Revert "gma500: Fix dependencies"
[zen-stable.git] / drivers / regulator / core.c
blobd3e38790906ed889de2b78454516ec1410eb6466
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #define pr_fmt(fmt) "%s: " fmt, __func__
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/regulator/driver.h>
29 #include <linux/regulator/machine.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
34 #include "dummy.h"
36 #define rdev_err(rdev, fmt, ...) \
37 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_warn(rdev, fmt, ...) \
39 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_info(rdev, fmt, ...) \
41 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_dbg(rdev, fmt, ...) \
43 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 static DEFINE_MUTEX(regulator_list_mutex);
46 static LIST_HEAD(regulator_list);
47 static LIST_HEAD(regulator_map_list);
48 static bool has_full_constraints;
49 static bool board_wants_dummy_regulator;
51 #ifdef CONFIG_DEBUG_FS
52 static struct dentry *debugfs_root;
53 #endif
56 * struct regulator_map
58 * Used to provide symbolic supply names to devices.
60 struct regulator_map {
61 struct list_head list;
62 const char *dev_name; /* The dev_name() for the consumer */
63 const char *supply;
64 struct regulator_dev *regulator;
68 * struct regulator
70 * One for each consumer device.
72 struct regulator {
73 struct device *dev;
74 struct list_head list;
75 int uA_load;
76 int min_uV;
77 int max_uV;
78 char *supply_name;
79 struct device_attribute dev_attr;
80 struct regulator_dev *rdev;
83 static int _regulator_is_enabled(struct regulator_dev *rdev);
84 static int _regulator_disable(struct regulator_dev *rdev,
85 struct regulator_dev **supply_rdev_ptr);
86 static int _regulator_get_voltage(struct regulator_dev *rdev);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static void _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
94 static const char *rdev_get_name(struct regulator_dev *rdev)
96 if (rdev->constraints && rdev->constraints->name)
97 return rdev->constraints->name;
98 else if (rdev->desc->name)
99 return rdev->desc->name;
100 else
101 return "";
104 /* gets the regulator for a given consumer device */
105 static struct regulator *get_device_regulator(struct device *dev)
107 struct regulator *regulator = NULL;
108 struct regulator_dev *rdev;
110 mutex_lock(&regulator_list_mutex);
111 list_for_each_entry(rdev, &regulator_list, list) {
112 mutex_lock(&rdev->mutex);
113 list_for_each_entry(regulator, &rdev->consumer_list, list) {
114 if (regulator->dev == dev) {
115 mutex_unlock(&rdev->mutex);
116 mutex_unlock(&regulator_list_mutex);
117 return regulator;
120 mutex_unlock(&rdev->mutex);
122 mutex_unlock(&regulator_list_mutex);
123 return NULL;
126 /* Platform voltage constraint check */
127 static int regulator_check_voltage(struct regulator_dev *rdev,
128 int *min_uV, int *max_uV)
130 BUG_ON(*min_uV > *max_uV);
132 if (!rdev->constraints) {
133 rdev_err(rdev, "no constraints\n");
134 return -ENODEV;
136 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137 rdev_err(rdev, "operation not allowed\n");
138 return -EPERM;
141 if (*max_uV > rdev->constraints->max_uV)
142 *max_uV = rdev->constraints->max_uV;
143 if (*min_uV < rdev->constraints->min_uV)
144 *min_uV = rdev->constraints->min_uV;
146 if (*min_uV > *max_uV)
147 return -EINVAL;
149 return 0;
152 /* Make sure we select a voltage that suits the needs of all
153 * regulator consumers
155 static int regulator_check_consumers(struct regulator_dev *rdev,
156 int *min_uV, int *max_uV)
158 struct regulator *regulator;
160 list_for_each_entry(regulator, &rdev->consumer_list, list) {
162 * Assume consumers that didn't say anything are OK
163 * with anything in the constraint range.
165 if (!regulator->min_uV && !regulator->max_uV)
166 continue;
168 if (*max_uV > regulator->max_uV)
169 *max_uV = regulator->max_uV;
170 if (*min_uV < regulator->min_uV)
171 *min_uV = regulator->min_uV;
174 if (*min_uV > *max_uV)
175 return -EINVAL;
177 return 0;
180 /* current constraint check */
181 static int regulator_check_current_limit(struct regulator_dev *rdev,
182 int *min_uA, int *max_uA)
184 BUG_ON(*min_uA > *max_uA);
186 if (!rdev->constraints) {
187 rdev_err(rdev, "no constraints\n");
188 return -ENODEV;
190 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
191 rdev_err(rdev, "operation not allowed\n");
192 return -EPERM;
195 if (*max_uA > rdev->constraints->max_uA)
196 *max_uA = rdev->constraints->max_uA;
197 if (*min_uA < rdev->constraints->min_uA)
198 *min_uA = rdev->constraints->min_uA;
200 if (*min_uA > *max_uA)
201 return -EINVAL;
203 return 0;
206 /* operating mode constraint check */
207 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
209 switch (*mode) {
210 case REGULATOR_MODE_FAST:
211 case REGULATOR_MODE_NORMAL:
212 case REGULATOR_MODE_IDLE:
213 case REGULATOR_MODE_STANDBY:
214 break;
215 default:
216 return -EINVAL;
219 if (!rdev->constraints) {
220 rdev_err(rdev, "no constraints\n");
221 return -ENODEV;
223 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
224 rdev_err(rdev, "operation not allowed\n");
225 return -EPERM;
228 /* The modes are bitmasks, the most power hungry modes having
229 * the lowest values. If the requested mode isn't supported
230 * try higher modes. */
231 while (*mode) {
232 if (rdev->constraints->valid_modes_mask & *mode)
233 return 0;
234 *mode /= 2;
237 return -EINVAL;
240 /* dynamic regulator mode switching constraint check */
241 static int regulator_check_drms(struct regulator_dev *rdev)
243 if (!rdev->constraints) {
244 rdev_err(rdev, "no constraints\n");
245 return -ENODEV;
247 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
248 rdev_err(rdev, "operation not allowed\n");
249 return -EPERM;
251 return 0;
254 static ssize_t device_requested_uA_show(struct device *dev,
255 struct device_attribute *attr, char *buf)
257 struct regulator *regulator;
259 regulator = get_device_regulator(dev);
260 if (regulator == NULL)
261 return 0;
263 return sprintf(buf, "%d\n", regulator->uA_load);
266 static ssize_t regulator_uV_show(struct device *dev,
267 struct device_attribute *attr, char *buf)
269 struct regulator_dev *rdev = dev_get_drvdata(dev);
270 ssize_t ret;
272 mutex_lock(&rdev->mutex);
273 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
274 mutex_unlock(&rdev->mutex);
276 return ret;
278 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
280 static ssize_t regulator_uA_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
283 struct regulator_dev *rdev = dev_get_drvdata(dev);
285 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
287 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
289 static ssize_t regulator_name_show(struct device *dev,
290 struct device_attribute *attr, char *buf)
292 struct regulator_dev *rdev = dev_get_drvdata(dev);
294 return sprintf(buf, "%s\n", rdev_get_name(rdev));
297 static ssize_t regulator_print_opmode(char *buf, int mode)
299 switch (mode) {
300 case REGULATOR_MODE_FAST:
301 return sprintf(buf, "fast\n");
302 case REGULATOR_MODE_NORMAL:
303 return sprintf(buf, "normal\n");
304 case REGULATOR_MODE_IDLE:
305 return sprintf(buf, "idle\n");
306 case REGULATOR_MODE_STANDBY:
307 return sprintf(buf, "standby\n");
309 return sprintf(buf, "unknown\n");
312 static ssize_t regulator_opmode_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
315 struct regulator_dev *rdev = dev_get_drvdata(dev);
317 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
319 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
321 static ssize_t regulator_print_state(char *buf, int state)
323 if (state > 0)
324 return sprintf(buf, "enabled\n");
325 else if (state == 0)
326 return sprintf(buf, "disabled\n");
327 else
328 return sprintf(buf, "unknown\n");
331 static ssize_t regulator_state_show(struct device *dev,
332 struct device_attribute *attr, char *buf)
334 struct regulator_dev *rdev = dev_get_drvdata(dev);
335 ssize_t ret;
337 mutex_lock(&rdev->mutex);
338 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
339 mutex_unlock(&rdev->mutex);
341 return ret;
343 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
345 static ssize_t regulator_status_show(struct device *dev,
346 struct device_attribute *attr, char *buf)
348 struct regulator_dev *rdev = dev_get_drvdata(dev);
349 int status;
350 char *label;
352 status = rdev->desc->ops->get_status(rdev);
353 if (status < 0)
354 return status;
356 switch (status) {
357 case REGULATOR_STATUS_OFF:
358 label = "off";
359 break;
360 case REGULATOR_STATUS_ON:
361 label = "on";
362 break;
363 case REGULATOR_STATUS_ERROR:
364 label = "error";
365 break;
366 case REGULATOR_STATUS_FAST:
367 label = "fast";
368 break;
369 case REGULATOR_STATUS_NORMAL:
370 label = "normal";
371 break;
372 case REGULATOR_STATUS_IDLE:
373 label = "idle";
374 break;
375 case REGULATOR_STATUS_STANDBY:
376 label = "standby";
377 break;
378 default:
379 return -ERANGE;
382 return sprintf(buf, "%s\n", label);
384 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
386 static ssize_t regulator_min_uA_show(struct device *dev,
387 struct device_attribute *attr, char *buf)
389 struct regulator_dev *rdev = dev_get_drvdata(dev);
391 if (!rdev->constraints)
392 return sprintf(buf, "constraint not defined\n");
394 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
396 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
398 static ssize_t regulator_max_uA_show(struct device *dev,
399 struct device_attribute *attr, char *buf)
401 struct regulator_dev *rdev = dev_get_drvdata(dev);
403 if (!rdev->constraints)
404 return sprintf(buf, "constraint not defined\n");
406 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
408 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
410 static ssize_t regulator_min_uV_show(struct device *dev,
411 struct device_attribute *attr, char *buf)
413 struct regulator_dev *rdev = dev_get_drvdata(dev);
415 if (!rdev->constraints)
416 return sprintf(buf, "constraint not defined\n");
418 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
420 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
422 static ssize_t regulator_max_uV_show(struct device *dev,
423 struct device_attribute *attr, char *buf)
425 struct regulator_dev *rdev = dev_get_drvdata(dev);
427 if (!rdev->constraints)
428 return sprintf(buf, "constraint not defined\n");
