Revert "gma500: Fix dependencies"
[zen-stable.git] / drivers / usb / host / xhci.c
blobf5fe1ac301ab43b69a3d22e930a4d06c85ee9cd4
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
30 #include "xhci.h"
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
48 * Returns negative errno, or zero on success
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 u32 mask, u32 done, int usec)
57 u32 result;
59 do {
60 result = xhci_readl(xhci, ptr);
61 if (result == ~(u32)0) /* card removed */
62 return -ENODEV;
63 result &= mask;
64 if (result == done)
65 return 0;
66 udelay(1);
67 usec--;
68 } while (usec > 0);
69 return -ETIMEDOUT;
73 * Disable interrupts and begin the xHCI halting process.
75 void xhci_quiesce(struct xhci_hcd *xhci)
77 u32 halted;
78 u32 cmd;
79 u32 mask;
81 mask = ~(XHCI_IRQS);
82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 if (!halted)
84 mask &= ~CMD_RUN;
86 cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 cmd &= mask;
88 xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 * Force HC into halt state.
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
99 int xhci_halt(struct xhci_hcd *xhci)
101 int ret;
102 xhci_dbg(xhci, "// Halt the HC\n");
103 xhci_quiesce(xhci);
105 ret = handshake(xhci, &xhci->op_regs->status,
106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 if (!ret)
108 xhci->xhc_state |= XHCI_STATE_HALTED;
109 return ret;
113 * Set the run bit and wait for the host to be running.
115 static int xhci_start(struct xhci_hcd *xhci)
117 u32 temp;
118 int ret;
120 temp = xhci_readl(xhci, &xhci->op_regs->command);
121 temp |= (CMD_RUN);
122 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 temp);
124 xhci_writel(xhci, temp, &xhci->op_regs->command);
127 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 * running.
130 ret = handshake(xhci, &xhci->op_regs->status,
131 STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 if (ret == -ETIMEDOUT)
133 xhci_err(xhci, "Host took too long to start, "
134 "waited %u microseconds.\n",
135 XHCI_MAX_HALT_USEC);
136 if (!ret)
137 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 return ret;
142 * Reset a halted HC.
144 * This resets pipelines, timers, counters, state machines, etc.
145 * Transactions will be terminated immediately, and operational registers
146 * will be set to their defaults.
148 int xhci_reset(struct xhci_hcd *xhci)
150 u32 command;
151 u32 state;
152 int ret;
154 state = xhci_readl(xhci, &xhci->op_regs->status);
155 if ((state & STS_HALT) == 0) {
156 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 return 0;
160 xhci_dbg(xhci, "// Reset the HC\n");
161 command = xhci_readl(xhci, &xhci->op_regs->command);
162 command |= CMD_RESET;
163 xhci_writel(xhci, command, &xhci->op_regs->command);
165 ret = handshake(xhci, &xhci->op_regs->command,
166 CMD_RESET, 0, 250 * 1000);
167 if (ret)
168 return ret;
170 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
172 * xHCI cannot write to any doorbells or operational registers other
173 * than status until the "Controller Not Ready" flag is cleared.
175 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
179 * Free IRQs
180 * free all IRQs request
182 static void xhci_free_irq(struct xhci_hcd *xhci)
184 int i;
185 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
187 /* return if using legacy interrupt */
188 if (xhci_to_hcd(xhci)->irq >= 0)
189 return;
191 if (xhci->msix_entries) {
192 for (i = 0; i < xhci->msix_count; i++)
193 if (xhci->msix_entries[i].vector)
194 free_irq(xhci->msix_entries[i].vector,
195 xhci_to_hcd(xhci));
196 } else if (pdev->irq >= 0)
197 free_irq(pdev->irq, xhci_to_hcd(xhci));
199 return;
203 * Set up MSI
205 static int xhci_setup_msi(struct xhci_hcd *xhci)
207 int ret;
208 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
210 ret = pci_enable_msi(pdev);
211 if (ret) {
212 xhci_err(xhci, "failed to allocate MSI entry\n");
213 return ret;
216 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217 0, "xhci_hcd", xhci_to_hcd(xhci));
218 if (ret) {
219 xhci_err(xhci, "disable MSI interrupt\n");
220 pci_disable_msi(pdev);
223 return ret;
227 * Set up MSI-X
229 static int xhci_setup_msix(struct xhci_hcd *xhci)
231 int i, ret = 0;
232 struct usb_hcd *hcd = xhci_to_hcd(xhci);
233 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
236 * calculate number of msi-x vectors supported.
237 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238 * with max number of interrupters based on the xhci HCSPARAMS1.
239 * - num_online_cpus: maximum msi-x vectors per CPUs core.
240 * Add additional 1 vector to ensure always available interrupt.
242 xhci->msix_count = min(num_online_cpus() + 1,
243 HCS_MAX_INTRS(xhci->hcs_params1));
245 xhci->msix_entries =
246 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247 GFP_KERNEL);
248 if (!xhci->msix_entries) {
249 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250 return -ENOMEM;
253 for (i = 0; i < xhci->msix_count; i++) {
254 xhci->msix_entries[i].entry = i;
255 xhci->msix_entries[i].vector = 0;
258 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259 if (ret) {
260 xhci_err(xhci, "Failed to enable MSI-X\n");
261 goto free_entries;
264 for (i = 0; i < xhci->msix_count; i++) {
265 ret = request_irq(xhci->msix_entries[i].vector,
266 (irq_handler_t)xhci_msi_irq,
267 0, "xhci_hcd", xhci_to_hcd(xhci));
268 if (ret)
269 goto disable_msix;
272 hcd->msix_enabled = 1;
273 return ret;
275 disable_msix:
276 xhci_err(xhci, "disable MSI-X interrupt\n");
277 xhci_free_irq(xhci);
278 pci_disable_msix(pdev);
279 free_entries:
280 kfree(xhci->msix_entries);
281 xhci->msix_entries = NULL;
282 return ret;
285 /* Free any IRQs and disable MSI-X */
286 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
288 struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
291 xhci_free_irq(xhci);
293 if (xhci->msix_entries) {
294 pci_disable_msix(pdev);
295 kfree(xhci->msix_entries);
296 xhci->msix_entries = NULL;
297 } else {
298 pci_disable_msi(pdev);
301 hcd->msix_enabled = 0;
302 return;
306 * Initialize memory for HCD and xHC (one-time init).
308 * Program the PAGESIZE register, initialize the device context array, create
309 * device contexts (?), set up a command ring segment (or two?), create event
310 * ring (one for now).
312 int xhci_init(struct usb_hcd *hcd)
314 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315 int retval = 0;
317 xhci_dbg(xhci, "xhci_init\n");
318 spin_lock_init(&xhci->lock);
319 if (link_quirk) {
320 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322 } else {
323 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
325 retval = xhci_mem_init(xhci, GFP_KERNEL);
326 xhci_dbg(xhci, "Finished xhci_init\n");
328 return retval;
331 /*-------------------------------------------------------------------------*/
334 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
335 static void xhci_event_ring_work(unsigned long arg)
337 unsigned long flags;
338 int temp;
339 u64 temp_64;
340 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341 int i, j;
343 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
345 spin_lock_irqsave(&xhci->lock, flags);
346 temp = xhci_readl(xhci, &xhci->op_regs->status);
347 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
349 xhci_dbg(xhci, "HW died, polling stopped.\n");
350 spin_unlock_irqrestore(&xhci->lock, flags);
351 return;
354 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
355 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
356 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
357 xhci->error_bitmask = 0;
358 xhci_dbg(xhci, "Event ring:\n");
359 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
360 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
361 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
362 temp_64 &= ~ERST_PTR_MASK;
363 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
364 xhci_dbg(xhci, "Command ring:\n");
365 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
366 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
367 xhci_dbg_cmd_ptrs(xhci);
368 for (i = 0; i < MAX_HC_SLOTS; ++i) {
369 if (!xhci->devs[i])
370 continue;
371 for (j = 0; j < 31; ++j) {
372 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
375 spin_unlock_irqrestore(&xhci->lock, flags);
377 if (!xhci->zombie)
378 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
379 else
380 xhci_dbg(xhci, "Quit polling the event ring.\n");
382 #endif
384 static int xhci_run_finished(struct xhci_hcd *xhci)
386 if (xhci_start(xhci)) {
387 xhci_halt(xhci);
388 return -ENODEV;
390 xhci->shared_hcd->state = HC_STATE_RUNNING;
392 if (xhci->quirks & XHCI_NEC_HOST)
393 xhci_ring_cmd_db(xhci);
395 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
396 return 0;
400 * Start the HC after it was halted.
402 * This function is called by the USB core when the HC driver is added.
403 * Its opposite is xhci_stop().
405 * xhci_init() must be called once before this function can be called.
406 * Reset the HC, enable device slot contexts, program DCBAAP, and
407 * set command ring pointer and event ring pointer.
409 * Setup MSI-X vectors and enable interrupts.
411 int xhci_run(struct usb_hcd *hcd)
413 u32 temp;
414 u64 temp_64;
415 u32 ret;
416 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
417 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
419 /* Start the xHCI host controller running only after the USB 2.0 roothub
420 * is setup.
423 hcd->uses_new_polling = 1;
424 if (!usb_hcd_is_primary_hcd(hcd))
425 return xhci_run_finished(xhci);
427 xhci_dbg(xhci, "xhci_run\n");
428 /* unregister the legacy interrupt */
429 if (hcd->irq)
430 free_irq(hcd->irq, hcd);
431 hcd->irq = -1;
433 /* Some Fresco Logic host controllers advertise MSI, but fail to
434 * generate interrupts. Don't even try to enable MSI.
