2 * Linux performance counter support for MIPS.
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
30 #define MIPS_MAX_HWEVENTS 4
32 struct cpu_hw_events
{
33 /* Array of events on this cpu. */
34 struct perf_event
*events
[MIPS_MAX_HWEVENTS
];
37 * Set the bit (indexed by the counter number) when the counter
38 * is used for an event.
40 unsigned long used_mask
[BITS_TO_LONGS(MIPS_MAX_HWEVENTS
)];
43 * Software copy of the control register for each performance counter.
44 * MIPS CPUs vary in performance counters. They use this differently,
45 * and even may not use it.
47 unsigned int saved_ctrl
[MIPS_MAX_HWEVENTS
];
49 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
53 /* The description of MIPS performance events. */
54 struct mips_perf_event
{
55 unsigned int event_id
;
57 * MIPS performance counters are indexed starting from 0.
58 * CNTR_EVEN indicates the indexes of the counters to be used are
61 unsigned int cntr_mask
;
62 #define CNTR_EVEN 0x55555555
63 #define CNTR_ODD 0xaaaaaaaa
64 #define CNTR_ALL 0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
78 static struct mips_perf_event raw_event
;
79 static DEFINE_MUTEX(raw_event_mutex
);
81 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82 #define C(x) PERF_COUNT_HW_CACHE_##x
90 u64 (*read_counter
)(unsigned int idx
);
91 void (*write_counter
)(unsigned int idx
, u64 val
);
92 const struct mips_perf_event
*(*map_raw_event
)(u64 config
);
93 const struct mips_perf_event (*general_event_map
)[PERF_COUNT_HW_MAX
];
94 const struct mips_perf_event (*cache_event_map
)
95 [PERF_COUNT_HW_CACHE_MAX
]
96 [PERF_COUNT_HW_CACHE_OP_MAX
]
97 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
98 unsigned int num_counters
;
101 static struct mips_pmu mipspmu
;
103 #define M_CONFIG1_PC (1 << 4)
105 #define M_PERFCTL_EXL (1 << 0)
106 #define M_PERFCTL_KERNEL (1 << 1)
107 #define M_PERFCTL_SUPERVISOR (1 << 2)
108 #define M_PERFCTL_USER (1 << 3)
109 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
110 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
111 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
112 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
113 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
114 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
115 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
116 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
117 #define M_PERFCTL_WIDE (1 << 30)
118 #define M_PERFCTL_MORE (1 << 31)
120 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
123 M_PERFCTL_SUPERVISOR | \
124 M_PERFCTL_INTERRUPT_ENABLE)
126 #ifdef CONFIG_MIPS_MT_SMP
127 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
129 #define M_PERFCTL_CONFIG_MASK 0x1f
131 #define M_PERFCTL_EVENT_MASK 0xfe0
134 #ifdef CONFIG_MIPS_MT_SMP
135 static int cpu_has_mipsmt_pertccounters
;
137 static DEFINE_RWLOCK(pmuint_rwlock
);
140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
143 #if defined(CONFIG_HW_PERF_EVENTS)
144 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
145 0 : smp_processor_id())
147 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
148 0 : cpu_data[smp_processor_id()].vpe_id)
151 /* Copied from op_model_mipsxx.c */
152 static unsigned int vpe_shift(void)
154 if (num_possible_cpus() > 1)
160 static unsigned int counters_total_to_per_cpu(unsigned int counters
)
162 return counters
>> vpe_shift();
165 static unsigned int counters_per_cpu_to_total(unsigned int counters
)
167 return counters
<< vpe_shift();
170 #else /* !CONFIG_MIPS_MT_SMP */
173 #endif /* CONFIG_MIPS_MT_SMP */
175 static void resume_local_counters(void);
176 static void pause_local_counters(void);
177 static irqreturn_t
mipsxx_pmu_handle_irq(int, void *);
178 static int mipsxx_pmu_handle_shared_irq(void);
180 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx
)
187 static u64
mipsxx_pmu_read_counter(unsigned int idx
)
189 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
194 * The counters are unsigned, we must cast to truncate
197 return (u32
)read_c0_perfcntr0();
199 return (u32
)read_c0_perfcntr1();
201 return (u32
)read_c0_perfcntr2();
203 return (u32
)read_c0_perfcntr3();
205 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
210 static u64
mipsxx_pmu_read_counter_64(unsigned int idx
)
212 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
216 return read_c0_perfcntr0_64();
218 return read_c0_perfcntr1_64();
220 return read_c0_perfcntr2_64();
222 return read_c0_perfcntr3_64();
224 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
229 static void mipsxx_pmu_write_counter(unsigned int idx
, u64 val
)
231 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
235 write_c0_perfcntr0(val
);
238 write_c0_perfcntr1(val
);
241 write_c0_perfcntr2(val
);
244 write_c0_perfcntr3(val
);
249 static void mipsxx_pmu_write_counter_64(unsigned int idx
, u64 val
)
251 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
255 write_c0_perfcntr0_64(val
);
258 write_c0_perfcntr1_64(val
);
261 write_c0_perfcntr2_64(val
);
264 write_c0_perfcntr3_64(val
);
269 static unsigned int mipsxx_pmu_read_control(unsigned int idx
)
271 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
275 return read_c0_perfctrl0();
277 return read_c0_perfctrl1();
279 return read_c0_perfctrl2();
281 return read_c0_perfctrl3();
283 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
288 static void mipsxx_pmu_write_control(unsigned int idx
, unsigned int val
)
290 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
294 write_c0_perfctrl0(val
);
297 write_c0_perfctrl1(val
);
300 write_c0_perfctrl2(val
);
303 write_c0_perfctrl3(val
);
308 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events
*cpuc
,
309 struct hw_perf_event
*hwc
)
314 * We only need to care the counter mask. The range has been
315 * checked definitely.
