5404 * return 0 on success.
5407 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5409 struct s2io_nic *sp = netdev_priv(dev);
5410 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5411 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5412 info->port = PORT_FIBRE;
5414 /* info->transceiver */
5415 info->transceiver = XCVR_EXTERNAL;
5417 if (netif_carrier_ok(sp->dev)) {
5418 ethtool_cmd_speed_set(info, SPEED_10000);
5419 info->duplex = DUPLEX_FULL;
5420 } else {
5421 ethtool_cmd_speed_set(info, -1);
5422 info->duplex = -1;
5425 info->autoneg = AUTONEG_DISABLE;
5426 return 0;
5430 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5431 * @sp : private member of the device structure, which is a pointer to the
5432 * s2io_nic structure.
5433 * @info : pointer to the structure with parameters given by ethtool to
5434 * return driver information.
5435 * Description:
5436 * Returns driver specefic information like name, version etc.. to ethtool.
5437 * Return value:
5438 * void
5441 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5442 struct ethtool_drvinfo *info)
5444 struct s2io_nic *sp = netdev_priv(dev);
5446 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5447 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5448 strncpy(info->fw_version, "", sizeof(info->fw_version));
5449 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5450 info->regdump_len = XENA_REG_SPACE;
5451 info->eedump_len = XENA_EEPROM_SPACE;
5455 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5456 * @sp: private member of the device structure, which is a pointer to the
5457 * s2io_nic structure.
5458 * @regs : pointer to the structure with parameters given by ethtool for
5459 * dumping the registers.
5460 * @reg_space: The input argumnet into which all the registers are dumped.
5461 * Description:
5462 * Dumps the entire register space of xFrame NIC into the user given
5463 * buffer area.
5464 * Return value :
5465 * void .
5468 static void s2io_ethtool_gregs(struct net_device *dev,
5469 struct ethtool_regs *regs, void *space)
5471 int i;
5472 u64 reg;
5473 u8 *reg_space = (u8 *)space;
5474 struct s2io_nic *sp = netdev_priv(dev);
5476 regs->len = XENA_REG_SPACE;
5477 regs->version = sp->pdev->subsystem_device;
5479 for (i = 0; i < regs->len; i += 8) {
5480 reg = readq(sp->bar0 + i);
5481 memcpy((reg_space + i), &reg, 8);
5486 * s2io_set_led - control NIC led
5488 static void s2io_set_led(struct s2io_nic *sp, bool on)
5490 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5491 u16 subid = sp->pdev->subsystem_device;
5492 u64 val64;
5494 if ((sp->device_type == XFRAME_II_DEVICE) ||
5495 ((subid & 0xFF) >= 0x07)) {
5496 val64 = readq(&bar0->gpio_control);
5497 if (on)
5498 val64 |= GPIO_CTRL_GPIO_0;
5499 else
5500 val64 &= ~GPIO_CTRL_GPIO_0;
5502 writeq(val64, &bar0->gpio_control);
5503 } else {
5504 val64 = readq(&bar0->adapter_control);
5505 if (on)
5506 val64 |= ADAPTER_LED_ON;
5507 else
5508 val64 &= ~ADAPTER_LED_ON;
5510 writeq(val64, &bar0->adapter_control);
5516 * s2io_ethtool_set_led - To physically identify the nic on the system.
5517 * @dev : network device
5518 * @state: led setting
5520 * Description: Used to physically identify the NIC on the system.
5521 * The Link LED will blink for a time specified by the user for
5522 * identification.
5523 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5524 * identification is possible only if it's link is up.
5527 static int s2io_ethtool_set_led(struct net_device *dev,
5528 enum ethtool_phys_id_state state)
5530 struct s2io_nic *sp = netdev_priv(dev);
5531 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5532 u16 subid = sp->pdev->subsystem_device;
5534 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5535 u64 val64 = readq(&bar0->adapter_control);
5536 if (!(val64 & ADAPTER_CNTL_EN)) {
5537 pr_err("Adapter Link down, cannot blink LED\n");
5538 return -EAGAIN;
5542 switch (state) {
5543 case ETHTOOL_ID_ACTIVE:
5544 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5545 return 1; /* cycle on/off once per second */
5547 case ETHTOOL_ID_ON:
5548 s2io_set_led(sp, true);
5549 break;
5551 case ETHTOOL_ID_OFF:
5552 s2io_set_led(sp, false);
5553 break;
5555 case ETHTOOL_ID_INACTIVE:
5556 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5557 writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5560 return 0;
5563 static void s2io_ethtool_gringparam(struct net_device *dev,
5564 struct ethtool_ringparam *ering)
5566 struct s2io_nic *sp = netdev_priv(dev);
5567 int i, tx_desc_count = 0, rx_desc_count = 0;
5569 if (sp->rxd_mode == RXD_MODE_1) {
5570 ering->rx_max_pending = MAX_RX_DESC_1;
5571 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5572 } else {
5573 ering->rx_max_pending = MAX_RX_DESC_2;
5574 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5577 ering->rx_mini_max_pending = 0;
5578 ering->tx_max_pending = MAX_TX_DESC;
5580 for (i = 0; i < sp->config.rx_ring_num; i++)
5581 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5582 ering->rx_pending = rx_desc_count;
5583 ering->rx_jumbo_pending = rx_desc_count;
5584 ering->rx_mini_pending = 0;
5586 for (i = 0; i < sp->config.tx_fifo_num; i++)
5587 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5588 ering->tx_pending = tx_desc_count;
5589 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5593 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5594 * @sp : private member of the device structure, which is a pointer to the
5595 * s2io_nic structure.
5596 * @ep : pointer to the structure with pause parameters given by ethtool.
5597 * Description:
5598 * Returns the Pause frame generation and reception capability of the NIC.
5599 * Return value:
5600 * void
5602 static void s2io_ethtool_getpause_data(struct net_device *dev,
5603 struct ethtool_pauseparam *ep)
5605 u64 val64;
5606 struct s2io_nic *sp = netdev_priv(dev);
5607 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5609 val64 = readq(&bar0->rmac_pause_cfg);
5610 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5611 ep->tx_pause = true;
5612 if (val64 & RMAC_PAUSE_RX_ENABLE)
5613 ep->rx_pause = true;
5614 ep->autoneg = false;
5618 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5619 * @sp : private member of the device structure, which is a pointer to the
5620 * s2io_nic structure.
5621 * @ep : pointer to the structure with pause parameters given by ethtool.
5622 * Description:
5623 * It can be used to set or reset Pause frame generation or reception
5624 * support of the NIC.
5625 * Return value:
5626 * int, returns 0 on Success
5629 static int s2io_ethtool_setpause_data(struct net_device *dev,
5630 struct ethtool_pauseparam *ep)
5632 u64 val64;
5633 struct s2io_nic *sp = netdev_priv(dev);
5634 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5636 val64 = readq(&bar0->rmac_pause_cfg);
5637 if (ep->tx_pause)
5638 val64 |= RMAC_PAUSE_GEN_ENABLE;
5639 else
5640 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5641 if (ep->rx_pause)
5642 val64 |= RMAC_PAUSE_RX_ENABLE;
5643 else
5644 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5645 writeq(val64, &bar0->rmac_pause_cfg);
5646 return 0;
5650 * read_eeprom - reads 4 bytes of data from user given offset.
5651 * @sp : private member of the device structure, which is a pointer to the
5652 * s2io_nic structure.
5653 * @off : offset at which the data must be written
5654 * @data : Its an output parameter where the data read at the given
5655 * offset is stored.
5656 * Description:
5657 * Will read 4 bytes of data from the user given offset and return the
5658 * read data.
5659 * NOTE: Will allow to read only part of the EEPROM visible through the
5660 * I2C bus.
5661 * Return value:
5662 * -1 on failure and 0 on success.
5665 #define S2IO_DEV_ID 5
5666 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5668 int ret = -1;
5669 u32 exit_cnt = 0;
5670 u64 val64;
5671 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5673 if (sp->device_type == XFRAME_I_DEVICE) {
5674 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5675 I2C_CONTROL_ADDR(off) |
5676 I2C_CONTROL_BYTE_CNT(0x3) |
5677 I2C_CONTROL_READ |
5678 I2C_CONTROL_CNTL_START;
5679 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5681 while (exit_cnt < 5) {
5682 val64 = readq(&bar0->i2c_control);
5683 if (I2C_CONTROL_CNTL_END(val64)) {
5684 *data = I2C_CONTROL_GET_DATA(val64);
5685 ret = 0;
5686 break;
5688 msleep(50);
5689 exit_cnt++;
5693 if (sp->device_type == XFRAME_II_DEVICE) {
5694 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5695 SPI_CONTROL_BYTECNT(0x3) |
5696 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5697 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5698 val64 |= SPI_CONTROL_REQ;
5699 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5700 while (exit_cnt < 5) {
5701 val64 = readq(&bar0->spi_control);
5702 if (val64 & SPI_CONTROL_NACK) {
5703 ret = 1;
5704 break;
5705 } else if (val64 & SPI_CONTROL_DONE) {
5706 *data = readq(&bar0->spi_data);
5707 *data &= 0xffffff;
5708 ret = 0;
5709 break;
5711 msleep(50);
5712 exit_cnt++;
5715 return ret;
5719 * write_eeprom - actually writes the relevant part of the data value.
5720 * @sp : private member of the device structure, which is a pointer to the
5721 * s2io_nic structure.
5722 * @off : offset at which the data must be written
5723 * @data : The data that is to be written
5724 * @cnt : Number of bytes of the data that are actually to be written into
5725 * the Eeprom. (max of 3)
5726 * Description:
5727 * Actually writes the relevant part of the data value into the Eeprom
5728 * through the I2C bus.
5729 * Return value:
5730 * 0 on success, -1 on failure.
5733 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5735 int exit_cnt = 0, ret = -1;
5736 u64 val64;
5737 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5739 if (sp->device_type == XFRAME_I_DEVICE) {
5740 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5741 I2C_CONTROL_ADDR(off) |
5742 I2C_CONTROL_BYTE_CNT(cnt) |
5743 I2C_CONTROL_SET_DATA((u32)data) |
5744 I2C_CONTROL_CNTL_START;
5745 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5747 while (exit_cnt < 5) {
5748 val64 = readq(&bar0->i2c_control);
5749 if (I2C_CONTROL_CNTL_END(val64)) {
5750 if (!(val64 & I2C_CONTROL_NACK))
5751 ret = 0;
5752 break;
5754 msleep(50);
5755 exit_cnt++;
5759 if (sp->device_type == XFRAME_II_DEVICE) {
5760 int write_cnt = (cnt == 8) ? 0 : cnt;
5761 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5763 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5764 SPI_CONTROL_BYTECNT(write_cnt) |
5765 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5766 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5767 val64 |= SPI_CONTROL_REQ;
5768 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5769 while (exit_cnt < 5) {
5770 val64 = readq(&bar0->spi_control);
5771 if (val64 & SPI_CONTROL_NACK) {
5772 ret = 1;
5773 break;
5774 } else if (val64 & SPI_CONTROL_DONE) {
5775 ret = 0;
5776 break;
5778 msleep(50);
5779 exit_cnt++;
5782 return ret;
5784 static void s2io_vpd_read(struct s2io_nic *nic)
5786 u8 *vpd_data;
5787 u8 data;
5788 int i = 0, cnt, len, fail = 0;
5789 int vpd_addr = 0x80;
5790 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5792 if (nic->device_type == XFRAME_II_DEVICE) {
5793 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5794 vpd_addr = 0x80;
5795 } else {
5796 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5797 vpd_addr = 0x50;
5799 strcpy(nic->serial_num, "NOT AVAILABLE");
5801 vpd_data = kmalloc(256, GFP_KERNEL);
5802 if (!vpd_data) {
5803 swstats->mem_alloc_fail_cnt++;
5804 return;
5806 swstats->mem_allocated += 256;
5808 for (i = 0; i < 256; i += 4) {
5809 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5810 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5811 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5812 for (cnt = 0; cnt < 5; cnt++) {
5813 msleep(2);
5814 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5815 if (data == 0x80)
5816 break;
5818 if (cnt >= 5) {
5819 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5820 fail = 1;
5821 break;
5823 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5824 (u32 *)&vpd_data[i]);
5827 if (!fail) {
5828 /* read serial number of adapter */
5829 for (cnt = 0; cnt < 252; cnt++) {
5830 if ((vpd_data[cnt] == 'S') &&
5831 (vpd_data[cnt+1] == 'N')) {
5832 len = vpd_data[cnt+2];
5833 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5834 memcpy(nic->serial_num,
5835 &vpd_data[cnt + 3],
5836 len);
5837 memset(nic->serial_num+len,
5839 VPD_STRING_LEN-len);
5840 break;
5846 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5847 len = vpd_data[1];
5848 memcpy(nic->product_name, &vpd_data[3], len);
5849 nic->product_name[len] = 0;
5851 kfree(vpd_data);
5852 swstats->mem_freed += 256;
5856 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5857 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5858 * @eeprom : pointer to the user level structure provided by ethtool,
5859 * containing all relevant information.