430 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
432 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
434 static ssize_t regulator_total_uA_show(struct device *dev,
435 struct device_attribute *attr, char *buf)
437 struct regulator_dev *rdev = dev_get_drvdata(dev);
438 struct regulator *regulator;
439 int uA = 0;
441 mutex_lock(&rdev->mutex);
442 list_for_each_entry(regulator, &rdev->consumer_list, list)
443 uA += regulator->uA_load;
444 mutex_unlock(&rdev->mutex);
445 return sprintf(buf, "%d\n", uA);
447 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
449 static ssize_t regulator_num_users_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
452 struct regulator_dev *rdev = dev_get_drvdata(dev);
453 return sprintf(buf, "%d\n", rdev->use_count);
456 static ssize_t regulator_type_show(struct device *dev,
457 struct device_attribute *attr, char *buf)
459 struct regulator_dev *rdev = dev_get_drvdata(dev);
461 switch (rdev->desc->type) {
462 case REGULATOR_VOLTAGE:
463 return sprintf(buf, "voltage\n");
464 case REGULATOR_CURRENT:
465 return sprintf(buf, "current\n");
467 return sprintf(buf, "unknown\n");
470 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
471 struct device_attribute *attr, char *buf)
473 struct regulator_dev *rdev = dev_get_drvdata(dev);
475 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
477 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
478 regulator_suspend_mem_uV_show, NULL);
480 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
481 struct device_attribute *attr, char *buf)
483 struct regulator_dev *rdev = dev_get_drvdata(dev);
485 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
487 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
488 regulator_suspend_disk_uV_show, NULL);
490 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
491 struct device_attribute *attr, char *buf)
493 struct regulator_dev *rdev = dev_get_drvdata(dev);
495 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
497 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
498 regulator_suspend_standby_uV_show, NULL);
500 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
501 struct device_attribute *attr, char *buf)
503 struct regulator_dev *rdev = dev_get_drvdata(dev);
505 return regulator_print_opmode(buf,
506 rdev->constraints->state_mem.mode);
508 static DEVICE_ATTR(suspend_mem_mode, 0444,
509 regulator_suspend_mem_mode_show, NULL);
511 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
512 struct device_attribute *attr, char *buf)
514 struct regulator_dev *rdev = dev_get_drvdata(dev);
516 return regulator_print_opmode(buf,
517 rdev->constraints->state_disk.mode);
519 static DEVICE_ATTR(suspend_disk_mode, 0444,
520 regulator_suspend_disk_mode_show, NULL);
522 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
525 struct regulator_dev *rdev = dev_get_drvdata(dev);
527 return regulator_print_opmode(buf,
528 rdev->constraints->state_standby.mode);
530 static DEVICE_ATTR(suspend_standby_mode, 0444,
531 regulator_suspend_standby_mode_show, NULL);
533 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
534 struct device_attribute *attr, char *buf)
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
538 return regulator_print_state(buf,
539 rdev->constraints->state_mem.enabled);
541 static DEVICE_ATTR(suspend_mem_state, 0444,
542 regulator_suspend_mem_state_show, NULL);
544 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
545 struct device_attribute *attr, char *buf)
547 struct regulator_dev *rdev = dev_get_drvdata(dev);
549 return regulator_print_state(buf,
550 rdev->constraints->state_disk.enabled);
552 static DEVICE_ATTR(suspend_disk_state, 0444,
553 regulator_suspend_disk_state_show, NULL);
555 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
556 struct device_attribute *attr, char *buf)
558 struct regulator_dev *rdev = dev_get_drvdata(dev);
560 return regulator_print_state(buf,
561 rdev->constraints->state_standby.enabled);
563 static DEVICE_ATTR(suspend_standby_state, 0444,
564 regulator_suspend_standby_state_show, NULL);
568 * These are the only attributes are present for all regulators.
569 * Other attributes are a function of regulator functionality.
571 static struct device_attribute regulator_dev_attrs[] = {
572 __ATTR(name, 0444, regulator_name_show, NULL),
573 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
574 __ATTR(type, 0444, regulator_type_show, NULL),
575 __ATTR_NULL,
578 static void regulator_dev_release(struct device *dev)
580 struct regulator_dev *rdev = dev_get_drvdata(dev);
581 kfree(rdev);
584 static struct class regulator_class = {
585 .name = "regulator",
586 .dev_release = regulator_dev_release,
587 .dev_attrs = regulator_dev_attrs,
590 /* Calculate the new optimum regulator operating mode based on the new total
591 * consumer load. All locks held by caller */
592 static void drms_uA_update(struct regulator_dev *rdev)
594 struct regulator *sibling;
595 int current_uA = 0, output_uV, input_uV, err;
596 unsigned int mode;
598 err = regulator_check_drms(rdev);
599 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
600 (!rdev->desc->ops->get_voltage &&
601 !rdev->desc->ops->get_voltage_sel) ||
602 !rdev->desc->ops->set_mode)
603 return;
605 /* get output voltage */
606 output_uV = _regulator_get_voltage(rdev);
607 if (output_uV <= 0)
608 return;
610 /* get input voltage */
611 input_uV = 0;
612 if (rdev->supply)
613 input_uV = _regulator_get_voltage(rdev);
614 if (input_uV <= 0)
615 input_uV = rdev->constraints->input_uV;
616 if (input_uV <= 0)
617 return;
619 /* calc total requested load */
620 list_for_each_entry(sibling, &rdev->consumer_list, list)
621 current_uA += sibling->uA_load;
623 /* now get the optimum mode for our new total regulator load */
624 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
625 output_uV, current_uA);
627 /* check the new mode is allowed */
628 err = regulator_mode_constrain(rdev, &mode);
629 if (err == 0)
630 rdev->desc->ops->set_mode(rdev, mode);
633 static int suspend_set_state(struct regulator_dev *rdev,
634 struct regulator_state *rstate)
636 int ret = 0;
637 bool can_set_state;
639 can_set_state = rdev->desc->ops->set_suspend_enable &&
640 rdev->desc->ops->set_suspend_disable;
642 /* If we have no suspend mode configration don't set anything;
643 * only warn if the driver actually makes the suspend mode
644 * configurable.
646 if (!rstate->enabled && !rstate->disabled) {
647 if (can_set_state)
648 rdev_warn(rdev, "No configuration\n");
649 return 0;
652 if (rstate->enabled && rstate->disabled) {
653 rdev_err(rdev, "invalid configuration\n");
654 return -EINVAL;
657 if (!can_set_state) {
658 rdev_err(rdev, "no way to set suspend state\n");
659 return -EINVAL;
662 if (rstate->enabled)
663 ret = rdev->desc->ops->set_suspend_enable(rdev);
664 else
665 ret = rdev->desc->ops->set_suspend_disable(rdev);
666 if (ret < 0) {
667 rdev_err(rdev, "failed to enabled/disable\n");
668 return ret;
671 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
672 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
673 if (ret < 0) {
674 rdev_err(rdev, "failed to set voltage\n");
675 return ret;
679 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
680 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
681 if (ret < 0) {
682 rdev_err(rdev, "failed to set mode\n");
683 return ret;
686 return ret;
689 /* locks held by caller */
690 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
692 if (!rdev->constraints)
693 return -EINVAL;
695 switch (state) {
696 case PM_SUSPEND_STANDBY:
697 return suspend_set_state(rdev,
698 &rdev->constraints->state_standby);
699 case PM_SUSPEND_MEM:
700 return suspend_set_state(rdev,
701 &rdev->constraints->state_mem);
702 case PM_SUSPEND_MAX:
703 return suspend_set_state(rdev,
704 &rdev->constraints->state_disk);
705 default:
706 return -EINVAL;
710 static void print_constraints(struct regulator_dev *rdev)
712 struct regulation_constraints *constraints = rdev->constraints;
713 char buf[80] = "";
714 int count = 0;
715 int ret;
717 if (constraints->min_uV && constraints->max_uV) {
718 if (constraints->min_uV == constraints->max_uV)
719 count += sprintf(buf + count, "%d mV ",
720 constraints->min_uV / 1000);
721 else
722 count += sprintf(buf + count, "%d <--> %d mV ",
723 constraints->min_uV / 1000,
724 constraints->max_uV / 1000);
727 if (!constraints->min_uV ||
728 constraints->min_uV != constraints->max_uV) {
729 ret = _regulator_get_voltage(rdev);
730 if (ret > 0)
731 count += sprintf(buf + count, "at %d mV ", ret / 1000);
734 if (constraints->uV_offset)
735 count += sprintf(buf, "%dmV offset ",
736 constraints->uV_offset / 1000);
738 if (constraints->min_uA && constraints->max_uA) {
739 if (constraints->min_uA == constraints->max_uA)
740 count += sprintf(buf + count, "%d mA ",
741 constraints->min_uA / 1000);
742 else
743 count += sprintf(buf + count, "%d <--> %d mA ",
744 constraints->min_uA / 1000,
745 constraints->max_uA / 1000);
748 if (!constraints->min_uA ||
749 constraints->min_uA != constraints->max_uA) {
750 ret = _regulator_get_current_limit(rdev);
751 if (ret > 0)
752 count += sprintf(buf + count, "at %d mA ", ret / 1000);
755 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
756 count += sprintf(buf + count, "fast ");
757 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
758 count += sprintf(buf + count, "normal ");
759 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
760 count += sprintf(buf + count, "idle ");
761 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
762 count += sprintf(buf + count, "standby");
764 rdev_info(rdev, "%s\n", buf);
767 static int machine_constraints_voltage(struct regulator_dev *rdev,
768 struct regulation_constraints *constraints)
770 struct regulator_ops *ops = rdev->desc->ops;
771 int ret;
773 /* do we need to apply the constraint voltage */
774 if (rdev->constraints->apply_uV &&
775 rdev->constraints->min_uV == rdev->constraints->max_uV) {
776 ret = _regulator_do_set_voltage(rdev,
777 rdev->constraints->min_uV,
778 rdev->constraints->max_uV);
779 if (ret < 0) {
780 rdev_err(rdev, "failed to apply %duV constraint\n",
781 rdev->constraints->min_uV);
782 rdev->constraints = NULL;
783 return ret;
787 /* constrain machine-level voltage specs to fit
788 * the actual range supported by this regulator.