317 unsigned long cntr_mask
= (hwc
->event_base
>> 8) & 0xffff;
319 for (i
= mipspmu
.num_counters
- 1; i
>= 0; i
--) {
321 * Note that some MIPS perf events can be counted by both
322 * even and odd counters, wheresas many other are only by
323 * even _or_ odd counters. This introduces an issue that
324 * when the former kind of event takes the counter the
325 * latter kind of event wants to use, then the "counter
326 * allocation" for the latter event will fail. In fact if
327 * they can be dynamically swapped, they both feel happy.
328 * But here we leave this issue alone for now.
330 if (test_bit(i
, &cntr_mask
) &&
331 !test_and_set_bit(i
, cpuc
->used_mask
))
338 static void mipsxx_pmu_enable_event(struct hw_perf_event
*evt
, int idx
)
340 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
342 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
344 cpuc
->saved_ctrl
[idx
] = M_PERFCTL_EVENT(evt
->event_base
& 0xff) |
345 (evt
->config_base
& M_PERFCTL_CONFIG_MASK
) |
346 /* Make sure interrupt enabled. */
347 M_PERFCTL_INTERRUPT_ENABLE
;
349 * We do not actually let the counter run. Leave it until start().
353 static void mipsxx_pmu_disable_event(int idx
)
355 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
358 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
360 local_irq_save(flags
);
361 cpuc
->saved_ctrl
[idx
] = mipsxx_pmu_read_control(idx
) &
362 ~M_PERFCTL_COUNT_EVENT_WHENEVER
;
363 mipsxx_pmu_write_control(idx
, cpuc
->saved_ctrl
[idx
]);
364 local_irq_restore(flags
);
367 static int mipspmu_event_set_period(struct perf_event
*event
,
368 struct hw_perf_event
*hwc
,
371 u64 left
= local64_read(&hwc
->period_left
);
372 u64 period
= hwc
->sample_period
;
375 if (unlikely((left
+ period
) & (1ULL << 63))) {
376 /* left underflowed by more than period. */
378 local64_set(&hwc
->period_left
, left
);
379 hwc
->last_period
= period
;
381 } else if (unlikely((left
+ period
) <= period
)) {
382 /* left underflowed by less than period. */
384 local64_set(&hwc
->period_left
, left
);
385 hwc
->last_period
= period
;
389 if (left
> mipspmu
.max_period
) {
390 left
= mipspmu
.max_period
;
391 local64_set(&hwc
->period_left
, left
);
394 local64_set(&hwc
->prev_count
, mipspmu
.overflow
- left
);
396 mipspmu
.write_counter(idx
, mipspmu
.overflow
- left
);
398 perf_event_update_userpage(event
);
403 static void mipspmu_event_update(struct perf_event
*event
,
404 struct hw_perf_event
*hwc
,
407 u64 prev_raw_count
, new_raw_count
;
411 prev_raw_count
= local64_read(&hwc
->prev_count
);
412 new_raw_count
= mipspmu
.read_counter(idx
);
414 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
415 new_raw_count
) != prev_raw_count
)
418 delta
= new_raw_count
- prev_raw_count
;
420 local64_add(delta
, &event
->count
);
421 local64_sub(delta
, &hwc
->period_left
);
424 static void mipspmu_start(struct perf_event
*event
, int flags
)
426 struct hw_perf_event
*hwc
= &event
->hw
;
428 if (flags
& PERF_EF_RELOAD
)
429 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
433 /* Set the period for the event. */
434 mipspmu_event_set_period(event
, hwc
, hwc
->idx
);
436 /* Enable the event. */
437 mipsxx_pmu_enable_event(hwc
, hwc
->idx
);
440 static void mipspmu_stop(struct perf_event
*event
, int flags
)
442 struct hw_perf_event
*hwc
= &event
->hw
;
444 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
445 /* We are working on a local event. */
446 mipsxx_pmu_disable_event(hwc
->idx
);
448 mipspmu_event_update(event
, hwc
, hwc
->idx
);
449 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
453 static int mipspmu_add(struct perf_event
*event
, int flags
)
455 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
456 struct hw_perf_event
*hwc
= &event
->hw
;
460 perf_pmu_disable(event
->pmu
);
462 /* To look for a free counter for this event. */
463 idx
= mipsxx_pmu_alloc_counter(cpuc
, hwc
);
470 * If there is an event in the counter we are going to use then
471 * make sure it is disabled.
