drivers/usb/host/ohci-pxa27x.c: add missing clk_put
[zen-stable.git] / kernel / sched.c
blobcbb3a0eee58eb2c5c6748b949fca5579bbb57432
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy)
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 return 1;
129 return 0;
132 static inline int task_has_rt_policy(struct task_struct *p)
134 return rt_policy(p->policy);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
153 static struct rt_bandwidth def_rt_bandwidth;
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169 if (!overrun)
170 break;
172 idle = do_sched_rt_period_timer(rt_b, overrun);
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
178 static
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime >= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198 ktime_t now;
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 return;
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
206 raw_spin_lock(&rt_b->rt_runtime_lock);
207 for (;;) {
208 unsigned long delta;
209 ktime_t soft, hard;
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 hrtimer_cancel(&rt_b->rt_period_timer);
231 #endif
234 * sched_domains_mutex serializes calls to init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
243 struct cfs_rq;
245 static LIST_HEAD(task_groups);
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
258 atomic_t load_weight;
259 #endif
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
265 struct rt_bandwidth rt_bandwidth;
266 #endif
268 struct rcu_head rcu;
269 struct list_head list;
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277 #endif
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
295 #define MIN_SHARES 2
296 #define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION))
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
313 u64 exec_clock;
314 u64 min_vruntime;
315 #ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317 #endif
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
322 struct list_head tasks;
323 struct list_head *balance_iterator;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity *curr, *next, *last, *skip;
331 #ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over;
333 #endif
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
346 int on_list;
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
350 #ifdef CONFIG_SMP
352 * the part of load.weight contributed by tasks
354 unsigned long task_weight;
357 * h_load = weight * f(tg)
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
362 unsigned long h_load;
365 * Maintaining per-cpu shares distribution for group scheduling
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
371 u64 load_avg;
372 u64 load_period;
373 u64 load_stamp, load_last, load_unacc_exec_time;
375 unsigned long load_contribution;
376 #endif
377 #endif
380 /* Real-Time classes' related field in a runqueue: */
381 struct rt_rq {
382 struct rt_prio_array active;
383 unsigned long rt_nr_running;
384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
385 struct {
386 int curr; /* highest queued rt task prio */
387 #ifdef CONFIG_SMP
388 int next; /* next highest */
389 #endif
390 } highest_prio;
391 #endif
392 #ifdef CONFIG_SMP
393 unsigned long rt_nr_migratory;
394 unsigned long rt_nr_total;
395 int overloaded;
396 struct plist_head pushable_tasks;
397 #endif
398 int rt_throttled;
399 u64 rt_time;
400 u64 rt_runtime;
401 /* Nests inside the rq lock: */
402 raw_spinlock_t rt_runtime_lock;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 unsigned long rt_nr_boosted;
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
410 #endif
413 #ifdef CONFIG_SMP
416 * We add the notion of a root-domain which will be used to define per-domain
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
423 struct root_domain {
424 atomic_t refcount;
425 struct rcu_head rcu;
426 cpumask_var_t span;
427 cpumask_var_t online;
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
433 cpumask_var_t rto_mask;
434 atomic_t rto_count;
435 struct cpupri cpupri;
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
442 static struct root_domain def_root_domain;
444 #endif /* CONFIG_SMP */
447 * This is the main, per-CPU runqueue data structure.
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
453 struct rq {
454 /* runqueue lock: */
455 raw_spinlock_t lock;
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
461 unsigned long nr_running;
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
464 unsigned long last_load_update_tick;
465 #ifdef CONFIG_NO_HZ
466 u64 nohz_stamp;
467 unsigned char nohz_balance_kick;
468 #endif
469 int skip_clock_update;
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
473 unsigned long nr_load_updates;
474 u64 nr_switches;
476 struct cfs_rq cfs;
477 struct rt_rq rt;
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
482 #endif
483 #ifdef CONFIG_RT_GROUP_SCHED
484 struct list_head leaf_rt_rq_list;
485 #endif
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
493 unsigned long nr_uninterruptible;
495 struct task_struct *curr, *idle, *stop;
496 unsigned long next_balance;
497 struct mm_struct *prev_mm;
499 u64 clock;
500 u64 clock_task;
502 atomic_t nr_iowait;
504 #ifdef CONFIG_SMP
505 struct root_domain *rd;
506 struct sched_domain *sd;
508 unsigned long cpu_power;
510 unsigned char idle_at_tick;
511 /* For active balancing */
512 int post_schedule;
513 int active_balance;
514 int push_cpu;
515 struct cpu_stop_work active_balance_work;
516 /* cpu of this runqueue: */
517 int cpu;
518 int online;
520 unsigned long avg_load_per_task;
522 u64 rt_avg;
523 u64 age_stamp;
524 u64 idle_stamp;
525 u64 avg_idle;
526 #endif
528 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530 #endif
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
536 #ifdef CONFIG_SCHED_HRTICK
537 #ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540 #endif
541 struct hrtimer hrtick_timer;
542 #endif
544 #ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
550 /* sys_sched_yield() stats */
551 unsigned int yld_count;
553 /* schedule() stats */
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
561 #endif
563 #ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565 #endif
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
571 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
573 static inline int cpu_of(struct rq *rq)
575 #ifdef CONFIG_SMP
576 return rq->cpu;
577 #else
578 return 0;
579 #endif
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_held() || \
585 lockdep_is_held(&sched_domains_mutex))
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
603 #ifdef CONFIG_CGROUP_SCHED
606 * Return the group to which this tasks belongs.
