Revert "gma500: Fix dependencies"
[zen-stable.git] / drivers / net / wireless / zd1211rw / zd_chip.c
blobff306d763e37a893976e67b9a5502760b208ff4a
1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* This file implements all the hardware specific functions for the ZD1211
22 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
23 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/slab.h>
30 #include "zd_def.h"
31 #include "zd_chip.h"
32 #include "zd_mac.h"
33 #include "zd_rf.h"
35 void zd_chip_init(struct zd_chip *chip,
36 struct ieee80211_hw *hw,
37 struct usb_interface *intf)
39 memset(chip, 0, sizeof(*chip));
40 mutex_init(&chip->mutex);
41 zd_usb_init(&chip->usb, hw, intf);
42 zd_rf_init(&chip->rf);
45 void zd_chip_clear(struct zd_chip *chip)
47 ZD_ASSERT(!mutex_is_locked(&chip->mutex));
48 zd_usb_clear(&chip->usb);
49 zd_rf_clear(&chip->rf);
50 mutex_destroy(&chip->mutex);
51 ZD_MEMCLEAR(chip, sizeof(*chip));
54 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
56 u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
57 return scnprintf(buffer, size, "%02x-%02x-%02x",
58 addr[0], addr[1], addr[2]);
61 /* Prints an identifier line, which will support debugging. */
62 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
64 int i = 0;
66 i = scnprintf(buffer, size, "zd1211%s chip ",
67 zd_chip_is_zd1211b(chip) ? "b" : "");
68 i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
69 i += scnprintf(buffer+i, size-i, " ");
70 i += scnprint_mac_oui(chip, buffer+i, size-i);
71 i += scnprintf(buffer+i, size-i, " ");
72 i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
73 i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
74 chip->patch_cck_gain ? 'g' : '-',
75 chip->patch_cr157 ? '7' : '-',
76 chip->patch_6m_band_edge ? '6' : '-',
77 chip->new_phy_layout ? 'N' : '-',
78 chip->al2230s_bit ? 'S' : '-');
79 return i;
82 static void print_id(struct zd_chip *chip)
84 char buffer[80];
86 scnprint_id(chip, buffer, sizeof(buffer));
87 buffer[sizeof(buffer)-1] = 0;
88 dev_info(zd_chip_dev(chip), "%s\n", buffer);
91 static zd_addr_t inc_addr(zd_addr_t addr)
93 u16 a = (u16)addr;
94 /* Control registers use byte addressing, but everything else uses word
95 * addressing. */
96 if ((a & 0xf000) == CR_START)
97 a += 2;
98 else
99 a += 1;
100 return (zd_addr_t)a;
103 /* Read a variable number of 32-bit values. Parameter count is not allowed to
104 * exceed USB_MAX_IOREAD32_COUNT.
106 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
107 unsigned int count)
109 int r;
110 int i;
111 zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
112 u16 v16[USB_MAX_IOREAD32_COUNT * 2];
113 unsigned int count16;
115 if (count > USB_MAX_IOREAD32_COUNT)
116 return -EINVAL;
118 /* Use stack for values and addresses. */
119 count16 = 2 * count;
120 BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
121 BUG_ON(count16 * sizeof(u16) > sizeof(v16));
123 for (i = 0; i < count; i++) {
124 int j = 2*i;
125 /* We read the high word always first. */
126 a16[j] = inc_addr(addr[i]);
127 a16[j+1] = addr[i];
130 r = zd_ioread16v_locked(chip, v16, a16, count16);
131 if (r) {
132 dev_dbg_f(zd_chip_dev(chip),
133 "error: zd_ioread16v_locked. Error number %d\n", r);
134 return r;
137 for (i = 0; i < count; i++) {
138 int j = 2*i;
139 values[i] = (v16[j] << 16) | v16[j+1];
142 return 0;
145 static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
146 const struct zd_ioreq32 *ioreqs,
147 unsigned int count)
149 int i, j, r;
150 struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
151 unsigned int count16;
153 /* Use stack for values and addresses. */
155 ZD_ASSERT(mutex_is_locked(&chip->mutex));
157 if (count == 0)
158 return 0;
159 if (count > USB_MAX_IOWRITE32_COUNT)
160 return -EINVAL;
162 count16 = 2 * count;
163 BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
165 for (i = 0; i < count; i++) {
166 j = 2*i;
167 /* We write the high word always first. */
168 ioreqs16[j].value = ioreqs[i].value >> 16;
169 ioreqs16[j].addr = inc_addr(ioreqs[i].addr);
170 ioreqs16[j+1].value = ioreqs[i].value;
171 ioreqs16[j+1].addr = ioreqs[i].addr;
174 r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
175 #ifdef DEBUG
176 if (r) {
177 dev_dbg_f(zd_chip_dev(chip),
178 "error %d in zd_usb_write16v\n", r);
180 #endif /* DEBUG */
181 return r;
184 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
185 unsigned int count)
187 int r;
189 zd_usb_iowrite16v_async_start(&chip->usb);
190 r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
191 if (r) {
192 zd_usb_iowrite16v_async_end(&chip->usb, 0);
193 return r;
195 return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
198 int zd_iowrite16a_locked(struct zd_chip *chip,
199 const struct zd_ioreq16 *ioreqs, unsigned int count)
201 int r;
202 unsigned int i, j, t, max;
204 ZD_ASSERT(mutex_is_locked(&chip->mutex));
205 zd_usb_iowrite16v_async_start(&chip->usb);
207 for (i = 0; i < count; i += j + t) {
208 t = 0;
209 max = count-i;
210 if (max > USB_MAX_IOWRITE16_COUNT)
211 max = USB_MAX_IOWRITE16_COUNT;
212 for (j = 0; j < max; j++) {
213 if (!ioreqs[i+j].addr) {
214 t = 1;
215 break;
219 r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
220 if (r) {
221 zd_usb_iowrite16v_async_end(&chip->usb, 0);
222 dev_dbg_f(zd_chip_dev(chip),
223 "error zd_usb_iowrite16v. Error number %d\n",
225 return r;
229 return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
232 /* Writes a variable number of 32 bit registers. The functions will split
233 * that in several USB requests. A split can be forced by inserting an IO
234 * request with an zero address field.