474 mipsxx_pmu_disable_event(idx
);
475 cpuc
->events
[idx
] = event
;
477 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
478 if (flags
& PERF_EF_START
)
479 mipspmu_start(event
, PERF_EF_RELOAD
);
481 /* Propagate our changes to the userspace mapping. */
482 perf_event_update_userpage(event
);
485 perf_pmu_enable(event
->pmu
);
489 static void mipspmu_del(struct perf_event
*event
, int flags
)
491 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
492 struct hw_perf_event
*hwc
= &event
->hw
;
495 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
497 mipspmu_stop(event
, PERF_EF_UPDATE
);
498 cpuc
->events
[idx
] = NULL
;
499 clear_bit(idx
, cpuc
->used_mask
);
501 perf_event_update_userpage(event
);
504 static void mipspmu_read(struct perf_event
*event
)
506 struct hw_perf_event
*hwc
= &event
->hw
;
508 /* Don't read disabled counters! */
512 mipspmu_event_update(event
, hwc
, hwc
->idx
);
515 static void mipspmu_enable(struct pmu
*pmu
)
517 #ifdef CONFIG_MIPS_MT_SMP
518 write_unlock(&pmuint_rwlock
);
520 resume_local_counters();
524 * MIPS performance counters can be per-TC. The control registers can
525 * not be directly accessed accross CPUs. Hence if we want to do global
526 * control, we need cross CPU calls. on_each_cpu() can help us, but we
527 * can not make sure this function is called with interrupts enabled. So
528 * here we pause local counters and then grab a rwlock and leave the
529 * counters on other CPUs alone. If any counter interrupt raises while
530 * we own the write lock, simply pause local counters on that CPU and
531 * spin in the handler. Also we know we won't be switched to another
532 * CPU after pausing local counters and before grabbing the lock.
534 static void mipspmu_disable(struct pmu
*pmu
)
536 pause_local_counters();
537 #ifdef CONFIG_MIPS_MT_SMP
538 write_lock(&pmuint_rwlock
);
542 static atomic_t active_events
= ATOMIC_INIT(0);
543 static DEFINE_MUTEX(pmu_reserve_mutex
);
544 static int (*save_perf_irq
)(void);
546 static int mipspmu_get_irq(void)
550 if (mipspmu
.irq
>= 0) {
551 /* Request my own irq handler. */
552 err
= request_irq(mipspmu
.irq
, mipsxx_pmu_handle_irq
,
553 IRQF_PERCPU
| IRQF_NOBALANCING
,
554 "mips_perf_pmu", NULL
);
556 pr_warning("Unable to request IRQ%d for MIPS "
557 "performance counters!\n", mipspmu
.irq
);
559 } else if (cp0_perfcount_irq
< 0) {
561 * We are sharing the irq number with the timer interrupt.
563 save_perf_irq
= perf_irq
;
564 perf_irq
= mipsxx_pmu_handle_shared_irq
;
567 pr_warning("The platform hasn't properly defined its "
568 "interrupt controller.\n");
575 static void mipspmu_free_irq(void)
577 if (mipspmu
.irq
>= 0)
578 free_irq(mipspmu
.irq
, NULL
);
579 else if (cp0_perfcount_irq
< 0)
580 perf_irq
= save_perf_irq
;
584 * mipsxx/rm9000/loongson2 have different performance counters, they have
585 * specific low-level init routines.