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
613 static inline struct task_group *task_group(struct task_struct *p)
615 struct task_group *tg;
616 struct cgroup_subsys_state *css;
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
619 lockdep_is_held(&p->pi_lock));
620 tg = container_of(css, struct task_group, css);
622 return autogroup_task_group(p, tg);
625 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
631 #endif
633 #ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
636 #endif
639 #else /* CONFIG_CGROUP_SCHED */
641 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642 static inline struct task_group *task_group(struct task_struct *p)
644 return NULL;
647 #endif /* CONFIG_CGROUP_SCHED */
649 static void update_rq_clock_task(struct rq *rq, s64 delta);
651 static void update_rq_clock(struct rq *rq)
653 s64 delta;
655 if (rq->skip_clock_update > 0)
656 return;
658 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
659 rq->clock += delta;
660 update_rq_clock_task(rq, delta);
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
666 #ifdef CONFIG_SCHED_DEBUG
667 # define const_debug __read_mostly
668 #else
669 # define const_debug static const
670 #endif
673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
674 * @cpu: the processor in question.
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
679 int runqueue_is_locked(int cpu)
681 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
685 * Debugging: various feature bits
688 #define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
691 enum {
692 #include "sched_features.h"
695 #undef SCHED_FEAT
697 #define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
700 const_debug unsigned int sysctl_sched_features =
701 #include "sched_features.h"
704 #undef SCHED_FEAT
706 #ifdef CONFIG_SCHED_DEBUG
707 #define SCHED_FEAT(name, enabled) \
708 #name ,
710 static __read_mostly char *sched_feat_names[] = {
711 #include "sched_features.h"
712 NULL
715 #undef SCHED_FEAT
717 static int sched_feat_show(struct seq_file *m, void *v)
719 int i;
721 for (i = 0; sched_feat_names[i]; i++) {
722 if (!(sysctl_sched_features & (1UL << i)))
723 seq_puts(m, "NO_");
724 seq_printf(m, "%s ", sched_feat_names[i]);
726 seq_puts(m, "\n");
728 return 0;
731 static ssize_t
732 sched_feat_write(struct file *filp, const char __user *ubuf,
733 size_t cnt, loff_t *ppos)
735 char buf[64];
736 char *cmp;
737 int neg = 0;
738 int i;
740 if (cnt > 63)
741 cnt = 63;
743 if (copy_from_user(&buf, ubuf, cnt))
744 return -EFAULT;
746 buf[cnt] = 0;
747 cmp = strstrip(buf);
749 if (strncmp(cmp, "NO_", 3) == 0) {
750 neg = 1;
751 cmp += 3;
754 for (i = 0; sched_feat_names[i]; i++) {
755 if (strcmp(cmp, sched_feat_names[i]) == 0) {
756 if (neg)
757 sysctl_sched_features &= ~(1UL << i);
758 else
759 sysctl_sched_features |= (1UL << i);
760 break;
764 if (!sched_feat_names[i])
765 return -EINVAL;
767 *ppos += cnt;
769 return cnt;
772 static int sched_feat_open(struct inode *inode, struct file *filp)
774 return single_open(filp, sched_feat_show, NULL);
777 static const struct file_operations sched_feat_fops = {
778 .open = sched_feat_open,
779 .write = sched_feat_write,
780 .read = seq_read,
781 .llseek = seq_lseek,
782 .release = single_release,
785 static __init int sched_init_debug(void)
787 debugfs_create_file("sched_features", 0644, NULL, NULL,
788 &sched_feat_fops);
790 return 0;
792 late_initcall(sched_init_debug);
794 #endif
796 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
802 const_debug unsigned int sysctl_sched_nr_migrate = 32;
805 * period over which we average the RT time consumption, measured
806 * in ms.
808 * default: 1s
810 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
813 * period over which we measure -rt task cpu usage in us.
814 * default: 1s
816 unsigned int sysctl_sched_rt_period = 1000000;
818 static __read_mostly int scheduler_running;
821 * part of the period that we allow rt tasks to run in us.
822 * default: 0.95s
824 int sysctl_sched_rt_runtime = 950000;
826 static inline u64 global_rt_period(void)
828 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831 static inline u64 global_rt_runtime(void)
833 if (sysctl_sched_rt_runtime < 0)
834 return RUNTIME_INF;
836 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839 #ifndef prepare_arch_switch
840 # define prepare_arch_switch(next) do { } while (0)
841 #endif
842 #ifndef finish_arch_switch
843 # define finish_arch_switch(prev) do { } while (0)
844 #endif
846 static inline int task_current(struct rq *rq, struct task_struct *p)
848 return rq->curr == p;
851 static inline int task_running(struct rq *rq, struct task_struct *p)
853 #ifdef CONFIG_SMP
854 return p->on_cpu;
855 #else
856 return task_current(rq, p);
857 #endif
860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
863 #ifdef CONFIG_SMP
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
867 * here.
869 next->on_cpu = 1;
870 #endif
873 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
875 #ifdef CONFIG_SMP
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
879 * finished.
881 smp_wmb();
882 prev->on_cpu = 0;
883 #endif
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887 #endif
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895 raw_spin_unlock_irq(&rq->lock);
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
901 #ifdef CONFIG_SMP
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
905 * here.
907 next->on_cpu = 1;
908 #endif
909 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
910 raw_spin_unlock_irq(&rq->lock);
911 #else
912 raw_spin_unlock(&rq->lock);
913 #endif
916 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
918 #ifdef CONFIG_SMP
920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
921 * We must ensure this doesn't happen until the switch is completely
922 * finished.
924 smp_wmb();
925 prev->on_cpu = 0;
926 #endif
927 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 local_irq_enable();
929 #endif
931 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
934 * __task_rq_lock - lock the rq @p resides on.