436 if (xhci->quirks & XHCI_BROKEN_MSI)
437 goto legacy_irq;
439 ret = xhci_setup_msix(xhci);
440 if (ret)
441 /* fall back to msi*/
442 ret = xhci_setup_msi(xhci);
444 if (ret) {
445 legacy_irq:
446 /* fall back to legacy interrupt*/
447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 hcd->irq_descr, hcd);
449 if (ret) {
450 xhci_err(xhci, "request interrupt %d failed\n",
451 pdev->irq);
452 return ret;
454 hcd->irq = pdev->irq;
457 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
458 init_timer(&xhci->event_ring_timer);
459 xhci->event_ring_timer.data = (unsigned long) xhci;
460 xhci->event_ring_timer.function = xhci_event_ring_work;
461 /* Poll the event ring */
462 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
463 xhci->zombie = 0;
464 xhci_dbg(xhci, "Setting event ring polling timer\n");
465 add_timer(&xhci->event_ring_timer);
466 #endif
468 xhci_dbg(xhci, "Command ring memory map follows:\n");
469 xhci_debug_ring(xhci, xhci->cmd_ring);
470 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
471 xhci_dbg_cmd_ptrs(xhci);
473 xhci_dbg(xhci, "ERST memory map follows:\n");
474 xhci_dbg_erst(xhci, &xhci->erst);
475 xhci_dbg(xhci, "Event ring:\n");
476 xhci_debug_ring(xhci, xhci->event_ring);
477 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
478 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
479 temp_64 &= ~ERST_PTR_MASK;
480 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
482 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
483 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
484 temp &= ~ER_IRQ_INTERVAL_MASK;
485 temp |= (u32) 160;
486 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
488 /* Set the HCD state before we enable the irqs */
489 temp = xhci_readl(xhci, &xhci->op_regs->command);
490 temp |= (CMD_EIE);
491 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
492 temp);
493 xhci_writel(xhci, temp, &xhci->op_regs->command);
495 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
496 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
497 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
498 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
499 &xhci->ir_set->irq_pending);
500 xhci_print_ir_set(xhci, 0);
502 if (xhci->quirks & XHCI_NEC_HOST)
503 xhci_queue_vendor_command(xhci, 0, 0, 0,
504 TRB_TYPE(TRB_NEC_GET_FW));
506 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
507 return 0;
510 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
512 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514 spin_lock_irq(&xhci->lock);
515 xhci_halt(xhci);
517 /* The shared_hcd is going to be deallocated shortly (the USB core only
518 * calls this function when allocation fails in usb_add_hcd(), or
519 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
521 xhci->shared_hcd = NULL;
522 spin_unlock_irq(&xhci->lock);
526 * Stop xHCI driver.
528 * This function is called by the USB core when the HC driver is removed.
529 * Its opposite is xhci_run().
531 * Disable device contexts, disable IRQs, and quiesce the HC.
532 * Reset the HC, finish any completed transactions, and cleanup memory.
534 void xhci_stop(struct usb_hcd *hcd)
536 u32 temp;
537 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
539 if (!usb_hcd_is_primary_hcd(hcd)) {
540 xhci_only_stop_hcd(xhci->shared_hcd);
541 return;
544 spin_lock_irq(&xhci->lock);
545 /* Make sure the xHC is halted for a USB3 roothub
546 * (xhci_stop() could be called as part of failed init).
548 xhci_halt(xhci);
549 xhci_reset(xhci);
550 spin_unlock_irq(&xhci->lock);
552 xhci_cleanup_msix(xhci);
554 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
555 /* Tell the event ring poll function not to reschedule */
556 xhci->zombie = 1;
557 del_timer_sync(&xhci->event_ring_timer);
558 #endif
560 if (xhci->quirks & XHCI_AMD_PLL_FIX)
561 usb_amd_dev_put();
563 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
564 temp = xhci_readl(xhci, &xhci->op_regs->status);
565 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
566 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
567 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
568 &xhci->ir_set->irq_pending);
569 xhci_print_ir_set(xhci, 0);
571 xhci_dbg(xhci, "cleaning up memory\n");
572 xhci_mem_cleanup(xhci);
573 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
574 xhci_readl(xhci, &xhci->op_regs->status));
578 * Shutdown HC (not bus-specific)
580 * This is called when the machine is rebooting or halting. We assume that the
581 * machine will be powered off, and the HC's internal state will be reset.
582 * Don't bother to free memory.
584 * This will only ever be called with the main usb_hcd (the USB3 roothub).
586 void xhci_shutdown(struct usb_hcd *hcd)
588 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
590 spin_lock_irq(&xhci->lock);
591 xhci_halt(xhci);
592 spin_unlock_irq(&xhci->lock);
594 xhci_cleanup_msix(xhci);
596 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
597 xhci_readl(xhci, &xhci->op_regs->status));
600 #ifdef CONFIG_PM
601 static void xhci_save_registers(struct xhci_hcd *xhci)
603 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
604 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
605 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
606 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
607 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
608 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
609 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
610 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
611 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
614 static void xhci_restore_registers(struct xhci_hcd *xhci)
616 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
617 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
618 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
619 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
620 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
621 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
622 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
623 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
626 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
628 u64 val_64;
630 /* step 2: initialize command ring buffer */
631 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
632 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
633 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
634 xhci->cmd_ring->dequeue) &
635 (u64) ~CMD_RING_RSVD_BITS) |
636 xhci->cmd_ring->cycle_state;
637 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
638 (long unsigned long) val_64);
639 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
643 * The whole command ring must be cleared to zero when we suspend the host.
645 * The host doesn't save the command ring pointer in the suspend well, so we
646 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
647 * aligned, because of the reserved bits in the command ring dequeue pointer
648 * register. Therefore, we can't just set the dequeue pointer back in the
649 * middle of the ring (TRBs are 16-byte aligned).
651 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
653 struct xhci_ring *ring;
654 struct xhci_segment *seg;
656 ring = xhci->cmd_ring;
657 seg = ring->deq_seg;
658 do {
659 memset(seg->trbs, 0, SEGMENT_SIZE);
660 seg = seg->next;
661 } while (seg != ring->deq_seg);
663 /* Reset the software enqueue and dequeue pointers */
664 ring->deq_seg = ring->first_seg;
665 ring->dequeue = ring->first_seg->trbs;
666 ring->enq_seg = ring->deq_seg;
667 ring->enqueue = ring->dequeue;
670 * Ring is now zeroed, so the HW should look for change of ownership
671 * when the cycle bit is set to 1.
673 ring->cycle_state = 1;
676 * Reset the hardware dequeue pointer.
677 * Yes, this will need to be re-written after resume, but we're paranoid
678 * and want to make sure the hardware doesn't access bogus memory
679 * because, say, the BIOS or an SMI started the host without changing
680 * the command ring pointers.
682 xhci_set_cmd_ring_deq(xhci);
686 * Stop HC (not bus-specific)
688 * This is called when the machine transition into S3/S4 mode.
691 int xhci_suspend(struct xhci_hcd *xhci)
693 int rc = 0;
694 struct usb_hcd *hcd = xhci_to_hcd(xhci);
695 u32 command;
696 int i;
698 spin_lock_irq(&xhci->lock);
699 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
700 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
701 /* step 1: stop endpoint */
702 /* skipped assuming that port suspend has done */
704 /* step 2: clear Run/Stop bit */
705 command = xhci_readl(xhci, &xhci->op_regs->command);
706 command &= ~CMD_RUN;
707 xhci_writel(xhci, command, &xhci->op_regs->command);
708 if (handshake(xhci, &xhci->op_regs->status,
709 STS_HALT, STS_HALT, 100*100)) {
710 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
711 spin_unlock_irq(&xhci->lock);
712 return -ETIMEDOUT;
714 xhci_clear_command_ring(xhci);
716 /* step 3: save registers */
717 xhci_save_registers(xhci);
719 /* step 4: set CSS flag */
720 command = xhci_readl(xhci, &xhci->op_regs->command);
721 command |= CMD_CSS;
722 xhci_writel(xhci, command, &xhci->op_regs->command);
723 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
724 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
725 spin_unlock_irq(&xhci->lock);
726 return -ETIMEDOUT;
728 spin_unlock_irq(&xhci->lock);
730 /* step 5: remove core well power */
731 /* synchronize irq when using MSI-X */
732 if (xhci->msix_entries) {
733 for (i = 0; i < xhci->msix_count; i++)
734 synchronize_irq(xhci->msix_entries[i].vector);
737 return rc;
741 * start xHC (not bus-specific)
743 * This is called when the machine transition from S3/S4 mode.
746 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
748 u32 command, temp = 0;
749 struct usb_hcd *hcd = xhci_to_hcd(xhci);
750 struct usb_hcd *secondary_hcd;
751 int retval;
753 /* Wait a bit if either of the roothubs need to settle from the
754 * transition into bus suspend.
756 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
757 time_before(jiffies,
758 xhci->bus_state[1].next_statechange))
759 msleep(100);
761 spin_lock_irq(&xhci->lock);
762 if (xhci->quirks & XHCI_RESET_ON_RESUME)
763 hibernated = true;
765 if (!hibernated) {
766 /* step 1: restore register */
767 xhci_restore_registers(xhci);
768 /* step 2: initialize command ring buffer */
769 xhci_set_cmd_ring_deq(xhci);
770 /* step 3: restore state and start state*/
771 /* step 3: set CRS flag */
772 command = xhci_readl(xhci, &xhci->op_regs->command);
773 command |= CMD_CRS;
774 xhci_writel(xhci, command, &xhci->op_regs->command);
775 if (handshake(xhci, &xhci->op_regs->status,
776 STS_RESTORE, 0, 10*100)) {
777 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
778 spin_unlock_irq(&xhci->lock);
779 return -ETIMEDOUT;
781 temp = xhci_readl(xhci, &xhci->op_regs->status);
784 /* If restore operation fails, re-initialize the HC during resume */
785 if ((temp & STS_SRE) || hibernated) {
786 /* Let the USB core know _both_ roothubs lost power. */
787 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
788 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
790 xhci_dbg(xhci, "Stop HCD\n");
791 xhci_halt(xhci);
792 xhci_reset(xhci);
793 spin_unlock_irq(&xhci->lock);
794 xhci_cleanup_msix(xhci);
796 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
797 /* Tell the event ring poll function not to reschedule */
798 xhci->zombie = 1;
799 del_timer_sync(&xhci->event_ring_timer);
800 #endif
802 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
803 temp = xhci_readl(xhci, &xhci->op_regs->status);
804 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
805 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
806 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
807 &xhci->ir_set->irq_pending);
808 xhci_print_ir_set(xhci, 0);
810 xhci_dbg(xhci, "cleaning up memory\n");
811 xhci_mem_cleanup(xhci);
812 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
813 xhci_readl(xhci, &xhci->op_regs->status));
815 /* USB core calls the PCI reinit and start functions twice:
816 * first with the primary HCD, and then with the secondary HCD.
817 * If we don't do the same, the host will never be started.
819 if (!usb_hcd_is_primary_hcd(hcd))
820 secondary_hcd = hcd;
821 else
822 secondary_hcd = xhci->shared_hcd;
824 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
825 retval = xhci_init(hcd->primary_hcd);
826 if (retval)
827 return retval;
828 xhci_dbg(xhci, "Start the primary HCD\n");
829 retval = xhci_run(hcd->primary_hcd);
830 if (retval)
831 goto failed_restart;
833 xhci_dbg(xhci, "Start the secondary HCD\n");
834 retval = xhci_run(secondary_hcd);
835 if (!retval) {
836 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
837 set_bit(HCD_FLAG_HW_ACCESSIBLE,
838 &xhci->shared_hcd->flags);
840 failed_restart:
841 hcd->state = HC_STATE_SUSPENDED;
842 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
843 return retval;
846 /* step 4: set Run/Stop bit */
847 command = xhci_readl(xhci, &xhci->op_regs->command);
848 command |= CMD_RUN;
849 xhci_writel(xhci, command, &xhci->op_regs->command);
850 handshake(xhci, &xhci->op_regs->status, STS_HALT,
851 0, 250 * 1000);
853 /* step 5: walk topology and initialize portsc,
854 * portpmsc and portli
856 /* this is done in bus_resume */
858 /* step 6: restart each of the previously
859 * Running endpoints by ringing their doorbells
862 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
863 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
865 spin_unlock_irq(&xhci->lock);
866 return 0;
868 #endif /* CONFIG_PM */
870 /*-------------------------------------------------------------------------*/
873 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
874 * HCDs. Find the index for an endpoint given its descriptor. Use the return
875 * value to right shift 1 for the bitmask.