587 static void reset_counters(void *arg
);
588 static int __hw_perf_event_init(struct perf_event
*event
);
590 static void hw_perf_event_destroy(struct perf_event
*event
)
592 if (atomic_dec_and_mutex_lock(&active_events
,
593 &pmu_reserve_mutex
)) {
595 * We must not call the destroy function with interrupts
598 on_each_cpu(reset_counters
,
599 (void *)(long)mipspmu
.num_counters
, 1);
601 mutex_unlock(&pmu_reserve_mutex
);
605 static int mipspmu_event_init(struct perf_event
*event
)
609 switch (event
->attr
.type
) {
611 case PERF_TYPE_HARDWARE
:
612 case PERF_TYPE_HW_CACHE
:
619 if (event
->cpu
>= nr_cpumask_bits
||
620 (event
->cpu
>= 0 && !cpu_online(event
->cpu
)))
623 if (!atomic_inc_not_zero(&active_events
)) {
624 if (atomic_read(&active_events
) > MIPS_MAX_HWEVENTS
) {
625 atomic_dec(&active_events
);
629 mutex_lock(&pmu_reserve_mutex
);
630 if (atomic_read(&active_events
) == 0)
631 err
= mipspmu_get_irq();
634 atomic_inc(&active_events
);
635 mutex_unlock(&pmu_reserve_mutex
);
641 err
= __hw_perf_event_init(event
);
643 hw_perf_event_destroy(event
);
648 static struct pmu pmu
= {
649 .pmu_enable
= mipspmu_enable
,
650 .pmu_disable
= mipspmu_disable
,
651 .event_init
= mipspmu_event_init
,
654 .start
= mipspmu_start
,
655 .stop
= mipspmu_stop
,
656 .read
= mipspmu_read
,
659 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event
*pev
)
662 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
665 #ifdef CONFIG_MIPS_MT_SMP
666 return ((unsigned int)pev
->range
<< 24) |
667 (pev
->cntr_mask
& 0xffff00) |
668 (pev
->event_id
& 0xff);
670 return (pev
->cntr_mask
& 0xffff00) |
671 (pev
->event_id
& 0xff);
675 static const struct mips_perf_event
*mipspmu_map_general_event(int idx
)
677 const struct mips_perf_event
*pev
;
679 pev
= ((*mipspmu
.general_event_map
)[idx
].event_id
==
680 UNSUPPORTED_PERF_EVENT_ID
? ERR_PTR(-EOPNOTSUPP
) :
681 &(*mipspmu
.general_event_map
)[idx
]);
686 static const struct mips_perf_event
*mipspmu_map_cache_event(u64 config
)
688 unsigned int cache_type
, cache_op
, cache_result
;
689 const struct mips_perf_event
*pev
;
691 cache_type
= (config
>> 0) & 0xff;
692 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
693 return ERR_PTR(-EINVAL
);
695 cache_op
= (config
>> 8) & 0xff;
696 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
697 return ERR_PTR(-EINVAL
);
699 cache_result
= (config
>> 16) & 0xff;
700 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
701 return ERR_PTR(-EINVAL
);
703 pev
= &((*mipspmu
.cache_event_map
)
708 if (pev
->event_id
== UNSUPPORTED_PERF_EVENT_ID
)
709 return ERR_PTR(-EOPNOTSUPP
);
715 static int validate_event(struct cpu_hw_events
*cpuc
,
716 struct perf_event
*event
)
718 struct hw_perf_event fake_hwc
= event
->hw
;
720 /* Allow mixed event group. So return 1 to pass validation. */
721 if (event
->pmu
!= &pmu
|| event
->state
<= PERF_EVENT_STATE_OFF
)
724 return mipsxx_pmu_alloc_counter(cpuc
, &fake_hwc
) >= 0;
727 static int validate_group(struct perf_event
*event
)
729 struct perf_event
*sibling
, *leader
= event
->group_leader
;
730 struct cpu_hw_events fake_cpuc
;
732 memset(&fake_cpuc
, 0, sizeof(fake_cpuc
));
734 if (!validate_event(&fake_cpuc
, leader
))
737 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
738 if (!validate_event(&fake_cpuc
, sibling
))
742 if (!validate_event(&fake_cpuc
, event
))
748 /* This is needed by specific irq handlers in perf_event_*.c */
749 static void handle_associated_event(struct cpu_hw_events
*cpuc
,
750 int idx
, struct perf_sample_data
*data
,
751 struct pt_regs
*regs
)
753 struct perf_event
*event
= cpuc
->events
[idx
];
754 struct hw_perf_event
*hwc
= &event
->hw
;
756 mipspmu_event_update(event
, hwc
, idx
);
757 data
->period
= event
->hw
.last_period
;
758 if (!mipspmu_event_set_period(event
, hwc
, idx
))
761 if (perf_event_overflow(event
, data
, regs
))
762 mipsxx_pmu_disable_event(idx
);
766 static int __n_counters(void)
768 if (!(read_c0_config1() & M_CONFIG1_PC
))
770 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE
))
772 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE
))
774 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE
))
780 static int n_counters(void)
784 switch (current_cpu_type()) {
795 counters
= __n_counters();
801 static void reset_counters(void *arg
)
803 int counters
= (int)(long)arg
;
806 mipsxx_pmu_write_control(3, 0);
807 mipspmu
.write_counter(3, 0);
809 mipsxx_pmu_write_control(2, 0);
810 mipspmu
.write_counter(2, 0);
812 mipsxx_pmu_write_control(1, 0);
813 mipspmu
.write_counter(1, 0);
815 mipsxx_pmu_write_control(0, 0);
816 mipspmu
.write_counter(0, 0);
820 /* 24K/34K/1004K cores can share the same event map. */
821 static const struct mips_perf_event mipsxxcore_event_map
822 [PERF_COUNT_HW_MAX
] = {
823 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
824 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
825 [PERF_COUNT_HW_CACHE_REFERENCES
] = { UNSUPPORTED_PERF_EVENT_ID
},
826 [PERF_COUNT_HW_CACHE_MISSES
] = { UNSUPPORTED_PERF_EVENT_ID
},
827 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x02, CNTR_EVEN
, T
},
828 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
829 [PERF_COUNT_HW_BUS_CYCLES
] = { UNSUPPORTED_PERF_EVENT_ID
},
832 /* 74K core has different branch event code. */
833 static const struct mips_perf_event mipsxx74Kcore_event_map
834 [PERF_COUNT_HW_MAX
] = {
835 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
836 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
837 [PERF_COUNT_HW_CACHE_REFERENCES
] = { UNSUPPORTED_PERF_EVENT_ID
},
838 [PERF_COUNT_HW_CACHE_MISSES
] = { UNSUPPORTED_PERF_EVENT_ID
},
839 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x27, CNTR_EVEN
, T
},
840 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x27, CNTR_ODD
, T
},
841 [PERF_COUNT_HW_BUS_CYCLES
] = { UNSUPPORTED_PERF_EVENT_ID
},
844 static const struct mips_perf_event octeon_event_map
[PERF_COUNT_HW_MAX
] = {
845 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
846 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x03, CNTR_ALL
},
847 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x2b, CNTR_ALL
},
848 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x2e, CNTR_ALL
},
849 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x08, CNTR_ALL
},
850 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x09, CNTR_ALL
},
851 [PERF_COUNT_HW_BUS_CYCLES
] = { 0x25, CNTR_ALL
},
854 /* 24K/34K/1004K cores can share the same cache event map. */
855 static const struct mips_perf_event mipsxxcore_cache_map
856 [PERF_COUNT_HW_CACHE_MAX
]
857 [PERF_COUNT_HW_CACHE_OP_MAX
]
858 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
861 * Like some other architectures (e.g. ARM), the performance
862 * counters don't differentiate between read and write
863 * accesses/misses, so this isn't strictly correct, but it's the
864 * best we can do. Writes and reads get combined.
867 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
868 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
871 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
872 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
875 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
876 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
881 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
882 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
885 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
886 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
889 [C(RESULT_ACCESS
)] = { 0x14, CNTR_EVEN
, T
},
891 * Note that MIPS has only "hit" events countable for
892 * the prefetch operation.
894 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
899 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
900 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
903 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