936 static inline struct rq *__task_rq_lock(struct task_struct *p)
937 __acquires(rq->lock)
939 struct rq *rq;
941 lockdep_assert_held(&p->pi_lock);
943 for (;;) {
944 rq = task_rq(p);
945 raw_spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 raw_spin_unlock(&rq->lock);
953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
955 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956 __acquires(p->pi_lock)
957 __acquires(rq->lock)
959 struct rq *rq;
961 for (;;) {
962 raw_spin_lock_irqsave(&p->pi_lock, *flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
967 raw_spin_unlock(&rq->lock);
968 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
975 raw_spin_unlock(&rq->lock);
978 static inline void
979 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
980 __releases(rq->lock)
981 __releases(p->pi_lock)
983 raw_spin_unlock(&rq->lock);
984 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq *this_rq_lock(void)
991 __acquires(rq->lock)
993 struct rq *rq;
995 local_irq_disable();
996 rq = this_rq();
997 raw_spin_lock(&rq->lock);
999 return rq;
1002 #ifdef CONFIG_SCHED_HRTICK
1004 * Use HR-timers to deliver accurate preemption points.
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * reschedule event.
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1011 * rq->lock.
1015 * Use hrtick when:
1016 * - enabled by features
1017 * - hrtimer is actually high res
1019 static inline int hrtick_enabled(struct rq *rq)
1021 if (!sched_feat(HRTICK))
1022 return 0;
1023 if (!cpu_active(cpu_of(rq)))
1024 return 0;
1025 return hrtimer_is_hres_active(&rq->hrtick_timer);
1028 static void hrtick_clear(struct rq *rq)
1030 if (hrtimer_active(&rq->hrtick_timer))
1031 hrtimer_cancel(&rq->hrtick_timer);
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1038 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1040 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1042 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1044 raw_spin_lock(&rq->lock);
1045 update_rq_clock(rq);
1046 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1047 raw_spin_unlock(&rq->lock);
1049 return HRTIMER_NORESTART;
1052 #ifdef CONFIG_SMP
1054 * called from hardirq (IPI) context
1056 static void __hrtick_start(void *arg)
1058 struct rq *rq = arg;
1060 raw_spin_lock(&rq->lock);
1061 hrtimer_restart(&rq->hrtick_timer);
1062 rq->hrtick_csd_pending = 0;
1063 raw_spin_unlock(&rq->lock);
1067 * Called to set the hrtick timer state.
1069 * called with rq->lock held and irqs disabled
1071 static void hrtick_start(struct rq *rq, u64 delay)
1073 struct hrtimer *timer = &rq->hrtick_timer;
1074 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1076 hrtimer_set_expires(timer, time);
1078 if (rq == this_rq()) {
1079 hrtimer_restart(timer);
1080 } else if (!rq->hrtick_csd_pending) {
1081 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1082 rq->hrtick_csd_pending = 1;
1086 static int
1087 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1089 int cpu = (int)(long)hcpu;
1091 switch (action) {
1092 case CPU_UP_CANCELED:
1093 case CPU_UP_CANCELED_FROZEN:
1094 case CPU_DOWN_PREPARE:
1095 case CPU_DOWN_PREPARE_FROZEN:
1096 case CPU_DEAD:
1097 case CPU_DEAD_FROZEN:
1098 hrtick_clear(cpu_rq(cpu));
1099 return NOTIFY_OK;
1102 return NOTIFY_DONE;
1105 static __init void init_hrtick(void)
1107 hotcpu_notifier(hotplug_hrtick, 0);
1109 #else
1111 * Called to set the hrtick timer state.
1113 * called with rq->lock held and irqs disabled
1115 static void hrtick_start(struct rq *rq, u64 delay)
1117 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1118 HRTIMER_MODE_REL_PINNED, 0);
1121 static inline void init_hrtick(void)
1124 #endif /* CONFIG_SMP */
1126 static void init_rq_hrtick(struct rq *rq)
1128 #ifdef CONFIG_SMP
1129 rq->hrtick_csd_pending = 0;
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1134 #endif
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
1139 #else /* CONFIG_SCHED_HRTICK */
1140 static inline void hrtick_clear(struct rq *rq)
1144 static inline void init_rq_hrtick(struct rq *rq)
1148 static inline void init_hrtick(void)
1151 #endif /* CONFIG_SCHED_HRTICK */
1154 * resched_task - mark a task 'to be rescheduled now'.
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1158 * the target CPU.