236 int zd_iowrite32a_locked(struct zd_chip *chip,
237 const struct zd_ioreq32 *ioreqs, unsigned int count)
239 int r;
240 unsigned int i, j, t, max;
242 zd_usb_iowrite16v_async_start(&chip->usb);
244 for (i = 0; i < count; i += j + t) {
245 t = 0;
246 max = count-i;
247 if (max > USB_MAX_IOWRITE32_COUNT)
248 max = USB_MAX_IOWRITE32_COUNT;
249 for (j = 0; j < max; j++) {
250 if (!ioreqs[i+j].addr) {
251 t = 1;
252 break;
256 r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
257 if (r) {
258 zd_usb_iowrite16v_async_end(&chip->usb, 0);
259 dev_dbg_f(zd_chip_dev(chip),
260 "error _zd_iowrite32v_locked."
261 " Error number %d\n", r);
262 return r;
266 return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
269 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
271 int r;
273 mutex_lock(&chip->mutex);
274 r = zd_ioread16_locked(chip, value, addr);
275 mutex_unlock(&chip->mutex);
276 return r;
279 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
281 int r;
283 mutex_lock(&chip->mutex);
284 r = zd_ioread32_locked(chip, value, addr);
285 mutex_unlock(&chip->mutex);
286 return r;
289 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
291 int r;
293 mutex_lock(&chip->mutex);
294 r = zd_iowrite16_locked(chip, value, addr);
295 mutex_unlock(&chip->mutex);
296 return r;
299 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
301 int r;
303 mutex_lock(&chip->mutex);
304 r = zd_iowrite32_locked(chip, value, addr);
305 mutex_unlock(&chip->mutex);
306 return r;
309 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
310 u32 *values, unsigned int count)
312 int r;
314 mutex_lock(&chip->mutex);
315 r = zd_ioread32v_locked(chip, values, addresses, count);
316 mutex_unlock(&chip->mutex);
317 return r;
320 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
321 unsigned int count)
323 int r;
325 mutex_lock(&chip->mutex);
326 r = zd_iowrite32a_locked(chip, ioreqs, count);
327 mutex_unlock(&chip->mutex);
328 return r;
331 static int read_pod(struct zd_chip *chip, u8 *rf_type)
333 int r;
334 u32 value;
336 ZD_ASSERT(mutex_is_locked(&chip->mutex));
337 r = zd_ioread32_locked(chip, &value, E2P_POD);
338 if (r)
339 goto error;
340 dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
342 /* FIXME: AL2230 handling (Bit 7 in POD) */
343 *rf_type = value & 0x0f;
344 chip->pa_type = (value >> 16) & 0x0f;
345 chip->patch_cck_gain = (value >> 8) & 0x1;
346 chip->patch_cr157 = (value >> 13) & 0x1;
347 chip->patch_6m_band_edge = (value >> 21) & 0x1;
348 chip->new_phy_layout = (value >> 31) & 0x1;
349 chip->al2230s_bit = (value >> 7) & 0x1;
350 chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
351 chip->supports_tx_led = 1;
352 if (value & (1 << 24)) { /* LED scenario */
353 if (value & (1 << 29))
354 chip->supports_tx_led = 0;
357 dev_dbg_f(zd_chip_dev(chip),
358 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
359 "patch 6M %d new PHY %d link LED%d tx led %d\n",
360 zd_rf_name(*rf_type), *rf_type,
361 chip->pa_type, chip->patch_cck_gain,
362 chip->patch_cr157, chip->patch_6m_band_edge,
363 chip->new_phy_layout,
364 chip->link_led == LED1 ? 1 : 2,
365 chip->supports_tx_led);
366 return 0;
367 error:
368 *rf_type = 0;
369 chip->pa_type = 0;
370 chip->patch_cck_gain = 0;
371 chip->patch_cr157 = 0;
372 chip->patch_6m_band_edge = 0;
373 chip->new_phy_layout = 0;
374 return r;
377 static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
378 const struct zd_ioreq32 *in_reqs,
379 const char *type)
381 int r;
382 struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
384 if (mac_addr) {
385 reqs[0].value = (mac_addr[3] << 24)
386 | (mac_addr[2] << 16)
387 | (mac_addr[1] << 8)
388 | mac_addr[0];
389 reqs[1].value = (mac_addr[5] << 8)
390 | mac_addr[4];
391 dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
392 } else {
393 dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
396 mutex_lock(&chip->mutex);
397 r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
398 mutex_unlock(&chip->mutex);
399 return r;
402 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
403 * CR_MAC_ADDR_P2 must be overwritten
405 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
407 static const struct zd_ioreq32 reqs[2] = {
408 [0] = { .addr = CR_MAC_ADDR_P1 },
409 [1] = { .addr = CR_MAC_ADDR_P2 },
412 return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
415 int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
417 static const struct zd_ioreq32 reqs[2] = {
418 [0] = { .addr = CR_BSSID_P1 },
419 [1] = { .addr = CR_BSSID_P2 },
422 return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
425 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