790 if (ops->list_voltage && rdev->desc->n_voltages) {
791 int count = rdev->desc->n_voltages;
792 int i;
793 int min_uV = INT_MAX;
794 int max_uV = INT_MIN;
795 int cmin = constraints->min_uV;
796 int cmax = constraints->max_uV;
798 /* it's safe to autoconfigure fixed-voltage supplies
799 and the constraints are used by list_voltage. */
800 if (count == 1 && !cmin) {
801 cmin = 1;
802 cmax = INT_MAX;
803 constraints->min_uV = cmin;
804 constraints->max_uV = cmax;
807 /* voltage constraints are optional */
808 if ((cmin == 0) && (cmax == 0))
809 return 0;
811 /* else require explicit machine-level constraints */
812 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
813 rdev_err(rdev, "invalid voltage constraints\n");
814 return -EINVAL;
817 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
818 for (i = 0; i < count; i++) {
819 int value;
821 value = ops->list_voltage(rdev, i);
822 if (value <= 0)
823 continue;
825 /* maybe adjust [min_uV..max_uV] */
826 if (value >= cmin && value < min_uV)
827 min_uV = value;
828 if (value <= cmax && value > max_uV)
829 max_uV = value;
832 /* final: [min_uV..max_uV] valid iff constraints valid */
833 if (max_uV < min_uV) {
834 rdev_err(rdev, "unsupportable voltage constraints\n");
835 return -EINVAL;
838 /* use regulator's subset of machine constraints */
839 if (constraints->min_uV < min_uV) {
840 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
841 constraints->min_uV, min_uV);
842 constraints->min_uV = min_uV;
844 if (constraints->max_uV > max_uV) {
845 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
846 constraints->max_uV, max_uV);
847 constraints->max_uV = max_uV;
851 return 0;
855 * set_machine_constraints - sets regulator constraints
856 * @rdev: regulator source
857 * @constraints: constraints to apply
859 * Allows platform initialisation code to define and constrain
860 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
861 * Constraints *must* be set by platform code in order for some
862 * regulator operations to proceed i.e. set_voltage, set_current_limit,
863 * set_mode.
865 static int set_machine_constraints(struct regulator_dev *rdev,
866 const struct regulation_constraints *constraints)
868 int ret = 0;
869 struct regulator_ops *ops = rdev->desc->ops;
871 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
872 GFP_KERNEL);
873 if (!rdev->constraints)
874 return -ENOMEM;
876 ret = machine_constraints_voltage(rdev, rdev->constraints);
877 if (ret != 0)
878 goto out;
880 /* do we need to setup our suspend state */
881 if (constraints->initial_state) {
882 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
883 if (ret < 0) {
884 rdev_err(rdev, "failed to set suspend state\n");
885 rdev->constraints = NULL;
886 goto out;
890 if (constraints->initial_mode) {
891 if (!ops->set_mode) {
892 rdev_err(rdev, "no set_mode operation\n");
893 ret = -EINVAL;
894 goto out;
897 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
898 if (ret < 0) {
899 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
900 goto out;
904 /* If the constraints say the regulator should be on at this point
905 * and we have control then make sure it is enabled.
907 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
908 ops->enable) {
909 ret = ops->enable(rdev);
910 if (ret < 0) {
911 rdev_err(rdev, "failed to enable\n");
912 rdev->constraints = NULL;
913 goto out;
917 print_constraints(rdev);
918 out:
919 return ret;
923 * set_supply - set regulator supply regulator
924 * @rdev: regulator name
925 * @supply_rdev: supply regulator name
927 * Called by platform initialisation code to set the supply regulator for this
928 * regulator. This ensures that a regulators supply will also be enabled by the
929 * core if it's child is enabled.
931 static int set_supply(struct regulator_dev *rdev,
932 struct regulator_dev *supply_rdev)
934 int err;
936 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
937 "supply");
938 if (err) {
939 rdev_err(rdev, "could not add device link %s err %d\n",
940 supply_rdev->dev.kobj.name, err);
941 goto out;
943 rdev->supply = supply_rdev;
944 list_add(&rdev->slist, &supply_rdev->supply_list);
945 out:
946 return err;
950 * set_consumer_device_supply - Bind a regulator to a symbolic supply
951 * @rdev: regulator source
952 * @consumer_dev: device the supply applies to
953 * @consumer_dev_name: dev_name() string for device supply applies to
954 * @supply: symbolic name for supply
956 * Allows platform initialisation code to map physical regulator
957 * sources to symbolic names for supplies for use by devices. Devices
958 * should use these symbolic names to request regulators, avoiding the
959 * need to provide board-specific regulator names as platform data.
961 * Only one of consumer_dev and consumer_dev_name may be specified.
963 static int set_consumer_device_supply(struct regulator_dev *rdev,
964 struct device *consumer_dev, const char *consumer_dev_name,
965 const char *supply)
967 struct regulator_map *node;
968 int has_dev;
970 if (consumer_dev && consumer_dev_name)
971 return -EINVAL;
973 if (!consumer_dev_name && consumer_dev)
974 consumer_dev_name = dev_name(consumer_dev);
976 if (supply == NULL)
977 return -EINVAL;
979 if (consumer_dev_name != NULL)
980 has_dev = 1;
981 else
982 has_dev = 0;
984 list_for_each_entry(node, &regulator_map_list, list) {
985 if (node->dev_name && consumer_dev_name) {
986 if (strcmp(node->dev_name, consumer_dev_name) != 0)
987 continue;
988 } else if (node->dev_name || consumer_dev_name) {
989 continue;
992 if (strcmp(node->supply, supply) != 0)
993 continue;
995 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
996 dev_name(&node->regulator->dev),
997 node->regulator->desc->name,
998 supply,
999 dev_name(&rdev->dev), rdev_get_name(rdev));
1000 return -EBUSY;
1003 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1004 if (node == NULL)
1005 return -ENOMEM;
1007 node->regulator = rdev;
1008 node->supply = supply;
1010 if (has_dev) {
1011 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1012 if (node->dev_name == NULL) {
1013 kfree(node);
1014 return -ENOMEM;
1018 list_add(&node->list, &regulator_map_list);
1019 return 0;
1022 static void unset_regulator_supplies(struct regulator_dev *rdev)
1024 struct regulator_map *node, *n;
1026 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1027 if (rdev == node->regulator) {
1028 list_del(&node->list);
1029 kfree(node->dev_name);
1030 kfree(node);
1035 #define REG_STR_SIZE 32
1037 static struct regulator *create_regulator(struct regulator_dev *rdev,
1038 struct device *dev,
1039 const char *supply_name)
1041 struct regulator *regulator;
1042 char buf[REG_STR_SIZE];
1043 int err, size;
1045 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1046 if (regulator == NULL)
1047 return NULL;
1049 mutex_lock(&rdev->mutex);
1050 regulator->rdev = rdev;
1051 list_add(&regulator->list, &rdev->consumer_list);
1053 if (dev) {
1054 /* create a 'requested_microamps_name' sysfs entry */
1055 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1056 supply_name);
1057 if (size >= REG_STR_SIZE)
1058 goto overflow_err;
1060 regulator->dev = dev;
1061 sysfs_attr_init(&regulator->dev_attr.attr);
1062 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1063 if (regulator->dev_attr.attr.name == NULL)
1064 goto attr_name_err;
1066 regulator->dev_attr.attr.mode = 0444;
1067 regulator->dev_attr.show = device_requested_uA_show;
1068 err = device_create_file(dev, &regulator->dev_attr);
1069 if (err < 0) {
1070 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1071 goto attr_name_err;
1074 /* also add a link to the device sysfs entry */
1075 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1076 dev->kobj.name, supply_name);
1077 if (size >= REG_STR_SIZE)
1078 goto attr_err;
1080 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1081 if (regulator->supply_name == NULL)
1082 goto attr_err;
1084 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1085 buf);
1086 if (err) {
1087 rdev_warn(rdev, "could not add device link %s err %d\n",
1088 dev->kobj.name, err);
1089 goto link_name_err;
1092 mutex_unlock(&rdev->mutex);
1093 return regulator;
1094 link_name_err:
1095 kfree(regulator->supply_name);
1096 attr_err:
1097 device_remove_file(regulator->dev, &regulator->dev_attr);
1098 attr_name_err:
1099 kfree(regulator->dev_attr.attr.name);
1100 overflow_err:
1101 list_del(&regulator->list);
1102 kfree(regulator);
1103 mutex_unlock(&rdev->mutex);
1104 return NULL;
1107 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1109 if (!rdev->desc->ops->enable_time)
1110 return 0;
1111 return rdev->desc->ops->enable_time(rdev);
1114 /* Internal regulator request function */
1115 static struct regulator *_regulator_get(struct device *dev, const char *id,
1116 int exclusive)
1118 struct regulator_dev *rdev;
1119 struct regulator_map *map;
1120 struct regulator *regulator = ERR_PTR(-ENODEV);
1121 const char *devname = NULL;
1122 int ret;
1124 if (id == NULL) {
1125 pr_err("get() with no identifier\n");
1126 return regulator;
1129 if (dev)
1130 devname = dev_name(dev);
1132 mutex_lock(&regulator_list_mutex);
1134 list_for_each_entry(map, &regulator_map_list, list) {
1135 /* If the mapping has a device set up it must match */
1136 if (map->dev_name &&
1137 (!devname || strcmp(map->dev_name, devname)))
1138 continue;
1140 if (strcmp(map->supply, id) == 0) {
1141 rdev = map->regulator;
1142 goto found;
1146 if (board_wants_dummy_regulator) {
1147 rdev = dummy_regulator_rdev;
1148 goto found;
1151 #ifdef CONFIG_REGULATOR_DUMMY
1152 if (!devname)
1153 devname = "deviceless";
1155 /* If the board didn't flag that it was fully constrained then
1156 * substitute in a dummy regulator so consumers can continue.