5860 * @data_buf : user defined value to be written into Eeprom.
5861 * Description: Reads the values stored in the Eeprom at given offset
5862 * for a given length. Stores these values int the input argument data
5863 * buffer 'data_buf' and returns these to the caller (ethtool.)
5864 * Return value:
5865 * int 0 on success
5868 static int s2io_ethtool_geeprom(struct net_device *dev,
5869 struct ethtool_eeprom *eeprom, u8 * data_buf)
5871 u32 i, valid;
5872 u64 data;
5873 struct s2io_nic *sp = netdev_priv(dev);
5875 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5877 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5878 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5880 for (i = 0; i < eeprom->len; i += 4) {
5881 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5882 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5883 return -EFAULT;
5885 valid = INV(data);
5886 memcpy((data_buf + i), &valid, 4);
5888 return 0;
5892 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5893 * @sp : private member of the device structure, which is a pointer to the
5894 * s2io_nic structure.
5895 * @eeprom : pointer to the user level structure provided by ethtool,
5896 * containing all relevant information.
5897 * @data_buf ; user defined value to be written into Eeprom.
5898 * Description:
5899 * Tries to write the user provided value in the Eeprom, at the offset
5900 * given by the user.
5901 * Return value:
5902 * 0 on success, -EFAULT on failure.
5905 static int s2io_ethtool_seeprom(struct net_device *dev,
5906 struct ethtool_eeprom *eeprom,
5907 u8 *data_buf)
5909 int len = eeprom->len, cnt = 0;
5910 u64 valid = 0, data;
5911 struct s2io_nic *sp = netdev_priv(dev);
5913 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5914 DBG_PRINT(ERR_DBG,
5915 "ETHTOOL_WRITE_EEPROM Err: "
5916 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5917 (sp->pdev->vendor | (sp->pdev->device << 16)),
5918 eeprom->magic);
5919 return -EFAULT;
5922 while (len) {
5923 data = (u32)data_buf[cnt] & 0x000000FF;
5924 if (data)
5925 valid = (u32)(data << 24);
5926 else
5927 valid = data;
5929 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5930 DBG_PRINT(ERR_DBG,
5931 "ETHTOOL_WRITE_EEPROM Err: "
5932 "Cannot write into the specified offset\n");
5933 return -EFAULT;
5935 cnt++;
5936 len--;
5939 return 0;
5943 * s2io_register_test - reads and writes into all clock domains.
5944 * @sp : private member of the device structure, which is a pointer to the
5945 * s2io_nic structure.
5946 * @data : variable that returns the result of each of the test conducted b
5947 * by the driver.
5948 * Description:
5949 * Read and write into all clock domains. The NIC has 3 clock domains,
5950 * see that registers in all the three regions are accessible.
5951 * Return value:
5952 * 0 on success.
5955 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5957 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5958 u64 val64 = 0, exp_val;
5959 int fail = 0;
5961 val64 = readq(&bar0->pif_rd_swapper_fb);
5962 if (val64 != 0x123456789abcdefULL) {
5963 fail = 1;
5964 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5967 val64 = readq(&bar0->rmac_pause_cfg);
5968 if (val64 != 0xc000ffff00000000ULL) {
5969 fail = 1;
5970 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5973 val64 = readq(&bar0->rx_queue_cfg);
5974 if (sp->device_type == XFRAME_II_DEVICE)
5975 exp_val = 0x0404040404040404ULL;
5976 else
5977 exp_val = 0x0808080808080808ULL;
5978 if (val64 != exp_val) {
5979 fail = 1;
5980 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5983 val64 = readq(&bar0->xgxs_efifo_cfg);
5984 if (val64 != 0x000000001923141EULL) {
5985 fail = 1;
5986 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5989 val64 = 0x5A5A5A5A5A5A5A5AULL;
5990 writeq(val64, &bar0->xmsi_data);
5991 val64 = readq(&bar0->xmsi_data);
5992 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5993 fail = 1;
5994 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5997 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5998 writeq(val64, &bar0->xmsi_data);
5999 val64 = readq(&bar0->xmsi_data);
6000 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6001 fail = 1;
6002 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
6005 *data = fail;
6006 return fail;
6010 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6011 * @sp : private member of the device structure, which is a pointer to the
6012 * s2io_nic structure.
6013 * @data:variable that returns the result of each of the test conducted by
6014 * the driver.
6015 * Description:
6016 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6017 * register.
6018 * Return value:
6019 * 0 on success.
6022 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6024 int fail = 0;
6025 u64 ret_data, org_4F0, org_7F0;
6026 u8 saved_4F0 = 0, saved_7F0 = 0;
6027 struct net_device *dev = sp->dev;
6029 /* Test Write Error at offset 0 */
6030 /* Note that SPI interface allows write access to all areas
6031 * of EEPROM. Hence doing all negative testing only for Xframe I.
6033 if (sp->device_type == XFRAME_I_DEVICE)
6034 if (!write_eeprom(sp, 0, 0, 3))
6035 fail = 1;
6037 /* Save current values at offsets 0x4F0 and 0x7F0 */
6038 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6039 saved_4F0 = 1;
6040 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6041 saved_7F0 = 1;
6043 /* Test Write at offset 4f0 */
6044 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6045 fail = 1;
6046 if (read_eeprom(sp, 0x4F0, &ret_data))
6047 fail = 1;
6049 if (ret_data != 0x012345) {
6050 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6051 "Data written %llx Data read %llx\n",
6052 dev->name, (unsigned long long)0x12345,
6053 (unsigned long long)ret_data);
6054 fail = 1;
6057 /* Reset the EEPROM data go FFFF */
6058 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6060 /* Test Write Request Error at offset 0x7c */
6061 if (sp->device_type == XFRAME_I_DEVICE)
6062 if (!write_eeprom(sp, 0x07C, 0, 3))
6063 fail = 1;
6065 /* Test Write Request at offset 0x7f0 */
6066 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6067 fail = 1;
6068 if (read_eeprom(sp, 0x7F0, &ret_data))
6069 fail = 1;
6071 if (ret_data != 0x012345) {
6072 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6073 "Data written %llx Data read %llx\n",
6074 dev->name, (unsigned long long)0x12345,
6075 (unsigned long long)ret_data);
6076 fail = 1;
6079 /* Reset the EEPROM data go FFFF */
6080 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6082 if (sp->device_type == XFRAME_I_DEVICE) {
6083 /* Test Write Error at offset 0x80 */
6084 if (!write_eeprom(sp, 0x080, 0, 3))
6085 fail = 1;
6087 /* Test Write Error at offset 0xfc */
6088 if (!write_eeprom(sp, 0x0FC, 0, 3))
6089 fail = 1;
6091 /* Test Write Error at offset 0x100 */
6092 if (!write_eeprom(sp, 0x100, 0, 3))
6093 fail = 1;
6095 /* Test Write Error at offset 4ec */
6096 if (!write_eeprom(sp, 0x4EC, 0, 3))
6097 fail = 1;
6100 /* Restore values at offsets 0x4F0 and 0x7F0 */
6101 if (saved_4F0)
6102 write_eeprom(sp, 0x4F0, org_4F0, 3);
6103 if (saved_7F0)
6104 write_eeprom(sp, 0x7F0, org_7F0, 3);
6106 *data = fail;
6107 return fail;
6111 * s2io_bist_test - invokes the MemBist test of the card .
6112 * @sp : private member of the device structure, which is a pointer to the
6113 * s2io_nic structure.
6114 * @data:variable that returns the result of each of the test conducted by
6115 * the driver.
6116 * Description:
6117 * This invokes the MemBist test of the card. We give around
6118 * 2 secs time for the Test to complete. If it's still not complete
6119 * within this peiod, we consider that the test failed.
6120 * Return value:
6121 * 0 on success and -1 on failure.
6124 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6126 u8 bist = 0;
6127 int cnt = 0, ret = -1;
6129 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6130 bist |= PCI_BIST_START;
6131 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6133 while (cnt < 20) {
6134 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6135 if (!(bist & PCI_BIST_START)) {
6136 *data = (bist & PCI_BIST_CODE_MASK);
6137 ret = 0;
6138 break;
6140 msleep(100);
6141 cnt++;
6144 return ret;
6148 * s2io-link_test - verifies the link state of the nic
6149 * @sp ; private member of the device structure, which is a pointer to the
6150 * s2io_nic structure.
6151 * @data: variable that returns the result of each of the test conducted by
6152 * the driver.
6153 * Description:
6154 * The function verifies the link state of the NIC and updates the input
6155 * argument 'data' appropriately.
6156 * Return value:
6157 * 0 on success.
6160 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6162 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6163 u64 val64;
6165 val64 = readq(&bar0->adapter_status);
6166 if (!(LINK_IS_UP(val64)))
6167 *data = 1;
6168 else
6169 *data = 0;
6171 return *data;
6175 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6176 * @sp - private member of the device structure, which is a pointer to the
6177 * s2io_nic structure.
6178 * @data - variable that returns the result of each of the test
6179 * conducted by the driver.
6180 * Description:
6181 * This is one of the offline test that tests the read and write
6182 * access to the RldRam chip on the NIC.
6183 * Return value:
6184 * 0 on success.
6187 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6189 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6190 u64 val64;
6191 int cnt, iteration = 0, test_fail = 0;
6193 val64 = readq(&bar0->adapter_control);
6194 val64 &= ~ADAPTER_ECC_EN;
6195 writeq(val64, &bar0->adapter_control);
6197 val64 = readq(&bar0->mc_rldram_test_ctrl);
6198 val64 |= MC_RLDRAM_TEST_MODE;
6199 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6201 val64 = readq(&bar0->mc_rldram_mrs);
6202 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6203 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6205 val64 |= MC_RLDRAM_MRS_ENABLE;
6206 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6208 while (iteration < 2) {
6209 val64 = 0x55555555aaaa0000ULL;
6210 if (iteration == 1)
6211 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6212 writeq(val64, &bar0->mc_rldram_test_d0);
6214 val64 = 0xaaaa5a5555550000ULL;
6215 if (iteration == 1)
6216 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6217 writeq(val64, &bar0->mc_rldram_test_d1);
6219 val64 = 0x55aaaaaaaa5a0000ULL;
6220 if (iteration == 1)
6221 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6222 writeq(val64, &bar0->mc_rldram_test_d2);
6224 val64 = (u64) (0x0000003ffffe0100ULL);
6225 writeq(val64, &bar0->mc_rldram_test_add);
6227 val64 = MC_RLDRAM_TEST_MODE |
6228 MC_RLDRAM_TEST_WRITE |
6229 MC_RLDRAM_TEST_GO;
6230 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6232 for (cnt = 0; cnt < 5; cnt++) {
6233 val64 = readq(&bar0->mc_rldram_test_ctrl);
6234 if (val64 & MC_RLDRAM_TEST_DONE)
6235 break;
6236 msleep(200);
6239 if (cnt == 5)
6240 break;
6242 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6243 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6245 for (cnt = 0; cnt < 5; cnt++) {
6246 val64 = readq(&bar0->mc_rldram_test_ctrl);
6247 if (val64 & MC_RLDRAM_TEST_DONE)
6248 break;
6249 msleep(500);
6252 if (cnt == 5)
6253 break;
6255 val64 = readq(&bar0->mc_rldram_test_ctrl);
6256 if (!(val64 & MC_RLDRAM_TEST_PASS))
6257 test_fail = 1;
6259 iteration++;
6262 *data = test_fail;
6264 /* Bring the adapter out of test mode */
6265 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6267 return test_fail;
6271 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6272 * @sp : private member of the device structure, which is a pointer to the
6273 * s2io_nic structure.