877 * Index = (epnum * 2) + direction - 1,
878 * where direction = 0 for OUT, 1 for IN.
879 * For control endpoints, the IN index is used (OUT index is unused), so
880 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
882 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
884 unsigned int index;
885 if (usb_endpoint_xfer_control(desc))
886 index = (unsigned int) (usb_endpoint_num(desc)*2);
887 else
888 index = (unsigned int) (usb_endpoint_num(desc)*2) +
889 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
890 return index;
893 /* Find the flag for this endpoint (for use in the control context). Use the
894 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
895 * bit 1, etc.
897 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
899 return 1 << (xhci_get_endpoint_index(desc) + 1);
902 /* Find the flag for this endpoint (for use in the control context). Use the
903 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
904 * bit 1, etc.
906 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
908 return 1 << (ep_index + 1);
911 /* Compute the last valid endpoint context index. Basically, this is the
912 * endpoint index plus one. For slot contexts with more than valid endpoint,
913 * we find the most significant bit set in the added contexts flags.
914 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
915 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
917 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
919 return fls(added_ctxs) - 1;
922 /* Returns 1 if the arguments are OK;
923 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
925 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
926 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
927 const char *func) {
928 struct xhci_hcd *xhci;
929 struct xhci_virt_device *virt_dev;
931 if (!hcd || (check_ep && !ep) || !udev) {
932 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
933 func);
934 return -EINVAL;
936 if (!udev->parent) {
937 printk(KERN_DEBUG "xHCI %s called for root hub\n",
938 func);
939 return 0;
942 if (check_virt_dev) {
943 xhci = hcd_to_xhci(hcd);
944 if (!udev->slot_id || !xhci->devs
945 || !xhci->devs[udev->slot_id]) {
946 printk(KERN_DEBUG "xHCI %s called with unaddressed "
947 "device\n", func);
948 return -EINVAL;
951 virt_dev = xhci->devs[udev->slot_id];
952 if (virt_dev->udev != udev) {
953 printk(KERN_DEBUG "xHCI %s called with udev and "
954 "virt_dev does not match\n", func);
955 return -EINVAL;
959 return 1;
962 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
963 struct usb_device *udev, struct xhci_command *command,
964 bool ctx_change, bool must_succeed);
967 * Full speed devices may have a max packet size greater than 8 bytes, but the
968 * USB core doesn't know that until it reads the first 8 bytes of the
969 * descriptor. If the usb_device's max packet size changes after that point,
970 * we need to issue an evaluate context command and wait on it.
972 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
973 unsigned int ep_index, struct urb *urb)
975 struct xhci_container_ctx *in_ctx;
976 struct xhci_container_ctx *out_ctx;
977 struct xhci_input_control_ctx *ctrl_ctx;
978 struct xhci_ep_ctx *ep_ctx;
979 int max_packet_size;
980 int hw_max_packet_size;
981 int ret = 0;
983 out_ctx = xhci->devs[slot_id]->out_ctx;
984 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
985 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
986 max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
987 if (hw_max_packet_size != max_packet_size) {
988 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
989 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
990 max_packet_size);
991 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
992 hw_max_packet_size);
993 xhci_dbg(xhci, "Issuing evaluate context command.\n");
995 /* Set up the modified control endpoint 0 */
996 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
997 xhci->devs[slot_id]->out_ctx, ep_index);
998 in_ctx = xhci->devs[slot_id]->in_ctx;
999 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1000 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1001 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1003 /* Set up the input context flags for the command */
1004 /* FIXME: This won't work if a non-default control endpoint
1005 * changes max packet sizes.
1007 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1008 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1009 ctrl_ctx->drop_flags = 0;
1011 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1012 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1013 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1014 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1016 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1017 true, false);
1019 /* Clean up the input context for later use by bandwidth
1020 * functions.
1022 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1024 return ret;
1028 * non-error returns are a promise to giveback() the urb later
1029 * we drop ownership so next owner (or urb unlink) can get it
1031 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1033 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1034 unsigned long flags;
1035 int ret = 0;
1036 unsigned int slot_id, ep_index;
1037 struct urb_priv *urb_priv;
1038 int size, i;
1040 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1041 true, true, __func__) <= 0)
1042 return -EINVAL;
1044 slot_id = urb->dev->slot_id;
1045 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1047 if (!HCD_HW_ACCESSIBLE(hcd)) {
1048 if (!in_interrupt())
1049 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1050 ret = -ESHUTDOWN;
1051 goto exit;
1054 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1055 size = urb->number_of_packets;
1056 else
1057 size = 1;
1059 urb_priv = kzalloc(sizeof(struct urb_priv) +
1060 size * sizeof(struct xhci_td *), mem_flags);
1061 if (!urb_priv)
1062 return -ENOMEM;
1064 for (i = 0; i < size; i++) {
1065 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1066 if (!urb_priv->td[i]) {
1067 urb_priv->length = i;
1068 xhci_urb_free_priv(xhci, urb_priv);
1069 return -ENOMEM;
1073 urb_priv->length = size;
1074 urb_priv->td_cnt = 0;
1075 urb->hcpriv = urb_priv;
1077 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1078 /* Check to see if the max packet size for the default control
1079 * endpoint changed during FS device enumeration
1081 if (urb->dev->speed == USB_SPEED_FULL) {
1082 ret = xhci_check_maxpacket(xhci, slot_id,
1083 ep_index, urb);
1084 if (ret < 0)
1085 return ret;
1088 /* We have a spinlock and interrupts disabled, so we must pass
1089 * atomic context to this function, which may allocate memory.
1091 spin_lock_irqsave(&xhci->lock, flags);
1092 if (xhci->xhc_state & XHCI_STATE_DYING)
1093 goto dying;
1094 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1095 slot_id, ep_index);
1096 spin_unlock_irqrestore(&xhci->lock, flags);
1097 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1098 spin_lock_irqsave(&xhci->lock, flags);
1099 if (xhci->xhc_state & XHCI_STATE_DYING)
1100 goto dying;
1101 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1102 EP_GETTING_STREAMS) {
1103 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1104 "is transitioning to using streams.\n");
1105 ret = -EINVAL;
1106 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1107 EP_GETTING_NO_STREAMS) {
1108 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1109 "is transitioning to "
1110 "not having streams.\n");
1111 ret = -EINVAL;
1112 } else {
1113 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1114 slot_id, ep_index);
1116 spin_unlock_irqrestore(&xhci->lock, flags);
1117 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1118 spin_lock_irqsave(&xhci->lock, flags);
1119 if (xhci->xhc_state & XHCI_STATE_DYING)
1120 goto dying;
1121 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1122 slot_id, ep_index);
1123 spin_unlock_irqrestore(&xhci->lock, flags);
1124 } else {
1125 spin_lock_irqsave(&xhci->lock, flags);
1126 if (xhci->xhc_state & XHCI_STATE_DYING)
1127 goto dying;
1128 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1129 slot_id, ep_index);
1130 spin_unlock_irqrestore(&xhci->lock, flags);
1132 exit:
1133 return ret;
1134 dying:
1135 xhci_urb_free_priv(xhci, urb_priv);
1136 urb->hcpriv = NULL;
1137 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1138 "non-responsive xHCI host.\n",
1139 urb->ep->desc.bEndpointAddress, urb);
1140 spin_unlock_irqrestore(&xhci->lock, flags);
1141 return -ESHUTDOWN;
1144 /* Get the right ring for the given URB.
1145 * If the endpoint supports streams, boundary check the URB's stream ID.
1146 * If the endpoint doesn't support streams, return the singular endpoint ring.
1148 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1149 struct urb *urb)
1151 unsigned int slot_id;
1152 unsigned int ep_index;
1153 unsigned int stream_id;
1154 struct xhci_virt_ep *ep;
1156 slot_id = urb->dev->slot_id;
1157 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1158 stream_id = urb->stream_id;
1159 ep = &xhci->devs[slot_id]->eps[ep_index];
1160 /* Common case: no streams */
1161 if (!(ep->ep_state & EP_HAS_STREAMS))
1162 return ep->ring;
1164 if (stream_id == 0) {
1165 xhci_warn(xhci,
1166 "WARN: Slot ID %u, ep index %u has streams, "
1167 "but URB has no stream ID.\n",
1168 slot_id, ep_index);
1169 return NULL;
1172 if (stream_id < ep->stream_info->num_streams)
1173 return ep->stream_info->stream_rings[stream_id];
1175 xhci_warn(xhci,
1176 "WARN: Slot ID %u, ep index %u has "
1177 "stream IDs 1 to %u allocated, "
1178 "but stream ID %u is requested.\n",
1179 slot_id, ep_index,
1180 ep->stream_info->num_streams - 1,
1181 stream_id);
1182 return NULL;
1186 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1187 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1188 * should pick up where it left off in the TD, unless a Set Transfer Ring
1189 * Dequeue Pointer is issued.
1191 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1192 * the ring. Since the ring is a contiguous structure, they can't be physically
1193 * removed. Instead, there are two options:
1195 * 1) If the HC is in the middle of processing the URB to be canceled, we
1196 * simply move the ring's dequeue pointer past those TRBs using the Set
1197 * Transfer Ring Dequeue Pointer command. This will be the common case,
1198 * when drivers timeout on the last submitted URB and attempt to cancel.
1200 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1201 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1202 * HC will need to invalidate the any TRBs it has cached after the stop
1203 * endpoint command, as noted in the xHCI 0.95 errata.
1205 * 3) The TD may have completed by the time the Stop Endpoint Command
1206 * completes, so software needs to handle that case too.
1208 * This function should protect against the TD enqueueing code ringing the
1209 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1210 * It also needs to account for multiple cancellations on happening at the same
1211 * time for the same endpoint.