427 int r;
428 u32 value;
430 mutex_lock(&chip->mutex);
431 r = zd_ioread32_locked(chip, &value, E2P_SUBID);
432 mutex_unlock(&chip->mutex);
433 if (r)
434 return r;
436 *regdomain = value >> 16;
437 dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
439 return 0;
442 static int read_values(struct zd_chip *chip, u8 *values, size_t count,
443 zd_addr_t e2p_addr, u32 guard)
445 int r;
446 int i;
447 u32 v;
449 ZD_ASSERT(mutex_is_locked(&chip->mutex));
450 for (i = 0;;) {
451 r = zd_ioread32_locked(chip, &v,
452 (zd_addr_t)((u16)e2p_addr+i/2));
453 if (r)
454 return r;
455 v -= guard;
456 if (i+4 < count) {
457 values[i++] = v;
458 values[i++] = v >> 8;
459 values[i++] = v >> 16;
460 values[i++] = v >> 24;
461 continue;
463 for (;i < count; i++)
464 values[i] = v >> (8*(i%3));
465 return 0;
469 static int read_pwr_cal_values(struct zd_chip *chip)
471 return read_values(chip, chip->pwr_cal_values,
472 E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
476 static int read_pwr_int_values(struct zd_chip *chip)
478 return read_values(chip, chip->pwr_int_values,
479 E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
480 E2P_PWR_INT_GUARD);
483 static int read_ofdm_cal_values(struct zd_chip *chip)
485 int r;
486 int i;
487 static const zd_addr_t addresses[] = {
488 E2P_36M_CAL_VALUE1,
489 E2P_48M_CAL_VALUE1,
490 E2P_54M_CAL_VALUE1,
493 for (i = 0; i < 3; i++) {
494 r = read_values(chip, chip->ofdm_cal_values[i],
495 E2P_CHANNEL_COUNT, addresses[i], 0);
496 if (r)
497 return r;
499 return 0;
502 static int read_cal_int_tables(struct zd_chip *chip)
504 int r;
506 r = read_pwr_cal_values(chip);
507 if (r)
508 return r;
509 r = read_pwr_int_values(chip);
510 if (r)
511 return r;
512 r = read_ofdm_cal_values(chip);
513 if (r)
514 return r;
515 return 0;
518 /* phy means physical registers */
519 int zd_chip_lock_phy_regs(struct zd_chip *chip)
521 int r;
522 u32 tmp;
524 ZD_ASSERT(mutex_is_locked(&chip->mutex));
525 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
526 if (r) {
527 dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
528 return r;
531 tmp &= ~UNLOCK_PHY_REGS;
533 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
534 if (r)
535 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
536 return r;
539 int zd_chip_unlock_phy_regs(struct zd_chip *chip)
541 int r;
542 u32 tmp;
544 ZD_ASSERT(mutex_is_locked(&chip->mutex));
545 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
546 if (r) {
547 dev_err(zd_chip_dev(chip),
548 "error ioread32(CR_REG1): %d\n", r);
549 return r;
552 tmp |= UNLOCK_PHY_REGS;
554 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
555 if (r)
556 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
557 return r;
560 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
561 static int patch_cr157(struct zd_chip *chip)
563 int r;
564 u16 value;
566 if (!chip->patch_cr157)
567 return 0;
569 r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
570 if (r)
571 return r;
573 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
574 return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
578 * 6M band edge can be optionally overwritten for certain RF's
579 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
580 * bit (for AL2230, AL2230S)
582 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
584 ZD_ASSERT(mutex_is_locked(&chip->mutex));
585 if (!chip->patch_6m_band_edge)
586 return 0;
588 return zd_rf_patch_6m_band_edge(&chip->rf, channel);
591 /* Generic implementation of 6M band edge patching, used by most RFs via
592 * zd_rf_generic_patch_6m() */
593 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
595 struct zd_ioreq16 ioreqs[] = {
596 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
597 { ZD_CR47, 0x1e },
600 /* FIXME: Channel 11 is not the edge for all regulatory domains. */
601 if (channel == 1 || channel == 11)
602 ioreqs[0].value = 0x12;
604 dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
605 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
608 static int zd1211_hw_reset_phy(struct zd_chip *chip)
610 static const struct zd_ioreq16 ioreqs[] = {
611 { ZD_CR0, 0x0a }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
612 { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xa0 },
613 { ZD_CR10, 0x81 }, { ZD_CR11, 0x00 }, { ZD_CR12, 0x7f },
614 { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 }, { ZD_CR15, 0x3d },
615 { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e }, { ZD_CR18, 0x0a },
616 { ZD_CR19, 0x48 }, { ZD_CR20, 0x0c }, { ZD_CR21, 0x0c },
617 { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 }, { ZD_CR24, 0x14 },