6274 * @ethtest : pointer to a ethtool command specific structure that will be
6275 * returned to the user.
6276 * @data : variable that returns the result of each of the test
6277 * conducted by the driver.
6278 * Description:
6279 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6280 * the health of the card.
6281 * Return value:
6282 * void
6285 static void s2io_ethtool_test(struct net_device *dev,
6286 struct ethtool_test *ethtest,
6287 uint64_t *data)
6289 struct s2io_nic *sp = netdev_priv(dev);
6290 int orig_state = netif_running(sp->dev);
6292 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6293 /* Offline Tests. */
6294 if (orig_state)
6295 s2io_close(sp->dev);
6297 if (s2io_register_test(sp, &data[0]))
6298 ethtest->flags |= ETH_TEST_FL_FAILED;
6300 s2io_reset(sp);
6302 if (s2io_rldram_test(sp, &data[3]))
6303 ethtest->flags |= ETH_TEST_FL_FAILED;
6305 s2io_reset(sp);
6307 if (s2io_eeprom_test(sp, &data[1]))
6308 ethtest->flags |= ETH_TEST_FL_FAILED;
6310 if (s2io_bist_test(sp, &data[4]))
6311 ethtest->flags |= ETH_TEST_FL_FAILED;
6313 if (orig_state)
6314 s2io_open(sp->dev);
6316 data[2] = 0;
6317 } else {
6318 /* Online Tests. */
6319 if (!orig_state) {
6320 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6321 dev->name);
6322 data[0] = -1;
6323 data[1] = -1;
6324 data[2] = -1;
6325 data[3] = -1;
6326 data[4] = -1;
6329 if (s2io_link_test(sp, &data[2]))
6330 ethtest->flags |= ETH_TEST_FL_FAILED;
6332 data[0] = 0;
6333 data[1] = 0;
6334 data[3] = 0;
6335 data[4] = 0;
6339 static void s2io_get_ethtool_stats(struct net_device *dev,
6340 struct ethtool_stats *estats,
6341 u64 *tmp_stats)
6343 int i = 0, k;
6344 struct s2io_nic *sp = netdev_priv(dev);
6345 struct stat_block *stats = sp->mac_control.stats_info;
6346 struct swStat *swstats = &stats->sw_stat;
6347 struct xpakStat *xstats = &stats->xpak_stat;
6349 s2io_updt_stats(sp);
6350 tmp_stats[i++] =
6351 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6352 le32_to_cpu(stats->tmac_frms);
6353 tmp_stats[i++] =
6354 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6355 le32_to_cpu(stats->tmac_data_octets);
6356 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6359 le32_to_cpu(stats->tmac_mcst_frms);
6360 tmp_stats[i++] =
6361 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6362 le32_to_cpu(stats->tmac_bcst_frms);
6363 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6364 tmp_stats[i++] =
6365 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6366 le32_to_cpu(stats->tmac_ttl_octets);
6367 tmp_stats[i++] =
6368 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6369 le32_to_cpu(stats->tmac_ucst_frms);
6370 tmp_stats[i++] =
6371 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6372 le32_to_cpu(stats->tmac_nucst_frms);
6373 tmp_stats[i++] =
6374 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6375 le32_to_cpu(stats->tmac_any_err_frms);
6376 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6377 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6378 tmp_stats[i++] =
6379 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6380 le32_to_cpu(stats->tmac_vld_ip);
6381 tmp_stats[i++] =
6382 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6383 le32_to_cpu(stats->tmac_drop_ip);
6384 tmp_stats[i++] =
6385 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6386 le32_to_cpu(stats->tmac_icmp);
6387 tmp_stats[i++] =
6388 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6389 le32_to_cpu(stats->tmac_rst_tcp);
6390 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6391 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6392 le32_to_cpu(stats->tmac_udp);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6395 le32_to_cpu(stats->rmac_vld_frms);
6396 tmp_stats[i++] =
6397 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6398 le32_to_cpu(stats->rmac_data_octets);
6399 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6400 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6401 tmp_stats[i++] =
6402 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6403 le32_to_cpu(stats->rmac_vld_mcst_frms);
6404 tmp_stats[i++] =
6405 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6406 le32_to_cpu(stats->rmac_vld_bcst_frms);
6407 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6408 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6412 tmp_stats[i++] =
6413 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6414 le32_to_cpu(stats->rmac_ttl_octets);
6415 tmp_stats[i++] =
6416 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6417 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6418 tmp_stats[i++] =
6419 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6420 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6421 tmp_stats[i++] =
6422 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6423 le32_to_cpu(stats->rmac_discarded_frms);
6424 tmp_stats[i++] =
6425 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6426 << 32 | le32_to_cpu(stats->rmac_drop_events);
6427 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6428 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6429 tmp_stats[i++] =
6430 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6431 le32_to_cpu(stats->rmac_usized_frms);
6432 tmp_stats[i++] =
6433 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6434 le32_to_cpu(stats->rmac_osized_frms);
6435 tmp_stats[i++] =
6436 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6437 le32_to_cpu(stats->rmac_frag_frms);
6438 tmp_stats[i++] =
6439 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6440 le32_to_cpu(stats->rmac_jabber_frms);
6441 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6442 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6443 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6444 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6445 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6446 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6447 tmp_stats[i++] =
6448 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6449 le32_to_cpu(stats->rmac_ip);
6450 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6451 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6452 tmp_stats[i++] =
6453 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6454 le32_to_cpu(stats->rmac_drop_ip);
6455 tmp_stats[i++] =
6456 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6457 le32_to_cpu(stats->rmac_icmp);
6458 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6459 tmp_stats[i++] =
6460 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6461 le32_to_cpu(stats->rmac_udp);
6462 tmp_stats[i++] =
6463 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6464 le32_to_cpu(stats->rmac_err_drp_udp);
6465 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6466 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6467 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6468 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6469 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6470 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6471 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6472 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6473 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6474 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6475 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6476 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6477 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6478 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6479 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6480 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6481 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6482 tmp_stats[i++] =
6483 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6484 le32_to_cpu(stats->rmac_pause_cnt);
6485 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6486 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6487 tmp_stats[i++] =
6488 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6489 le32_to_cpu(stats->rmac_accepted_ip);
6490 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6491 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6492 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6493 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6494 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6495 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6496 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6497 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6498 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6499 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6500 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6501 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6502 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6503 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6504 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6505 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6506 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6507 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6508 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6510 /* Enhanced statistics exist only for Hercules */
6511 if (sp->device_type == XFRAME_II_DEVICE) {
6512 tmp_stats[i++] =
6513 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6514 tmp_stats[i++] =
6515 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6516 tmp_stats[i++] =
6517 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6518 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6519 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6520 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6521 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6522 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6523 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6524 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6525 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6526 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6527 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6528 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6529 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6530 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6533 tmp_stats[i++] = 0;
6534 tmp_stats[i++] = swstats->single_ecc_errs;
6535 tmp_stats[i++] = swstats->double_ecc_errs;
6536 tmp_stats[i++] = swstats->parity_err_cnt;
6537 tmp_stats[i++] = swstats->serious_err_cnt;
6538 tmp_stats[i++] = swstats->soft_reset_cnt;
6539 tmp_stats[i++] = swstats->fifo_full_cnt;
6540 for (k = 0; k < MAX_RX_RINGS; k++)
6541 tmp_stats[i++] = swstats->ring_full_cnt[k];
6542 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6543 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6544 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6545 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6546 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6547 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6548 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6549 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6550 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6551 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6552 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6553 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6554 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6555 tmp_stats[i++] = swstats->sending_both;
6556 tmp_stats[i++] = swstats->outof_sequence_pkts;
6557 tmp_stats[i++] = swstats->flush_max_pkts;
6558 if (swstats->num_aggregations) {
6559 u64 tmp = swstats->sum_avg_pkts_aggregated;
6560 int count = 0;
6562 * Since 64-bit divide does not work on all platforms,
6563 * do repeated subtraction.
6565 while (tmp >= swstats->num_aggregations) {
6566 tmp -= swstats->num_aggregations;
6567 count++;
6569 tmp_stats[i++] = count;
6570 } else
6571 tmp_stats[i++] = 0;
6572 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6573 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6574 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6575 tmp_stats[i++] = swstats->mem_allocated;
6576 tmp_stats[i++] = swstats->mem_freed;
6577 tmp_stats[i++] = swstats->link_up_cnt;
6578 tmp_stats[i++] = swstats->link_down_cnt;
6579 tmp_stats[i++] = swstats->link_up_time;
6580 tmp_stats[i++] = swstats->link_down_time;
6582 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6583 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6584 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6585 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6586 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6588 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6589 tmp_stats[i++] = swstats->rx_abort_cnt;
6590 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6591 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6592 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6593 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6594 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6595 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6596 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6597 tmp_stats[i++] = swstats->tda_err_cnt;
6598 tmp_stats[i++] = swstats->pfc_err_cnt;
6599 tmp_stats[i++] = swstats->pcc_err_cnt;
6600 tmp_stats[i++] = swstats->tti_err_cnt;
6601 tmp_stats[i++] = swstats->tpa_err_cnt;
6602 tmp_stats[i++] = swstats->sm_err_cnt;
6603 tmp_stats[i++] = swstats->lso_err_cnt;
6604 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6605 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6606 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6607 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6608 tmp_stats[i++] = swstats->rc_err_cnt;
6609 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6610 tmp_stats[i++] = swstats->rpa_err_cnt;
6611 tmp_stats[i++] = swstats->rda_err_cnt;
6612 tmp_stats[i++] = swstats->rti_err_cnt;
6613 tmp_stats[i++] = swstats->mc_err_cnt;
6616 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6618 return XENA_REG_SPACE;
6622 static int s2io_get_eeprom_len(struct net_device *dev)
6624 return XENA_EEPROM_SPACE;
6627 static int s2io_get_sset_count(struct net_device *dev, int sset)
6629 struct s2io_nic *sp = netdev_priv(dev);
6631 switch (sset) {
6632 case ETH_SS_TEST:
6633 return S2IO_TEST_LEN;
6634 case ETH_SS_STATS:
6635 switch (sp->device_type) {
6636 case XFRAME_I_DEVICE:
6637 return XFRAME_I_STAT_LEN;
6638 case XFRAME_II_DEVICE:
6639 return XFRAME_II_STAT_LEN;
6640 default:
6641 return 0;
6643 default:
6644 return -EOPNOTSUPP;
6648 static void s2io_ethtool_get_strings(struct net_device *dev,
6649 u32 stringset, u8 *data)
6651 int stat_size = 0;
6652 struct s2io_nic *sp = netdev_priv(dev);
6654 switch (stringset) {
6655 case ETH_SS_TEST:
6656 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6657 break;
6658 case ETH_SS_STATS:
6659 stat_size = sizeof(ethtool_xena_stats_keys);
6660 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6661 if (sp->device_type == XFRAME_II_DEVICE) {
6662 memcpy(data + stat_size,
6663 &ethtool_enhanced_stats_keys,
6664 sizeof(ethtool_enhanced_stats_keys));
6665 stat_size += sizeof(ethtool_enhanced_stats_keys);
6668 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6669 sizeof(ethtool_driver_stats_keys));
6673 static int s2io_set_features(struct net_device *dev, u32 features)
6675 struct s2io_nic *sp = netdev_priv(dev);
6676 u32 changed = (features ^ dev->features) & NETIF_F_LRO;
6678 if (changed && netif_running(dev)) {
6679 int rc;
6681 s2io_stop_all_tx_queue(sp);
6682 s2io_card_down(sp);
6683 dev->features = features;
6684 rc = s2io_card_up(sp);
6685 if (rc)
6686 s2io_reset(sp);
6687 else
6688 s2io_start_all_tx_queue(sp);
6690 return rc ? rc : 1;
6693 return 0;
6696 static const struct ethtool_ops netdev_ethtool_ops = {
6697 .get_settings = s2io_ethtool_gset,
6698 .set_settings = s2io_ethtool_sset,
6699 .get_drvinfo = s2io_ethtool_gdrvinfo,
6700 .get_regs_len = s2io_ethtool_get_regs_len,
6701 .get_regs = s2io_ethtool_gregs,
6702 .get_link = ethtool_op_get_link,
6703 .get_eeprom_len = s2io_get_eeprom_len,
6704 .get_eeprom = s2io_ethtool_geeprom,
6705 .set_eeprom = s2io_ethtool_seeprom,
6706 .get_ringparam = s2io_ethtool_gringparam,
6707 .get_pauseparam = s2io_ethtool_getpause_data,
6708 .set_pauseparam = s2io_ethtool_setpause_data,
6709 .self_test = s2io_ethtool_test,
6710 .get_strings = s2io_ethtool_get_strings,
6711 .set_phys_id = s2io_ethtool_set_led,
6712 .get_ethtool_stats = s2io_get_ethtool_stats,
6713 .get_sset_count = s2io_get_sset_count,
6717 * s2io_ioctl - Entry point for the Ioctl
6718 * @dev : Device pointer.