1158 if (!has_full_constraints) {
1159 pr_warn("%s supply %s not found, using dummy regulator\n",
1160 devname, id);
1161 rdev = dummy_regulator_rdev;
1162 goto found;
1164 #endif
1166 mutex_unlock(&regulator_list_mutex);
1167 return regulator;
1169 found:
1170 if (rdev->exclusive) {
1171 regulator = ERR_PTR(-EPERM);
1172 goto out;
1175 if (exclusive && rdev->open_count) {
1176 regulator = ERR_PTR(-EBUSY);
1177 goto out;
1180 if (!try_module_get(rdev->owner))
1181 goto out;
1183 regulator = create_regulator(rdev, dev, id);
1184 if (regulator == NULL) {
1185 regulator = ERR_PTR(-ENOMEM);
1186 module_put(rdev->owner);
1189 rdev->open_count++;
1190 if (exclusive) {
1191 rdev->exclusive = 1;
1193 ret = _regulator_is_enabled(rdev);
1194 if (ret > 0)
1195 rdev->use_count = 1;
1196 else
1197 rdev->use_count = 0;
1200 out:
1201 mutex_unlock(&regulator_list_mutex);
1203 return regulator;
1207 * regulator_get - lookup and obtain a reference to a regulator.
1208 * @dev: device for regulator "consumer"
1209 * @id: Supply name or regulator ID.
1211 * Returns a struct regulator corresponding to the regulator producer,
1212 * or IS_ERR() condition containing errno.
1214 * Use of supply names configured via regulator_set_device_supply() is
1215 * strongly encouraged. It is recommended that the supply name used
1216 * should match the name used for the supply and/or the relevant
1217 * device pins in the datasheet.
1219 struct regulator *regulator_get(struct device *dev, const char *id)
1221 return _regulator_get(dev, id, 0);
1223 EXPORT_SYMBOL_GPL(regulator_get);
1226 * regulator_get_exclusive - obtain exclusive access to a regulator.
1227 * @dev: device for regulator "consumer"
1228 * @id: Supply name or regulator ID.
1230 * Returns a struct regulator corresponding to the regulator producer,
1231 * or IS_ERR() condition containing errno. Other consumers will be
1232 * unable to obtain this reference is held and the use count for the
1233 * regulator will be initialised to reflect the current state of the
1234 * regulator.
1236 * This is intended for use by consumers which cannot tolerate shared
1237 * use of the regulator such as those which need to force the
1238 * regulator off for correct operation of the hardware they are
1239 * controlling.
1241 * Use of supply names configured via regulator_set_device_supply() is
1242 * strongly encouraged. It is recommended that the supply name used
1243 * should match the name used for the supply and/or the relevant
1244 * device pins in the datasheet.
1246 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1248 return _regulator_get(dev, id, 1);
1250 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1253 * regulator_put - "free" the regulator source
1254 * @regulator: regulator source
1256 * Note: drivers must ensure that all regulator_enable calls made on this
1257 * regulator source are balanced by regulator_disable calls prior to calling
1258 * this function.
1260 void regulator_put(struct regulator *regulator)
1262 struct regulator_dev *rdev;
1264 if (regulator == NULL || IS_ERR(regulator))
1265 return;
1267 mutex_lock(&regulator_list_mutex);
1268 rdev = regulator->rdev;
1270 /* remove any sysfs entries */
1271 if (regulator->dev) {
1272 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1273 kfree(regulator->supply_name);
1274 device_remove_file(regulator->dev, &regulator->dev_attr);
1275 kfree(regulator->dev_attr.attr.name);
1277 list_del(&regulator->list);
1278 kfree(regulator);
1280 rdev->open_count--;
1281 rdev->exclusive = 0;
1283 module_put(rdev->owner);
1284 mutex_unlock(&regulator_list_mutex);
1286 EXPORT_SYMBOL_GPL(regulator_put);
1288 static int _regulator_can_change_status(struct regulator_dev *rdev)
1290 if (!rdev->constraints)
1291 return 0;
1293 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1294 return 1;
1295 else
1296 return 0;
1299 /* locks held by regulator_enable() */
1300 static int _regulator_enable(struct regulator_dev *rdev)
1302 int ret, delay;
1304 if (rdev->use_count == 0) {
1305 /* do we need to enable the supply regulator first */
1306 if (rdev->supply) {
1307 mutex_lock(&rdev->supply->mutex);
1308 ret = _regulator_enable(rdev->supply);
1309 mutex_unlock(&rdev->supply->mutex);
1310 if (ret < 0) {
1311 rdev_err(rdev, "failed to enable: %d\n", ret);
1312 return ret;
1317 /* check voltage and requested load before enabling */
1318 if (rdev->constraints &&
1319 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1320 drms_uA_update(rdev);
1322 if (rdev->use_count == 0) {
1323 /* The regulator may on if it's not switchable or left on */
1324 ret = _regulator_is_enabled(rdev);
1325 if (ret == -EINVAL || ret == 0) {
1326 if (!_regulator_can_change_status(rdev))
1327 return -EPERM;
1329 if (!rdev->desc->ops->enable)
1330 return -EINVAL;
1332 /* Query before enabling in case configuration
1333 * dependent. */
1334 ret = _regulator_get_enable_time(rdev);
1335 if (ret >= 0) {
1336 delay = ret;
1337 } else {
1338 rdev_warn(rdev, "enable_time() failed: %d\n",
1339 ret);
1340 delay = 0;
1343 trace_regulator_enable(rdev_get_name(rdev));
1345 /* Allow the regulator to ramp; it would be useful
1346 * to extend this for bulk operations so that the
1347 * regulators can ramp together. */
1348 ret = rdev->desc->ops->enable(rdev);
1349 if (ret < 0)
1350 return ret;
1352 trace_regulator_enable_delay(rdev_get_name(rdev));
1354 if (delay >= 1000) {
1355 mdelay(delay / 1000);
1356 udelay(delay % 1000);
1357 } else if (delay) {
1358 udelay(delay);
1361 trace_regulator_enable_complete(rdev_get_name(rdev));
1363 } else if (ret < 0) {
1364 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1365 return ret;
1367 /* Fallthrough on positive return values - already enabled */
1370 rdev->use_count++;
1372 return 0;
1376 * regulator_enable - enable regulator output
1377 * @regulator: regulator source
1379 * Request that the regulator be enabled with the regulator output at
1380 * the predefined voltage or current value. Calls to regulator_enable()
1381 * must be balanced with calls to regulator_disable().
1383 * NOTE: the output value can be set by other drivers, boot loader or may be
1384 * hardwired in the regulator.
1386 int regulator_enable(struct regulator *regulator)
1388 struct regulator_dev *rdev = regulator->rdev;
1389 int ret = 0;
1391 mutex_lock(&rdev->mutex);
1392 ret = _regulator_enable(rdev);
1393 mutex_unlock(&rdev->mutex);
1394 return ret;
1396 EXPORT_SYMBOL_GPL(regulator_enable);
1398 /* locks held by regulator_disable() */
1399 static int _regulator_disable(struct regulator_dev *rdev,
1400 struct regulator_dev **supply_rdev_ptr)
1402 int ret = 0;
1403 *supply_rdev_ptr = NULL;
1405 if (WARN(rdev->use_count <= 0,
1406 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1407 return -EIO;
1409 /* are we the last user and permitted to disable ? */
1410 if (rdev->use_count == 1 &&
1411 (rdev->constraints && !rdev->constraints->always_on)) {
1413 /* we are last user */
1414 if (_regulator_can_change_status(rdev) &&
1415 rdev->desc->ops->disable) {
1416 trace_regulator_disable(rdev_get_name(rdev));
1418 ret = rdev->desc->ops->disable(rdev);
1419 if (ret < 0) {
1420 rdev_err(rdev, "failed to disable\n");
1421 return ret;
1424 trace_regulator_disable_complete(rdev_get_name(rdev));
1426 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1427 NULL);
1430 /* decrease our supplies ref count and disable if required */
1431 *supply_rdev_ptr = rdev->supply;
1433 rdev->use_count = 0;
1434 } else if (rdev->use_count > 1) {
1436 if (rdev->constraints &&
1437 (rdev->constraints->valid_ops_mask &
1438 REGULATOR_CHANGE_DRMS))
1439 drms_uA_update(rdev);
1441 rdev->use_count--;
1443 return ret;
1447 * regulator_disable - disable regulator output
1448 * @regulator: regulator source
1450 * Disable the regulator output voltage or current. Calls to
1451 * regulator_enable() must be balanced with calls to
1452 * regulator_disable().
1454 * NOTE: this will only disable the regulator output if no other consumer
1455 * devices have it enabled, the regulator device supports disabling and
1456 * machine constraints permit this operation.
1458 int regulator_disable(struct regulator *regulator)
1460 struct regulator_dev *rdev = regulator->rdev;
1461 struct regulator_dev *supply_rdev = NULL;
1462 int ret = 0;
1464 mutex_lock(&rdev->mutex);
1465 ret = _regulator_disable(rdev, &supply_rdev);
1466 mutex_unlock(&rdev->mutex);
1468 /* decrease our supplies ref count and disable if required */
1469 while (supply_rdev != NULL) {
1470 rdev = supply_rdev;
1472 mutex_lock(&rdev->mutex);
1473 _regulator_disable(rdev, &supply_rdev);
1474 mutex_unlock(&rdev->mutex);
1477 return ret;
1479 EXPORT_SYMBOL_GPL(regulator_disable);
1481 /* locks held by regulator_force_disable() */
1482 static int _regulator_force_disable(struct regulator_dev *rdev,
1483 struct regulator_dev **supply_rdev_ptr)
1485 int ret = 0;
1487 /* force disable */
1488 if (rdev->desc->ops->disable) {
1489 /* ah well, who wants to live forever... */
1490 ret = rdev->desc->ops->disable(rdev);
1491 if (ret < 0) {
1492 rdev_err(rdev, "failed to force disable\n");
1493 return ret;
1495 /* notify other consumers that power has been forced off */
1496 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1497 REGULATOR_EVENT_DISABLE, NULL);
1500 /* decrease our supplies ref count and disable if required */
1501 *supply_rdev_ptr = rdev->supply;
1503 rdev->use_count = 0;
1504 return ret;
1508 * regulator_force_disable - force disable regulator output
1509 * @regulator: regulator source
1511 * Forcibly disable the regulator output voltage or current.