1213 * Note that this function can be called in any context, or so says
1214 * usb_hcd_unlink_urb()
1216 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1218 unsigned long flags;
1219 int ret, i;
1220 u32 temp;
1221 struct xhci_hcd *xhci;
1222 struct urb_priv *urb_priv;
1223 struct xhci_td *td;
1224 unsigned int ep_index;
1225 struct xhci_ring *ep_ring;
1226 struct xhci_virt_ep *ep;
1228 xhci = hcd_to_xhci(hcd);
1229 spin_lock_irqsave(&xhci->lock, flags);
1230 /* Make sure the URB hasn't completed or been unlinked already */
1231 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1232 if (ret || !urb->hcpriv)
1233 goto done;
1234 temp = xhci_readl(xhci, &xhci->op_regs->status);
1235 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1236 xhci_dbg(xhci, "HW died, freeing TD.\n");
1237 urb_priv = urb->hcpriv;
1239 usb_hcd_unlink_urb_from_ep(hcd, urb);
1240 spin_unlock_irqrestore(&xhci->lock, flags);
1241 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1242 xhci_urb_free_priv(xhci, urb_priv);
1243 return ret;
1245 if (xhci->xhc_state & XHCI_STATE_DYING) {
1246 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1247 "non-responsive xHCI host.\n",
1248 urb->ep->desc.bEndpointAddress, urb);
1249 /* Let the stop endpoint command watchdog timer (which set this
1250 * state) finish cleaning up the endpoint TD lists. We must
1251 * have caught it in the middle of dropping a lock and giving
1252 * back an URB.
1254 goto done;
1257 xhci_dbg(xhci, "Cancel URB %p\n", urb);
1258 xhci_dbg(xhci, "Event ring:\n");
1259 xhci_debug_ring(xhci, xhci->event_ring);
1260 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1261 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1262 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1263 if (!ep_ring) {
1264 ret = -EINVAL;
1265 goto done;
1268 xhci_dbg(xhci, "Endpoint ring:\n");
1269 xhci_debug_ring(xhci, ep_ring);
1271 urb_priv = urb->hcpriv;
1273 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1274 td = urb_priv->td[i];
1275 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1278 /* Queue a stop endpoint command, but only if this is
1279 * the first cancellation to be handled.
1281 if (!(ep->ep_state & EP_HALT_PENDING)) {
1282 ep->ep_state |= EP_HALT_PENDING;
1283 ep->stop_cmds_pending++;
1284 ep->stop_cmd_timer.expires = jiffies +
1285 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1286 add_timer(&ep->stop_cmd_timer);
1287 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1288 xhci_ring_cmd_db(xhci);
1290 done:
1291 spin_unlock_irqrestore(&xhci->lock, flags);
1292 return ret;
1295 /* Drop an endpoint from a new bandwidth configuration for this device.
1296 * Only one call to this function is allowed per endpoint before
1297 * check_bandwidth() or reset_bandwidth() must be called.
1298 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1299 * add the endpoint to the schedule with possibly new parameters denoted by a
1300 * different endpoint descriptor in usb_host_endpoint.
1301 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1302 * not allowed.
1304 * The USB core will not allow URBs to be queued to an endpoint that is being
1305 * disabled, so there's no need for mutual exclusion to protect
1306 * the xhci->devs[slot_id] structure.
1308 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1309 struct usb_host_endpoint *ep)
1311 struct xhci_hcd *xhci;
1312 struct xhci_container_ctx *in_ctx, *out_ctx;
1313 struct xhci_input_control_ctx *ctrl_ctx;
1314 struct xhci_slot_ctx *slot_ctx;
1315 unsigned int last_ctx;
1316 unsigned int ep_index;
1317 struct xhci_ep_ctx *ep_ctx;
1318 u32 drop_flag;
1319 u32 new_add_flags, new_drop_flags, new_slot_info;
1320 int ret;
1322 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1323 if (ret <= 0)
1324 return ret;
1325 xhci = hcd_to_xhci(hcd);
1326 if (xhci->xhc_state & XHCI_STATE_DYING)
1327 return -ENODEV;
1329 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1330 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1331 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1332 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1333 __func__, drop_flag);
1334 return 0;
1337 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1338 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1339 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1340 ep_index = xhci_get_endpoint_index(&ep->desc);
1341 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1342 /* If the HC already knows the endpoint is disabled,
1343 * or the HCD has noted it is disabled, ignore this request
1345 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1346 EP_STATE_DISABLED ||
1347 le32_to_cpu(ctrl_ctx->drop_flags) &
1348 xhci_get_endpoint_flag(&ep->desc)) {
1349 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1350 __func__, ep);
1351 return 0;
1354 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1355 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1357 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1358 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1360 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1361 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1362 /* Update the last valid endpoint context, if we deleted the last one */
1363 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1364 LAST_CTX(last_ctx)) {
1365 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1366 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1368 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1370 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1372 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1373 (unsigned int) ep->desc.bEndpointAddress,
1374 udev->slot_id,
1375 (unsigned int) new_drop_flags,
1376 (unsigned int) new_add_flags,
1377 (unsigned int) new_slot_info);
1378 return 0;
1381 /* Add an endpoint to a new possible bandwidth configuration for this device.
1382 * Only one call to this function is allowed per endpoint before
1383 * check_bandwidth() or reset_bandwidth() must be called.
1384 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1385 * add the endpoint to the schedule with possibly new parameters denoted by a
1386 * different endpoint descriptor in usb_host_endpoint.
1387 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1388 * not allowed.
1390 * The USB core will not allow URBs to be queued to an endpoint until the
1391 * configuration or alt setting is installed in the device, so there's no need
1392 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1394 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1395 struct usb_host_endpoint *ep)
1397 struct xhci_hcd *xhci;
1398 struct xhci_container_ctx *in_ctx, *out_ctx;
1399 unsigned int ep_index;
1400 struct xhci_ep_ctx *ep_ctx;
1401 struct xhci_slot_ctx *slot_ctx;
1402 struct xhci_input_control_ctx *ctrl_ctx;
1403 u32 added_ctxs;
1404 unsigned int last_ctx;
1405 u32 new_add_flags, new_drop_flags, new_slot_info;
1406 struct xhci_virt_device *virt_dev;
1407 int ret = 0;
1409 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1410 if (ret <= 0) {
1411 /* So we won't queue a reset ep command for a root hub */
1412 ep->hcpriv = NULL;
1413 return ret;
1415 xhci = hcd_to_xhci(hcd);
1416 if (xhci->xhc_state & XHCI_STATE_DYING)
1417 return -ENODEV;
1419 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1420 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1421 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1422 /* FIXME when we have to issue an evaluate endpoint command to
1423 * deal with ep0 max packet size changing once we get the
1424 * descriptors
1426 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1427 __func__, added_ctxs);
1428 return 0;
1431 virt_dev = xhci->devs[udev->slot_id];
1432 in_ctx = virt_dev->in_ctx;
1433 out_ctx = virt_dev->out_ctx;
1434 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1435 ep_index = xhci_get_endpoint_index(&ep->desc);
1436 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1438 /* If this endpoint is already in use, and the upper layers are trying
1439 * to add it again without dropping it, reject the addition.
1441 if (virt_dev->eps[ep_index].ring &&
1442 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1443 xhci_get_endpoint_flag(&ep->desc))) {
1444 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1445 "without dropping it.\n",
1446 (unsigned int) ep->desc.bEndpointAddress);
1447 return -EINVAL;
1450 /* If the HCD has already noted the endpoint is enabled,
1451 * ignore this request.
1453 if (le32_to_cpu(ctrl_ctx->add_flags) &
1454 xhci_get_endpoint_flag(&ep->desc)) {
1455 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1456 __func__, ep);
1457 return 0;
1461 * Configuration and alternate setting changes must be done in
1462 * process context, not interrupt context (or so documenation
1463 * for usb_set_interface() and usb_set_configuration() claim).
1465 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1466 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1467 __func__, ep->desc.bEndpointAddress);
1468 return -ENOMEM;
1471 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1472 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1474 /* If xhci_endpoint_disable() was called for this endpoint, but the
1475 * xHC hasn't been notified yet through the check_bandwidth() call,
1476 * this re-adds a new state for the endpoint from the new endpoint
1477 * descriptors. We must drop and re-add this endpoint, so we leave the
1478 * drop flags alone.
1480 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1482 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1483 /* Update the last valid endpoint context, if we just added one past */
1484 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1485 LAST_CTX(last_ctx)) {
1486 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1487 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1489 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1491 /* Store the usb_device pointer for later use */
1492 ep->hcpriv = udev;
1494 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1495 (unsigned int) ep->desc.bEndpointAddress,
1496 udev->slot_id,
1497 (unsigned int) new_drop_flags,
1498 (unsigned int) new_add_flags,
1499 (unsigned int) new_slot_info);
1500 return 0;
1503 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1505 struct xhci_input_control_ctx *ctrl_ctx;
1506 struct xhci_ep_ctx *ep_ctx;
1507 struct xhci_slot_ctx *slot_ctx;
1508 int i;
1510 /* When a device's add flag and drop flag are zero, any subsequent
1511 * configure endpoint command will leave that endpoint's state
1512 * untouched. Make sure we don't leave any old state in the input
1513 * endpoint contexts.
1515 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1516 ctrl_ctx->drop_flags = 0;
1517 ctrl_ctx->add_flags = 0;
1518 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1519 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1520 /* Endpoint 0 is always valid */
1521 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1522 for (i = 1; i < 31; ++i) {
1523 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1524 ep_ctx->ep_info = 0;
1525 ep_ctx->ep_info2 = 0;
1526 ep_ctx->deq = 0;
1527 ep_ctx->tx_info = 0;
1531 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1532 struct usb_device *udev, u32 *cmd_status)
1534 int ret;
1536 switch (*cmd_status) {
1537 case COMP_ENOMEM:
1538 dev_warn(&udev->dev, "Not enough host controller resources "
1539 "for new device state.\n");
1540 ret = -ENOMEM;
1541 /* FIXME: can we allocate more resources for the HC? */
1542 break;
1543 case COMP_BW_ERR:
1544 dev_warn(&udev->dev, "Not enough bandwidth "
1545 "for new device state.\n");
1546 ret = -ENOSPC;
1547 /* FIXME: can we go back to the old state? */
1548 break;
1549 case COMP_TRB_ERR:
1550 /* the HCD set up something wrong */
1551 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1552 "add flag = 1, "
1553 "and endpoint is not disabled.\n");
1554 ret = -EINVAL;
1555 break;
1556 case COMP_DEV_ERR:
1557 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1558 "configure command.\n");
1559 ret = -ENODEV;
1560 break;
1561 case COMP_SUCCESS:
1562 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1563 ret = 0;
1564 break;
1565 default:
1566 xhci_err(xhci, "ERROR: unexpected command completion "
1567 "code 0x%x.\n", *cmd_status);
1568 ret = -EINVAL;
1569 break;
1571 return ret;
1574 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1575 struct usb_device *udev, u32 *cmd_status)
1577 int ret;
1578 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1580 switch (*cmd_status) {
1581 case COMP_EINVAL:
1582 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1583 "context command.\n");
1584 ret = -EINVAL;
1585 break;
1586 case COMP_EBADSLT:
1587 dev_warn(&udev->dev, "WARN: slot not enabled for"
1588 "evaluate context command.\n");
1589 case COMP_CTX_STATE:
1590 dev_warn(&udev->dev, "WARN: invalid context state for "
1591 "evaluate context command.\n");
1592 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1593 ret = -EINVAL;
1594 break;
1595 case COMP_DEV_ERR:
1596 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1597 "context command.\n");
1598 ret = -ENODEV;
1599 break;
1600 case COMP_MEL_ERR:
1601 /* Max Exit Latency too large error */
1602 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1603 ret = -EINVAL;
1604 break;
1605 case COMP_SUCCESS:
1606 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1607 ret = 0;
1608 break;
1609 default:
1610 xhci_err(xhci, "ERROR: unexpected command completion "
1611 "code 0x%x.\n", *cmd_status);
1612 ret = -EINVAL;
1613 break;
1615 return ret;
1618 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1619 struct xhci_container_ctx *in_ctx)
1621 struct xhci_input_control_ctx *ctrl_ctx;
1622 u32 valid_add_flags;
1623 u32 valid_drop_flags;
1625 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1626 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1627 * (bit 1). The default control endpoint is added during the Address
1628 * Device command and is never removed until the slot is disabled.