6719 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6720 * a proprietary structure used to pass information to the driver.
6721 * @cmd : This is used to distinguish between the different commands that
6722 * can be passed to the IOCTL functions.
6723 * Description:
6724 * Currently there are no special functionality supported in IOCTL, hence
6725 * function always return EOPNOTSUPPORTED
6728 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6730 return -EOPNOTSUPP;
6734 * s2io_change_mtu - entry point to change MTU size for the device.
6735 * @dev : device pointer.
6736 * @new_mtu : the new MTU size for the device.
6737 * Description: A driver entry point to change MTU size for the device.
6738 * Before changing the MTU the device must be stopped.
6739 * Return value:
6740 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6741 * file on failure.
6744 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6746 struct s2io_nic *sp = netdev_priv(dev);
6747 int ret = 0;
6749 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6750 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6751 return -EPERM;
6754 dev->mtu = new_mtu;
6755 if (netif_running(dev)) {
6756 s2io_stop_all_tx_queue(sp);
6757 s2io_card_down(sp);
6758 ret = s2io_card_up(sp);
6759 if (ret) {
6760 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6761 __func__);
6762 return ret;
6764 s2io_wake_all_tx_queue(sp);
6765 } else { /* Device is down */
6766 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6767 u64 val64 = new_mtu;
6769 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6772 return ret;
6776 * s2io_set_link - Set the LInk status
6777 * @data: long pointer to device private structue
6778 * Description: Sets the link status for the adapter
6781 static void s2io_set_link(struct work_struct *work)
6783 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6784 set_link_task);
6785 struct net_device *dev = nic->dev;
6786 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6787 register u64 val64;
6788 u16 subid;
6790 rtnl_lock();
6792 if (!netif_running(dev))
6793 goto out_unlock;
6795 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6796 /* The card is being reset, no point doing anything */
6797 goto out_unlock;
6800 subid = nic->pdev->subsystem_device;
6801 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6803 * Allow a small delay for the NICs self initiated
6804 * cleanup to complete.
6806 msleep(100);
6809 val64 = readq(&bar0->adapter_status);
6810 if (LINK_IS_UP(val64)) {
6811 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6812 if (verify_xena_quiescence(nic)) {
6813 val64 = readq(&bar0->adapter_control);
6814 val64 |= ADAPTER_CNTL_EN;
6815 writeq(val64, &bar0->adapter_control);
6816 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6817 nic->device_type, subid)) {
6818 val64 = readq(&bar0->gpio_control);
6819 val64 |= GPIO_CTRL_GPIO_0;
6820 writeq(val64, &bar0->gpio_control);
6821 val64 = readq(&bar0->gpio_control);
6822 } else {
6823 val64 |= ADAPTER_LED_ON;
6824 writeq(val64, &bar0->adapter_control);
6826 nic->device_enabled_once = true;
6827 } else {
6828 DBG_PRINT(ERR_DBG,
6829 "%s: Error: device is not Quiescent\n",
6830 dev->name);
6831 s2io_stop_all_tx_queue(nic);
6834 val64 = readq(&bar0->adapter_control);
6835 val64 |= ADAPTER_LED_ON;
6836 writeq(val64, &bar0->adapter_control);
6837 s2io_link(nic, LINK_UP);
6838 } else {
6839 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6840 subid)) {
6841 val64 = readq(&bar0->gpio_control);
6842 val64 &= ~GPIO_CTRL_GPIO_0;
6843 writeq(val64, &bar0->gpio_control);
6844 val64 = readq(&bar0->gpio_control);
6846 /* turn off LED */
6847 val64 = readq(&bar0->adapter_control);
6848 val64 = val64 & (~ADAPTER_LED_ON);
6849 writeq(val64, &bar0->adapter_control);
6850 s2io_link(nic, LINK_DOWN);
6852 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6854 out_unlock:
6855 rtnl_unlock();
6858 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6859 struct buffAdd *ba,
6860 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6861 u64 *temp2, int size)
6863 struct net_device *dev = sp->dev;
6864 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6866 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6867 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6868 /* allocate skb */
6869 if (*skb) {
6870 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6872 * As Rx frame are not going to be processed,
6873 * using same mapped address for the Rxd
6874 * buffer pointer
6876 rxdp1->Buffer0_ptr = *temp0;
6877 } else {
6878 *skb = dev_alloc_skb(size);
6879 if (!(*skb)) {
6880 DBG_PRINT(INFO_DBG,
6881 "%s: Out of memory to allocate %s\n",
6882 dev->name, "1 buf mode SKBs");
6883 stats->mem_alloc_fail_cnt++;
6884 return -ENOMEM ;
6886 stats->mem_allocated += (*skb)->truesize;
6887 /* storing the mapped addr in a temp variable
6888 * such it will be used for next rxd whose
6889 * Host Control is NULL
6891 rxdp1->Buffer0_ptr = *temp0 =
6892 pci_map_single(sp->pdev, (*skb)->data,
6893 size - NET_IP_ALIGN,
6894 PCI_DMA_FROMDEVICE);
6895 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6896 goto memalloc_failed;
6897 rxdp->Host_Control = (unsigned long) (*skb);
6899 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6900 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6901 /* Two buffer Mode */
6902 if (*skb) {
6903 rxdp3->Buffer2_ptr = *temp2;
6904 rxdp3->Buffer0_ptr = *temp0;
6905 rxdp3->Buffer1_ptr = *temp1;
6906 } else {
6907 *skb = dev_alloc_skb(size);
6908 if (!(*skb)) {
6909 DBG_PRINT(INFO_DBG,
6910 "%s: Out of memory to allocate %s\n",
6911 dev->name,
6912 "2 buf mode SKBs");
6913 stats->mem_alloc_fail_cnt++;
6914 return -ENOMEM;
6916 stats->mem_allocated += (*skb)->truesize;
6917 rxdp3->Buffer2_ptr = *temp2 =
6918 pci_map_single(sp->pdev, (*skb)->data,
6919 dev->mtu + 4,
6920 PCI_DMA_FROMDEVICE);
6921 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6922 goto memalloc_failed;
6923 rxdp3->Buffer0_ptr = *temp0 =
6924 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6925 PCI_DMA_FROMDEVICE);
6926 if (pci_dma_mapping_error(sp->pdev,
6927 rxdp3->Buffer0_ptr)) {
6928 pci_unmap_single(sp->pdev,
6929 (dma_addr_t)rxdp3->Buffer2_ptr,
6930 dev->mtu + 4,
6931 PCI_DMA_FROMDEVICE);
6932 goto memalloc_failed;
6934 rxdp->Host_Control = (unsigned long) (*skb);
6936 /* Buffer-1 will be dummy buffer not used */
6937 rxdp3->Buffer1_ptr = *temp1 =
6938 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6939 PCI_DMA_FROMDEVICE);
6940 if (pci_dma_mapping_error(sp->pdev,
6941 rxdp3->Buffer1_ptr)) {
6942 pci_unmap_single(sp->pdev,
6943 (dma_addr_t)rxdp3->Buffer0_ptr,
6944 BUF0_LEN, PCI_DMA_FROMDEVICE);
6945 pci_unmap_single(sp->pdev,
6946 (dma_addr_t)rxdp3->Buffer2_ptr,
6947 dev->mtu + 4,
6948 PCI_DMA_FROMDEVICE);
6949 goto memalloc_failed;
6953 return 0;
6955 memalloc_failed:
6956 stats->pci_map_fail_cnt++;
6957 stats->mem_freed += (*skb)->truesize;
6958 dev_kfree_skb(*skb);
6959 return -ENOMEM;
6962 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6963 int size)
6965 struct net_device *dev = sp->dev;
6966 if (sp->rxd_mode == RXD_MODE_1) {
6967 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6968 } else if (sp->rxd_mode == RXD_MODE_3B) {
6969 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6970 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6971 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6975 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6977 int i, j, k, blk_cnt = 0, size;
6978 struct config_param *config = &sp->config;
6979 struct mac_info *mac_control = &sp->mac_control;
6980 struct net_device *dev = sp->dev;
6981 struct RxD_t *rxdp = NULL;
6982 struct sk_buff *skb = NULL;
6983 struct buffAdd *ba = NULL;
6984 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6986 /* Calculate the size based on ring mode */
6987 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6988 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6989 if (sp->rxd_mode == RXD_MODE_1)
6990 size += NET_IP_ALIGN;
6991 else if (sp->rxd_mode == RXD_MODE_3B)
6992 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6994 for (i = 0; i < config->rx_ring_num; i++) {
6995 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6996 struct ring_info *ring = &mac_control->rings[i];
6998 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7000 for (j = 0; j < blk_cnt; j++) {
7001 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7002 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7003 if (sp->rxd_mode == RXD_MODE_3B)
7004 ba = &ring->ba[j][k];
7005 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7006 (u64 *)&temp0_64,
7007 (u64 *)&temp1_64,
7008 (u64 *)&temp2_64,
7009 size) == -ENOMEM) {
7010 return 0;
7013 set_rxd_buffer_size(sp, rxdp, size);
7014 wmb();
7015 /* flip the Ownership bit to Hardware */
7016 rxdp->Control_1 |= RXD_OWN_XENA;
7020 return 0;
7024 static int s2io_add_isr(struct s2io_nic *sp)
7026 int ret = 0;
7027 struct net_device *dev = sp->dev;
7028 int err = 0;
7030 if (sp->config.intr_type == MSI_X)
7031 ret = s2io_enable_msi_x(sp);
7032 if (ret) {
7033 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7034 sp->config.intr_type = INTA;
7038 * Store the values of the MSIX table in
7039 * the struct s2io_nic structure
7041 store_xmsi_data(sp);
7043 /* After proper initialization of H/W, register ISR */
7044 if (sp->config.intr_type == MSI_X) {
7045 int i, msix_rx_cnt = 0;
7047 for (i = 0; i < sp->num_entries; i++) {
7048 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7049 if (sp->s2io_entries[i].type ==
7050 MSIX_RING_TYPE) {
7051 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7052 dev->name, i);
7053 err = request_irq(sp->entries[i].vector,
7054 s2io_msix_ring_handle,
7056 sp->desc[i],
7057 sp->s2io_entries[i].arg);
7058 } else if (sp->s2io_entries[i].type ==
7059 MSIX_ALARM_TYPE) {
7060 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7061 dev->name, i);
7062 err = request_irq(sp->entries[i].vector,
7063 s2io_msix_fifo_handle,
7065 sp->desc[i],
7066 sp->s2io_entries[i].arg);
