coda: kill redundant cast in coda_alloc_inode()
[zen-stable.git] / mm / swap_state.c
blobe10f5833167f6d5b564a534484985dc3c7dee745
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/buffer_head.h>
18 #include <linux/backing-dev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/page_cgroup.h>
23 #include <asm/pgtable.h>
26 * swapper_space is a fiction, retained to simplify the path through
27 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
28 * future use of radix_tree tags in the swap cache.
30 static const struct address_space_operations swap_aops = {
31 .writepage = swap_writepage,
32 .sync_page = block_sync_page,
33 .set_page_dirty = __set_page_dirty_nobuffers,
34 .migratepage = migrate_page,
37 static struct backing_dev_info swap_backing_dev_info = {
38 .name = "swap",
39 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
40 .unplug_io_fn = swap_unplug_io_fn,
43 struct address_space swapper_space = {
44 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
45 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
46 .a_ops = &swap_aops,
47 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
48 .backing_dev_info = &swap_backing_dev_info,
51 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
53 static struct {
54 unsigned long add_total;
55 unsigned long del_total;
56 unsigned long find_success;
57 unsigned long find_total;
58 } swap_cache_info;
60 void show_swap_cache_info(void)
62 printk("%lu pages in swap cache\n", total_swapcache_pages);
63 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
64 swap_cache_info.add_total, swap_cache_info.del_total,
65 swap_cache_info.find_success, swap_cache_info.find_total);
66 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
67 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
71 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
72 * but sets SwapCache flag and private instead of mapping and index.
74 static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
76 int error;
78 VM_BUG_ON(!PageLocked(page));
79 VM_BUG_ON(PageSwapCache(page));
80 VM_BUG_ON(!PageSwapBacked(page));
82 page_cache_get(page);
83 SetPageSwapCache(page);
84 set_page_private(page, entry.val);
86 spin_lock_irq(&swapper_space.tree_lock);
87 error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
88 if (likely(!error)) {
89 total_swapcache_pages++;
90 __inc_zone_page_state(page, NR_FILE_PAGES);
91 INC_CACHE_INFO(add_total);
93 spin_unlock_irq(&swapper_space.tree_lock);
95 if (unlikely(error)) {
97 * Only the context which have set SWAP_HAS_CACHE flag
98 * would call add_to_swap_cache().
99 * So add_to_swap_cache() doesn't returns -EEXIST.
101 VM_BUG_ON(error == -EEXIST);
102 set_page_private(page, 0UL);
103 ClearPageSwapCache(page);
104 page_cache_release(page);
107 return error;
111 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
113 int error;
115 error = radix_tree_preload(gfp_mask);
116 if (!error) {
117 error = __add_to_swap_cache(page, entry);
118 radix_tree_preload_end();
120 return error;
124 * This must be called only on pages that have
125 * been verified to be in the swap cache.
127 void __delete_from_swap_cache(struct page *page)
129 VM_BUG_ON(!PageLocked(page));
130 VM_BUG_ON(!PageSwapCache(page));
131 VM_BUG_ON(PageWriteback(page));
133 radix_tree_delete(&swapper_space.page_tree, page_private(page));
134 set_page_private(page, 0);
135 ClearPageSwapCache(page);
136 total_swapcache_pages--;
137 __dec_zone_page_state(page, NR_FILE_PAGES);
138 INC_CACHE_INFO(del_total);
142 * add_to_swap - allocate swap space for a page
143 * @page: page we want to move to swap
145 * Allocate swap space for the page and add the page to the
146 * swap cache. Caller needs to hold the page lock.
148 int add_to_swap(struct page *page)
150 swp_entry_t entry;
151 int err;
153 VM_BUG_ON(!PageLocked(page));
154 VM_BUG_ON(!PageUptodate(page));
156 entry = get_swap_page();
157 if (!entry.val)
158 return 0;
161 * Radix-tree node allocations from PF_MEMALLOC contexts could
162 * completely exhaust the page allocator. __GFP_NOMEMALLOC
163 * stops emergency reserves from being allocated.
165 * TODO: this could cause a theoretical memory reclaim
166 * deadlock in the swap out path.
169 * Add it to the swap cache and mark it dirty
171 err = add_to_swap_cache(page, entry,
172 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
174 if (!err) { /* Success */
175 SetPageDirty(page);
176 return 1;
177 } else { /* -ENOMEM radix-tree allocation failure */
179 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
180 * clear SWAP_HAS_CACHE flag.
182 swapcache_free(entry, NULL);
183 return 0;
188 * This must be called only on pages that have
189 * been verified to be in the swap cache and locked.
190 * It will never put the page into the free list,
191 * the caller has a reference on the page.
193 void delete_from_swap_cache(struct page *page)
195 swp_entry_t entry;
197 entry.val = page_private(page);
199 spin_lock_irq(&swapper_space.tree_lock);
200 __delete_from_swap_cache(page);
201 spin_unlock_irq(&swapper_space.tree_lock);
203 swapcache_free(entry, page);
204 page_cache_release(page);
208 * If we are the only user, then try to free up the swap cache.