1512 * NOTE: this *will* disable the regulator output even if other consumer
1513 * devices have it enabled. This should be used for situations when device
1514 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1516 int regulator_force_disable(struct regulator *regulator)
1518 struct regulator_dev *rdev = regulator->rdev;
1519 struct regulator_dev *supply_rdev = NULL;
1520 int ret;
1522 mutex_lock(&rdev->mutex);
1523 regulator->uA_load = 0;
1524 ret = _regulator_force_disable(rdev, &supply_rdev);
1525 mutex_unlock(&rdev->mutex);
1527 if (supply_rdev)
1528 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1530 return ret;
1532 EXPORT_SYMBOL_GPL(regulator_force_disable);
1534 static int _regulator_is_enabled(struct regulator_dev *rdev)
1536 /* If we don't know then assume that the regulator is always on */
1537 if (!rdev->desc->ops->is_enabled)
1538 return 1;
1540 return rdev->desc->ops->is_enabled(rdev);
1544 * regulator_is_enabled - is the regulator output enabled
1545 * @regulator: regulator source
1547 * Returns positive if the regulator driver backing the source/client
1548 * has requested that the device be enabled, zero if it hasn't, else a
1549 * negative errno code.
1551 * Note that the device backing this regulator handle can have multiple
1552 * users, so it might be enabled even if regulator_enable() was never
1553 * called for this particular source.
1555 int regulator_is_enabled(struct regulator *regulator)
1557 int ret;
1559 mutex_lock(&regulator->rdev->mutex);
1560 ret = _regulator_is_enabled(regulator->rdev);
1561 mutex_unlock(&regulator->rdev->mutex);
1563 return ret;
1565 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1568 * regulator_count_voltages - count regulator_list_voltage() selectors
1569 * @regulator: regulator source
1571 * Returns number of selectors, or negative errno. Selectors are
1572 * numbered starting at zero, and typically correspond to bitfields
1573 * in hardware registers.
1575 int regulator_count_voltages(struct regulator *regulator)
1577 struct regulator_dev *rdev = regulator->rdev;
1579 return rdev->desc->n_voltages ? : -EINVAL;
1581 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1584 * regulator_list_voltage - enumerate supported voltages
1585 * @regulator: regulator source
1586 * @selector: identify voltage to list
1587 * Context: can sleep
1589 * Returns a voltage that can be passed to @regulator_set_voltage(),
1590 * zero if this selector code can't be used on this system, or a
1591 * negative errno.
1593 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1595 struct regulator_dev *rdev = regulator->rdev;
1596 struct regulator_ops *ops = rdev->desc->ops;
1597 int ret;
1599 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1600 return -EINVAL;
1602 mutex_lock(&rdev->mutex);
1603 ret = ops->list_voltage(rdev, selector);
1604 mutex_unlock(&rdev->mutex);
1606 if (ret > 0) {
1607 if (ret < rdev->constraints->min_uV)
1608 ret = 0;
1609 else if (ret > rdev->constraints->max_uV)
1610 ret = 0;
1613 return ret;
1615 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1618 * regulator_is_supported_voltage - check if a voltage range can be supported
1620 * @regulator: Regulator to check.
1621 * @min_uV: Minimum required voltage in uV.
1622 * @max_uV: Maximum required voltage in uV.
1624 * Returns a boolean or a negative error code.
1626 int regulator_is_supported_voltage(struct regulator *regulator,
1627 int min_uV, int max_uV)
1629 int i, voltages, ret;
1631 ret = regulator_count_voltages(regulator);
1632 if (ret < 0)
1633 return ret;
1634 voltages = ret;
1636 for (i = 0; i < voltages; i++) {
1637 ret = regulator_list_voltage(regulator, i);
1639 if (ret >= min_uV && ret <= max_uV)
1640 return 1;
1643 return 0;
1646 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1647 int min_uV, int max_uV)
1649 int ret;
1650 int delay = 0;
1651 unsigned int selector;
1653 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1655 min_uV += rdev->constraints->uV_offset;
1656 max_uV += rdev->constraints->uV_offset;
1658 if (rdev->desc->ops->set_voltage) {
1659 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1660 &selector);
1662 if (rdev->desc->ops->list_voltage)
1663 selector = rdev->desc->ops->list_voltage(rdev,
1664 selector);
1665 else
1666 selector = -1;
1667 } else if (rdev->desc->ops->set_voltage_sel) {
1668 int best_val = INT_MAX;
1669 int i;
1671 selector = 0;
1673 /* Find the smallest voltage that falls within the specified
1674 * range.
1676 for (i = 0; i < rdev->desc->n_voltages; i++) {
1677 ret = rdev->desc->ops->list_voltage(rdev, i);
1678 if (ret < 0)
1679 continue;
1681 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1682 best_val = ret;
1683 selector = i;
1688 * If we can't obtain the old selector there is not enough
1689 * info to call set_voltage_time_sel().
1691 if (rdev->desc->ops->set_voltage_time_sel &&
1692 rdev->desc->ops->get_voltage_sel) {
1693 unsigned int old_selector = 0;
1695 ret = rdev->desc->ops->get_voltage_sel(rdev);
1696 if (ret < 0)
1697 return ret;
1698 old_selector = ret;
1699 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1700 old_selector, selector);
1703 if (best_val != INT_MAX) {
1704 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1705 selector = best_val;
1706 } else {
1707 ret = -EINVAL;
1709 } else {
1710 ret = -EINVAL;
1713 /* Insert any necessary delays */
1714 if (delay >= 1000) {
1715 mdelay(delay / 1000);
1716 udelay(delay % 1000);
1717 } else if (delay) {
1718 udelay(delay);
1721 if (ret == 0)
1722 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1723 NULL);
1725 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1727 return ret;
1731 * regulator_set_voltage - set regulator output voltage
1732 * @regulator: regulator source
1733 * @min_uV: Minimum required voltage in uV
1734 * @max_uV: Maximum acceptable voltage in uV
1736 * Sets a voltage regulator to the desired output voltage. This can be set
1737 * during any regulator state. IOW, regulator can be disabled or enabled.
1739 * If the regulator is enabled then the voltage will change to the new value
1740 * immediately otherwise if the regulator is disabled the regulator will
1741 * output at the new voltage when enabled.
1743 * NOTE: If the regulator is shared between several devices then the lowest
1744 * request voltage that meets the system constraints will be used.
1745 * Regulator system constraints must be set for this regulator before
1746 * calling this function otherwise this call will fail.
1748 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1750 struct regulator_dev *rdev = regulator->rdev;
1751 int ret = 0;
1753 mutex_lock(&rdev->mutex);
1755 /* If we're setting the same range as last time the change
1756 * should be a noop (some cpufreq implementations use the same
1757 * voltage for multiple frequencies, for example).
1759 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1760 goto out;
1762 /* sanity check */
1763 if (!rdev->desc->ops->set_voltage &&
1764 !rdev->desc->ops->set_voltage_sel) {
1765 ret = -EINVAL;
1766 goto out;
1769 /* constraints check */
1770 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1771 if (ret < 0)
1772 goto out;
1773 regulator->min_uV = min_uV;
1774 regulator->max_uV = max_uV;
1776 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1777 if (ret < 0)
1778 goto out;
1780 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1782 out:
1783 mutex_unlock(&rdev->mutex);
1784 return ret;
1786 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1789 * regulator_set_voltage_time - get raise/fall time
1790 * @regulator: regulator source
1791 * @old_uV: starting voltage in microvolts
1792 * @new_uV: target voltage in microvolts
1794 * Provided with the starting and ending voltage, this function attempts to
1795 * calculate the time in microseconds required to rise or fall to this new
1796 * voltage.
1798 int regulator_set_voltage_time(struct regulator *regulator,
1799 int old_uV, int new_uV)
1801 struct regulator_dev *rdev = regulator->rdev;
1802 struct regulator_ops *ops = rdev->desc->ops;
1803 int old_sel = -1;
1804 int new_sel = -1;
1805 int voltage;
1806 int i;
1808 /* Currently requires operations to do this */
1809 if (!ops->list_voltage || !ops->set_voltage_time_sel
1810 || !rdev->desc->n_voltages)
1811 return -EINVAL;
1813 for (i = 0; i < rdev->desc->n_voltages; i++) {
1814 /* We only look for exact voltage matches here */
1815 voltage = regulator_list_voltage(regulator, i);
1816 if (voltage < 0)
1817 return -EINVAL;
1818 if (voltage == 0)
1819 continue;
1820 if (voltage == old_uV)
1821 old_sel = i;
1822 if (voltage == new_uV)
1823 new_sel = i;
1826 if (old_sel < 0 || new_sel < 0)
1827 return -EINVAL;
1829 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1831 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1834 * regulator_sync_voltage - re-apply last regulator output voltage
1835 * @regulator: regulator source
1837 * Re-apply the last configured voltage. This is intended to be used
1838 * where some external control source the consumer is cooperating with
1839 * has caused the configured voltage to change.