1160 #ifdef CONFIG_SMP
1162 #ifndef tsk_is_polling
1163 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164 #endif
1166 static void resched_task(struct task_struct *p)
1168 int cpu;
1170 assert_raw_spin_locked(&task_rq(p)->lock);
1172 if (test_tsk_need_resched(p))
1173 return;
1175 set_tsk_need_resched(p);
1177 cpu = task_cpu(p);
1178 if (cpu == smp_processor_id())
1179 return;
1181 /* NEED_RESCHED must be visible before we test polling */
1182 smp_mb();
1183 if (!tsk_is_polling(p))
1184 smp_send_reschedule(cpu);
1187 static void resched_cpu(int cpu)
1189 struct rq *rq = cpu_rq(cpu);
1190 unsigned long flags;
1192 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1193 return;
1194 resched_task(cpu_curr(cpu));
1195 raw_spin_unlock_irqrestore(&rq->lock, flags);
1198 #ifdef CONFIG_NO_HZ
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1207 int get_nohz_timer_target(void)
1209 int cpu = smp_processor_id();
1210 int i;
1211 struct sched_domain *sd;
1213 rcu_read_lock();
1214 for_each_domain(cpu, sd) {
1215 for_each_cpu(i, sched_domain_span(sd)) {
1216 if (!idle_cpu(i)) {
1217 cpu = i;
1218 goto unlock;
1222 unlock:
1223 rcu_read_unlock();
1224 return cpu;
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1236 void wake_up_idle_cpu(int cpu)
1238 struct rq *rq = cpu_rq(cpu);
1240 if (cpu == smp_processor_id())
1241 return;
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1250 if (rq->curr != rq->idle)
1251 return;
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1258 set_tsk_need_resched(rq->idle);
1260 /* NEED_RESCHED must be visible before we test polling */
1261 smp_mb();
1262 if (!tsk_is_polling(rq->idle))
1263 smp_send_reschedule(cpu);
1266 #endif /* CONFIG_NO_HZ */
1268 static u64 sched_avg_period(void)
1270 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1273 static void sched_avg_update(struct rq *rq)
1275 s64 period = sched_avg_period();
1277 while ((s64)(rq->clock - rq->age_stamp) > period) {
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1283 asm("" : "+rm" (rq->age_stamp));
1284 rq->age_stamp += period;
1285 rq->rt_avg /= 2;
1289 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1291 rq->rt_avg += rt_delta;
1292 sched_avg_update(rq);
1295 #else /* !CONFIG_SMP */
1296 static void resched_task(struct task_struct *p)
1298 assert_raw_spin_locked(&task_rq(p)->lock);
1299 set_tsk_need_resched(p);
1302 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1306 static void sched_avg_update(struct rq *rq)
1309 #endif /* CONFIG_SMP */
1311 #if BITS_PER_LONG == 32
1312 # define WMULT_CONST (~0UL)
1313 #else
1314 # define WMULT_CONST (1UL << 32)
1315 #endif
1317 #define WMULT_SHIFT 32
1320 * Shift right and round:
1322 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1325 * delta *= weight / lw
1327 static unsigned long
1328 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1329 struct load_weight *lw)
1331 u64 tmp;
1334 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1335 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1336 * 2^SCHED_LOAD_RESOLUTION.
1338 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1339 tmp = (u64)delta_exec * scale_load_down(weight);
1340 else
1341 tmp = (u64)delta_exec;
1343 if (!lw->inv_weight) {
1344 unsigned long w = scale_load_down(lw->weight);
1346 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1347 lw->inv_weight = 1;
1348 else if (unlikely(!w))
1349 lw->inv_weight = WMULT_CONST;
1350 else
1351 lw->inv_weight = WMULT_CONST / w;
1355 * Check whether we'd overflow the 64-bit multiplication:
1357 if (unlikely(tmp > WMULT_CONST))
1358 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1359 WMULT_SHIFT/2);
1360 else
1361 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1363 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1366 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1368 lw->weight += inc;
1369 lw->inv_weight = 0;
1372 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1374 lw->weight -= dec;
1375 lw->inv_weight = 0;
1378 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1380 lw->weight = w;
1381 lw->inv_weight = 0;
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389 * scaled version of the new time slice allocation that they receive on time
1390 * slice expiry etc.
1393 #define WEIGHT_IDLEPRIO 3
1394 #define WMULT_IDLEPRIO 1431655765
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
1408 static const int prio_to_weight[40] = {
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1426 static const u32 prio_to_wmult[40] = {
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1437 /* Time spent by the tasks of the cpu accounting group executing in ... */
1438 enum cpuacct_stat_index {
1439 CPUACCT_STAT_USER, /* ... user mode */
1440 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1442 CPUACCT_STAT_NSTATS,
1445 #ifdef CONFIG_CGROUP_CPUACCT
1446 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1447 static void cpuacct_update_stats(struct task_struct *tsk,
1448 enum cpuacct_stat_index idx, cputime_t val);
1449 #else
1450 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1451 static inline void cpuacct_update_stats(struct task_struct *tsk,
1452 enum cpuacct_stat_index idx, cputime_t val) {}
1453 #endif
1455 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1457 update_load_add(&rq->load, load);
1460 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1462 update_load_sub(&rq->load, load);
1465 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1466 typedef int (*tg_visitor)(struct task_group *, void *);
1469 * Iterate the full tree, calling @down when first entering a node and @up when
1470 * leaving it for the final time.
1472 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1474 struct task_group *parent, *child;
1475 int ret;
1477 rcu_read_lock();
1478 parent = &root_task_group;
1479 down:
1480 ret = (*down)(parent, data);
1481 if (ret)
1482 goto out_unlock;
1483 list_for_each_entry_rcu(child, &parent->children, siblings) {
1484 parent = child;
1485 goto down;
1488 continue;
1490 ret = (*up)(parent, data);
1491 if (ret)
1492 goto out_unlock;
1494 child = parent;
1495 parent = parent->parent;
1496 if (parent)
1497 goto up;
1498 out_unlock:
1499 rcu_read_unlock();
1501 return ret;
1504 static int tg_nop(struct task_group *tg, void *data)
1506 return 0;
1508 #endif
1510 #ifdef CONFIG_SMP
1511 /* Used instead of source_load when we know the type == 0 */
1512 static unsigned long weighted_cpuload(const int cpu)
1514 return cpu_rq(cpu)->load.weight;
1518 * Return a low guess at the load of a migration-source cpu weighted
1519 * according to the scheduling class and "nice" value.
1521 * We want to under-estimate the load of migration sources, to
1522 * balance conservatively.
1524 static unsigned long source_load(int cpu, int type)
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long total = weighted_cpuload(cpu);
1529 if (type == 0 || !sched_feat(LB_BIAS))
1530 return total;
1532 return min(rq->cpu_load[type-1], total);
1536 * Return a high guess at the load of a migration-target cpu weighted
1537 * according to the scheduling class and "nice" value.