618 { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 }, { ZD_CR27, 0x19 },
619 { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 }, { ZD_CR30, 0x4b },
620 { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
621 { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
622 { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
623 { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
624 { ZD_CR43, 0x10 }, { ZD_CR44, 0x12 }, { ZD_CR46, 0xff },
625 { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
626 { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
627 { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
628 { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
629 { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
630 { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
631 { ZD_CR79, 0x68 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
632 { ZD_CR82, 0x00 }, { ZD_CR83, 0x00 }, { ZD_CR84, 0x00 },
633 { ZD_CR85, 0x02 }, { ZD_CR86, 0x00 }, { ZD_CR87, 0x00 },
634 { ZD_CR88, 0xff }, { ZD_CR89, 0xfc }, { ZD_CR90, 0x00 },
635 { ZD_CR91, 0x00 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x08 },
636 { ZD_CR94, 0x00 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0xff },
637 { ZD_CR97, 0xe7 }, { ZD_CR98, 0x00 }, { ZD_CR99, 0x00 },
638 { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
639 { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
640 { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
641 { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
642 { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
643 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
644 { },
645 { ZD_CR5, 0x00 }, { ZD_CR6, 0x00 }, { ZD_CR7, 0x00 },
646 { ZD_CR8, 0x00 }, { ZD_CR9, 0x20 }, { ZD_CR12, 0xf0 },
647 { ZD_CR20, 0x0e }, { ZD_CR21, 0x0e }, { ZD_CR27, 0x10 },
648 { ZD_CR44, 0x33 }, { ZD_CR47, 0x1E }, { ZD_CR83, 0x24 },
649 { ZD_CR84, 0x04 }, { ZD_CR85, 0x00 }, { ZD_CR86, 0x0C },
650 { ZD_CR87, 0x12 }, { ZD_CR88, 0x0C }, { ZD_CR89, 0x00 },
651 { ZD_CR90, 0x10 }, { ZD_CR91, 0x08 }, { ZD_CR93, 0x00 },
652 { ZD_CR94, 0x01 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0x50 },
653 { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 }, { ZD_CR101, 0x13 },
654 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
655 { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
656 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
657 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
658 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
659 { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
660 { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
661 { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
662 { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
663 { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
664 { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
665 { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
666 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
667 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
668 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
669 { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
670 /* Note: ZD_CR204 must lead the ZD_CR203 */
671 { ZD_CR204, 0x7d },
672 { },
673 { ZD_CR203, 0x30 },
676 int r, t;
678 dev_dbg_f(zd_chip_dev(chip), "\n");
680 r = zd_chip_lock_phy_regs(chip);
681 if (r)
682 goto out;
684 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
685 if (r)
686 goto unlock;
688 r = patch_cr157(chip);
689 unlock:
690 t = zd_chip_unlock_phy_regs(chip);
691 if (t && !r)
692 r = t;
693 out:
694 return r;
697 static int zd1211b_hw_reset_phy(struct zd_chip *chip)
699 static const struct zd_ioreq16 ioreqs[] = {
700 { ZD_CR0, 0x14 }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
701 { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xe0 },
702 { ZD_CR10, 0x81 },
703 /* power control { { ZD_CR11, 1 << 6 }, */
704 { ZD_CR11, 0x00 },
705 { ZD_CR12, 0xf0 }, { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 },
706 { ZD_CR15, 0x3d }, { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e },
707 { ZD_CR18, 0x0a }, { ZD_CR19, 0x48 },
708 { ZD_CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
709 { ZD_CR21, 0x0e }, { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 },
710 { ZD_CR24, 0x14 }, { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 },
711 { ZD_CR27, 0x10 }, { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 },
712 { ZD_CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */
713 { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
714 { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