1841 int regulator_sync_voltage(struct regulator *regulator)
1843 struct regulator_dev *rdev = regulator->rdev;
1844 int ret, min_uV, max_uV;
1846 mutex_lock(&rdev->mutex);
1848 if (!rdev->desc->ops->set_voltage &&
1849 !rdev->desc->ops->set_voltage_sel) {
1850 ret = -EINVAL;
1851 goto out;
1854 /* This is only going to work if we've had a voltage configured. */
1855 if (!regulator->min_uV && !regulator->max_uV) {
1856 ret = -EINVAL;
1857 goto out;
1860 min_uV = regulator->min_uV;
1861 max_uV = regulator->max_uV;
1863 /* This should be a paranoia check... */
1864 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1865 if (ret < 0)
1866 goto out;
1868 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1869 if (ret < 0)
1870 goto out;
1872 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1874 out:
1875 mutex_unlock(&rdev->mutex);
1876 return ret;
1878 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1880 static int _regulator_get_voltage(struct regulator_dev *rdev)
1882 int sel, ret;
1884 if (rdev->desc->ops->get_voltage_sel) {
1885 sel = rdev->desc->ops->get_voltage_sel(rdev);
1886 if (sel < 0)
1887 return sel;
1888 ret = rdev->desc->ops->list_voltage(rdev, sel);
1889 } else if (rdev->desc->ops->get_voltage) {
1890 ret = rdev->desc->ops->get_voltage(rdev);
1891 } else {
1892 return -EINVAL;
1895 if (ret < 0)
1896 return ret;
1897 return ret - rdev->constraints->uV_offset;
1901 * regulator_get_voltage - get regulator output voltage
1902 * @regulator: regulator source
1904 * This returns the current regulator voltage in uV.
1906 * NOTE: If the regulator is disabled it will return the voltage value. This
1907 * function should not be used to determine regulator state.
1909 int regulator_get_voltage(struct regulator *regulator)
1911 int ret;
1913 mutex_lock(&regulator->rdev->mutex);
1915 ret = _regulator_get_voltage(regulator->rdev);
1917 mutex_unlock(&regulator->rdev->mutex);
1919 return ret;
1921 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1924 * regulator_set_current_limit - set regulator output current limit
1925 * @regulator: regulator source
1926 * @min_uA: Minimuum supported current in uA
1927 * @max_uA: Maximum supported current in uA
1929 * Sets current sink to the desired output current. This can be set during
1930 * any regulator state. IOW, regulator can be disabled or enabled.
1932 * If the regulator is enabled then the current will change to the new value
1933 * immediately otherwise if the regulator is disabled the regulator will
1934 * output at the new current when enabled.
1936 * NOTE: Regulator system constraints must be set for this regulator before
1937 * calling this function otherwise this call will fail.
1939 int regulator_set_current_limit(struct regulator *regulator,
1940 int min_uA, int max_uA)
1942 struct regulator_dev *rdev = regulator->rdev;
1943 int ret;
1945 mutex_lock(&rdev->mutex);
1947 /* sanity check */
1948 if (!rdev->desc->ops->set_current_limit) {
1949 ret = -EINVAL;
1950 goto out;
1953 /* constraints check */
1954 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1955 if (ret < 0)
1956 goto out;
1958 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1959 out:
1960 mutex_unlock(&rdev->mutex);
1961 return ret;
1963 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1965 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1967 int ret;
1969 mutex_lock(&rdev->mutex);
1971 /* sanity check */
1972 if (!rdev->desc->ops->get_current_limit) {
1973 ret = -EINVAL;
1974 goto out;
1977 ret = rdev->desc->ops->get_current_limit(rdev);
1978 out:
1979 mutex_unlock(&rdev->mutex);
1980 return ret;
1984 * regulator_get_current_limit - get regulator output current
1985 * @regulator: regulator source
1987 * This returns the current supplied by the specified current sink in uA.
1989 * NOTE: If the regulator is disabled it will return the current value. This
1990 * function should not be used to determine regulator state.
1992 int regulator_get_current_limit(struct regulator *regulator)
1994 return _regulator_get_current_limit(regulator->rdev);
1996 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1999 * regulator_set_mode - set regulator operating mode
2000 * @regulator: regulator source
2001 * @mode: operating mode - one of the REGULATOR_MODE constants
2003 * Set regulator operating mode to increase regulator efficiency or improve
2004 * regulation performance.
2006 * NOTE: Regulator system constraints must be set for this regulator before
2007 * calling this function otherwise this call will fail.
2009 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2011 struct regulator_dev *rdev = regulator->rdev;
2012 int ret;
2013 int regulator_curr_mode;
2015 mutex_lock(&rdev->mutex);
2017 /* sanity check */
2018 if (!rdev->desc->ops->set_mode) {
2019 ret = -EINVAL;
2020 goto out;
2023 /* return if the same mode is requested */
2024 if (rdev->desc->ops->get_mode) {
2025 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2026 if (regulator_curr_mode == mode) {
2027 ret = 0;
2028 goto out;
2032 /* constraints check */
2033 ret = regulator_mode_constrain(rdev, &mode);
2034 if (ret < 0)
2035 goto out;
2037 ret = rdev->desc->ops->set_mode(rdev, mode);
2038 out:
2039 mutex_unlock(&rdev->mutex);
2040 return ret;
2042 EXPORT_SYMBOL_GPL(regulator_set_mode);
2044 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2046 int ret;
2048 mutex_lock(&rdev->mutex);
2050 /* sanity check */
2051 if (!rdev->desc->ops->get_mode) {
2052 ret = -EINVAL;
2053 goto out;
2056 ret = rdev->desc->ops->get_mode(rdev);
2057 out:
2058 mutex_unlock(&rdev->mutex);
2059 return ret;
2063 * regulator_get_mode - get regulator operating mode
2064 * @regulator: regulator source
2066 * Get the current regulator operating mode.
2068 unsigned int regulator_get_mode(struct regulator *regulator)
2070 return _regulator_get_mode(regulator->rdev);
2072 EXPORT_SYMBOL_GPL(regulator_get_mode);
2075 * regulator_set_optimum_mode - set regulator optimum operating mode
2076 * @regulator: regulator source
2077 * @uA_load: load current
2079 * Notifies the regulator core of a new device load. This is then used by
2080 * DRMS (if enabled by constraints) to set the most efficient regulator
2081 * operating mode for the new regulator loading.
2083 * Consumer devices notify their supply regulator of the maximum power
2084 * they will require (can be taken from device datasheet in the power
2085 * consumption tables) when they change operational status and hence power
2086 * state. Examples of operational state changes that can affect power
2087 * consumption are :-
2089 * o Device is opened / closed.
2090 * o Device I/O is about to begin or has just finished.
2091 * o Device is idling in between work.
2093 * This information is also exported via sysfs to userspace.
2095 * DRMS will sum the total requested load on the regulator and change
2096 * to the most efficient operating mode if platform constraints allow.
2098 * Returns the new regulator mode or error.
2100 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2102 struct regulator_dev *rdev = regulator->rdev;
2103 struct regulator *consumer;
2104 int ret, output_uV, input_uV, total_uA_load = 0;
2105 unsigned int mode;
2107 mutex_lock(&rdev->mutex);
2110 * first check to see if we can set modes at all, otherwise just
2111 * tell the consumer everything is OK.
2113 regulator->uA_load = uA_load;
2114 ret = regulator_check_drms(rdev);
2115 if (ret < 0) {
2116 ret = 0;
2117 goto out;
2120 if (!rdev->desc->ops->get_optimum_mode)
2121 goto out;
2124 * we can actually do this so any errors are indicators of
2125 * potential real failure.
2127 ret = -EINVAL;
2129 /* get output voltage */
2130 output_uV = _regulator_get_voltage(rdev);
2131 if (output_uV <= 0) {
2132 rdev_err(rdev, "invalid output voltage found\n");
2133 goto out;
2136 /* get input voltage */
2137 input_uV = 0;
2138 if (rdev->supply)
2139 input_uV = _regulator_get_voltage(rdev->supply);
2140 if (input_uV <= 0)
2141 input_uV = rdev->constraints->input_uV;
2142 if (input_uV <= 0) {
2143 rdev_err(rdev, "invalid input voltage found\n");
2144 goto out;
2147 /* calc total requested load for this regulator */
2148 list_for_each_entry(consumer, &rdev->consumer_list, list)
2149 total_uA_load += consumer->uA_load;
2151 mode = rdev->desc->ops->get_optimum_mode(rdev,
2152 input_uV, output_uV,
2153 total_uA_load);
2154 ret = regulator_mode_constrain(rdev, &mode);
2155 if (ret < 0) {
2156 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2157 total_uA_load, input_uV, output_uV);
2158 goto out;
2161 ret = rdev->desc->ops->set_mode(rdev, mode);
2162 if (ret < 0) {
2163 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2164 goto out;
2166 ret = mode;
2167 out:
2168 mutex_unlock(&rdev->mutex);
2169 return ret;
2171 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2174 * regulator_register_notifier - register regulator event notifier
2175 * @regulator: regulator source
2176 * @nb: notifier block
2178 * Register notifier block to receive regulator events.
2180 int regulator_register_notifier(struct regulator *regulator,
2181 struct notifier_block *nb)
2183 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2184 nb);
2186 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2189 * regulator_unregister_notifier - unregister regulator event notifier
2190 * @regulator: regulator source
2191 * @nb: notifier block
2193 * Unregister regulator event notifier block.
2195 int regulator_unregister_notifier(struct regulator *regulator,
2196 struct notifier_block *nb)
2198 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2199 nb);
2201 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2203 /* notify regulator consumers and downstream regulator consumers.
2204 * Note mutex must be held by caller.
2206 static void _notifier_call_chain(struct regulator_dev *rdev,
2207 unsigned long event, void *data)
2209 struct regulator_dev *_rdev;
2211 /* call rdev chain first */
2212 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2214 /* now notify regulator we supply */
2215 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2216 mutex_lock(&_rdev->mutex);
2217 _notifier_call_chain(_rdev, event, data);
2218 mutex_unlock(&_rdev->mutex);
2223 * regulator_bulk_get - get multiple regulator consumers
2225 * @dev: Device to supply
2226 * @num_consumers: Number of consumers to register
2227 * @consumers: Configuration of consumers; clients are stored here.
2229 * @return 0 on success, an errno on failure.
2231 * This helper function allows drivers to get several regulator
2232 * consumers in one operation. If any of the regulators cannot be
2233 * acquired then any regulators that were allocated will be freed
2234 * before returning to the caller.