904 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
907 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
908 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
913 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
914 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
917 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
918 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
921 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
922 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
927 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
928 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
931 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
932 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
935 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
936 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
940 /* Using the same code for *HW_BRANCH* */
942 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
943 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
946 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
947 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
950 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
951 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
956 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
957 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
960 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
961 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
964 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
965 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
970 /* 74K core has completely different cache event map. */
971 static const struct mips_perf_event mipsxx74Kcore_cache_map
972 [PERF_COUNT_HW_CACHE_MAX
]
973 [PERF_COUNT_HW_CACHE_OP_MAX
]
974 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
977 * Like some other architectures (e.g. ARM), the performance
978 * counters don't differentiate between read and write
979 * accesses/misses, so this isn't strictly correct, but it's the
980 * best we can do. Writes and reads get combined.
983 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
984 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
987 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
988 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
991 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
992 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
997 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
998 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
1001 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
1002 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
1004 [C(OP_PREFETCH
)] = {
1005 [C(RESULT_ACCESS
)] = { 0x34, CNTR_EVEN
, T
},
1007 * Note that MIPS has only "hit" events countable for
1008 * the prefetch operation.
1010 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1015 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
1016 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
| CNTR_ODD
, P
},
1019 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
1020 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
| CNTR_ODD
, P
},
1022 [C(OP_PREFETCH
)] = {
1023 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1024 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1028 /* 74K core does not have specific DTLB events. */
1030 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1031 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1034 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1035 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1037 [C(OP_PREFETCH
)] = {
1038 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1039 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1044 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1045 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1048 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
1049 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
1051 [C(OP_PREFETCH
)] = {
1052 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1053 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1057 /* Using the same code for *HW_BRANCH* */
1059 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1060 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1063 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1064 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1066 [C(OP_PREFETCH
)] = {
1067 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1068 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1073 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1074 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1077 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1078 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1080 [C(OP_PREFETCH
)] = {
1081 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1082 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1088 static const struct mips_perf_event octeon_cache_map
1089 [PERF_COUNT_HW_CACHE_MAX
]
1090 [PERF_COUNT_HW_CACHE_OP_MAX
]
1091 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1094 [C(RESULT_ACCESS
)] = { 0x2b, CNTR_ALL
},
1095 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
},
1098 [C(RESULT_ACCESS
)] = { 0x30, CNTR_ALL
},
1099 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1101 [C(OP_PREFETCH
)] = {
1102 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1103 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1108 [C(RESULT_ACCESS
)] = { 0x18, CNTR_ALL
},
1109 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1112 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1113 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1115 [C(OP_PREFETCH
)] = {
1116 [C(RESULT_ACCESS
)] = { 0x19, CNTR_ALL
},
1117 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1122 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1123 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1126 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1127 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1129 [C(OP_PREFETCH
)] = {
1130 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1131 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1136 * Only general DTLB misses are counted use the same event for
1140 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1141 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1144 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1145 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1147 [C(OP_PREFETCH
)] = {
1148 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1149 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1154 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1155 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
},
1158 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1159 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1161 [C(OP_PREFETCH
)] = {
1162 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1163 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1167 /* Using the same code for *HW_BRANCH* */
1169 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1170 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1173 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1174 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1176 [C(OP_PREFETCH
)] = {
1177 [C(RESULT_ACCESS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1178 [C(RESULT_MISS
)] = { UNSUPPORTED_PERF_EVENT_ID
},
1183 #ifdef CONFIG_MIPS_MT_SMP
1184 static void check_and_calc_range(struct perf_event
*event
,
1185 const struct mips_perf_event
*pev
)
1187 struct hw_perf_event
*hwc
= &event
->hw
;
1189 if (event
->cpu
>= 0) {
1190 if (pev
->range
> V
) {
1192 * The user selected an event that is processor
1193 * wide, while expecting it to be VPE wide.