1539 static unsigned long target_load(int cpu, int type)
1541 struct rq *rq = cpu_rq(cpu);
1542 unsigned long total = weighted_cpuload(cpu);
1544 if (type == 0 || !sched_feat(LB_BIAS))
1545 return total;
1547 return max(rq->cpu_load[type-1], total);
1550 static unsigned long power_of(int cpu)
1552 return cpu_rq(cpu)->cpu_power;
1555 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1557 static unsigned long cpu_avg_load_per_task(int cpu)
1559 struct rq *rq = cpu_rq(cpu);
1560 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1562 if (nr_running)
1563 rq->avg_load_per_task = rq->load.weight / nr_running;
1564 else
1565 rq->avg_load_per_task = 0;
1567 return rq->avg_load_per_task;
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
1577 static int tg_load_down(struct task_group *tg, void *data)
1579 unsigned long load;
1580 long cpu = (long)data;
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->se[cpu]->load.weight;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1590 tg->cfs_rq[cpu]->h_load = load;
1592 return 0;
1595 static void update_h_load(long cpu)
1597 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1600 #endif
1602 #ifdef CONFIG_PREEMPT
1604 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1607 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1608 * way at the expense of forcing extra atomic operations in all
1609 * invocations. This assures that the double_lock is acquired using the
1610 * same underlying policy as the spinlock_t on this architecture, which
1611 * reduces latency compared to the unfair variant below. However, it
1612 * also adds more overhead and therefore may reduce throughput.
1614 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1615 __releases(this_rq->lock)
1616 __acquires(busiest->lock)
1617 __acquires(this_rq->lock)
1619 raw_spin_unlock(&this_rq->lock);
1620 double_rq_lock(this_rq, busiest);
1622 return 1;
1625 #else
1627 * Unfair double_lock_balance: Optimizes throughput at the expense of
1628 * latency by eliminating extra atomic operations when the locks are
1629 * already in proper order on entry. This favors lower cpu-ids and will
1630 * grant the double lock to lower cpus over higher ids under contention,
1631 * regardless of entry order into the function.
1633 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1634 __releases(this_rq->lock)
1635 __acquires(busiest->lock)
1636 __acquires(this_rq->lock)
1638 int ret = 0;
1640 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1641 if (busiest < this_rq) {
1642 raw_spin_unlock(&this_rq->lock);
1643 raw_spin_lock(&busiest->lock);
1644 raw_spin_lock_nested(&this_rq->lock,
1645 SINGLE_DEPTH_NESTING);
1646 ret = 1;
1647 } else
1648 raw_spin_lock_nested(&busiest->lock,
1649 SINGLE_DEPTH_NESTING);
1651 return ret;
1654 #endif /* CONFIG_PREEMPT */
1657 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1659 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1661 if (unlikely(!irqs_disabled())) {
1662 /* printk() doesn't work good under rq->lock */
1663 raw_spin_unlock(&this_rq->lock);
1664 BUG_ON(1);
1667 return _double_lock_balance(this_rq, busiest);
1670 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1671 __releases(busiest->lock)
1673 raw_spin_unlock(&busiest->lock);
1674 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1678 * double_rq_lock - safely lock two runqueues
1680 * Note this does not disable interrupts like task_rq_lock,
1681 * you need to do so manually before calling.
1683 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1684 __acquires(rq1->lock)
1685 __acquires(rq2->lock)
1687 BUG_ON(!irqs_disabled());
1688 if (rq1 == rq2) {
1689 raw_spin_lock(&rq1->lock);
1690 __acquire(rq2->lock); /* Fake it out ;) */
1691 } else {
1692 if (rq1 < rq2) {
1693 raw_spin_lock(&rq1->lock);
1694 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1695 } else {
1696 raw_spin_lock(&rq2->lock);
1697 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1703 * double_rq_unlock - safely unlock two runqueues
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1708 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1709 __releases(rq1->lock)
1710 __releases(rq2->lock)
1712 raw_spin_unlock(&rq1->lock);
1713 if (rq1 != rq2)
1714 raw_spin_unlock(&rq2->lock);
1715 else
1716 __release(rq2->lock);
1719 #else /* CONFIG_SMP */
1722 * double_rq_lock - safely lock two runqueues
1724 * Note this does not disable interrupts like task_rq_lock,
1725 * you need to do so manually before calling.
1727 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1728 __acquires(rq1->lock)
1729 __acquires(rq2->lock)
1731 BUG_ON(!irqs_disabled());
1732 BUG_ON(rq1 != rq2);
1733 raw_spin_lock(&rq1->lock);
1734 __acquire(rq2->lock); /* Fake it out ;) */
1738 * double_rq_unlock - safely unlock two runqueues
1740 * Note this does not restore interrupts like task_rq_unlock,
1741 * you need to do so manually after calling.