2236 int regulator_bulk_get(struct device *dev, int num_consumers,
2237 struct regulator_bulk_data *consumers)
2239 int i;
2240 int ret;
2242 for (i = 0; i < num_consumers; i++)
2243 consumers[i].consumer = NULL;
2245 for (i = 0; i < num_consumers; i++) {
2246 consumers[i].consumer = regulator_get(dev,
2247 consumers[i].supply);
2248 if (IS_ERR(consumers[i].consumer)) {
2249 ret = PTR_ERR(consumers[i].consumer);
2250 dev_err(dev, "Failed to get supply '%s': %d\n",
2251 consumers[i].supply, ret);
2252 consumers[i].consumer = NULL;
2253 goto err;
2257 return 0;
2259 err:
2260 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2261 regulator_put(consumers[i].consumer);
2263 return ret;
2265 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2268 * regulator_bulk_enable - enable multiple regulator consumers
2270 * @num_consumers: Number of consumers
2271 * @consumers: Consumer data; clients are stored here.
2272 * @return 0 on success, an errno on failure
2274 * This convenience API allows consumers to enable multiple regulator
2275 * clients in a single API call. If any consumers cannot be enabled
2276 * then any others that were enabled will be disabled again prior to
2277 * return.
2279 int regulator_bulk_enable(int num_consumers,
2280 struct regulator_bulk_data *consumers)
2282 int i;
2283 int ret;
2285 for (i = 0; i < num_consumers; i++) {
2286 ret = regulator_enable(consumers[i].consumer);
2287 if (ret != 0)
2288 goto err;
2291 return 0;
2293 err:
2294 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2295 for (--i; i >= 0; --i)
2296 regulator_disable(consumers[i].consumer);
2298 return ret;
2300 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2303 * regulator_bulk_disable - disable multiple regulator consumers
2305 * @num_consumers: Number of consumers
2306 * @consumers: Consumer data; clients are stored here.
2307 * @return 0 on success, an errno on failure
2309 * This convenience API allows consumers to disable multiple regulator
2310 * clients in a single API call. If any consumers cannot be enabled
2311 * then any others that were disabled will be disabled again prior to
2312 * return.
2314 int regulator_bulk_disable(int num_consumers,
2315 struct regulator_bulk_data *consumers)
2317 int i;
2318 int ret;
2320 for (i = 0; i < num_consumers; i++) {
2321 ret = regulator_disable(consumers[i].consumer);
2322 if (ret != 0)
2323 goto err;
2326 return 0;
2328 err:
2329 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2330 for (--i; i >= 0; --i)
2331 regulator_enable(consumers[i].consumer);
2333 return ret;
2335 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2338 * regulator_bulk_free - free multiple regulator consumers
2340 * @num_consumers: Number of consumers
2341 * @consumers: Consumer data; clients are stored here.
2343 * This convenience API allows consumers to free multiple regulator
2344 * clients in a single API call.
2346 void regulator_bulk_free(int num_consumers,
2347 struct regulator_bulk_data *consumers)
2349 int i;
2351 for (i = 0; i < num_consumers; i++) {
2352 regulator_put(consumers[i].consumer);
2353 consumers[i].consumer = NULL;
2356 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2359 * regulator_notifier_call_chain - call regulator event notifier
2360 * @rdev: regulator source
2361 * @event: notifier block
2362 * @data: callback-specific data.
2364 * Called by regulator drivers to notify clients a regulator event has
2365 * occurred. We also notify regulator clients downstream.
2366 * Note lock must be held by caller.
2368 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2369 unsigned long event, void *data)
2371 _notifier_call_chain(rdev, event, data);
2372 return NOTIFY_DONE;
2375 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2378 * regulator_mode_to_status - convert a regulator mode into a status
2380 * @mode: Mode to convert
2382 * Convert a regulator mode into a status.
2384 int regulator_mode_to_status(unsigned int mode)
2386 switch (mode) {
2387 case REGULATOR_MODE_FAST:
2388 return REGULATOR_STATUS_FAST;
2389 case REGULATOR_MODE_NORMAL:
2390 return REGULATOR_STATUS_NORMAL;
2391 case REGULATOR_MODE_IDLE:
2392 return REGULATOR_STATUS_IDLE;
2393 case REGULATOR_STATUS_STANDBY:
2394 return REGULATOR_STATUS_STANDBY;
2395 default:
2396 return 0;
2399 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2402 * To avoid cluttering sysfs (and memory) with useless state, only
2403 * create attributes that can be meaningfully displayed.
2405 static int add_regulator_attributes(struct regulator_dev *rdev)
2407 struct device *dev = &rdev->dev;
2408 struct regulator_ops *ops = rdev->desc->ops;
2409 int status = 0;
2411 /* some attributes need specific methods to be displayed */
2412 if (ops->get_voltage || ops->get_voltage_sel) {
2413 status = device_create_file(dev, &dev_attr_microvolts);
2414 if (status < 0)
2415 return status;
2417 if (ops->get_current_limit) {
2418 status = device_create_file(dev, &dev_attr_microamps);
2419 if (status < 0)
2420 return status;
2422 if (ops->get_mode) {
2423 status = device_create_file(dev, &dev_attr_opmode);
2424 if (status < 0)
2425 return status;
2427 if (ops->is_enabled) {
2428 status = device_create_file(dev, &dev_attr_state);
2429 if (status < 0)
2430 return status;
2432 if (ops->get_status) {
2433 status = device_create_file(dev, &dev_attr_status);
2434 if (status < 0)
2435 return status;
2438 /* some attributes are type-specific */
2439 if (rdev->desc->type == REGULATOR_CURRENT) {
2440 status = device_create_file(dev, &dev_attr_requested_microamps);
2441 if (status < 0)
2442 return status;
2445 /* all the other attributes exist to support constraints;
2446 * don't show them if there are no constraints, or if the
2447 * relevant supporting methods are missing.
2449 if (!rdev->constraints)
2450 return status;
2452 /* constraints need specific supporting methods */
2453 if (ops->set_voltage || ops->set_voltage_sel) {
2454 status = device_create_file(dev, &dev_attr_min_microvolts);
2455 if (status < 0)
2456 return status;
2457 status = device_create_file(dev, &dev_attr_max_microvolts);
2458 if (status < 0)
2459 return status;
2461 if (ops->set_current_limit) {
2462 status = device_create_file(dev, &dev_attr_min_microamps);
2463 if (status < 0)
2464 return status;
2465 status = device_create_file(dev, &dev_attr_max_microamps);
2466 if (status < 0)
2467 return status;
2470 /* suspend mode constraints need multiple supporting methods */
2471 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2472 return status;
2474 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2475 if (status < 0)
2476 return status;
2477 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2478 if (status < 0)
2479 return status;
2480 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2481 if (status < 0)
2482 return status;
2484 if (ops->set_suspend_voltage) {
2485 status = device_create_file(dev,
2486 &dev_attr_suspend_standby_microvolts);
2487 if (status < 0)
2488 return status;
2489 status = device_create_file(dev,
2490 &dev_attr_suspend_mem_microvolts);
2491 if (status < 0)
2492 return status;
2493 status = device_create_file(dev,
2494 &dev_attr_suspend_disk_microvolts);
2495 if (status < 0)
2496 return status;
2499 if (ops->set_suspend_mode) {
2500 status = device_create_file(dev,
2501 &dev_attr_suspend_standby_mode);
2502 if (status < 0)
2503 return status;
2504 status = device_create_file(dev,
2505 &dev_attr_suspend_mem_mode);
2506 if (status < 0)
2507 return status;
2508 status = device_create_file(dev,
2509 &dev_attr_suspend_disk_mode);
2510 if (status < 0)
2511 return status;
2514 return status;
2517 static void rdev_init_debugfs(struct regulator_dev *rdev)
2519 #ifdef CONFIG_DEBUG_FS
2520 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2521 if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2522 rdev_warn(rdev, "Failed to create debugfs directory\n");
2523 rdev->debugfs = NULL;
2524 return;
2527 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2528 &rdev->use_count);
2529 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2530 &rdev->open_count);
2531 #endif
2535 * regulator_register - register regulator
2536 * @regulator_desc: regulator to register
2537 * @dev: struct device for the regulator
2538 * @init_data: platform provided init data, passed through by driver
2539 * @driver_data: private regulator data
2541 * Called by regulator drivers to register a regulator.
2542 * Returns 0 on success.