715 { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
716 { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
717 { ZD_CR43, 0x10 }, { ZD_CR44, 0x33 }, { ZD_CR46, 0xff },
718 { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
719 { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
720 { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
721 { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
722 { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
723 { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
724 { ZD_CR79, 0xf0 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
725 { ZD_CR82, 0x00 }, { ZD_CR83, 0x24 }, { ZD_CR84, 0x04 },
726 { ZD_CR85, 0x00 }, { ZD_CR86, 0x0c }, { ZD_CR87, 0x12 },
727 { ZD_CR88, 0x0c }, { ZD_CR89, 0x00 }, { ZD_CR90, 0x58 },
728 { ZD_CR91, 0x04 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x00 },
729 { ZD_CR94, 0x01 },
730 { ZD_CR95, 0x20 }, /* ZD1211B */
731 { ZD_CR96, 0x50 }, { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 },
732 { ZD_CR99, 0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
733 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
734 { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
735 { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
736 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
737 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
738 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
739 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
740 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
741 { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
742 { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
743 { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
744 { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
745 { ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
746 { ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
747 { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
748 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
749 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
750 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
751 { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
752 /* Note: ZD_CR204 must lead the ZD_CR203 */
753 { ZD_CR204, 0x7d },
755 { ZD_CR203, 0x30 },
758 int r, t;
760 dev_dbg_f(zd_chip_dev(chip), "\n");
762 r = zd_chip_lock_phy_regs(chip);
763 if (r)
764 goto out;
766 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
767 t = zd_chip_unlock_phy_regs(chip);
768 if (t && !r)
769 r = t;
770 out:
771 return r;
774 static int hw_reset_phy(struct zd_chip *chip)
776 return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
777 zd1211_hw_reset_phy(chip);
780 static int zd1211_hw_init_hmac(struct zd_chip *chip)
782 static const struct zd_ioreq32 ioreqs[] = {
783 { CR_ZD1211_RETRY_MAX, ZD1211_RETRY_COUNT },
784 { CR_RX_THRESHOLD, 0x000c0640 },
787 dev_dbg_f(zd_chip_dev(chip), "\n");
788 ZD_ASSERT(mutex_is_locked(&chip->mutex));
789 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
792 static int zd1211b_hw_init_hmac(struct zd_chip *chip)
794 static const struct zd_ioreq32 ioreqs[] = {
795 { CR_ZD1211B_RETRY_MAX, ZD1211B_RETRY_COUNT },
796 { CR_ZD1211B_CWIN_MAX_MIN_AC0, 0x007f003f },
797 { CR_ZD1211B_CWIN_MAX_MIN_AC1, 0x007f003f },
798 { CR_ZD1211B_CWIN_MAX_MIN_AC2, 0x003f001f },
799 { CR_ZD1211B_CWIN_MAX_MIN_AC3, 0x001f000f },
800 { CR_ZD1211B_AIFS_CTL1, 0x00280028 },
801 { CR_ZD1211B_AIFS_CTL2, 0x008C003C },
802 { CR_ZD1211B_TXOP, 0x01800824 },
803 { CR_RX_THRESHOLD, 0x000c0eff, },
806 dev_dbg_f(zd_chip_dev(chip), "\n");
807 ZD_ASSERT(mutex_is_locked(&chip->mutex));
808 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
811 static int hw_init_hmac(struct zd_chip *chip)
813 int r;
814 static const struct zd_ioreq32 ioreqs[] = {
815 { CR_ACK_TIMEOUT_EXT, 0x20 },
816 { CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
817 { CR_SNIFFER_ON, 0 },
818 { CR_RX_FILTER, STA_RX_FILTER },
819 { CR_GROUP_HASH_P1, 0x00 },
820 { CR_GROUP_HASH_P2, 0x80000000 },
821 { CR_REG1, 0xa4 },
822 { CR_ADDA_PWR_DWN, 0x7f },
823 { CR_BCN_PLCP_CFG, 0x00f00401 },
824 { CR_PHY_DELAY, 0x00 },
825 { CR_ACK_TIMEOUT_EXT, 0x80 },
826 { CR_ADDA_PWR_DWN, 0x00 },
827 { CR_ACK_TIME_80211, 0x100 },
828 { CR_RX_PE_DELAY, 0x70 },
829 { CR_PS_CTRL, 0x10000000 },
830 { CR_RTS_CTS_RATE, 0x02030203 },
831 { CR_AFTER_PNP, 0x1 },
832 { CR_WEP_PROTECT, 0x114 },
833 { CR_IFS_VALUE, IFS_VALUE_DEFAULT },
834 { CR_CAM_MODE, MODE_AP_WDS},
837 ZD_ASSERT(mutex_is_locked(&chip->mutex));
838 r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
839 if (r)
840 return r;
842 return zd_chip_is_zd1211b(chip) ?