1630 valid_add_flags = ctrl_ctx->add_flags >> 2;
1631 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1633 /* Use hweight32 to count the number of ones in the add flags, or
1634 * number of endpoints added. Don't count endpoints that are changed
1635 * (both added and dropped).
1637 return hweight32(valid_add_flags) -
1638 hweight32(valid_add_flags & valid_drop_flags);
1641 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1642 struct xhci_container_ctx *in_ctx)
1644 struct xhci_input_control_ctx *ctrl_ctx;
1645 u32 valid_add_flags;
1646 u32 valid_drop_flags;
1648 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1649 valid_add_flags = ctrl_ctx->add_flags >> 2;
1650 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1652 return hweight32(valid_drop_flags) -
1653 hweight32(valid_add_flags & valid_drop_flags);
1657 * We need to reserve the new number of endpoints before the configure endpoint
1658 * command completes. We can't subtract the dropped endpoints from the number
1659 * of active endpoints until the command completes because we can oversubscribe
1660 * the host in this case:
1662 * - the first configure endpoint command drops more endpoints than it adds
1663 * - a second configure endpoint command that adds more endpoints is queued
1664 * - the first configure endpoint command fails, so the config is unchanged
1665 * - the second command may succeed, even though there isn't enough resources
1667 * Must be called with xhci->lock held.
1669 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1670 struct xhci_container_ctx *in_ctx)
1672 u32 added_eps;
1674 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1675 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1676 xhci_dbg(xhci, "Not enough ep ctxs: "
1677 "%u active, need to add %u, limit is %u.\n",
1678 xhci->num_active_eps, added_eps,
1679 xhci->limit_active_eps);
1680 return -ENOMEM;
1682 xhci->num_active_eps += added_eps;
1683 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1684 xhci->num_active_eps);
1685 return 0;
1689 * The configure endpoint was failed by the xHC for some other reason, so we
1690 * need to revert the resources that failed configuration would have used.
1692 * Must be called with xhci->lock held.
1694 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1695 struct xhci_container_ctx *in_ctx)
1697 u32 num_failed_eps;
1699 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1700 xhci->num_active_eps -= num_failed_eps;
1701 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1702 num_failed_eps,
1703 xhci->num_active_eps);
1707 * Now that the command has completed, clean up the active endpoint count by
1708 * subtracting out the endpoints that were dropped (but not changed).
1710 * Must be called with xhci->lock held.
1712 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1713 struct xhci_container_ctx *in_ctx)
1715 u32 num_dropped_eps;
1717 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1718 xhci->num_active_eps -= num_dropped_eps;
1719 if (num_dropped_eps)
1720 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1721 num_dropped_eps,
1722 xhci->num_active_eps);
1725 /* Issue a configure endpoint command or evaluate context command
1726 * and wait for it to finish.
1728 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1729 struct usb_device *udev,
1730 struct xhci_command *command,
1731 bool ctx_change, bool must_succeed)
1733 int ret;
1734 int timeleft;
1735 unsigned long flags;
1736 struct xhci_container_ctx *in_ctx;
1737 struct completion *cmd_completion;
1738 u32 *cmd_status;
1739 struct xhci_virt_device *virt_dev;
1741 spin_lock_irqsave(&xhci->lock, flags);
1742 virt_dev = xhci->devs[udev->slot_id];
1743 if (command) {
1744 in_ctx = command->in_ctx;
1745 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1746 xhci_reserve_host_resources(xhci, in_ctx)) {
1747 spin_unlock_irqrestore(&xhci->lock, flags);
1748 xhci_warn(xhci, "Not enough host resources, "
1749 "active endpoint contexts = %u\n",
1750 xhci->num_active_eps);
1751 return -ENOMEM;
1754 cmd_completion = command->completion;
1755 cmd_status = &command->status;
1756 command->command_trb = xhci->cmd_ring->enqueue;
1758 /* Enqueue pointer can be left pointing to the link TRB,
1759 * we must handle that
1761 if ((le32_to_cpu(command->command_trb->link.control)
1762 & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK))
1763 command->command_trb =
1764 xhci->cmd_ring->enq_seg->next->trbs;
1766 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1767 } else {
1768 in_ctx = virt_dev->in_ctx;
1769 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1770 xhci_reserve_host_resources(xhci, in_ctx)) {
1771 spin_unlock_irqrestore(&xhci->lock, flags);
1772 xhci_warn(xhci, "Not enough host resources, "
1773 "active endpoint contexts = %u\n",
1774 xhci->num_active_eps);
1775 return -ENOMEM;
1777 cmd_completion = &virt_dev->cmd_completion;
1778 cmd_status = &virt_dev->cmd_status;
1780 init_completion(cmd_completion);
1782 if (!ctx_change)
1783 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1784 udev->slot_id, must_succeed);
1785 else
1786 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1787 udev->slot_id);
1788 if (ret < 0) {
1789 if (command)
1790 list_del(&command->cmd_list);
1791 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
1792 xhci_free_host_resources(xhci, in_ctx);
1793 spin_unlock_irqrestore(&xhci->lock, flags);
1794 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1795 return -ENOMEM;
1797 xhci_ring_cmd_db(xhci);
1798 spin_unlock_irqrestore(&xhci->lock, flags);
1800 /* Wait for the configure endpoint command to complete */
1801 timeleft = wait_for_completion_interruptible_timeout(
1802 cmd_completion,
1803 USB_CTRL_SET_TIMEOUT);
1804 if (timeleft <= 0) {
1805 xhci_warn(xhci, "%s while waiting for %s command\n",
1806 timeleft == 0 ? "Timeout" : "Signal",
1807 ctx_change == 0 ?
1808 "configure endpoint" :
1809 "evaluate context");
1810 /* FIXME cancel the configure endpoint command */
1811 return -ETIME;
1814 if (!ctx_change)
1815 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
1816 else
1817 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
1819 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
1820 spin_lock_irqsave(&xhci->lock, flags);
1821 /* If the command failed, remove the reserved resources.
1822 * Otherwise, clean up the estimate to include dropped eps.
1824 if (ret)
1825 xhci_free_host_resources(xhci, in_ctx);
1826 else
1827 xhci_finish_resource_reservation(xhci, in_ctx);
1828 spin_unlock_irqrestore(&xhci->lock, flags);
1830 return ret;
1833 /* Called after one or more calls to xhci_add_endpoint() or
1834 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1835 * to call xhci_reset_bandwidth().
1837 * Since we are in the middle of changing either configuration or
1838 * installing a new alt setting, the USB core won't allow URBs to be
1839 * enqueued for any endpoint on the old config or interface. Nothing
1840 * else should be touching the xhci->devs[slot_id] structure, so we
1841 * don't need to take the xhci->lock for manipulating that.
1843 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1845 int i;
1846 int ret = 0;
1847 struct xhci_hcd *xhci;
1848 struct xhci_virt_device *virt_dev;
1849 struct xhci_input_control_ctx *ctrl_ctx;
1850 struct xhci_slot_ctx *slot_ctx;
1852 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1853 if (ret <= 0)
1854 return ret;
1855 xhci = hcd_to_xhci(hcd);
1856 if (xhci->xhc_state & XHCI_STATE_DYING)
1857 return -ENODEV;
1859 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1860 virt_dev = xhci->devs[udev->slot_id];
1862 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1863 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1864 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1865 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1866 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
1867 xhci_dbg(xhci, "New Input Control Context:\n");
1868 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1869 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1870 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1872 ret = xhci_configure_endpoint(xhci, udev, NULL,
1873 false, false);
1874 if (ret) {
1875 /* Callee should call reset_bandwidth() */
1876 return ret;
1879 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1880 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1881 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1883 /* Free any rings that were dropped, but not changed. */
1884 for (i = 1; i < 31; ++i) {
1885 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
1886 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
1887 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1889 xhci_zero_in_ctx(xhci, virt_dev);
1891 * Install any rings for completely new endpoints or changed endpoints,
1892 * and free or cache any old rings from changed endpoints.
1894 for (i = 1; i < 31; ++i) {
1895 if (!virt_dev->eps[i].new_ring)
1896 continue;
1897 /* Only cache or free the old ring if it exists.
1898 * It may not if this is the first add of an endpoint.
1900 if (virt_dev->eps[i].ring) {
1901 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1903 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1904 virt_dev->eps[i].new_ring = NULL;
1907 return ret;
1910 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1912 struct xhci_hcd *xhci;
1913 struct xhci_virt_device *virt_dev;
1914 int i, ret;
1916 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1917 if (ret <= 0)
1918 return;
1919 xhci = hcd_to_xhci(hcd);
1921 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1922 virt_dev = xhci->devs[udev->slot_id];
1923 /* Free any rings allocated for added endpoints */
1924 for (i = 0; i < 31; ++i) {
1925 if (virt_dev->eps[i].new_ring) {
1926 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1927 virt_dev->eps[i].new_ring = NULL;
1930 xhci_zero_in_ctx(xhci, virt_dev);
1933 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1934 struct xhci_container_ctx *in_ctx,
1935 struct xhci_container_ctx *out_ctx,
1936 u32 add_flags, u32 drop_flags)
1938 struct xhci_input_control_ctx *ctrl_ctx;
1939 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1940 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1941 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1942 xhci_slot_copy(xhci, in_ctx, out_ctx);
1943 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1945 xhci_dbg(xhci, "Input Context:\n");
1946 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1949 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1950 unsigned int slot_id, unsigned int ep_index,
1951 struct xhci_dequeue_state *deq_state)
1953 struct xhci_container_ctx *in_ctx;
1954 struct xhci_ep_ctx *ep_ctx;
1955 u32 added_ctxs;
1956 dma_addr_t addr;
1958 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1959 xhci->devs[slot_id]->out_ctx, ep_index);
1960 in_ctx = xhci->devs[slot_id]->in_ctx;
1961 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1962 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1963 deq_state->new_deq_ptr);
1964 if (addr == 0) {
1965 xhci_warn(xhci, "WARN Cannot submit config ep after "
1966 "reset ep command\n");
1967 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1968 deq_state->new_deq_seg,
1969 deq_state->new_deq_ptr);
1970 return;
1972 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1974 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1975 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1976 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1979 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1980 struct usb_device *udev, unsigned int ep_index)
1982 struct xhci_dequeue_state deq_state;
1983 struct xhci_virt_ep *ep;
1985 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1986 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1987 /* We need to move the HW's dequeue pointer past this TD,
1988 * or it will attempt to resend it on the next doorbell ring.