1195 hwc
->config_base
|= M_TC_EN_ALL
;
1198 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1201 hwc
->config_base
|= M_PERFCTL_VPEID(event
->cpu
);
1202 hwc
->config_base
|= M_TC_EN_VPE
;
1205 hwc
->config_base
|= M_TC_EN_ALL
;
1208 static void check_and_calc_range(struct perf_event
*event
,
1209 const struct mips_perf_event
*pev
)
1214 static int __hw_perf_event_init(struct perf_event
*event
)
1216 struct perf_event_attr
*attr
= &event
->attr
;
1217 struct hw_perf_event
*hwc
= &event
->hw
;
1218 const struct mips_perf_event
*pev
;
1221 /* Returning MIPS event descriptor for generic perf event. */
1222 if (PERF_TYPE_HARDWARE
== event
->attr
.type
) {
1223 if (event
->attr
.config
>= PERF_COUNT_HW_MAX
)
1225 pev
= mipspmu_map_general_event(event
->attr
.config
);
1226 } else if (PERF_TYPE_HW_CACHE
== event
->attr
.type
) {
1227 pev
= mipspmu_map_cache_event(event
->attr
.config
);
1228 } else if (PERF_TYPE_RAW
== event
->attr
.type
) {
1229 /* We are working on the global raw event. */
1230 mutex_lock(&raw_event_mutex
);
1231 pev
= mipspmu
.map_raw_event(event
->attr
.config
);
1233 /* The event type is not (yet) supported. */
1238 if (PERF_TYPE_RAW
== event
->attr
.type
)
1239 mutex_unlock(&raw_event_mutex
);
1240 return PTR_ERR(pev
);
1244 * We allow max flexibility on how each individual counter shared
1245 * by the single CPU operates (the mode exclusion and the range).
1247 hwc
->config_base
= M_PERFCTL_INTERRUPT_ENABLE
;
1249 /* Calculate range bits and validate it. */
1250 if (num_possible_cpus() > 1)
1251 check_and_calc_range(event
, pev
);
1253 hwc
->event_base
= mipspmu_perf_event_encode(pev
);
1254 if (PERF_TYPE_RAW
== event
->attr
.type
)
1255 mutex_unlock(&raw_event_mutex
);
1257 if (!attr
->exclude_user
)
1258 hwc
->config_base
|= M_PERFCTL_USER
;
1259 if (!attr
->exclude_kernel
) {
1260 hwc
->config_base
|= M_PERFCTL_KERNEL
;
1261 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1262 hwc
->config_base
|= M_PERFCTL_EXL
;
1264 if (!attr
->exclude_hv
)
1265 hwc
->config_base
|= M_PERFCTL_SUPERVISOR
;
1267 hwc
->config_base
&= M_PERFCTL_CONFIG_MASK
;
1269 * The event can belong to another cpu. We do not assign a local
1270 * counter for it for now.
1275 if (!hwc
->sample_period
) {
1276 hwc
->sample_period
= mipspmu
.max_period
;
1277 hwc
->last_period
= hwc
->sample_period
;
1278 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1282 if (event
->group_leader
!= event
) {
1283 err
= validate_group(event
);
1288 event
->destroy
= hw_perf_event_destroy
;
1292 static void pause_local_counters(void)
1294 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1295 int ctr
= mipspmu
.num_counters
;
1296 unsigned long flags
;
1298 local_irq_save(flags
);
1301 cpuc
->saved_ctrl
[ctr
] = mipsxx_pmu_read_control(ctr
);
1302 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
] &
1303 ~M_PERFCTL_COUNT_EVENT_WHENEVER
);
1305 local_irq_restore(flags
);
1308 static void resume_local_counters(void)
1310 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1311 int ctr
= mipspmu
.num_counters
;
1315 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
]);
1319 static int mipsxx_pmu_handle_shared_irq(void)
1321 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1322 struct perf_sample_data data
;
1323 unsigned int counters
= mipspmu
.num_counters
;
1325 int handled
= IRQ_NONE
;
1326 struct pt_regs
*regs
;
1328 if (cpu_has_mips_r2
&& !(read_c0_cause() & (1 << 26)))
1331 * First we pause the local counters, so that when we are locked
1332 * here, the counters are all paused. When it gets locked due to
1333 * perf_disable(), the timer interrupt handler will be delayed.