843 zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
846 struct aw_pt_bi {
847 u32 atim_wnd_period;
848 u32 pre_tbtt;
849 u32 beacon_interval;
852 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
854 int r;
855 static const zd_addr_t aw_pt_bi_addr[] =
856 { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
857 u32 values[3];
859 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
860 ARRAY_SIZE(aw_pt_bi_addr));
861 if (r) {
862 memset(s, 0, sizeof(*s));
863 return r;
866 s->atim_wnd_period = values[0];
867 s->pre_tbtt = values[1];
868 s->beacon_interval = values[2];
869 return 0;
872 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
874 struct zd_ioreq32 reqs[3];
875 u16 b_interval = s->beacon_interval & 0xffff;
877 if (b_interval <= 5)
878 b_interval = 5;
879 if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
880 s->pre_tbtt = b_interval - 1;
881 if (s->atim_wnd_period >= s->pre_tbtt)
882 s->atim_wnd_period = s->pre_tbtt - 1;
884 reqs[0].addr = CR_ATIM_WND_PERIOD;
885 reqs[0].value = s->atim_wnd_period;
886 reqs[1].addr = CR_PRE_TBTT;
887 reqs[1].value = s->pre_tbtt;
888 reqs[2].addr = CR_BCN_INTERVAL;
889 reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
891 return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
895 static int set_beacon_interval(struct zd_chip *chip, u16 interval,
896 u8 dtim_period, int type)
898 int r;
899 struct aw_pt_bi s;
900 u32 b_interval, mode_flag;
902 ZD_ASSERT(mutex_is_locked(&chip->mutex));
904 if (interval > 0) {
905 switch (type) {
906 case NL80211_IFTYPE_ADHOC:
907 case NL80211_IFTYPE_MESH_POINT:
908 mode_flag = BCN_MODE_IBSS;
909 break;
910 case NL80211_IFTYPE_AP:
911 mode_flag = BCN_MODE_AP;
912 break;
913 default:
914 mode_flag = 0;
915 break;
917 } else {
918 dtim_period = 0;
919 mode_flag = 0;
922 b_interval = mode_flag | (dtim_period << 16) | interval;
924 r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
925 if (r)
926 return r;
927 r = get_aw_pt_bi(chip, &s);
928 if (r)
929 return r;
930 return set_aw_pt_bi(chip, &s);
933 int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
934 int type)
936 int r;
938 mutex_lock(&chip->mutex);
939 r = set_beacon_interval(chip, interval, dtim_period, type);
940 mutex_unlock(&chip->mutex);
941 return r;
944 static int hw_init(struct zd_chip *chip)
946 int r;
948 dev_dbg_f(zd_chip_dev(chip), "\n");
949 ZD_ASSERT(mutex_is_locked(&chip->mutex));
950 r = hw_reset_phy(chip);
951 if (r)
952 return r;
954 r = hw_init_hmac(chip);
955 if (r)
956 return r;
958 return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
961 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
963 return (zd_addr_t)((u16)chip->fw_regs_base + offset);
966 #ifdef DEBUG
967 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
968 const char *addr_string)
970 int r;
971 u32 value;
973 r = zd_ioread32_locked(chip, &value, addr);
974 if (r) {
975 dev_dbg_f(zd_chip_dev(chip),
976 "error reading %s. Error number %d\n", addr_string, r);
977 return r;
980 dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
981 addr_string, (unsigned int)value);
982 return 0;
985 static int test_init(struct zd_chip *chip)
987 int r;
989 r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
990 if (r)
991 return r;
992 r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
993 if (r)
994 return r;
995 return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
998 static void dump_fw_registers(struct zd_chip *chip)
1000 const zd_addr_t addr[4] = {
1001 fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
1002 fw_reg_addr(chip, FW_REG_USB_SPEED),
1003 fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
1004 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1007 int r;
1008 u16 values[4];
1010 r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
1011 ARRAY_SIZE(addr));
1012 if (r) {
1013 dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1015 return;
1018 dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1019 dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1020 dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1021 dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1023 #endif /* DEBUG */
1025 static int print_fw_version(struct zd_chip *chip)
1027 struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1028 int r;
1029 u16 version;
1031 r = zd_ioread16_locked(chip, &version,
1032 fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1033 if (r)
1034 return r;
1036 dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1038 snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1039 "%04hx", version);
1041 return 0;
1044 static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1046 u32 rates;
1047 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1048 /* This sets the mandatory rates, which only depend from the standard
1049 * that the device is supporting. Until further notice we should try
1050 * to support 802.11g also for full speed USB.
1052 if (!gmode)
1053 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1054 else
1055 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1056 CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1058 return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1061 int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1062 int preamble)
1064 u32 value = 0;
1066 dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1067 value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1068 value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1070 /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1071 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1072 value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1073 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1074 value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1076 return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1079 int zd_chip_enable_hwint(struct zd_chip *chip)
1081 int r;
1083 mutex_lock(&chip->mutex);
1084 r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1085 mutex_unlock(&chip->mutex);
1086 return r;
1089 static int disable_hwint(struct zd_chip *chip)
1091 return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1094 int zd_chip_disable_hwint(struct zd_chip *chip)
1096 int r;
1098 mutex_lock(&chip->mutex);
1099 r = disable_hwint(chip);
1100 mutex_unlock(&chip->mutex);
1101 return r;
1104 static int read_fw_regs_offset(struct zd_chip *chip)
1106 int r;
1108 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1109 r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1110 FWRAW_REGS_ADDR);
1111 if (r)
1112 return r;
1113 dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1114 (u16)chip->fw_regs_base);
1116 return 0;
1119 /* Read mac address using pre-firmware interface */
1120 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1122 dev_dbg_f(zd_chip_dev(chip), "\n");
1123 return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1124 ETH_ALEN);
1127 int zd_chip_init_hw(struct zd_chip *chip)
1129 int r;
1130 u8 rf_type;
1132 dev_dbg_f(zd_chip_dev(chip), "\n");
1134 mutex_lock(&chip->mutex);
1136 #ifdef DEBUG
1137 r = test_init(chip);
1138 if (r)
1139 goto out;
1140 #endif
1141 r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1142 if (r)
1143 goto out;
1145 r = read_fw_regs_offset(chip);
1146 if (r)
1147 goto out;
1149 /* GPI is always disabled, also in the other driver.
1151 r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1152 if (r)
1153 goto out;
1154 r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1155 if (r)
1156 goto out;
1157 /* Currently we support IEEE 802.11g for full and high speed USB.
1158 * It might be discussed, whether we should suppport pure b mode for
1159 * full speed USB.