1990 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1991 ep_index, ep->stopped_stream, ep->stopped_td,
1992 &deq_state);
1994 /* HW with the reset endpoint quirk will use the saved dequeue state to
1995 * issue a configure endpoint command later.
1997 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1998 xhci_dbg(xhci, "Queueing new dequeue state\n");
1999 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2000 ep_index, ep->stopped_stream, &deq_state);
2001 } else {
2002 /* Better hope no one uses the input context between now and the
2003 * reset endpoint completion!
2004 * XXX: No idea how this hardware will react when stream rings
2005 * are enabled.
2007 xhci_dbg(xhci, "Setting up input context for "
2008 "configure endpoint command\n");
2009 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2010 ep_index, &deq_state);
2014 /* Deal with stalled endpoints. The core should have sent the control message
2015 * to clear the halt condition. However, we need to make the xHCI hardware
2016 * reset its sequence number, since a device will expect a sequence number of
2017 * zero after the halt condition is cleared.
2018 * Context: in_interrupt
2020 void xhci_endpoint_reset(struct usb_hcd *hcd,
2021 struct usb_host_endpoint *ep)
2023 struct xhci_hcd *xhci;
2024 struct usb_device *udev;
2025 unsigned int ep_index;
2026 unsigned long flags;
2027 int ret;
2028 struct xhci_virt_ep *virt_ep;
2030 xhci = hcd_to_xhci(hcd);
2031 udev = (struct usb_device *) ep->hcpriv;
2032 /* Called with a root hub endpoint (or an endpoint that wasn't added
2033 * with xhci_add_endpoint()
2035 if (!ep->hcpriv)
2036 return;
2037 ep_index = xhci_get_endpoint_index(&ep->desc);
2038 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2039 if (!virt_ep->stopped_td) {
2040 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2041 ep->desc.bEndpointAddress);
2042 return;
2044 if (usb_endpoint_xfer_control(&ep->desc)) {
2045 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2046 return;
2049 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2050 spin_lock_irqsave(&xhci->lock, flags);
2051 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2053 * Can't change the ring dequeue pointer until it's transitioned to the
2054 * stopped state, which is only upon a successful reset endpoint
2055 * command. Better hope that last command worked!
2057 if (!ret) {
2058 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2059 kfree(virt_ep->stopped_td);
2060 xhci_ring_cmd_db(xhci);
2062 virt_ep->stopped_td = NULL;
2063 virt_ep->stopped_trb = NULL;
2064 virt_ep->stopped_stream = 0;
2065 spin_unlock_irqrestore(&xhci->lock, flags);
2067 if (ret)
2068 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2071 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2072 struct usb_device *udev, struct usb_host_endpoint *ep,
2073 unsigned int slot_id)
2075 int ret;
2076 unsigned int ep_index;
2077 unsigned int ep_state;
2079 if (!ep)
2080 return -EINVAL;
2081 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2082 if (ret <= 0)
2083 return -EINVAL;
2084 if (ep->ss_ep_comp.bmAttributes == 0) {
2085 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2086 " descriptor for ep 0x%x does not support streams\n",
2087 ep->desc.bEndpointAddress);
2088 return -EINVAL;
2091 ep_index = xhci_get_endpoint_index(&ep->desc);
2092 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2093 if (ep_state & EP_HAS_STREAMS ||
2094 ep_state & EP_GETTING_STREAMS) {
2095 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2096 "already has streams set up.\n",
2097 ep->desc.bEndpointAddress);
2098 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2099 "dynamic stream context array reallocation.\n");
2100 return -EINVAL;
2102 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2103 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2104 "endpoint 0x%x; URBs are pending.\n",
2105 ep->desc.bEndpointAddress);
2106 return -EINVAL;
2108 return 0;
2111 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2112 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2114 unsigned int max_streams;
2116 /* The stream context array size must be a power of two */
2117 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2119 * Find out how many primary stream array entries the host controller
2120 * supports. Later we may use secondary stream arrays (similar to 2nd
2121 * level page entries), but that's an optional feature for xHCI host
2122 * controllers. xHCs must support at least 4 stream IDs.
2124 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2125 if (*num_stream_ctxs > max_streams) {
2126 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2127 max_streams);
2128 *num_stream_ctxs = max_streams;
2129 *num_streams = max_streams;
2133 /* Returns an error code if one of the endpoint already has streams.
2134 * This does not change any data structures, it only checks and gathers
2135 * information.
2137 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2138 struct usb_device *udev,
2139 struct usb_host_endpoint **eps, unsigned int num_eps,
2140 unsigned int *num_streams, u32 *changed_ep_bitmask)
2142 unsigned int max_streams;
2143 unsigned int endpoint_flag;
2144 int i;
2145 int ret;
2147 for (i = 0; i < num_eps; i++) {
2148 ret = xhci_check_streams_endpoint(xhci, udev,
2149 eps[i], udev->slot_id);
2150 if (ret < 0)
2151 return ret;
2153 max_streams = USB_SS_MAX_STREAMS(
2154 eps[i]->ss_ep_comp.bmAttributes);
2155 if (max_streams < (*num_streams - 1)) {
2156 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2157 eps[i]->desc.bEndpointAddress,
2158 max_streams);
2159 *num_streams = max_streams+1;
2162 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2163 if (*changed_ep_bitmask & endpoint_flag)
2164 return -EINVAL;
2165 *changed_ep_bitmask |= endpoint_flag;
2167 return 0;
2170 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2171 struct usb_device *udev,
2172 struct usb_host_endpoint **eps, unsigned int num_eps)
2174 u32 changed_ep_bitmask = 0;
2175 unsigned int slot_id;
2176 unsigned int ep_index;
2177 unsigned int ep_state;
2178 int i;
2180 slot_id = udev->slot_id;
2181 if (!xhci->devs[slot_id])
2182 return 0;
2184 for (i = 0; i < num_eps; i++) {
2185 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2186 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2187 /* Are streams already being freed for the endpoint? */
2188 if (ep_state & EP_GETTING_NO_STREAMS) {
2189 xhci_warn(xhci, "WARN Can't disable streams for "
2190 "endpoint 0x%x\n, "
2191 "streams are being disabled already.",
2192 eps[i]->desc.bEndpointAddress);
2193 return 0;
2195 /* Are there actually any streams to free? */
2196 if (!(ep_state & EP_HAS_STREAMS) &&
2197 !(ep_state & EP_GETTING_STREAMS)) {
2198 xhci_warn(xhci, "WARN Can't disable streams for "
2199 "endpoint 0x%x\n, "
2200 "streams are already disabled!",
2201 eps[i]->desc.bEndpointAddress);
2202 xhci_warn(xhci, "WARN xhci_free_streams() called "
2203 "with non-streams endpoint\n");
2204 return 0;
2206 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2208 return changed_ep_bitmask;
2212 * The USB device drivers use this function (though the HCD interface in USB
2213 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
2214 * coordinate mass storage command queueing across multiple endpoints (basically
2215 * a stream ID == a task ID).
2217 * Setting up streams involves allocating the same size stream context array
2218 * for each endpoint and issuing a configure endpoint command for all endpoints.
2220 * Don't allow the call to succeed if one endpoint only supports one stream
2221 * (which means it doesn't support streams at all).
2223 * Drivers may get less stream IDs than they asked for, if the host controller
2224 * hardware or endpoints claim they can't support the number of requested
2225 * stream IDs.
2227 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2228 struct usb_host_endpoint **eps, unsigned int num_eps,
2229 unsigned int num_streams, gfp_t mem_flags)
2231 int i, ret;
2232 struct xhci_hcd *xhci;
2233 struct xhci_virt_device *vdev;
2234 struct xhci_command *config_cmd;
2235 unsigned int ep_index;
2236 unsigned int num_stream_ctxs;
2237 unsigned long flags;
2238 u32 changed_ep_bitmask = 0;
2240 if (!eps)
2241 return -EINVAL;
2243 /* Add one to the number of streams requested to account for
2244 * stream 0 that is reserved for xHCI usage.
2246 num_streams += 1;
2247 xhci = hcd_to_xhci(hcd);
2248 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2249 num_streams);
2251 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2252 if (!config_cmd) {
2253 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2254 return -ENOMEM;
2257 /* Check to make sure all endpoints are not already configured for
2258 * streams. While we're at it, find the maximum number of streams that
2259 * all the endpoints will support and check for duplicate endpoints.
2261 spin_lock_irqsave(&xhci->lock, flags);
2262 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2263 num_eps, &num_streams, &changed_ep_bitmask);
2264 if (ret < 0) {
2265 xhci_free_command(xhci, config_cmd);
2266 spin_unlock_irqrestore(&xhci->lock, flags);
2267 return ret;
2269 if (num_streams <= 1) {
2270 xhci_warn(xhci, "WARN: endpoints can't handle "
2271 "more than one stream.\n");
2272 xhci_free_command(xhci, config_cmd);
2273 spin_unlock_irqrestore(&xhci->lock, flags);
2274 return -EINVAL;
2276 vdev = xhci->devs[udev->slot_id];
2277 /* Mark each endpoint as being in transition, so
2278 * xhci_urb_enqueue() will reject all URBs.
2280 for (i = 0; i < num_eps; i++) {
2281 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2282 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2284 spin_unlock_irqrestore(&xhci->lock, flags);
2286 /* Setup internal data structures and allocate HW data structures for
2287 * streams (but don't install the HW structures in the input context
2288 * until we're sure all memory allocation succeeded).
2290 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2291 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2292 num_stream_ctxs, num_streams);
2294 for (i = 0; i < num_eps; i++) {
2295 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2296 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2297 num_stream_ctxs,
2298 num_streams, mem_flags);
2299 if (!vdev->eps[ep_index].stream_info)
2300 goto cleanup;
2301 /* Set maxPstreams in endpoint context and update deq ptr to
2302 * point to stream context array. FIXME
2306 /* Set up the input context for a configure endpoint command. */
2307 for (i = 0; i < num_eps; i++) {
2308 struct xhci_ep_ctx *ep_ctx;
2310 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2311 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2313 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2314 vdev->out_ctx, ep_index);
2315 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2316 vdev->eps[ep_index].stream_info);
2318 /* Tell the HW to drop its old copy of the endpoint context info
2319 * and add the updated copy from the input context.