210 * Its ok to check for PageSwapCache without the page lock
211 * here because we are going to recheck again inside
212 * try_to_free_swap() _with_ the lock.
213 * - Marcelo
215 static inline void free_swap_cache(struct page *page)
217 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
218 try_to_free_swap(page);
219 unlock_page(page);
224 * Perform a free_page(), also freeing any swap cache associated with
225 * this page if it is the last user of the page.
227 void free_page_and_swap_cache(struct page *page)
229 free_swap_cache(page);
230 page_cache_release(page);
234 * Passed an array of pages, drop them all from swapcache and then release
235 * them. They are removed from the LRU and freed if this is their last use.
237 void free_pages_and_swap_cache(struct page **pages, int nr)
239 struct page **pagep = pages;
241 lru_add_drain();
242 while (nr) {
243 int todo = min(nr, PAGEVEC_SIZE);
244 int i;
246 for (i = 0; i < todo; i++)
247 free_swap_cache(pagep[i]);
248 release_pages(pagep, todo, 0);
249 pagep += todo;
250 nr -= todo;
255 * Lookup a swap entry in the swap cache. A found page will be returned
256 * unlocked and with its refcount incremented - we rely on the kernel
257 * lock getting page table operations atomic even if we drop the page
258 * lock before returning.
260 struct page * lookup_swap_cache(swp_entry_t entry)
262 struct page *page;
264 page = find_get_page(&swapper_space, entry.val);
266 if (page)
267 INC_CACHE_INFO(find_success);
269 INC_CACHE_INFO(find_total);
270 return page;
274 * Locate a page of swap in physical memory, reserving swap cache space
275 * and reading the disk if it is not already cached.
276 * A failure return means that either the page allocation failed or that
277 * the swap entry is no longer in use.
279 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
280 struct vm_area_struct *vma, unsigned long addr)
282 struct page *found_page, *new_page = NULL;
283 int err;
285 do {
287 * First check the swap cache. Since this is normally
288 * called after lookup_swap_cache() failed, re-calling
289 * that would confuse statistics.
291 found_page = find_get_page(&swapper_space, entry.val);
292 if (found_page)
293 break;
296 * Get a new page to read into from swap.
298 if (!new_page) {
299 new_page = alloc_page_vma(gfp_mask, vma, addr);
300 if (!new_page)
301 break; /* Out of memory */
305 * call radix_tree_preload() while we can wait.
307 err = radix_tree_preload(gfp_mask & GFP_KERNEL);
308 if (err)
309 break;
312 * Swap entry may have been freed since our caller observed it.
314 err = swapcache_prepare(entry);
315 if (err == -EEXIST) { /* seems racy */
316 radix_tree_preload_end();
317 continue;
319 if (err) { /* swp entry is obsolete ? */
320 radix_tree_preload_end();
321 break;
324 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
325 __set_page_locked(new_page);
326 SetPageSwapBacked(new_page);
327 err = __add_to_swap_cache(new_page, entry);
328 if (likely(!err)) {
329 radix_tree_preload_end();
331 * Initiate read into locked page and return.
333 lru_cache_add_anon(new_page);
334 swap_readpage(new_page);
335 return new_page;
337 radix_tree_preload_end();
338 ClearPageSwapBacked(new_page);
339 __clear_page_locked(new_page);
341 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
342 * clear SWAP_HAS_CACHE flag.
344 swapcache_free(entry, NULL);
345 } while (err != -ENOMEM);
347 if (new_page)
348 page_cache_release(new_page);
349 return found_page;
353 * swapin_readahead - swap in pages in hope we need them soon
354 * @entry: swap entry of this memory
355 * @gfp_mask: memory allocation flags
356 * @vma: user vma this address belongs to
357 * @addr: target address for mempolicy
359 * Returns the struct page for entry and addr, after queueing swapin.
361 * Primitive swap readahead code. We simply read an aligned block of
362 * (1 << page_cluster) entries in the swap area. This method is chosen
363 * because it doesn't cost us any seek time. We also make sure to queue
364 * the 'original' request together with the readahead ones...
366 * This has been extended to use the NUMA policies from the mm triggering
367 * the readahead.
369 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
371 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
372 struct vm_area_struct *vma, unsigned long addr)
374 int nr_pages;
375 struct page *page;
376 unsigned long offset;
377 unsigned long end_offset;
380 * Get starting offset for readaround, and number of pages to read.
381 * Adjust starting address by readbehind (for NUMA interleave case)?
382 * No, it's very unlikely that swap layout would follow vma layout,
383 * more likely that neighbouring swap pages came from the same node:
384 * so use the same "addr" to choose the same node for each swap read.
386 nr_pages = valid_swaphandles(entry, &offset);
387 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
388 /* Ok, do the async read-ahead now */
389 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
390 gfp_mask, vma, addr);
391 if (!page)
392 break;
393 page_cache_release(page);
395 lru_add_drain(); /* Push any new pages onto the LRU now */
396 return read_swap_cache_async(entry, gfp_mask, vma, addr);