1335 * See also mipsxx_pmu_start().
1337 pause_local_counters();
1338 #ifdef CONFIG_MIPS_MT_SMP
1339 read_lock(&pmuint_rwlock
);
1342 regs
= get_irq_regs();
1344 perf_sample_data_init(&data
, 0);
1347 #define HANDLE_COUNTER(n) \
1349 if (test_bit(n, cpuc->used_mask)) { \
1350 counter = mipspmu.read_counter(n); \
1351 if (counter & mipspmu.overflow) { \
1352 handle_associated_event(cpuc, n, &data, regs); \
1353 handled = IRQ_HANDLED; \
1363 * Do all the work for the pending perf events. We can do this
1364 * in here because the performance counter interrupt is a regular
1365 * interrupt, not NMI.
1367 if (handled
== IRQ_HANDLED
)
1370 #ifdef CONFIG_MIPS_MT_SMP
1371 read_unlock(&pmuint_rwlock
);
1373 resume_local_counters();
1377 static irqreturn_t
mipsxx_pmu_handle_irq(int irq
, void *dev
)
1379 return mipsxx_pmu_handle_shared_irq();
1383 #define IS_UNSUPPORTED_24K_EVENT(r, b) \
1384 ((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 || \
1385 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 || \
1386 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 || \
1387 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) || \
1388 ((b) >= 68 && (b) <= 127))
1389 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1390 ((b) == 0 || (b) == 1 || (b) == 11)
1393 #define IS_UNSUPPORTED_34K_EVENT(r, b) \
1394 ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 || \
1395 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) || \
1396 ((b) >= 68 && (b) <= 127))
1397 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1398 ((b) == 0 || (b) == 1 || (b) == 11)
1399 #ifdef CONFIG_MIPS_MT_SMP
1400 #define IS_RANGE_P_34K_EVENT(r, b) \
1401 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1402 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1403 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1404 ((b) >= 64 && (b) <= 67))
1405 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1409 #define IS_UNSUPPORTED_74K_EVENT(r, b) \
1410 ((r) == 5 || ((r) >= 135 && (r) <= 137) || \
1411 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 || \
1412 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) || \
1413 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 || \
1414 (b) == 61 || (r) == 62 || (r) == 191 || \
1415 ((b) >= 64 && (b) <= 127))
1416 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1417 ((b) == 0 || (b) == 1)
1420 #define IS_UNSUPPORTED_1004K_EVENT(r, b) \
1421 ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 || \
1422 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
1423 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1424 ((b) == 0 || (b) == 1 || (b) == 11)
1425 #ifdef CONFIG_MIPS_MT_SMP
1426 #define IS_RANGE_P_1004K_EVENT(r, b) \
1427 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1428 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1429 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1430 (r) == 188 || (b) == 61 || (b) == 62 || \
1431 ((b) >= 64 && (b) <= 67))
1432 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1436 * User can use 0-255 raw events, where 0-127 for the events of even
1437 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1438 * indicate the parity. So, for example, when user wants to take the
1439 * Event Num of 15 for odd counters (by referring to the user manual),
1440 * then 128 needs to be added to 15 as the input for the event config,
1441 * i.e., 143 (0x8F) to be used.
1443 static const struct mips_perf_event
*mipsxx_pmu_map_raw_event(u64 config
)
1445 unsigned int raw_id
= config
& 0xff;
1446 unsigned int base_id
= raw_id
& 0x7f;
1448 switch (current_cpu_type()) {
1450 if (IS_UNSUPPORTED_24K_EVENT(raw_id
, base_id
))
1451 return ERR_PTR(-EOPNOTSUPP
);
1452 raw_event
.event_id
= base_id
;
1453 if (IS_BOTH_COUNTERS_24K_EVENT(base_id
))
1454 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1456 raw_event
.cntr_mask
=
1457 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1458 #ifdef CONFIG_MIPS_MT_SMP
1460 * This is actually doing nothing. Non-multithreading
1461 * CPUs will not check and calculate the range.