2321 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2322 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2324 /* Issue and wait for the configure endpoint command */
2325 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2326 false, false);
2328 /* xHC rejected the configure endpoint command for some reason, so we
2329 * leave the old ring intact and free our internal streams data
2330 * structure.
2332 if (ret < 0)
2333 goto cleanup;
2335 spin_lock_irqsave(&xhci->lock, flags);
2336 for (i = 0; i < num_eps; i++) {
2337 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2338 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2339 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2340 udev->slot_id, ep_index);
2341 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2343 xhci_free_command(xhci, config_cmd);
2344 spin_unlock_irqrestore(&xhci->lock, flags);
2346 /* Subtract 1 for stream 0, which drivers can't use */
2347 return num_streams - 1;
2349 cleanup:
2350 /* If it didn't work, free the streams! */
2351 for (i = 0; i < num_eps; i++) {
2352 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2353 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2354 vdev->eps[ep_index].stream_info = NULL;
2355 /* FIXME Unset maxPstreams in endpoint context and
2356 * update deq ptr to point to normal string ring.
2358 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2359 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2360 xhci_endpoint_zero(xhci, vdev, eps[i]);
2362 xhci_free_command(xhci, config_cmd);
2363 return -ENOMEM;
2366 /* Transition the endpoint from using streams to being a "normal" endpoint
2367 * without streams.
2369 * Modify the endpoint context state, submit a configure endpoint command,
2370 * and free all endpoint rings for streams if that completes successfully.
2372 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2373 struct usb_host_endpoint **eps, unsigned int num_eps,
2374 gfp_t mem_flags)
2376 int i, ret;
2377 struct xhci_hcd *xhci;
2378 struct xhci_virt_device *vdev;
2379 struct xhci_command *command;
2380 unsigned int ep_index;
2381 unsigned long flags;
2382 u32 changed_ep_bitmask;
2384 xhci = hcd_to_xhci(hcd);
2385 vdev = xhci->devs[udev->slot_id];
2387 /* Set up a configure endpoint command to remove the streams rings */
2388 spin_lock_irqsave(&xhci->lock, flags);
2389 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2390 udev, eps, num_eps);
2391 if (changed_ep_bitmask == 0) {
2392 spin_unlock_irqrestore(&xhci->lock, flags);
2393 return -EINVAL;
2396 /* Use the xhci_command structure from the first endpoint. We may have
2397 * allocated too many, but the driver may call xhci_free_streams() for
2398 * each endpoint it grouped into one call to xhci_alloc_streams().
2400 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2401 command = vdev->eps[ep_index].stream_info->free_streams_command;
2402 for (i = 0; i < num_eps; i++) {
2403 struct xhci_ep_ctx *ep_ctx;
2405 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2406 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2407 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2408 EP_GETTING_NO_STREAMS;
2410 xhci_endpoint_copy(xhci, command->in_ctx,
2411 vdev->out_ctx, ep_index);
2412 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2413 &vdev->eps[ep_index]);
2415 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2416 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2417 spin_unlock_irqrestore(&xhci->lock, flags);
2419 /* Issue and wait for the configure endpoint command,
2420 * which must succeed.
2422 ret = xhci_configure_endpoint(xhci, udev, command,
2423 false, true);
2425 /* xHC rejected the configure endpoint command for some reason, so we
2426 * leave the streams rings intact.
2428 if (ret < 0)
2429 return ret;
2431 spin_lock_irqsave(&xhci->lock, flags);
2432 for (i = 0; i < num_eps; i++) {
2433 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2434 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2435 vdev->eps[ep_index].stream_info = NULL;
2436 /* FIXME Unset maxPstreams in endpoint context and
2437 * update deq ptr to point to normal string ring.
2439 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2440 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2442 spin_unlock_irqrestore(&xhci->lock, flags);
2444 return 0;
2448 * Deletes endpoint resources for endpoints that were active before a Reset
2449 * Device command, or a Disable Slot command. The Reset Device command leaves
2450 * the control endpoint intact, whereas the Disable Slot command deletes it.
2452 * Must be called with xhci->lock held.
2454 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2455 struct xhci_virt_device *virt_dev, bool drop_control_ep)
2457 int i;
2458 unsigned int num_dropped_eps = 0;
2459 unsigned int drop_flags = 0;
2461 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2462 if (virt_dev->eps[i].ring) {
2463 drop_flags |= 1 << i;
2464 num_dropped_eps++;
2467 xhci->num_active_eps -= num_dropped_eps;
2468 if (num_dropped_eps)
2469 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
2470 "%u now active.\n",
2471 num_dropped_eps, drop_flags,
2472 xhci->num_active_eps);
2476 * This submits a Reset Device Command, which will set the device state to 0,
2477 * set the device address to 0, and disable all the endpoints except the default
2478 * control endpoint. The USB core should come back and call
2479 * xhci_address_device(), and then re-set up the configuration. If this is
2480 * called because of a usb_reset_and_verify_device(), then the old alternate
2481 * settings will be re-installed through the normal bandwidth allocation
2482 * functions.
2484 * Wait for the Reset Device command to finish. Remove all structures
2485 * associated with the endpoints that were disabled. Clear the input device
2486 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
2488 * If the virt_dev to be reset does not exist or does not match the udev,
2489 * it means the device is lost, possibly due to the xHC restore error and
2490 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2491 * re-allocate the device.
2493 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2495 int ret, i;
2496 unsigned long flags;
2497 struct xhci_hcd *xhci;
2498 unsigned int slot_id;
2499 struct xhci_virt_device *virt_dev;
2500 struct xhci_command *reset_device_cmd;
2501 int timeleft;
2502 int last_freed_endpoint;
2503 struct xhci_slot_ctx *slot_ctx;
2505 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2506 if (ret <= 0)
2507 return ret;
2508 xhci = hcd_to_xhci(hcd);
2509 slot_id = udev->slot_id;
2510 virt_dev = xhci->devs[slot_id];
2511 if (!virt_dev) {
2512 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2513 "not exist. Re-allocate the device\n", slot_id);
2514 ret = xhci_alloc_dev(hcd, udev);
2515 if (ret == 1)
2516 return 0;
2517 else
2518 return -EINVAL;
2521 if (virt_dev->udev != udev) {
2522 /* If the virt_dev and the udev does not match, this virt_dev
2523 * may belong to another udev.
2524 * Re-allocate the device.
2526 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2527 "not match the udev. Re-allocate the device\n",
2528 slot_id);
2529 ret = xhci_alloc_dev(hcd, udev);
2530 if (ret == 1)
2531 return 0;
2532 else
2533 return -EINVAL;
2536 /* If device is not setup, there is no point in resetting it */
2537 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2538 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
2539 SLOT_STATE_DISABLED)
2540 return 0;
2542 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2543 /* Allocate the command structure that holds the struct completion.
2544 * Assume we're in process context, since the normal device reset
2545 * process has to wait for the device anyway. Storage devices are
2546 * reset as part of error handling, so use GFP_NOIO instead of
2547 * GFP_KERNEL.
2549 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2550 if (!reset_device_cmd) {
2551 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2552 return -ENOMEM;
2555 /* Attempt to submit the Reset Device command to the command ring */
2556 spin_lock_irqsave(&xhci->lock, flags);
2557 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2559 /* Enqueue pointer can be left pointing to the link TRB,
2560 * we must handle that
2562 if ((le32_to_cpu(reset_device_cmd->command_trb->link.control)
2563 & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK))
2564 reset_device_cmd->command_trb =
2565 xhci->cmd_ring->enq_seg->next->trbs;
2567 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2568 ret = xhci_queue_reset_device(xhci, slot_id);
2569 if (ret) {
2570 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2571 list_del(&reset_device_cmd->cmd_list);
2572 spin_unlock_irqrestore(&xhci->lock, flags);
2573 goto command_cleanup;
2575 xhci_ring_cmd_db(xhci);
2576 spin_unlock_irqrestore(&xhci->lock, flags);
2578 /* Wait for the Reset Device command to finish */
2579 timeleft = wait_for_completion_interruptible_timeout(
2580 reset_device_cmd->completion,
2581 USB_CTRL_SET_TIMEOUT);
2582 if (timeleft <= 0) {
2583 xhci_warn(xhci, "%s while waiting for reset device command\n",
2584 timeleft == 0 ? "Timeout" : "Signal");
2585 spin_lock_irqsave(&xhci->lock, flags);
2586 /* The timeout might have raced with the event ring handler, so
2587 * only delete from the list if the item isn't poisoned.
2589 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2590 list_del(&reset_device_cmd->cmd_list);
2591 spin_unlock_irqrestore(&xhci->lock, flags);
2592 ret = -ETIME;
2593 goto command_cleanup;
2596 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2597 * unless we tried to reset a slot ID that wasn't enabled,
2598 * or the device wasn't in the addressed or configured state.
2600 ret = reset_device_cmd->status;
2601 switch (ret) {
2602 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2603 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2604 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2605 slot_id,
2606 xhci_get_slot_state(xhci, virt_dev->out_ctx));
2607 xhci_info(xhci, "Not freeing device rings.\n");
2608 /* Don't treat this as an error. May change my mind later. */
2609 ret = 0;
2610 goto command_cleanup;
2611 case COMP_SUCCESS:
2612 xhci_dbg(xhci, "Successful reset device command.\n");
2613 break;
2614 default:
2615 if (xhci_is_vendor_info_code(xhci, ret))
2616 break;
2617 xhci_warn(xhci, "Unknown completion code %u for "
2618 "reset device command.\n", ret);
2619 ret = -EINVAL;
2620 goto command_cleanup;
2623 /* Free up host controller endpoint resources */
2624 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2625 spin_lock_irqsave(&xhci->lock, flags);
2626 /* Don't delete the default control endpoint resources */
2627 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
2628 spin_unlock_irqrestore(&xhci->lock, flags);
2631 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
2632 last_freed_endpoint = 1;
2633 for (i = 1; i < 31; ++i) {
2634 struct xhci_virt_ep *ep = &virt_dev->eps[i];
2636 if (ep->ep_state & EP_HAS_STREAMS) {
2637 xhci_free_stream_info(xhci, ep->stream_info);
2638 ep->stream_info = NULL;
2639 ep->ep_state &= ~EP_HAS_STREAMS;
2642 if (ep->ring) {
2643 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2644 last_freed_endpoint = i;
2647 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2648 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2649 ret = 0;
2651 command_cleanup:
2652 xhci_free_command(xhci, reset_device_cmd);
2653 return ret;
2657 * At this point, the struct usb_device is about to go away, the device has
2658 * disconnected, and all traffic has been stopped and the endpoints have been
2659 * disabled. Free any HC data structures associated with that device.