1743 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1744 __releases(rq1->lock)
1745 __releases(rq2->lock)
1747 BUG_ON(rq1 != rq2);
1748 raw_spin_unlock(&rq1->lock);
1749 __release(rq2->lock);
1752 #endif
1754 static void calc_load_account_idle(struct rq *this_rq);
1755 static void update_sysctl(void);
1756 static int get_update_sysctl_factor(void);
1757 static void update_cpu_load(struct rq *this_rq);
1759 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1761 set_task_rq(p, cpu);
1762 #ifdef CONFIG_SMP
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1768 smp_wmb();
1769 task_thread_info(p)->cpu = cpu;
1770 #endif
1773 static const struct sched_class rt_sched_class;
1775 #define sched_class_highest (&stop_sched_class)
1776 #define for_each_class(class) \
1777 for (class = sched_class_highest; class; class = class->next)
1779 #include "sched_stats.h"
1781 static void inc_nr_running(struct rq *rq)
1783 rq->nr_running++;
1786 static void dec_nr_running(struct rq *rq)
1788 rq->nr_running--;
1791 static void set_load_weight(struct task_struct *p)
1793 int prio = p->static_prio - MAX_RT_PRIO;
1794 struct load_weight *load = &p->se.load;
1797 * SCHED_IDLE tasks get minimal weight:
1799 if (p->policy == SCHED_IDLE) {
1800 load->weight = scale_load(WEIGHT_IDLEPRIO);
1801 load->inv_weight = WMULT_IDLEPRIO;
1802 return;
1805 load->weight = scale_load(prio_to_weight[prio]);
1806 load->inv_weight = prio_to_wmult[prio];
1809 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1811 update_rq_clock(rq);
1812 sched_info_queued(p);
1813 p->sched_class->enqueue_task(rq, p, flags);
1816 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1818 update_rq_clock(rq);
1819 sched_info_dequeued(p);
1820 p->sched_class->dequeue_task(rq, p, flags);
1824 * activate_task - move a task to the runqueue.
1826 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1828 if (task_contributes_to_load(p))
1829 rq->nr_uninterruptible--;
1831 enqueue_task(rq, p, flags);
1832 inc_nr_running(rq);
1836 * deactivate_task - remove a task from the runqueue.
1838 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1840 if (task_contributes_to_load(p))
1841 rq->nr_uninterruptible++;
1843 dequeue_task(rq, p, flags);
1844 dec_nr_running(rq);
1847 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1850 * There are no locks covering percpu hardirq/softirq time.
1851 * They are only modified in account_system_vtime, on corresponding CPU
1852 * with interrupts disabled. So, writes are safe.
1853 * They are read and saved off onto struct rq in update_rq_clock().
1854 * This may result in other CPU reading this CPU's irq time and can
1855 * race with irq/account_system_vtime on this CPU. We would either get old
1856 * or new value with a side effect of accounting a slice of irq time to wrong
1857 * task when irq is in progress while we read rq->clock. That is a worthy
1858 * compromise in place of having locks on each irq in account_system_time.
1860 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1861 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1863 static DEFINE_PER_CPU(u64, irq_start_time);
1864 static int sched_clock_irqtime;
1866 void enable_sched_clock_irqtime(void)
1868 sched_clock_irqtime = 1;
1871 void disable_sched_clock_irqtime(void)
1873 sched_clock_irqtime = 0;
1876 #ifndef CONFIG_64BIT
1877 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1879 static inline void irq_time_write_begin(void)
1881 __this_cpu_inc(irq_time_seq.sequence);
1882 smp_wmb();
1885 static inline void irq_time_write_end(void)
1887 smp_wmb();
1888 __this_cpu_inc(irq_time_seq.sequence);
1891 static inline u64 irq_time_read(int cpu)
1893 u64 irq_time;
1894 unsigned seq;
1896 do {
1897 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1898 irq_time = per_cpu(cpu_softirq_time, cpu) +
1899 per_cpu(cpu_hardirq_time, cpu);
1900 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1902 return irq_time;
1904 #else /* CONFIG_64BIT */
1905 static inline void irq_time_write_begin(void)
1909 static inline void irq_time_write_end(void)
1913 static inline u64 irq_time_read(int cpu)
1915 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1917 #endif /* CONFIG_64BIT */
1920 * Called before incrementing preempt_count on {soft,}irq_enter
1921 * and before decrementing preempt_count on {soft,}irq_exit.
1923 void account_system_vtime(struct task_struct *curr)
1925 unsigned long flags;
1926 s64 delta;
1927 int cpu;
1929 if (!sched_clock_irqtime)
1930 return;
1932 local_irq_save(flags);
1934 cpu = smp_processor_id();
1935 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1936 __this_cpu_add(irq_start_time, delta);
1938 irq_time_write_begin();
1940 * We do not account for softirq time from ksoftirqd here.
1941 * We want to continue accounting softirq time to ksoftirqd thread
1942 * in that case, so as not to confuse scheduler with a special task
1943 * that do not consume any time, but still wants to run.
1945 if (hardirq_count())
1946 __this_cpu_add(cpu_hardirq_time, delta);
1947 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1948 __this_cpu_add(cpu_softirq_time, delta);
1950 irq_time_write_end();
1951 local_irq_restore(flags);
1953 EXPORT_SYMBOL_GPL(account_system_vtime);
1955 static void update_rq_clock_task(struct rq *rq, s64 delta)
1957 s64 irq_delta;
1959 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1962 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1963 * this case when a previous update_rq_clock() happened inside a
1964 * {soft,}irq region.
1966 * When this happens, we stop ->clock_task and only update the
1967 * prev_irq_time stamp to account for the part that fit, so that a next
1968 * update will consume the rest. This ensures ->clock_task is
1969 * monotonic.
1971 * It does however cause some slight miss-attribution of {soft,}irq
1972 * time, a more accurate solution would be to update the irq_time using
1973 * the current rq->clock timestamp, except that would require using
1974 * atomic ops.