1463 raw_event
.range
= P
;
1467 if (IS_UNSUPPORTED_34K_EVENT(raw_id
, base_id
))
1468 return ERR_PTR(-EOPNOTSUPP
);
1469 raw_event
.event_id
= base_id
;
1470 if (IS_BOTH_COUNTERS_34K_EVENT(base_id
))
1471 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1473 raw_event
.cntr_mask
=
1474 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1475 #ifdef CONFIG_MIPS_MT_SMP
1476 if (IS_RANGE_P_34K_EVENT(raw_id
, base_id
))
1477 raw_event
.range
= P
;
1478 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id
)))
1479 raw_event
.range
= V
;
1481 raw_event
.range
= T
;
1485 if (IS_UNSUPPORTED_74K_EVENT(raw_id
, base_id
))
1486 return ERR_PTR(-EOPNOTSUPP
);
1487 raw_event
.event_id
= base_id
;
1488 if (IS_BOTH_COUNTERS_74K_EVENT(base_id
))
1489 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1491 raw_event
.cntr_mask
=
1492 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1493 #ifdef CONFIG_MIPS_MT_SMP
1494 raw_event
.range
= P
;
1498 if (IS_UNSUPPORTED_1004K_EVENT(raw_id
, base_id
))
1499 return ERR_PTR(-EOPNOTSUPP
);
1500 raw_event
.event_id
= base_id
;
1501 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id
))
1502 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1504 raw_event
.cntr_mask
=
1505 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1506 #ifdef CONFIG_MIPS_MT_SMP
1507 if (IS_RANGE_P_1004K_EVENT(raw_id
, base_id
))
1508 raw_event
.range
= P
;
1509 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id
)))
1510 raw_event
.range
= V
;
1512 raw_event
.range
= T
;
1520 static const struct mips_perf_event
*octeon_pmu_map_raw_event(u64 config
)
1522 unsigned int raw_id
= config
& 0xff;
1523 unsigned int base_id
= raw_id
& 0x7f;
1526 raw_event
.cntr_mask
= CNTR_ALL
;
1527 raw_event
.event_id
= base_id
;
1529 if (current_cpu_type() == CPU_CAVIUM_OCTEON2
) {
1531 return ERR_PTR(-EOPNOTSUPP
);
1534 return ERR_PTR(-EOPNOTSUPP
);
1545 return ERR_PTR(-EOPNOTSUPP
);
1554 init_hw_perf_events(void)
1559 pr_info("Performance counters: ");
1561 counters
= n_counters();
1562 if (counters
== 0) {
1563 pr_cont("No available PMU.\n");
1567 #ifdef CONFIG_MIPS_MT_SMP
1568 cpu_has_mipsmt_pertccounters
= read_c0_config7() & (1<<19);
1569 if (!cpu_has_mipsmt_pertccounters
)
1570 counters
= counters_total_to_per_cpu(counters
);
1573 #ifdef MSC01E_INT_BASE
1576 * Using platform specific interrupt controller defines.
1578 irq
= MSC01E_INT_BASE
+ MSC01E_INT_PERFCTR
;
1581 if (cp0_perfcount_irq
>= 0)
1582 irq
= MIPS_CPU_IRQ_BASE
+ cp0_perfcount_irq
;
1585 #ifdef MSC01E_INT_BASE
1589 mipspmu
.map_raw_event
= mipsxx_pmu_map_raw_event
;
1591 switch (current_cpu_type()) {
1593 mipspmu
.name
= "mips/24K";
1594 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1595 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1598 mipspmu
.name
= "mips/34K";
1599 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1600 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1603 mipspmu
.name
= "mips/74K";
1604 mipspmu
.general_event_map
= &mipsxx74Kcore_event_map
;
1605 mipspmu
.cache_event_map
= &mipsxx74Kcore_cache_map
;
1608 mipspmu
.name
= "mips/1004K";
1609 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1610 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1612 case CPU_CAVIUM_OCTEON
:
1613 case CPU_CAVIUM_OCTEON_PLUS
:
1614 case CPU_CAVIUM_OCTEON2
:
1615 mipspmu
.name
= "octeon";
1616 mipspmu
.general_event_map
= &octeon_event_map
;
1617 mipspmu
.cache_event_map
= &octeon_cache_map
;
1618 mipspmu
.map_raw_event
= octeon_pmu_map_raw_event
;
1621 pr_cont("Either hardware does not support performance "
1622 "counters, or not yet implemented.\n");
1626 mipspmu
.num_counters
= counters
;
1629 if (read_c0_perfctrl0() & M_PERFCTL_WIDE
) {
1630 mipspmu
.max_period
= (1ULL << 63) - 1;
1631 mipspmu
.valid_count
= (1ULL << 63) - 1;
1632 mipspmu
.overflow
= 1ULL << 63;
1633 mipspmu
.read_counter
= mipsxx_pmu_read_counter_64
;
1634 mipspmu
.write_counter
= mipsxx_pmu_write_counter_64
;
1637 mipspmu
.max_period
= (1ULL << 31) - 1;
1638 mipspmu
.valid_count
= (1ULL << 31) - 1;
1639 mipspmu
.overflow
= 1ULL << 31;
1640 mipspmu
.read_counter
= mipsxx_pmu_read_counter
;
1641 mipspmu
.write_counter
= mipsxx_pmu_write_counter
;
1645 on_each_cpu(reset_counters
, (void *)(long)counters
, 1);
1647 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1648 "CPU, irq %d%s\n", mipspmu
.name
, counters
, counter_bits
, irq
,
1649 irq
< 0 ? " (share with timer interrupt)" : "");
1651 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1655 early_initcall(init_hw_perf_events
);