2661 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2663 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2664 struct xhci_virt_device *virt_dev;
2665 unsigned long flags;
2666 u32 state;
2667 int i, ret;
2669 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2670 if (ret <= 0)
2671 return;
2673 virt_dev = xhci->devs[udev->slot_id];
2675 /* Stop any wayward timer functions (which may grab the lock) */
2676 for (i = 0; i < 31; ++i) {
2677 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2678 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2681 spin_lock_irqsave(&xhci->lock, flags);
2682 /* Don't disable the slot if the host controller is dead. */
2683 state = xhci_readl(xhci, &xhci->op_regs->status);
2684 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
2685 xhci_free_virt_device(xhci, udev->slot_id);
2686 spin_unlock_irqrestore(&xhci->lock, flags);
2687 return;
2690 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2691 spin_unlock_irqrestore(&xhci->lock, flags);
2692 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2693 return;
2695 xhci_ring_cmd_db(xhci);
2696 spin_unlock_irqrestore(&xhci->lock, flags);
2698 * Event command completion handler will free any data structures
2699 * associated with the slot. XXX Can free sleep?
2704 * Checks if we have enough host controller resources for the default control
2705 * endpoint.
2707 * Must be called with xhci->lock held.
2709 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
2711 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
2712 xhci_dbg(xhci, "Not enough ep ctxs: "
2713 "%u active, need to add 1, limit is %u.\n",
2714 xhci->num_active_eps, xhci->limit_active_eps);
2715 return -ENOMEM;
2717 xhci->num_active_eps += 1;
2718 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
2719 xhci->num_active_eps);
2720 return 0;
2725 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2726 * timed out, or allocating memory failed. Returns 1 on success.
2728 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2730 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2731 unsigned long flags;
2732 int timeleft;
2733 int ret;
2735 spin_lock_irqsave(&xhci->lock, flags);
2736 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2737 if (ret) {
2738 spin_unlock_irqrestore(&xhci->lock, flags);
2739 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2740 return 0;
2742 xhci_ring_cmd_db(xhci);
2743 spin_unlock_irqrestore(&xhci->lock, flags);
2745 /* XXX: how much time for xHC slot assignment? */
2746 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2747 USB_CTRL_SET_TIMEOUT);
2748 if (timeleft <= 0) {
2749 xhci_warn(xhci, "%s while waiting for a slot\n",
2750 timeleft == 0 ? "Timeout" : "Signal");
2751 /* FIXME cancel the enable slot request */
2752 return 0;
2755 if (!xhci->slot_id) {
2756 xhci_err(xhci, "Error while assigning device slot ID\n");
2757 return 0;
2760 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2761 spin_lock_irqsave(&xhci->lock, flags);
2762 ret = xhci_reserve_host_control_ep_resources(xhci);
2763 if (ret) {
2764 spin_unlock_irqrestore(&xhci->lock, flags);
2765 xhci_warn(xhci, "Not enough host resources, "
2766 "active endpoint contexts = %u\n",
2767 xhci->num_active_eps);
2768 goto disable_slot;
2770 spin_unlock_irqrestore(&xhci->lock, flags);
2772 /* Use GFP_NOIO, since this function can be called from
2773 * xhci_discover_or_reset_device(), which may be called as part of
2774 * mass storage driver error handling.
2776 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2777 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2778 goto disable_slot;
2780 udev->slot_id = xhci->slot_id;
2781 /* Is this a LS or FS device under a HS hub? */
2782 /* Hub or peripherial? */
2783 return 1;
2785 disable_slot:
2786 /* Disable slot, if we can do it without mem alloc */
2787 spin_lock_irqsave(&xhci->lock, flags);
2788 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2789 xhci_ring_cmd_db(xhci);
2790 spin_unlock_irqrestore(&xhci->lock, flags);
2791 return 0;
2795 * Issue an Address Device command (which will issue a SetAddress request to
2796 * the device).
2797 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2798 * we should only issue and wait on one address command at the same time.
2800 * We add one to the device address issued by the hardware because the USB core
2801 * uses address 1 for the root hubs (even though they're not really devices).
2803 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2805 unsigned long flags;
2806 int timeleft;
2807 struct xhci_virt_device *virt_dev;
2808 int ret = 0;
2809 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2810 struct xhci_slot_ctx *slot_ctx;
2811 struct xhci_input_control_ctx *ctrl_ctx;
2812 u64 temp_64;
2814 if (!udev->slot_id) {
2815 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2816 return -EINVAL;
2819 virt_dev = xhci->devs[udev->slot_id];
2821 if (WARN_ON(!virt_dev)) {
2823 * In plug/unplug torture test with an NEC controller,
2824 * a zero-dereference was observed once due to virt_dev = 0.
2825 * Print useful debug rather than crash if it is observed again!
2827 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2828 udev->slot_id);
2829 return -EINVAL;
2832 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2834 * If this is the first Set Address since device plug-in or
2835 * virt_device realloaction after a resume with an xHCI power loss,
2836 * then set up the slot context.
2838 if (!slot_ctx->dev_info)
2839 xhci_setup_addressable_virt_dev(xhci, udev);
2840 /* Otherwise, update the control endpoint ring enqueue pointer. */
2841 else
2842 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2843 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2844 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2846 spin_lock_irqsave(&xhci->lock, flags);
2847 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2848 udev->slot_id);
2849 if (ret) {
2850 spin_unlock_irqrestore(&xhci->lock, flags);
2851 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2852 return ret;
2854 xhci_ring_cmd_db(xhci);
2855 spin_unlock_irqrestore(&xhci->lock, flags);
2857 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2858 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2859 USB_CTRL_SET_TIMEOUT);
2860 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
2861 * the SetAddress() "recovery interval" required by USB and aborting the
2862 * command on a timeout.
2864 if (timeleft <= 0) {
2865 xhci_warn(xhci, "%s while waiting for a slot\n",
2866 timeleft == 0 ? "Timeout" : "Signal");
2867 /* FIXME cancel the address device command */
2868 return -ETIME;
2871 switch (virt_dev->cmd_status) {
2872 case COMP_CTX_STATE:
2873 case COMP_EBADSLT:
2874 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2875 udev->slot_id);
2876 ret = -EINVAL;
2877 break;
2878 case COMP_TX_ERR:
2879 dev_warn(&udev->dev, "Device not responding to set address.\n");
2880 ret = -EPROTO;
2881 break;
2882 case COMP_DEV_ERR:
2883 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
2884 "device command.\n");
2885 ret = -ENODEV;
2886 break;
2887 case COMP_SUCCESS:
2888 xhci_dbg(xhci, "Successful Address Device command\n");
2889 break;
2890 default:
2891 xhci_err(xhci, "ERROR: unexpected command completion "
2892 "code 0x%x.\n", virt_dev->cmd_status);
2893 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2894 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2895 ret = -EINVAL;
2896 break;
2898 if (ret) {
2899 return ret;
2901 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2902 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2903 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2904 udev->slot_id,
2905 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2906 (unsigned long long)
2907 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2908 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2909 (unsigned long long)virt_dev->out_ctx->dma);
2910 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2911 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2912 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2913 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2915 * USB core uses address 1 for the roothubs, so we add one to the
2916 * address given back to us by the HC.
2918 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2919 /* Use kernel assigned address for devices; store xHC assigned
2920 * address locally. */
2921 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2922 + 1;
2923 /* Zero the input context control for later use */
2924 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2925 ctrl_ctx->add_flags = 0;
2926 ctrl_ctx->drop_flags = 0;
2928 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2930 return 0;
2933 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2934 * internal data structures for the device.
2936 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2937 struct usb_tt *tt, gfp_t mem_flags)
2939 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2940 struct xhci_virt_device *vdev;
2941 struct xhci_command *config_cmd;
2942 struct xhci_input_control_ctx *ctrl_ctx;
2943 struct xhci_slot_ctx *slot_ctx;
2944 unsigned long flags;
2945 unsigned think_time;
2946 int ret;
2948 /* Ignore root hubs */
2949 if (!hdev->parent)
2950 return 0;
2952 vdev = xhci->devs[hdev->slot_id];
2953 if (!vdev) {
2954 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2955 return -EINVAL;
2957 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2958 if (!config_cmd) {
2959 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2960 return -ENOMEM;
2963 spin_lock_irqsave(&xhci->lock, flags);
2964 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2965 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2966 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2967 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2968 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
2969 if (tt->multi)
2970 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
2971 if (xhci->hci_version > 0x95) {
2972 xhci_dbg(xhci, "xHCI version %x needs hub "
2973 "TT think time and number of ports\n",
2974 (unsigned int) xhci->hci_version);
2975 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
2976 /* Set TT think time - convert from ns to FS bit times.
2977 * 0 = 8 FS bit times, 1 = 16 FS bit times,
2978 * 2 = 24 FS bit times, 3 = 32 FS bit times.
2980 * xHCI 1.0: this field shall be 0 if the device is not a
2981 * High-spped hub.
2983 think_time = tt->think_time;
2984 if (think_time != 0)
2985 think_time = (think_time / 666) - 1;
2986 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
2987 slot_ctx->tt_info |=
2988 cpu_to_le32(TT_THINK_TIME(think_time));
2989 } else {
2990 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
2991 "TT think time or number of ports\n",
2992 (unsigned int) xhci->hci_version);
2994 slot_ctx->dev_state = 0;
2995 spin_unlock_irqrestore(&xhci->lock, flags);
2997 xhci_dbg(xhci, "Set up %s for hub device.\n",
2998 (xhci->hci_version > 0x95) ?
2999 "configure endpoint" : "evaluate context");
3000 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3001 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3003 /* Issue and wait for the configure endpoint or
3004 * evaluate context command.
3006 if (xhci->hci_version > 0x95)
3007 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3008 false, false);
3009 else
3010 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3011 true, false);
3013 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3014 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3016 xhci_free_command(xhci, config_cmd);
3017 return ret;
3020 int xhci_get_frame(struct usb_hcd *hcd)
3022 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3023 /* EHCI mods by the periodic size. Why? */
3024 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3027 MODULE_DESCRIPTION(DRIVER_DESC);
3028 MODULE_AUTHOR(DRIVER_AUTHOR);
3029 MODULE_LICENSE("GPL");
3031 static int __init xhci_hcd_init(void)
3033 #ifdef CONFIG_PCI
3034 int retval = 0;
3036 retval = xhci_register_pci();
3038 if (retval < 0) {
3039 printk(KERN_DEBUG "Problem registering PCI driver.");
3040 return retval;
3042 #endif
3044 * Check the compiler generated sizes of structures that must be laid
3045 * out in specific ways for hardware access.
3047 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3048 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3049 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3050 /* xhci_device_control has eight fields, and also
3051 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3053 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3054 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3055 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3056 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3057 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3058 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3059 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3060 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3061 return 0;
3063 module_init(xhci_hcd_init);
3065 static void __exit xhci_hcd_cleanup(void)
3067 #ifdef CONFIG_PCI
3068 xhci_unregister_pci();
3069 #endif
3071 module_exit(xhci_hcd_cleanup);