1161 r = set_mandatory_rates(chip, 1);
1162 if (r)
1163 goto out;
1164 /* Disabling interrupts is certainly a smart thing here.
1166 r = disable_hwint(chip);
1167 if (r)
1168 goto out;
1169 r = read_pod(chip, &rf_type);
1170 if (r)
1171 goto out;
1172 r = hw_init(chip);
1173 if (r)
1174 goto out;
1175 r = zd_rf_init_hw(&chip->rf, rf_type);
1176 if (r)
1177 goto out;
1179 r = print_fw_version(chip);
1180 if (r)
1181 goto out;
1183 #ifdef DEBUG
1184 dump_fw_registers(chip);
1185 r = test_init(chip);
1186 if (r)
1187 goto out;
1188 #endif /* DEBUG */
1190 r = read_cal_int_tables(chip);
1191 if (r)
1192 goto out;
1194 print_id(chip);
1195 out:
1196 mutex_unlock(&chip->mutex);
1197 return r;
1200 static int update_pwr_int(struct zd_chip *chip, u8 channel)
1202 u8 value = chip->pwr_int_values[channel - 1];
1203 return zd_iowrite16_locked(chip, value, ZD_CR31);
1206 static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1208 u8 value = chip->pwr_cal_values[channel-1];
1209 return zd_iowrite16_locked(chip, value, ZD_CR68);
1212 static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1214 struct zd_ioreq16 ioreqs[3];
1216 ioreqs[0].addr = ZD_CR67;
1217 ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1218 ioreqs[1].addr = ZD_CR66;
1219 ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1220 ioreqs[2].addr = ZD_CR65;
1221 ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1223 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1226 static int update_channel_integration_and_calibration(struct zd_chip *chip,
1227 u8 channel)
1229 int r;
1231 if (!zd_rf_should_update_pwr_int(&chip->rf))
1232 return 0;
1234 r = update_pwr_int(chip, channel);
1235 if (r)
1236 return r;
1237 if (zd_chip_is_zd1211b(chip)) {
1238 static const struct zd_ioreq16 ioreqs[] = {
1239 { ZD_CR69, 0x28 },
1241 { ZD_CR69, 0x2a },
1244 r = update_ofdm_cal(chip, channel);
1245 if (r)
1246 return r;
1247 r = update_pwr_cal(chip, channel);
1248 if (r)
1249 return r;
1250 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1251 if (r)
1252 return r;
1255 return 0;
1258 /* The CCK baseband gain can be optionally patched by the EEPROM */
1259 static int patch_cck_gain(struct zd_chip *chip)
1261 int r;
1262 u32 value;
1264 if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1265 return 0;
1267 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1268 r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1269 if (r)
1270 return r;
1271 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1272 return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1275 int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1277 int r, t;
1279 mutex_lock(&chip->mutex);
1280 r = zd_chip_lock_phy_regs(chip);
1281 if (r)
1282 goto out;
1283 r = zd_rf_set_channel(&chip->rf, channel);
1284 if (r)
1285 goto unlock;
1286 r = update_channel_integration_and_calibration(chip, channel);
1287 if (r)
1288 goto unlock;
1289 r = patch_cck_gain(chip);
1290 if (r)
1291 goto unlock;
1292 r = patch_6m_band_edge(chip, channel);
1293 if (r)
1294 goto unlock;
1295 r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1296 unlock:
1297 t = zd_chip_unlock_phy_regs(chip);
1298 if (t && !r)
1299 r = t;
1300 out:
1301 mutex_unlock(&chip->mutex);
1302 return r;
1305 u8 zd_chip_get_channel(struct zd_chip *chip)
1307 u8 channel;
1309 mutex_lock(&chip->mutex);
1310 channel = chip->rf.channel;
1311 mutex_unlock(&chip->mutex);
1312 return channel;
1315 int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1317 const zd_addr_t a[] = {
1318 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1319 CR_LED,
1322 int r;
1323 u16 v[ARRAY_SIZE(a)];
1324 struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1325 [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1326 [1] = { CR_LED },
1328 u16 other_led;
1330 mutex_lock(&chip->mutex);
1331 r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1332 if (r)
1333 goto out;
1335 other_led = chip->link_led == LED1 ? LED2 : LED1;
1337 switch (status) {
1338 case ZD_LED_OFF:
1339 ioreqs[0].value = FW_LINK_OFF;
1340 ioreqs[1].value = v[1] & ~(LED1|LED2);
1341 break;
1342 case ZD_LED_SCANNING:
1343 ioreqs[0].value = FW_LINK_OFF;
1344 ioreqs[1].value = v[1] & ~other_led;
1345 if (get_seconds() % 3 == 0) {
1346 ioreqs[1].value &= ~chip->link_led;
1347 } else {
1348 ioreqs[1].value |= chip->link_led;
1350 break;
1351 case ZD_LED_ASSOCIATED:
1352 ioreqs[0].value = FW_LINK_TX;
1353 ioreqs[1].value = v[1] & ~other_led;
1354 ioreqs[1].value |= chip->link_led;
1355 break;
1356 default:
1357 r = -EINVAL;
1358 goto out;
1361 if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1362 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1363 if (r)
1364 goto out;
1366 r = 0;
1367 out:
1368 mutex_unlock(&chip->mutex);
1369 return r;
1372 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1374 int r;
1376 if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1377 return -EINVAL;
1379 mutex_lock(&chip->mutex);
1380 r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1381 mutex_unlock(&chip->mutex);
1382 return r;
1385 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1387 return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1391 * zd_rx_rate - report zd-rate
1392 * @rx_frame - received frame
1393 * @rx_status - rx_status as given by the device
1395 * This function converts the rate as encoded in the received packet to the
1396 * zd-rate, we are using on other places in the driver.