1976 if (irq_delta > delta)
1977 irq_delta = delta;
1979 rq->prev_irq_time += irq_delta;
1980 delta -= irq_delta;
1981 rq->clock_task += delta;
1983 if (irq_delta && sched_feat(NONIRQ_POWER))
1984 sched_rt_avg_update(rq, irq_delta);
1987 static int irqtime_account_hi_update(void)
1989 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1990 unsigned long flags;
1991 u64 latest_ns;
1992 int ret = 0;
1994 local_irq_save(flags);
1995 latest_ns = this_cpu_read(cpu_hardirq_time);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1997 ret = 1;
1998 local_irq_restore(flags);
1999 return ret;
2002 static int irqtime_account_si_update(void)
2004 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2005 unsigned long flags;
2006 u64 latest_ns;
2007 int ret = 0;
2009 local_irq_save(flags);
2010 latest_ns = this_cpu_read(cpu_softirq_time);
2011 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2012 ret = 1;
2013 local_irq_restore(flags);
2014 return ret;
2017 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2019 #define sched_clock_irqtime (0)
2021 static void update_rq_clock_task(struct rq *rq, s64 delta)
2023 rq->clock_task += delta;
2026 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2028 #include "sched_idletask.c"
2029 #include "sched_fair.c"
2030 #include "sched_rt.c"
2031 #include "sched_autogroup.c"
2032 #include "sched_stoptask.c"
2033 #ifdef CONFIG_SCHED_DEBUG
2034 # include "sched_debug.c"
2035 #endif
2037 void sched_set_stop_task(int cpu, struct task_struct *stop)
2039 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2040 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2042 if (stop) {
2044 * Make it appear like a SCHED_FIFO task, its something
2045 * userspace knows about and won't get confused about.
2047 * Also, it will make PI more or less work without too
2048 * much confusion -- but then, stop work should not
2049 * rely on PI working anyway.
2051 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2053 stop->sched_class = &stop_sched_class;
2056 cpu_rq(cpu)->stop = stop;
2058 if (old_stop) {
2060 * Reset it back to a normal scheduling class so that
2061 * it can die in pieces.
2063 old_stop->sched_class = &rt_sched_class;
2068 * __normal_prio - return the priority that is based on the static prio
2070 static inline int __normal_prio(struct task_struct *p)
2072 return p->static_prio;
2076 * Calculate the expected normal priority: i.e. priority
2077 * without taking RT-inheritance into account. Might be
2078 * boosted by interactivity modifiers. Changes upon fork,
2079 * setprio syscalls, and whenever the interactivity
2080 * estimator recalculates.
2082 static inline int normal_prio(struct task_struct *p)
2084 int prio;
2086 if (task_has_rt_policy(p))
2087 prio = MAX_RT_PRIO-1 - p->rt_priority;
2088 else
2089 prio = __normal_prio(p);
2090 return prio;
2094 * Calculate the current priority, i.e. the priority
2095 * taken into account by the scheduler. This value might
2096 * be boosted by RT tasks, or might be boosted by
2097 * interactivity modifiers. Will be RT if the task got
2098 * RT-boosted. If not then it returns p->normal_prio.
2100 static int effective_prio(struct task_struct *p)
2102 p->normal_prio = normal_prio(p);
2104 * If we are RT tasks or we were boosted to RT priority,
2105 * keep the priority unchanged. Otherwise, update priority
2106 * to the normal priority:
2108 if (!rt_prio(p->prio))
2109 return p->normal_prio;
2110 return p->prio;
2114 * task_curr - is this task currently executing on a CPU?
2115 * @p: the task in question.
2117 inline int task_curr(const struct task_struct *p)
2119 return cpu_curr(task_cpu(p)) == p;
2122 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2123 const struct sched_class *prev_class,
2124 int oldprio)
2126 if (prev_class != p->sched_class) {
2127 if (prev_class->switched_from)
2128 prev_class->switched_from(rq, p);
2129 p->sched_class->switched_to(rq, p);
2130 } else if (oldprio != p->prio)
2131 p->sched_class->prio_changed(rq, p, oldprio);
2134 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2136 const struct sched_class *class;
2138 if (p->sched_class == rq->curr->sched_class) {
2139 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2140 } else {
2141 for_each_class(class) {
2142 if (class == rq->curr->sched_class)
2143 break;
2144 if (class == p->sched_class) {
2145 resched_task(rq->curr);
2146 break;
2152 * A queue event has occurred, and we're going to schedule. In
2153 * this case, we can save a useless back to back clock update.
2155 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2156 rq->skip_clock_update = 1;
2159 #ifdef CONFIG_SMP
2161 * Is this task likely cache-hot:
2163 static int
2164 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2166 s64 delta;
2168 if (p->sched_class != &fair_sched_class)
2169 return 0;
2171 if (unlikely(p->policy == SCHED_IDLE))
2172 return 0;
2175 * Buddy candidates are cache hot:
2177 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2178 (&p->se == cfs_rq_of(&p->se)->next ||
2179 &p->se == cfs_rq_of(&p->se)->last))
2180 return 1;
2182 if (sysctl_sched_migration_cost == -1)
2183 return 1;
2184 if (sysctl_sched_migration_cost == 0)
2185 return 0;
2187 delta = now - p->se.exec_start;
2189 return delta < (s64)sysctl_sched_migration_cost;
2192 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2194 #ifdef CONFIG_SCHED_DEBUG
2196 * We should never call set_task_cpu() on a blocked task,
2197 * ttwu() will sort out the placement.
2199 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2200 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2202 #ifdef CONFIG_LOCKDEP
2203 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2204 lockdep_is_held(&task_rq(p)->lock)));
2205 #endif
2206 #endif
2208 trace_sched_migrate_task(p, new_cpu);
2210 if (task_cpu(p) != new_cpu) {
2211 p->se.nr_migrations++;
2212 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2215 __set_task_cpu(p, new_cpu);
2218 struct migration_arg {
2219 struct task_struct *task;
2220 int dest_cpu;
2223 static int migration_cpu_stop(void *data);
2226 * wait_task_inactive - wait for a thread to unschedule.