7069 /* if either data or addr is zero print it. */
7070 if (!(sp->msix_info[i].addr &&
7071 sp->msix_info[i].data)) {
7072 DBG_PRINT(ERR_DBG,
7073 "%s @Addr:0x%llx Data:0x%llx\n",
7074 sp->desc[i],
7075 (unsigned long long)
7076 sp->msix_info[i].addr,
7077 (unsigned long long)
7078 ntohl(sp->msix_info[i].data));
7079 } else
7080 msix_rx_cnt++;
7081 if (err) {
7082 remove_msix_isr(sp);
7084 DBG_PRINT(ERR_DBG,
7085 "%s:MSI-X-%d registration "
7086 "failed\n", dev->name, i);
7088 DBG_PRINT(ERR_DBG,
7089 "%s: Defaulting to INTA\n",
7090 dev->name);
7091 sp->config.intr_type = INTA;
7092 break;
7094 sp->s2io_entries[i].in_use =
7095 MSIX_REGISTERED_SUCCESS;
7098 if (!err) {
7099 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7100 DBG_PRINT(INFO_DBG,
7101 "MSI-X-TX entries enabled through alarm vector\n");
7104 if (sp->config.intr_type == INTA) {
7105 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7106 sp->name, dev);
7107 if (err) {
7108 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7109 dev->name);
7110 return -1;
7113 return 0;
7116 static void s2io_rem_isr(struct s2io_nic *sp)
7118 if (sp->config.intr_type == MSI_X)
7119 remove_msix_isr(sp);
7120 else
7121 remove_inta_isr(sp);
7124 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7126 int cnt = 0;
7127 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7128 register u64 val64 = 0;
7129 struct config_param *config;
7130 config = &sp->config;
7132 if (!is_s2io_card_up(sp))
7133 return;
7135 del_timer_sync(&sp->alarm_timer);
7136 /* If s2io_set_link task is executing, wait till it completes. */
7137 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7138 msleep(50);
7139 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7141 /* Disable napi */
7142 if (sp->config.napi) {
7143 int off = 0;
7144 if (config->intr_type == MSI_X) {
7145 for (; off < sp->config.rx_ring_num; off++)
7146 napi_disable(&sp->mac_control.rings[off].napi);
7148 else
7149 napi_disable(&sp->napi);
7152 /* disable Tx and Rx traffic on the NIC */
7153 if (do_io)
7154 stop_nic(sp);
7156 s2io_rem_isr(sp);
7158 /* stop the tx queue, indicate link down */
7159 s2io_link(sp, LINK_DOWN);
7161 /* Check if the device is Quiescent and then Reset the NIC */
7162 while (do_io) {
7163 /* As per the HW requirement we need to replenish the
7164 * receive buffer to avoid the ring bump. Since there is
7165 * no intention of processing the Rx frame at this pointwe are
7166 * just setting the ownership bit of rxd in Each Rx
7167 * ring to HW and set the appropriate buffer size
7168 * based on the ring mode
7170 rxd_owner_bit_reset(sp);
7172 val64 = readq(&bar0->adapter_status);
7173 if (verify_xena_quiescence(sp)) {
7174 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7175 break;
7178 msleep(50);
7179 cnt++;
7180 if (cnt == 10) {
7181 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7182 "adapter status reads 0x%llx\n",
7183 (unsigned long long)val64);
7184 break;
7187 if (do_io)
7188 s2io_reset(sp);
7190 /* Free all Tx buffers */
7191 free_tx_buffers(sp);
7193 /* Free all Rx buffers */
7194 free_rx_buffers(sp);
7196 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7199 static void s2io_card_down(struct s2io_nic *sp)
7201 do_s2io_card_down(sp, 1);
7204 static int s2io_card_up(struct s2io_nic *sp)
7206 int i, ret = 0;
7207 struct config_param *config;
7208 struct mac_info *mac_control;
7209 struct net_device *dev = (struct net_device *)sp->dev;
7210 u16 interruptible;
7212 /* Initialize the H/W I/O registers */
7213 ret = init_nic(sp);
7214 if (ret != 0) {
7215 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7216 dev->name);
7217 if (ret != -EIO)
7218 s2io_reset(sp);
7219 return ret;
7223 * Initializing the Rx buffers. For now we are considering only 1
7224 * Rx ring and initializing buffers into 30 Rx blocks
7226 config = &sp->config;
7227 mac_control = &sp->mac_control;
7229 for (i = 0; i < config->rx_ring_num; i++) {
7230 struct ring_info *ring = &mac_control->rings[i];
7232 ring->mtu = dev->mtu;
7233 ring->lro = !!(dev->features & NETIF_F_LRO);
7234 ret = fill_rx_buffers(sp, ring, 1);
7235 if (ret) {
7236 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7237 dev->name);
7238 s2io_reset(sp);
7239 free_rx_buffers(sp);
7240 return -ENOMEM;
7242 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7243 ring->rx_bufs_left);
7246 /* Initialise napi */
7247 if (config->napi) {
7248 if (config->intr_type == MSI_X) {
7249 for (i = 0; i < sp->config.rx_ring_num; i++)
7250 napi_enable(&sp->mac_control.rings[i].napi);
7251 } else {
7252 napi_enable(&sp->napi);
7256 /* Maintain the state prior to the open */
7257 if (sp->promisc_flg)
7258 sp->promisc_flg = 0;
7259 if (sp->m_cast_flg) {
7260 sp->m_cast_flg = 0;
7261 sp->all_multi_pos = 0;
7264 /* Setting its receive mode */
7265 s2io_set_multicast(dev);
7267 if (dev->features & NETIF_F_LRO) {
7268 /* Initialize max aggregatable pkts per session based on MTU */
7269 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7270 /* Check if we can use (if specified) user provided value */
7271 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7272 sp->lro_max_aggr_per_sess = lro_max_pkts;
7275 /* Enable Rx Traffic and interrupts on the NIC */
7276 if (start_nic(sp)) {
7277 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7278 s2io_reset(sp);
7279 free_rx_buffers(sp);
7280 return -ENODEV;
7283 /* Add interrupt service routine */
7284 if (s2io_add_isr(sp) != 0) {
7285 if (sp->config.intr_type == MSI_X)
7286 s2io_rem_isr(sp);
7287 s2io_reset(sp);
7288 free_rx_buffers(sp);
7289 return -ENODEV;
7292 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7294 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7296 /* Enable select interrupts */
7297 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7298 if (sp->config.intr_type != INTA) {
7299 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7300 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7301 } else {
7302 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7303 interruptible |= TX_PIC_INTR;
7304 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7307 return 0;
7311 * s2io_restart_nic - Resets the NIC.
7312 * @data : long pointer to the device private structure
7313 * Description:
7314 * This function is scheduled to be run by the s2io_tx_watchdog
7315 * function after 0.5 secs to reset the NIC. The idea is to reduce
7316 * the run time of the watch dog routine which is run holding a
7317 * spin lock.
7320 static void s2io_restart_nic(struct work_struct *work)
7322 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7323 struct net_device *dev = sp->dev;
7325 rtnl_lock();
7327 if (!netif_running(dev))
7328 goto out_unlock;
7330 s2io_card_down(sp);
7331 if (s2io_card_up(sp)) {
7332 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7334 s2io_wake_all_tx_queue(sp);
7335 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7336 out_unlock:
7337 rtnl_unlock();
7341 * s2io_tx_watchdog - Watchdog for transmit side.
7342 * @dev : Pointer to net device structure
7343 * Description:
7344 * This function is triggered if the Tx Queue is stopped
7345 * for a pre-defined amount of time when the Interface is still up.
7346 * If the Interface is jammed in such a situation, the hardware is
7347 * reset (by s2io_close) and restarted again (by s2io_open) to
7348 * overcome any problem that might have been caused in the hardware.
7349 * Return value:
7350 * void
7353 static void s2io_tx_watchdog(struct net_device *dev)
7355 struct s2io_nic *sp = netdev_priv(dev);
7356 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7358 if (netif_carrier_ok(dev)) {
7359 swstats->watchdog_timer_cnt++;
7360 schedule_work(&sp->rst_timer_task);
7361 swstats->soft_reset_cnt++;
7366 * rx_osm_handler - To perform some OS related operations on SKB.
7367 * @sp: private member of the device structure,pointer to s2io_nic structure.
7368 * @skb : the socket buffer pointer.
7369 * @len : length of the packet
7370 * @cksum : FCS checksum of the frame.
7371 * @ring_no : the ring from which this RxD was extracted.
7372 * Description:
7373 * This function is called by the Rx interrupt serivce routine to perform
7374 * some OS related operations on the SKB before passing it to the upper
7375 * layers. It mainly checks if the checksum is OK, if so adds it to the
7376 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7377 * to the upper layer. If the checksum is wrong, it increments the Rx
7378 * packet error count, frees the SKB and returns error.
7379 * Return value:
7380 * SUCCESS on success and -1 on failure.
7382 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7384 struct s2io_nic *sp = ring_data->nic;
7385 struct net_device *dev = (struct net_device *)ring_data->dev;
7386 struct sk_buff *skb = (struct sk_buff *)
7387 ((unsigned long)rxdp->Host_Control);
7388 int ring_no = ring_data->ring_no;
7389 u16 l3_csum, l4_csum;
7390 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7391 struct lro *uninitialized_var(lro);
7392 u8 err_mask;
7393 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7395 skb->dev = dev;
7397 if (err) {
7398 /* Check for parity error */
7399 if (err & 0x1)
7400 swstats->parity_err_cnt++;
7402 err_mask = err >> 48;
7403 switch (err_mask) {
7404 case 1:
7405 swstats->rx_parity_err_cnt++;
7406 break;
7408 case 2:
7409 swstats->rx_abort_cnt++;
7410 break;
7412 case 3:
7413 swstats->rx_parity_abort_cnt++;
7414 break;
7416 case 4:
7417 swstats->rx_rda_fail_cnt++;
7418 break;
7420 case 5:
7421 swstats->rx_unkn_prot_cnt++;
7422 break;
7424 case 6:
7425 swstats->rx_fcs_err_cnt++;
7426 break;
7428 case 7:
7429 swstats->rx_buf_size_err_cnt++;
7430 break;
7432 case 8:
7433 swstats->rx_rxd_corrupt_cnt++;
7434 break;
7436 case 15:
7437 swstats->rx_unkn_err_cnt++;
7438 break;
7441 * Drop the packet if bad transfer code. Exception being
7442 * 0x5, which could be due to unsupported IPv6 extension header.
7443 * In this case, we let stack handle the packet.
7444 * Note that in this case, since checksum will be incorrect,
7445 * stack will validate the same.