1398 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1400 u8 zd_rate;
1401 if (status->frame_status & ZD_RX_OFDM) {
1402 zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1403 } else {
1404 switch (zd_cck_plcp_header_signal(rx_frame)) {
1405 case ZD_CCK_PLCP_SIGNAL_1M:
1406 zd_rate = ZD_CCK_RATE_1M;
1407 break;
1408 case ZD_CCK_PLCP_SIGNAL_2M:
1409 zd_rate = ZD_CCK_RATE_2M;
1410 break;
1411 case ZD_CCK_PLCP_SIGNAL_5M5:
1412 zd_rate = ZD_CCK_RATE_5_5M;
1413 break;
1414 case ZD_CCK_PLCP_SIGNAL_11M:
1415 zd_rate = ZD_CCK_RATE_11M;
1416 break;
1417 default:
1418 zd_rate = 0;
1422 return zd_rate;
1425 int zd_chip_switch_radio_on(struct zd_chip *chip)
1427 int r;
1429 mutex_lock(&chip->mutex);
1430 r = zd_switch_radio_on(&chip->rf);
1431 mutex_unlock(&chip->mutex);
1432 return r;
1435 int zd_chip_switch_radio_off(struct zd_chip *chip)
1437 int r;
1439 mutex_lock(&chip->mutex);
1440 r = zd_switch_radio_off(&chip->rf);
1441 mutex_unlock(&chip->mutex);
1442 return r;
1445 int zd_chip_enable_int(struct zd_chip *chip)
1447 int r;
1449 mutex_lock(&chip->mutex);
1450 r = zd_usb_enable_int(&chip->usb);
1451 mutex_unlock(&chip->mutex);
1452 return r;
1455 void zd_chip_disable_int(struct zd_chip *chip)
1457 mutex_lock(&chip->mutex);
1458 zd_usb_disable_int(&chip->usb);
1459 mutex_unlock(&chip->mutex);
1461 /* cancel pending interrupt work */
1462 cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1465 int zd_chip_enable_rxtx(struct zd_chip *chip)
1467 int r;
1469 mutex_lock(&chip->mutex);
1470 zd_usb_enable_tx(&chip->usb);
1471 r = zd_usb_enable_rx(&chip->usb);
1472 zd_tx_watchdog_enable(&chip->usb);
1473 mutex_unlock(&chip->mutex);
1474 return r;
1477 void zd_chip_disable_rxtx(struct zd_chip *chip)
1479 mutex_lock(&chip->mutex);
1480 zd_tx_watchdog_disable(&chip->usb);
1481 zd_usb_disable_rx(&chip->usb);
1482 zd_usb_disable_tx(&chip->usb);
1483 mutex_unlock(&chip->mutex);
1486 int zd_rfwritev_locked(struct zd_chip *chip,
1487 const u32* values, unsigned int count, u8 bits)
1489 int r;
1490 unsigned int i;
1492 for (i = 0; i < count; i++) {
1493 r = zd_rfwrite_locked(chip, values[i], bits);
1494 if (r)
1495 return r;
1498 return 0;
1502 * We can optionally program the RF directly through CR regs, if supported by
1503 * the hardware. This is much faster than the older method.
1505 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1507 const struct zd_ioreq16 ioreqs[] = {
1508 { ZD_CR244, (value >> 16) & 0xff },
1509 { ZD_CR243, (value >> 8) & 0xff },
1510 { ZD_CR242, value & 0xff },
1512 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1513 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1516 int zd_rfwritev_cr_locked(struct zd_chip *chip,
1517 const u32 *values, unsigned int count)
1519 int r;
1520 unsigned int i;
1522 for (i = 0; i < count; i++) {
1523 r = zd_rfwrite_cr_locked(chip, values[i]);
1524 if (r)
1525 return r;
1528 return 0;
1531 int zd_chip_set_multicast_hash(struct zd_chip *chip,
1532 struct zd_mc_hash *hash)
1534 const struct zd_ioreq32 ioreqs[] = {
1535 { CR_GROUP_HASH_P1, hash->low },
1536 { CR_GROUP_HASH_P2, hash->high },
1539 return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1542 u64 zd_chip_get_tsf(struct zd_chip *chip)
1544 int r;
1545 static const zd_addr_t aw_pt_bi_addr[] =
1546 { CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1547 u32 values[2];
1548 u64 tsf;
1550 mutex_lock(&chip->mutex);
1551 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1552 ARRAY_SIZE(aw_pt_bi_addr));
1553 mutex_unlock(&chip->mutex);
1554 if (r)
1555 return 0;
1557 tsf = values[1];
1558 tsf = (tsf << 32) | values[0];
1560 return tsf;