2544 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2545 struct device *dev, const struct regulator_init_data *init_data,
2546 void *driver_data)
2548 static atomic_t regulator_no = ATOMIC_INIT(0);
2549 struct regulator_dev *rdev;
2550 int ret, i;
2552 if (regulator_desc == NULL)
2553 return ERR_PTR(-EINVAL);
2555 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2556 return ERR_PTR(-EINVAL);
2558 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2559 regulator_desc->type != REGULATOR_CURRENT)
2560 return ERR_PTR(-EINVAL);
2562 if (!init_data)
2563 return ERR_PTR(-EINVAL);
2565 /* Only one of each should be implemented */
2566 WARN_ON(regulator_desc->ops->get_voltage &&
2567 regulator_desc->ops->get_voltage_sel);
2568 WARN_ON(regulator_desc->ops->set_voltage &&
2569 regulator_desc->ops->set_voltage_sel);
2571 /* If we're using selectors we must implement list_voltage. */
2572 if (regulator_desc->ops->get_voltage_sel &&
2573 !regulator_desc->ops->list_voltage) {
2574 return ERR_PTR(-EINVAL);
2576 if (regulator_desc->ops->set_voltage_sel &&
2577 !regulator_desc->ops->list_voltage) {
2578 return ERR_PTR(-EINVAL);
2581 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2582 if (rdev == NULL)
2583 return ERR_PTR(-ENOMEM);
2585 mutex_lock(&regulator_list_mutex);
2587 mutex_init(&rdev->mutex);
2588 rdev->reg_data = driver_data;
2589 rdev->owner = regulator_desc->owner;
2590 rdev->desc = regulator_desc;
2591 INIT_LIST_HEAD(&rdev->consumer_list);
2592 INIT_LIST_HEAD(&rdev->supply_list);
2593 INIT_LIST_HEAD(&rdev->list);
2594 INIT_LIST_HEAD(&rdev->slist);
2595 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2597 /* preform any regulator specific init */
2598 if (init_data->regulator_init) {
2599 ret = init_data->regulator_init(rdev->reg_data);
2600 if (ret < 0)
2601 goto clean;
2604 /* register with sysfs */
2605 rdev->dev.class = &regulator_class;
2606 rdev->dev.parent = dev;
2607 dev_set_name(&rdev->dev, "regulator.%d",
2608 atomic_inc_return(&regulator_no) - 1);
2609 ret = device_register(&rdev->dev);
2610 if (ret != 0) {
2611 put_device(&rdev->dev);
2612 goto clean;
2615 dev_set_drvdata(&rdev->dev, rdev);
2617 /* set regulator constraints */
2618 ret = set_machine_constraints(rdev, &init_data->constraints);
2619 if (ret < 0)
2620 goto scrub;
2622 /* add attributes supported by this regulator */
2623 ret = add_regulator_attributes(rdev);
2624 if (ret < 0)
2625 goto scrub;
2627 if (init_data->supply_regulator) {
2628 struct regulator_dev *r;
2629 int found = 0;
2631 list_for_each_entry(r, &regulator_list, list) {
2632 if (strcmp(rdev_get_name(r),
2633 init_data->supply_regulator) == 0) {
2634 found = 1;
2635 break;
2639 if (!found) {
2640 dev_err(dev, "Failed to find supply %s\n",
2641 init_data->supply_regulator);
2642 ret = -ENODEV;
2643 goto scrub;
2646 ret = set_supply(rdev, r);
2647 if (ret < 0)
2648 goto scrub;
2651 /* add consumers devices */
2652 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2653 ret = set_consumer_device_supply(rdev,
2654 init_data->consumer_supplies[i].dev,
2655 init_data->consumer_supplies[i].dev_name,
2656 init_data->consumer_supplies[i].supply);
2657 if (ret < 0) {
2658 dev_err(dev, "Failed to set supply %s\n",
2659 init_data->consumer_supplies[i].supply);
2660 goto unset_supplies;
2664 list_add(&rdev->list, &regulator_list);
2666 rdev_init_debugfs(rdev);
2667 out:
2668 mutex_unlock(&regulator_list_mutex);
2669 return rdev;
2671 unset_supplies:
2672 unset_regulator_supplies(rdev);
2674 scrub:
2675 device_unregister(&rdev->dev);
2676 /* device core frees rdev */
2677 rdev = ERR_PTR(ret);
2678 goto out;
2680 clean:
2681 kfree(rdev);
2682 rdev = ERR_PTR(ret);
2683 goto out;
2685 EXPORT_SYMBOL_GPL(regulator_register);
2688 * regulator_unregister - unregister regulator
2689 * @rdev: regulator to unregister
2691 * Called by regulator drivers to unregister a regulator.
2693 void regulator_unregister(struct regulator_dev *rdev)
2695 if (rdev == NULL)
2696 return;
2698 mutex_lock(&regulator_list_mutex);
2699 #ifdef CONFIG_DEBUG_FS
2700 debugfs_remove_recursive(rdev->debugfs);
2701 #endif
2702 WARN_ON(rdev->open_count);
2703 unset_regulator_supplies(rdev);
2704 list_del(&rdev->list);
2705 if (rdev->supply)
2706 sysfs_remove_link(&rdev->dev.kobj, "supply");
2707 device_unregister(&rdev->dev);
2708 kfree(rdev->constraints);
2709 mutex_unlock(&regulator_list_mutex);
2711 EXPORT_SYMBOL_GPL(regulator_unregister);
2714 * regulator_suspend_prepare - prepare regulators for system wide suspend
2715 * @state: system suspend state
2717 * Configure each regulator with it's suspend operating parameters for state.
2718 * This will usually be called by machine suspend code prior to supending.
2720 int regulator_suspend_prepare(suspend_state_t state)
2722 struct regulator_dev *rdev;
2723 int ret = 0;
2725 /* ON is handled by regulator active state */
2726 if (state == PM_SUSPEND_ON)
2727 return -EINVAL;
2729 mutex_lock(&regulator_list_mutex);
2730 list_for_each_entry(rdev, &regulator_list, list) {
2732 mutex_lock(&rdev->mutex);
2733 ret = suspend_prepare(rdev, state);
2734 mutex_unlock(&rdev->mutex);
2736 if (ret < 0) {
2737 rdev_err(rdev, "failed to prepare\n");
2738 goto out;
2741 out:
2742 mutex_unlock(&regulator_list_mutex);
2743 return ret;
2745 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2748 * regulator_suspend_finish - resume regulators from system wide suspend
2750 * Turn on regulators that might be turned off by regulator_suspend_prepare
2751 * and that should be turned on according to the regulators properties.
2753 int regulator_suspend_finish(void)
2755 struct regulator_dev *rdev;
2756 int ret = 0, error;
2758 mutex_lock(&regulator_list_mutex);
2759 list_for_each_entry(rdev, &regulator_list, list) {
2760 struct regulator_ops *ops = rdev->desc->ops;
2762 mutex_lock(&rdev->mutex);
2763 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
2764 ops->enable) {
2765 error = ops->enable(rdev);
2766 if (error)
2767 ret = error;
2768 } else {
2769 if (!has_full_constraints)
2770 goto unlock;
2771 if (!ops->disable)
2772 goto unlock;
2773 if (ops->is_enabled && !ops->is_enabled(rdev))
2774 goto unlock;
2776 error = ops->disable(rdev);
2777 if (error)
2778 ret = error;
2780 unlock:
2781 mutex_unlock(&rdev->mutex);
2783 mutex_unlock(&regulator_list_mutex);
2784 return ret;
2786 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2789 * regulator_has_full_constraints - the system has fully specified constraints
2791 * Calling this function will cause the regulator API to disable all
2792 * regulators which have a zero use count and don't have an always_on
2793 * constraint in a late_initcall.
2795 * The intention is that this will become the default behaviour in a
2796 * future kernel release so users are encouraged to use this facility
2797 * now.
2799 void regulator_has_full_constraints(void)
2801 has_full_constraints = 1;
2803 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2806 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2808 * Calling this function will cause the regulator API to provide a
2809 * dummy regulator to consumers if no physical regulator is found,
2810 * allowing most consumers to proceed as though a regulator were
2811 * configured. This allows systems such as those with software
2812 * controllable regulators for the CPU core only to be brought up more
2813 * readily.
2815 void regulator_use_dummy_regulator(void)
2817 board_wants_dummy_regulator = true;
2819 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2822 * rdev_get_drvdata - get rdev regulator driver data
2823 * @rdev: regulator
2825 * Get rdev regulator driver private data. This call can be used in the
2826 * regulator driver context.
2828 void *rdev_get_drvdata(struct regulator_dev *rdev)
2830 return rdev->reg_data;
2832 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2835 * regulator_get_drvdata - get regulator driver data
2836 * @regulator: regulator
2838 * Get regulator driver private data. This call can be used in the consumer
2839 * driver context when non API regulator specific functions need to be called.
2841 void *regulator_get_drvdata(struct regulator *regulator)
2843 return regulator->rdev->reg_data;
2845 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2848 * regulator_set_drvdata - set regulator driver data
2849 * @regulator: regulator
2850 * @data: data
2852 void regulator_set_drvdata(struct regulator *regulator, void *data)
2854 regulator->rdev->reg_data = data;
2856 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2859 * regulator_get_id - get regulator ID
2860 * @rdev: regulator
2862 int rdev_get_id(struct regulator_dev *rdev)
2864 return rdev->desc->id;
2866 EXPORT_SYMBOL_GPL(rdev_get_id);
2868 struct device *rdev_get_dev(struct regulator_dev *rdev)
2870 return &rdev->dev;
2872 EXPORT_SYMBOL_GPL(rdev_get_dev);
2874 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2876 return reg_init_data->driver_data;
2878 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2880 static int __init regulator_init(void)
2882 int ret;
2884 ret = class_register(&regulator_class);
2886 #ifdef CONFIG_DEBUG_FS
2887 debugfs_root = debugfs_create_dir("regulator", NULL);
2888 if (IS_ERR(debugfs_root) || !debugfs_root) {
2889 pr_warn("regulator: Failed to create debugfs directory\n");
2890 debugfs_root = NULL;
2892 #endif
2894 regulator_dummy_init();
2896 return ret;
2899 /* init early to allow our consumers to complete system booting */
2900 core_initcall(regulator_init);
2902 static int __init regulator_init_complete(void)
2904 struct regulator_dev *rdev;
2905 struct regulator_ops *ops;
2906 struct regulation_constraints *c;
2907 int enabled, ret;
2909 mutex_lock(&regulator_list_mutex);
2911 /* If we have a full configuration then disable any regulators
2912 * which are not in use or always_on. This will become the
2913 * default behaviour in the future.
2915 list_for_each_entry(rdev, &regulator_list, list) {
2916 ops = rdev->desc->ops;
2917 c = rdev->constraints;
2919 if (!ops->disable || (c && c->always_on))
2920 continue;
2922 mutex_lock(&rdev->mutex);
2924 if (rdev->use_count)
2925 goto unlock;
2927 /* If we can't read the status assume it's on. */
2928 if (ops->is_enabled)
2929 enabled = ops->is_enabled(rdev);
2930 else
2931 enabled = 1;
2933 if (!enabled)
2934 goto unlock;
2936 if (has_full_constraints) {
2937 /* We log since this may kill the system if it
2938 * goes wrong. */
2939 rdev_info(rdev, "disabling\n");
2940 ret = ops->disable(rdev);
2941 if (ret != 0) {
2942 rdev_err(rdev, "couldn't disable: %d\n", ret);
2944 } else {
2945 /* The intention is that in future we will
2946 * assume that full constraints are provided
2947 * so warn even if we aren't going to do
2948 * anything here.
2950 rdev_warn(rdev, "incomplete constraints, leaving on\n");
2953 unlock:
2954 mutex_unlock(&rdev->mutex);
2957 mutex_unlock(&regulator_list_mutex);
2959 return 0;
2961 late_initcall(regulator_init_complete);