7447 if (err_mask != 0x5) {
7448 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7449 dev->name, err_mask);
7450 dev->stats.rx_crc_errors++;
7451 swstats->mem_freed
7452 += skb->truesize;
7453 dev_kfree_skb(skb);
7454 ring_data->rx_bufs_left -= 1;
7455 rxdp->Host_Control = 0;
7456 return 0;
7460 rxdp->Host_Control = 0;
7461 if (sp->rxd_mode == RXD_MODE_1) {
7462 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7464 skb_put(skb, len);
7465 } else if (sp->rxd_mode == RXD_MODE_3B) {
7466 int get_block = ring_data->rx_curr_get_info.block_index;
7467 int get_off = ring_data->rx_curr_get_info.offset;
7468 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7469 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7470 unsigned char *buff = skb_push(skb, buf0_len);
7472 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7473 memcpy(buff, ba->ba_0, buf0_len);
7474 skb_put(skb, buf2_len);
7477 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7478 ((!ring_data->lro) ||
7479 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7480 (dev->features & NETIF_F_RXCSUM)) {
7481 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7482 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7483 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7485 * NIC verifies if the Checksum of the received
7486 * frame is Ok or not and accordingly returns
7487 * a flag in the RxD.
7489 skb->ip_summed = CHECKSUM_UNNECESSARY;
7490 if (ring_data->lro) {
7491 u32 tcp_len = 0;
7492 u8 *tcp;
7493 int ret = 0;
7495 ret = s2io_club_tcp_session(ring_data,
7496 skb->data, &tcp,
7497 &tcp_len, &lro,
7498 rxdp, sp);
7499 switch (ret) {
7500 case 3: /* Begin anew */
7501 lro->parent = skb;
7502 goto aggregate;
7503 case 1: /* Aggregate */
7504 lro_append_pkt(sp, lro, skb, tcp_len);
7505 goto aggregate;
7506 case 4: /* Flush session */
7507 lro_append_pkt(sp, lro, skb, tcp_len);
7508 queue_rx_frame(lro->parent,
7509 lro->vlan_tag);
7510 clear_lro_session(lro);
7511 swstats->flush_max_pkts++;
7512 goto aggregate;
7513 case 2: /* Flush both */
7514 lro->parent->data_len = lro->frags_len;
7515 swstats->sending_both++;
7516 queue_rx_frame(lro->parent,
7517 lro->vlan_tag);
7518 clear_lro_session(lro);
7519 goto send_up;
7520 case 0: /* sessions exceeded */
7521 case -1: /* non-TCP or not L2 aggregatable */
7522 case 5: /*
7523 * First pkt in session not
7524 * L3/L4 aggregatable
7526 break;
7527 default:
7528 DBG_PRINT(ERR_DBG,
7529 "%s: Samadhana!!\n",
7530 __func__);
7531 BUG();
7534 } else {
7536 * Packet with erroneous checksum, let the
7537 * upper layers deal with it.
7539 skb_checksum_none_assert(skb);
7541 } else
7542 skb_checksum_none_assert(skb);
7544 swstats->mem_freed += skb->truesize;
7545 send_up:
7546 skb_record_rx_queue(skb, ring_no);
7547 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7548 aggregate:
7549 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7550 return SUCCESS;
7554 * s2io_link - stops/starts the Tx queue.
7555 * @sp : private member of the device structure, which is a pointer to the
7556 * s2io_nic structure.
7557 * @link : inidicates whether link is UP/DOWN.
7558 * Description:
7559 * This function stops/starts the Tx queue depending on whether the link
7560 * status of the NIC is is down or up. This is called by the Alarm
7561 * interrupt handler whenever a link change interrupt comes up.
7562 * Return value:
7563 * void.
7566 static void s2io_link(struct s2io_nic *sp, int link)
7568 struct net_device *dev = (struct net_device *)sp->dev;
7569 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7571 if (link != sp->last_link_state) {
7572 init_tti(sp, link);
7573 if (link == LINK_DOWN) {
7574 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7575 s2io_stop_all_tx_queue(sp);
7576 netif_carrier_off(dev);
7577 if (swstats->link_up_cnt)
7578 swstats->link_up_time =
7579 jiffies - sp->start_time;
7580 swstats->link_down_cnt++;
7581 } else {
7582 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7583 if (swstats->link_down_cnt)
7584 swstats->link_down_time =
7585 jiffies - sp->start_time;
7586 swstats->link_up_cnt++;
7587 netif_carrier_on(dev);
7588 s2io_wake_all_tx_queue(sp);
7591 sp->last_link_state = link;
7592 sp->start_time = jiffies;
7596 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7597 * @sp : private member of the device structure, which is a pointer to the
7598 * s2io_nic structure.
7599 * Description:
7600 * This function initializes a few of the PCI and PCI-X configuration registers
7601 * with recommended values.
7602 * Return value:
7603 * void
7606 static void s2io_init_pci(struct s2io_nic *sp)
7608 u16 pci_cmd = 0, pcix_cmd = 0;
7610 /* Enable Data Parity Error Recovery in PCI-X command register. */
7611 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7612 &(pcix_cmd));
7613 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7614 (pcix_cmd | 1));
7615 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7616 &(pcix_cmd));
7618 /* Set the PErr Response bit in PCI command register. */
7619 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7620 pci_write_config_word(sp->pdev, PCI_COMMAND,
7621 (pci_cmd | PCI_COMMAND_PARITY));
7622 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7625 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7626 u8 *dev_multiq)
7628 int i;
7630 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7631 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7632 "(%d) not supported\n", tx_fifo_num);
7634 if (tx_fifo_num < 1)
7635 tx_fifo_num = 1;
7636 else
7637 tx_fifo_num = MAX_TX_FIFOS;
7639 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7642 if (multiq)
7643 *dev_multiq = multiq;
7645 if (tx_steering_type && (1 == tx_fifo_num)) {
7646 if (tx_steering_type != TX_DEFAULT_STEERING)
7647 DBG_PRINT(ERR_DBG,
7648 "Tx steering is not supported with "
7649 "one fifo. Disabling Tx steering.\n");
7650 tx_steering_type = NO_STEERING;
7653 if ((tx_steering_type < NO_STEERING) ||
7654 (tx_steering_type > TX_DEFAULT_STEERING)) {
7655 DBG_PRINT(ERR_DBG,
7656 "Requested transmit steering not supported\n");
7657 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7658 tx_steering_type = NO_STEERING;
7661 if (rx_ring_num > MAX_RX_RINGS) {
7662 DBG_PRINT(ERR_DBG,
7663 "Requested number of rx rings not supported\n");
7664 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7665 MAX_RX_RINGS);
7666 rx_ring_num = MAX_RX_RINGS;
7669 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7670 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7671 "Defaulting to INTA\n");
7672 *dev_intr_type = INTA;
7675 if ((*dev_intr_type == MSI_X) &&
7676 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7677 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7678 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7679 "Defaulting to INTA\n");
7680 *dev_intr_type = INTA;
7683 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7684 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7685 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7686 rx_ring_mode = 1;
7689 for (i = 0; i < MAX_RX_RINGS; i++)
7690 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7691 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7692 "supported\nDefaulting to %d\n",
7693 MAX_RX_BLOCKS_PER_RING);
7694 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7697 return SUCCESS;
7701 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7702 * or Traffic class respectively.
7703 * @nic: device private variable
7704 * Description: The function configures the receive steering to
7705 * desired receive ring.
7706 * Return Value: SUCCESS on success and
7707 * '-1' on failure (endian settings incorrect).
7709 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7711 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7712 register u64 val64 = 0;
7714 if (ds_codepoint > 63)
7715 return FAILURE;
7717 val64 = RTS_DS_MEM_DATA(ring);
7718 writeq(val64, &bar0->rts_ds_mem_data);
7720 val64 = RTS_DS_MEM_CTRL_WE |
7721 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7722 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7724 writeq(val64, &bar0->rts_ds_mem_ctrl);
7726 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7727 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7728 S2IO_BIT_RESET);
7731 static const struct net_device_ops s2io_netdev_ops = {
7732 .ndo_open = s2io_open,
7733 .ndo_stop = s2io_close,
7734 .ndo_get_stats = s2io_get_stats,
7735 .ndo_start_xmit = s2io_xmit,
7736 .ndo_validate_addr = eth_validate_addr,
7737 .ndo_set_multicast_list = s2io_set_multicast,
7738 .ndo_do_ioctl = s2io_ioctl,
7739 .ndo_set_mac_address = s2io_set_mac_addr,
7740 .ndo_change_mtu = s2io_change_mtu,
7741 .ndo_set_features = s2io_set_features,
7742 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7743 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7744 .ndo_tx_timeout = s2io_tx_watchdog,
7745 #ifdef CONFIG_NET_POLL_CONTROLLER
7746 .ndo_poll_controller = s2io_netpoll,
7747 #endif
7751 * s2io_init_nic - Initialization of the adapter .
7752 * @pdev : structure containing the PCI related information of the device.
7753 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7754 * Description:
7755 * The function initializes an adapter identified by the pci_dec structure.
7756 * All OS related initialization including memory and device structure and
7757 * initlaization of the device private variable is done. Also the swapper
7758 * control register is initialized to enable read and write into the I/O
7759 * registers of the device.
7760 * Return value:
7761 * returns 0 on success and negative on failure.
7764 static int __devinit
7765 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7767 struct s2io_nic *sp;
7768 struct net_device *dev;
7769 int i, j, ret;
7770 int dma_flag = false;
7771 u32 mac_up, mac_down;
7772 u64 val64 = 0, tmp64 = 0;
7773 struct XENA_dev_config __iomem *bar0 = NULL;
7774 u16 subid;
7775 struct config_param *config;
7776 struct mac_info *mac_control;
7777 int mode;
7778 u8 dev_intr_type = intr_type;
7779 u8 dev_multiq = 0;
7781 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7782 if (ret)
7783 return ret;
7785 ret = pci_enable_device(pdev);
7786 if (ret) {
7787 DBG_PRINT(ERR_DBG,
7788 "%s: pci_enable_device failed\n", __func__);
7789 return ret;
7792 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7793 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7794 dma_flag = true;
7795 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7796 DBG_PRINT(ERR_DBG,
7797 "Unable to obtain 64bit DMA "
7798 "for consistent allocations\n");
7799 pci_disable_device(pdev);
7800 return -ENOMEM;
7802 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7803 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7804 } else {
7805 pci_disable_device(pdev);
7806 return -ENOMEM;
7808 ret = pci_request_regions(pdev, s2io_driver_name);
7809 if (ret) {
7810 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7811 __func__, ret);
7812 pci_disable_device(pdev);
7813 return -ENODEV;
7815 if (dev_multiq)
7816 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7817 else
7818 dev = alloc_etherdev(sizeof(struct s2io_nic));
7819 if (dev == NULL) {
7820 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7821 pci_disable_device(pdev);
7822 pci_release_regions(pdev);
7823 return -ENODEV;
7826 pci_set_master(pdev);
7827 pci_set_drvdata(pdev, dev);
7828 SET_NETDEV_DEV(dev, &pdev->dev);
7830 /* Private member variable initialized to s2io NIC structure */
7831 sp = netdev_priv(dev);
7832 sp->dev = dev;
7833 sp->pdev = pdev;
7834 sp->high_dma_flag = dma_flag;
7835 sp->device_enabled_once = false;
7836 if (rx_ring_mode == 1)
7837 sp->rxd_mode = RXD_MODE_1;
7838 if (rx_ring_mode == 2)
7839 sp->rxd_mode = RXD_MODE_3B;
7841 sp->config.intr_type = dev_intr_type;
7843 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7844 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7845 sp->device_type = XFRAME_II_DEVICE;
7846 else
7847 sp->device_type = XFRAME_I_DEVICE;
7850 /* Initialize some PCI/PCI-X fields of the NIC. */
7851 s2io_init_pci(sp);
7854 * Setting the device configuration parameters.
7855 * Most of these parameters can be specified by the user during
7856 * module insertion as they are module loadable parameters. If
7857 * these parameters are not not specified during load time, they
7858 * are initialized with default values.
7860 config = &sp->config;
7861 mac_control = &sp->mac_control;
7863 config->napi = napi;
7864 config->tx_steering_type = tx_steering_type;
7866 /* Tx side parameters. */
7867 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7868 config->tx_fifo_num = MAX_TX_FIFOS;
7869 else
7870 config->tx_fifo_num = tx_fifo_num;
7872 /* Initialize the fifos used for tx steering */
7873 if (config->tx_fifo_num < 5) {
7874 if (config->tx_fifo_num == 1)
7875 sp->total_tcp_fifos = 1;
7876 else
7877 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7878 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7879 sp->total_udp_fifos = 1;
7880 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7881 } else {
7882 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7883 FIFO_OTHER_MAX_NUM);
7884 sp->udp_fifo_idx = sp->total_tcp_fifos;
7885 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7886 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7889 config->multiq = dev_multiq;
7890 for (i = 0; i < config->tx_fifo_num; i++) {
7891 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7893 tx_cfg->fifo_len = tx_fifo_len[i];
7894 tx_cfg->fifo_priority = i;
7897 /* mapping the QoS priority to the configured fifos */
7898 for (i = 0; i < MAX_TX_FIFOS; i++)
7899 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7901 /* map the hashing selector table to the configured fifos */
7902 for (i = 0; i < config->tx_fifo_num; i++)
7903 sp->fifo_selector[i] = fifo_selector[i];
7906 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7907 for (i = 0; i < config->tx_fifo_num; i++) {
7908 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7910 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7911 if (tx_cfg->fifo_len < 65) {
7912 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7913 break;
7916 /* + 2 because one Txd for skb->data and one Txd for UFO */
7917 config->max_txds = MAX_SKB_FRAGS + 2;
7919 /* Rx side parameters. */
7920 config->rx_ring_num = rx_ring_num;
7921 for (i = 0; i < config->rx_ring_num; i++) {
7922 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7923 struct ring_info *ring = &mac_control->rings[i];
7925 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7926 rx_cfg->ring_priority = i;
7927 ring->rx_bufs_left = 0;
7928 ring->rxd_mode = sp->rxd_mode;
7929 ring->rxd_count = rxd_count[sp->rxd_mode];
7930 ring->pdev = sp->pdev;
7931 ring->dev = sp->dev;
7934 for (i = 0; i < rx_ring_num; i++) {
7935 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7937 rx_cfg->ring_org = RING_ORG_BUFF1;
7938 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7941 /* Setting Mac Control parameters */
7942 mac_control->rmac_pause_time = rmac_pause_time;
7943 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7944 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7947 /* initialize the shared memory used by the NIC and the host */
7948 if (init_shared_mem(sp)) {
7949 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7950 ret = -ENOMEM;
7951 goto mem_alloc_failed;
7954 sp->bar0 = pci_ioremap_bar(pdev, 0);
7955 if (!sp->bar0) {
7956 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7957 dev->name);
7958 ret = -ENOMEM;
7959 goto bar0_remap_failed;
7962 sp->bar1 = pci_ioremap_bar(pdev, 2);
7963 if (!sp->bar1) {
7964 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7965 dev->name);
7966 ret = -ENOMEM;
7967 goto bar1_remap_failed;
7970 dev->irq = pdev->irq;
7971 dev->base_addr = (unsigned long)sp->bar0;
7973 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7974 for (j = 0; j < MAX_TX_FIFOS; j++) {
7975 mac_control->tx_FIFO_start[j] =
7976 (struct TxFIFO_element __iomem *)
7977 (sp->bar1 + (j * 0x00020000));
7980 /* Driver entry points */
7981 dev->netdev_ops = &s2io_netdev_ops;
7982 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7983 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7984 NETIF_F_TSO | NETIF_F_TSO6 |
7985 NETIF_F_RXCSUM | NETIF_F_LRO;
7986 dev->features |= dev->hw_features |
7987 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7988 if (sp->device_type & XFRAME_II_DEVICE) {
7989 dev->hw_features |= NETIF_F_UFO;
7990 if (ufo)
7991 dev->features |= NETIF_F_UFO;
7993 if (sp->high_dma_flag == true)
7994 dev->features |= NETIF_F_HIGHDMA;
7995 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7996 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7997 INIT_WORK(&sp->set_link_task, s2io_set_link);
7999 pci_save_state(sp->pdev);
8001 /* Setting swapper control on the NIC, for proper reset operation */
8002 if (s2io_set_swapper(sp)) {
8003 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8004 dev->name);
8005 ret = -EAGAIN;
8006 goto set_swap_failed;
8009 /* Verify if the Herc works on the slot its placed into */
8010 if (sp->device_type & XFRAME_II_DEVICE) {
8011 mode = s2io_verify_pci_mode(sp);
8012 if (mode < 0) {
8013 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8014 __func__);
8015 ret = -EBADSLT;
8016 goto set_swap_failed;
8020 if (sp->config.intr_type == MSI_X) {
8021 sp->num_entries = config->rx_ring_num + 1;
8022 ret = s2io_enable_msi_x(sp);
8024 if (!ret) {
8025 ret = s2io_test_msi(sp);
8026 /* rollback MSI-X, will re-enable during add_isr() */
8027 remove_msix_isr(sp);
8029 if (ret) {
8031 DBG_PRINT(ERR_DBG,
8032 "MSI-X requested but failed to enable\n");
8033 sp->config.intr_type = INTA;
8037 if (config->intr_type == MSI_X) {
8038 for (i = 0; i < config->rx_ring_num ; i++) {
8039 struct ring_info *ring = &mac_control->rings[i];
8041 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8043 } else {
8044 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8047 /* Not needed for Herc */
8048 if (sp->device_type & XFRAME_I_DEVICE) {
8050 * Fix for all "FFs" MAC address problems observed on
8051 * Alpha platforms
8053 fix_mac_address(sp);
8054 s2io_reset(sp);
8058 * MAC address initialization.
8059 * For now only one mac address will be read and used.
8061 bar0 = sp->bar0;
8062 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8063 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8064 writeq(val64, &bar0->rmac_addr_cmd_mem);
8065 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8066 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8067 S2IO_BIT_RESET);
8068 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8069 mac_down = (u32)tmp64;
8070 mac_up = (u32) (tmp64 >> 32);
8072 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8073 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8074 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8075 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8076 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8077 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8079 /* Set the factory defined MAC address initially */
8080 dev->addr_len = ETH_ALEN;
8081 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8082 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8084 /* initialize number of multicast & unicast MAC entries variables */
8085 if (sp->device_type == XFRAME_I_DEVICE) {
8086 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8087 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8088 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8089 } else if (sp->device_type == XFRAME_II_DEVICE) {
8090 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8091 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8092 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8095 /* store mac addresses from CAM to s2io_nic structure */
8096 do_s2io_store_unicast_mc(sp);
8098 /* Configure MSIX vector for number of rings configured plus one */
8099 if ((sp->device_type == XFRAME_II_DEVICE) &&
8100 (config->intr_type == MSI_X))
8101 sp->num_entries = config->rx_ring_num + 1;
8103 /* Store the values of the MSIX table in the s2io_nic structure */
8104 store_xmsi_data(sp);
8105 /* reset Nic and bring it to known state */
8106 s2io_reset(sp);
8109 * Initialize link state flags
8110 * and the card state parameter
8112 sp->state = 0;
8114 /* Initialize spinlocks */
8115 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8116 struct fifo_info *fifo = &mac_control->fifos[i];
8118 spin_lock_init(&fifo->tx_lock);
8122 * SXE-002: Configure link and activity LED to init state
8123 * on driver load.
8125 subid = sp->pdev->subsystem_device;
8126 if ((subid & 0xFF) >= 0x07) {
8127 val64 = readq(&bar0->gpio_control);
8128 val64 |= 0x0000800000000000ULL;
8129 writeq(val64, &bar0->gpio_control);
8130 val64 = 0x0411040400000000ULL;
8131 writeq(val64, (void __iomem *)bar0 + 0x2700);
8132 val64 = readq(&bar0->gpio_control);
8135 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8137 if (register_netdev(dev)) {
8138 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8139 ret = -ENODEV;
8140 goto register_failed;
8142 s2io_vpd_read(sp);
8143 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8144 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8145 sp->product_name, pdev->revision);
8146 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8147 s2io_driver_version);
8148 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8149 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8150 if (sp->device_type & XFRAME_II_DEVICE) {
8151 mode = s2io_print_pci_mode(sp);
8152 if (mode < 0) {
8153 ret = -EBADSLT;
8154 unregister_netdev(dev);
8155 goto set_swap_failed;
8158 switch (sp->rxd_mode) {
8159 case RXD_MODE_1:
8160 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8161 dev->name);
8162 break;
8163 case RXD_MODE_3B:
8164 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8165 dev->name);
8166 break;
8169 switch (sp->config.napi) {
8170 case 0:
8171 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8172 break;
8173 case 1:
8174 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8175 break;
8178 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8179 sp->config.tx_fifo_num);
8181 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8182 sp->config.rx_ring_num);
8184 switch (sp->config.intr_type) {
8185 case INTA:
8186 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8187 break;
8188 case MSI_X:
8189 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8190 break;
8192 if (sp->config.multiq) {
8193 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8194 struct fifo_info *fifo = &mac_control->fifos[i];
8196 fifo->multiq = config->multiq;
8198 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8199 dev->name);
8200 } else
8201 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8202 dev->name);
8204 switch (sp->config.tx_steering_type) {
8205 case NO_STEERING:
8206 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8207 dev->name);
8208 break;
8209 case TX_PRIORITY_STEERING:
8210 DBG_PRINT(ERR_DBG,
8211 "%s: Priority steering enabled for transmit\n",
8212 dev->name);
8213 break;
8214 case TX_DEFAULT_STEERING:
8215 DBG_PRINT(ERR_DBG,
8216 "%s: Default steering enabled for transmit\n",
8217 dev->name);
8220 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8221 dev->name);
8222 if (ufo)
8223 DBG_PRINT(ERR_DBG,
8224 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8225 dev->name);
8226 /* Initialize device name */
8227 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8229 if (vlan_tag_strip)
8230 sp->vlan_strip_flag = 1;
8231 else
8232 sp->vlan_strip_flag = 0;
8235 * Make Link state as off at this point, when the Link change
8236 * interrupt comes the state will be automatically changed to
8237 * the right state.
8239 netif_carrier_off(dev);
8241 return 0;
8243 register_failed:
8244 set_swap_failed:
8245 iounmap(sp->bar1);
8246 bar1_remap_failed:
8247 iounmap(sp->bar0);
8248 bar0_remap_failed:
8249 mem_alloc_failed:
8250 free_shared_mem(sp);
8251 pci_disable_device(pdev);
8252 pci_release_regions(pdev);
8253 pci_set_drvdata(pdev, NULL);
8254 free_netdev(dev);
8256 return ret;
8260 * s2io_rem_nic - Free the PCI device
8261 * @pdev: structure containing the PCI related information of the device.
8262 * Description: This function is called by the Pci subsystem to release a
8263 * PCI device and free up all resource held up by the device. This could
8264 * be in response to a Hot plug event or when the driver is to be removed
8265 * from memory.
8268 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8270 struct net_device *dev = pci_get_drvdata(pdev);
8271 struct s2io_nic *sp;
8273 if (dev == NULL) {
8274 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8275 return;
8278 sp = netdev_priv(dev);
8280 cancel_work_sync(&sp->rst_timer_task);
8281 cancel_work_sync(&sp->set_link_task);
8283 unregister_netdev(dev);
8285 free_shared_mem(sp);
8286 iounmap(sp->bar0);
8287 iounmap(sp->bar1);
8288 pci_release_regions(pdev);
8289 pci_set_drvdata(pdev, NULL);
8290 free_netdev(dev);
8291 pci_disable_device(pdev);
8295 * s2io_starter - Entry point for the driver
8296 * Description: This function is the entry point for the driver. It verifies
8297 * the module loadable parameters and initializes PCI configuration space.
8300 static int __init s2io_starter(void)
8302 return pci_register_driver(&s2io_driver);
8306 * s2io_closer - Cleanup routine for the driver
8307 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8310 static __exit void s2io_closer(void)
8312 pci_unregister_driver(&s2io_driver);
8313 DBG_PRINT(INIT_DBG, "cleanup done\n");
8316 module_init(s2io_starter);
8317 module_exit(s2io_closer);
8319 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8320 struct tcphdr **tcp, struct RxD_t *rxdp,
8321 struct s2io_nic *sp)
8323 int ip_off;
8324 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8326 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8327 DBG_PRINT(INIT_DBG,
8328 "%s: Non-TCP frames not supported for LRO\n",
8329 __func__);
8330 return -1;
8333 /* Checking for DIX type or DIX type with VLAN */
8334 if ((l2_type == 0) || (l2_type == 4)) {
8335 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8337 * If vlan stripping is disabled and the frame is VLAN tagged,
8338 * shift the offset by the VLAN header size bytes.
8340 if ((!sp->vlan_strip_flag) &&
8341 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8342 ip_off += HEADER_VLAN_SIZE;
8343 } else {
8344 /* LLC, SNAP etc are considered non-mergeable */
8345 return -1;
8348 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8349 ip_len = (u8)((*ip)->ihl);
8350 ip_len <<= 2;
8351 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8353 return 0;
8356 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8357 struct tcphdr *tcp)
8359 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8360 if ((lro->iph->saddr != ip->saddr) ||
8361 (lro->iph->daddr != ip->daddr) ||
8362 (lro->tcph->source != tcp->source) ||
8363 (lro->tcph->dest != tcp->dest))
8364 return -1;
8365 return 0;
8368 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8370 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8373 static void initiate_new_session(struct lro *lro, u8 *l2h,
8374 struct iphdr *ip, struct tcphdr *tcp,
8375 u32 tcp_pyld_len, u16 vlan_tag)
8377 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8378 lro->l2h = l2h;
8379 lro->iph = ip;
8380 lro->tcph = tcp;
8381 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8382 lro->tcp_ack = tcp->ack_seq;
8383 lro->sg_num = 1;
8384 lro->total_len = ntohs(ip->tot_len);
8385 lro->frags_len = 0;
8386 lro->vlan_tag = vlan_tag;
8388 * Check if we saw TCP timestamp.
8389 * Other consistency checks have already been done.
8391 if (tcp->doff == 8) {
8392 __be32 *ptr;
8393 ptr = (__be32 *)(tcp+1);
8394 lro->saw_ts = 1;
8395 lro->cur_tsval = ntohl(*(ptr+1));
8396 lro->cur_tsecr = *(ptr+2);
8398 lro->in_use = 1;
8401 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8403 struct iphdr *ip = lro->iph;
8404 struct tcphdr *tcp = lro->tcph;
8405 __sum16 nchk;
8406 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8408 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8410 /* Update L3 header */
8411 ip->tot_len = htons(lro->total_len);
8412 ip->check = 0;
8413 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8414 ip->check = nchk;
8416 /* Update L4 header */
8417 tcp->ack_seq = lro->tcp_ack;
8418 tcp->window = lro->window;
8420 /* Update tsecr field if this session has timestamps enabled */
8421 if (lro->saw_ts) {
8422 __be32 *ptr = (__be32 *)(tcp + 1);
8423 *(ptr+2) = lro->cur_tsecr;
8426 /* Update counters required for calculation of
8427 * average no. of packets aggregated.
8429 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8430 swstats->num_aggregations++;
8433 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8434 struct tcphdr *tcp, u32 l4_pyld)
8436 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8437 lro->total_len += l4_pyld;
8438 lro->frags_len += l4_pyld;
8439 lro->tcp_next_seq += l4_pyld;
8440 lro->sg_num++;
8442 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8443 lro->tcp_ack = tcp->ack_seq;
8444 lro->window = tcp->window;
8446 if (lro->saw_ts) {
8447 __be32 *ptr;
8448 /* Update tsecr and tsval from this packet */
8449 ptr = (__be32 *)(tcp+1);
8450 lro->cur_tsval = ntohl(*(ptr+1));
8451 lro->cur_tsecr = *(ptr + 2);
8455 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8456 struct tcphdr *tcp, u32 tcp_pyld_len)
8458 u8 *ptr;
8460 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8462 if (!tcp_pyld_len) {
8463 /* Runt frame or a pure ack */
8464 return -1;
8467 if (ip->ihl != 5) /* IP has options */
8468 return -1;
8470 /* If we see CE codepoint in IP header, packet is not mergeable */
8471 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8472 return -1;
8474 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8475 if (tcp->urg || tcp->psh || tcp->rst ||
8476 tcp->syn || tcp->fin ||
8477 tcp->ece || tcp->cwr || !tcp->ack) {
8479 * Currently recognize only the ack control word and
8480 * any other control field being set would result in
8481 * flushing the LRO session
8483 return -1;
8487 * Allow only one TCP timestamp option. Don't aggregate if
8488 * any other options are detected.
8490 if (tcp->doff != 5 && tcp->doff != 8)
8491 return -1;
8493 if (tcp->doff == 8) {
8494 ptr = (u8 *)(tcp + 1);
8495 while (*ptr == TCPOPT_NOP)
8496 ptr++;
8497 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8498 return -1;
8500 /* Ensure timestamp value increases monotonically */
8501 if (l_lro)
8502 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8503 return -1;
8505 /* timestamp echo reply should be non-zero */
8506 if (*((__be32 *)(ptr+6)) == 0)
8507 return -1;
8510 return 0;
8513 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8514 u8 **tcp, u32 *tcp_len, struct lro **lro,
8515 struct RxD_t *rxdp, struct s2io_nic *sp)
8517 struct iphdr *ip;
8518 struct tcphdr *tcph;
8519 int ret = 0, i;
8520 u16 vlan_tag = 0;
8521 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8523 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8524 rxdp, sp);
8525 if (ret)
8526 return ret;
8528 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8530 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8531 tcph = (struct tcphdr *)*tcp;
8532 *tcp_len = get_l4_pyld_length(ip, tcph);
8533 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8534 struct lro *l_lro = &ring_data->lro0_n[i];
8535 if (l_lro->in_use) {
8536 if (check_for_socket_match(l_lro, ip, tcph))
8537 continue;
8538 /* Sock pair matched */
8539 *lro = l_lro;
8541 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8542 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8543 "expected 0x%x, actual 0x%x\n",
8544 __func__,
8545 (*lro)->tcp_next_seq,
8546 ntohl(tcph->seq));
8548 swstats->outof_sequence_pkts++;
8549 ret = 2;
8550 break;
8553 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8554 *tcp_len))
8555 ret = 1; /* Aggregate */
8556 else
8557 ret = 2; /* Flush both */
8558 break;
8562 if (ret == 0) {
8563 /* Before searching for available LRO objects,
8564 * check if the pkt is L3/L4 aggregatable. If not
8565 * don't create new LRO session. Just send this
8566 * packet up.
8568 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8569 return 5;
8571 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8572 struct lro *l_lro = &ring_data->lro0_n[i];
8573 if (!(l_lro->in_use)) {
8574 *lro = l_lro;
8575 ret = 3; /* Begin anew */
8576 break;
8581 if (ret == 0) { /* sessions exceeded */
8582 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8583 __func__);
8584 *lro = NULL;
8585 return ret;
8588 switch (ret) {
8589 case 3:
8590 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8591 vlan_tag);
8592 break;
8593 case 2:
8594 update_L3L4_header(sp, *lro);
8595 break;
8596 case 1:
8597 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8598 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8599 update_L3L4_header(sp, *lro);
8600 ret = 4; /* Flush the LRO */
8602 break;
8603 default:
8604 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8605 break;
8608 return ret;
8611 static void clear_lro_session(struct lro *lro)
8613 static u16 lro_struct_size = sizeof(struct lro);
8615 memset(lro, 0, lro_struct_size);
8618 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8620 struct net_device *dev = skb->dev;
8621 struct s2io_nic *sp = netdev_priv(dev);
8623 skb->protocol = eth_type_trans(skb, dev);
8624 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8625 /* Queueing the vlan frame to the upper layer */
8626 if (sp->config.napi)
8627 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8628 else
8629 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8630 } else {
8631 if (sp->config.napi)
8632 netif_receive_skb(skb);
8633 else
8634 netif_rx(skb);
8638 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8639 struct sk_buff *skb, u32 tcp_len)
8641 struct sk_buff *first = lro->parent;
8642 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8644 first->len += tcp_len;
8645 first->data_len = lro->frags_len;
8646 skb_pull(skb, (skb->len - tcp_len));
8647 if (skb_shinfo(first)->frag_list)
8648 lro->last_frag->next = skb;
8649 else
8650 skb_shinfo(first)->frag_list = skb;
8651 first->truesize += skb->truesize;
8652 lro->last_frag = skb;
8653 swstats->clubbed_frms_cnt++;
8657 * s2io_io_error_detected - called when PCI error is detected
8658 * @pdev: Pointer to PCI device
8659 * @state: The current pci connection state
8661 * This function is called after a PCI bus error affecting
8662 * this device has been detected.
8664 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8665 pci_channel_state_t state)
8667 struct net_device *netdev = pci_get_drvdata(pdev);
8668 struct s2io_nic *sp = netdev_priv(netdev);
8670 netif_device_detach(netdev);
8672 if (state == pci_channel_io_perm_failure)
8673 return PCI_ERS_RESULT_DISCONNECT;
8675 if (netif_running(netdev)) {
8676 /* Bring down the card, while avoiding PCI I/O */
8677 do_s2io_card_down(sp, 0);
8679 pci_disable_device(pdev);
8681 return PCI_ERS_RESULT_NEED_RESET;
8685 * s2io_io_slot_reset - called after the pci bus has been reset.
8686 * @pdev: Pointer to PCI device
8688 * Restart the card from scratch, as if from a cold-boot.
8689 * At this point, the card has exprienced a hard reset,
8690 * followed by fixups by BIOS, and has its config space
8691 * set up identically to what it was at cold boot.
8693 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8695 struct net_device *netdev = pci_get_drvdata(pdev);
8696 struct s2io_nic *sp = netdev_priv(netdev);
8698 if (pci_enable_device(pdev)) {
8699 pr_err("Cannot re-enable PCI device after reset.\n");
8700 return PCI_ERS_RESULT_DISCONNECT;
8703 pci_set_master(pdev);
8704 s2io_reset(sp);
8706 return PCI_ERS_RESULT_RECOVERED;
8710 * s2io_io_resume - called when traffic can start flowing again.
8711 * @pdev: Pointer to PCI device
8713 * This callback is called when the error recovery driver tells
8714 * us that its OK to resume normal operation.
8716 static void s2io_io_resume(struct pci_dev *pdev)
8718 struct net_device *netdev = pci_get_drvdata(pdev);
8719 struct s2io_nic *sp = netdev_priv(netdev);
8721 if (netif_running(netdev)) {
8722 if (s2io_card_up(sp)) {
8723 pr_err("Can't bring device back up after reset.\n");
8724 return;
8727 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8728 s2io_card_down(sp);
8729 pr_err("Can't restore mac addr after reset.\n");
8730 return;
8734 netif_device_attach(netdev);
8735 netif_tx_wake_all_queues(netdev);