2228 * If @match_state is nonzero, it's the @p->state value just checked and
2229 * not expected to change. If it changes, i.e. @p might have woken up,
2230 * then return zero. When we succeed in waiting for @p to be off its CPU,
2231 * we return a positive number (its total switch count). If a second call
2232 * a short while later returns the same number, the caller can be sure that
2233 * @p has remained unscheduled the whole time.
2235 * The caller must ensure that the task *will* unschedule sometime soon,
2236 * else this function might spin for a *long* time. This function can't
2237 * be called with interrupts off, or it may introduce deadlock with
2238 * smp_call_function() if an IPI is sent by the same process we are
2239 * waiting to become inactive.
2241 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2243 unsigned long flags;
2244 int running, on_rq;
2245 unsigned long ncsw;
2246 struct rq *rq;
2248 for (;;) {
2250 * We do the initial early heuristics without holding
2251 * any task-queue locks at all. We'll only try to get
2252 * the runqueue lock when things look like they will
2253 * work out!
2255 rq = task_rq(p);
2258 * If the task is actively running on another CPU
2259 * still, just relax and busy-wait without holding
2260 * any locks.
2262 * NOTE! Since we don't hold any locks, it's not
2263 * even sure that "rq" stays as the right runqueue!
2264 * But we don't care, since "task_running()" will
2265 * return false if the runqueue has changed and p
2266 * is actually now running somewhere else!
2268 while (task_running(rq, p)) {
2269 if (match_state && unlikely(p->state != match_state))
2270 return 0;
2271 cpu_relax();
2275 * Ok, time to look more closely! We need the rq
2276 * lock now, to be *sure*. If we're wrong, we'll
2277 * just go back and repeat.
2279 rq = task_rq_lock(p, &flags);
2280 trace_sched_wait_task(p);
2281 running = task_running(rq, p);
2282 on_rq = p->on_rq;
2283 ncsw = 0;
2284 if (!match_state || p->state == match_state)
2285 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2286 task_rq_unlock(rq, p, &flags);
2289 * If it changed from the expected state, bail out now.
2291 if (unlikely(!ncsw))
2292 break;
2295 * Was it really running after all now that we
2296 * checked with the proper locks actually held?
2298 * Oops. Go back and try again..
2300 if (unlikely(running)) {
2301 cpu_relax();
2302 continue;
2306 * It's not enough that it's not actively running,
2307 * it must be off the runqueue _entirely_, and not
2308 * preempted!
2310 * So if it was still runnable (but just not actively
2311 * running right now), it's preempted, and we should
2312 * yield - it could be a while.
2314 if (unlikely(on_rq)) {
2315 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2317 set_current_state(TASK_UNINTERRUPTIBLE);
2318 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2319 continue;
2323 * Ahh, all good. It wasn't running, and it wasn't
2324 * runnable, which means that it will never become
2325 * running in the future either. We're all done!
2327 break;
2330 return ncsw;
2333 /***
2334 * kick_process - kick a running thread to enter/exit the kernel
2335 * @p: the to-be-kicked thread
2337 * Cause a process which is running on another CPU to enter
2338 * kernel-mode, without any delay. (to get signals handled.)
2340 * NOTE: this function doesn't have to take the runqueue lock,
2341 * because all it wants to ensure is that the remote task enters
2342 * the kernel. If the IPI races and the task has been migrated
2343 * to another CPU then no harm is done and the purpose has been
2344 * achieved as well.
2346 void kick_process(struct task_struct *p)
2348 int cpu;
2350 preempt_disable();
2351 cpu = task_cpu(p);
2352 if ((cpu != smp_processor_id()) && task_curr(p))
2353 smp_send_reschedule(cpu);
2354 preempt_enable();
2356 EXPORT_SYMBOL_GPL(kick_process);
2357 #endif /* CONFIG_SMP */
2359 #ifdef CONFIG_SMP
2361 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2363 static int select_fallback_rq(int cpu, struct task_struct *p)
2365 int dest_cpu;
2366 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2368 /* Look for allowed, online CPU in same node. */
2369 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2370 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2371 return dest_cpu;
2373 /* Any allowed, online CPU? */
2374 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2375 if (dest_cpu < nr_cpu_ids)
2376 return dest_cpu;
2378 /* No more Mr. Nice Guy. */
2379 dest_cpu = cpuset_cpus_allowed_fallback(p);
2381 * Don't tell them about moving exiting tasks or
2382 * kernel threads (both mm NULL), since they never
2383 * leave kernel.
2385 if (p->mm && printk_ratelimit()) {
2386 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2387 task_pid_nr(p), p->comm, cpu);
2390 return dest_cpu;
2394 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2396 static inline
2397 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2399 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2402 * In order not to call set_task_cpu() on a blocking task we need
2403 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2404 * cpu.
2406 * Since this is common to all placement strategies, this lives here.
2408 * [ this allows ->select_task() to simply return task_cpu(p) and
2409 * not worry about this generic constraint ]
2411 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2412 !cpu_online(cpu)))
2413 cpu = select_fallback_rq(task_cpu(p), p);
2415 return cpu;
2418 static void update_avg(u64 *avg, u64 sample)
2420 s64 diff = sample - *avg;
2421 *avg += diff >> 3;
2423 #endif
2425 static void
2426 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2428 #ifdef CONFIG_SCHEDSTATS
2429 struct rq *rq = this_rq();
2431 #ifdef CONFIG_SMP
2432 int this_cpu = smp_processor_id();
2434 if (cpu == this_cpu) {
2435 schedstat_inc(rq, ttwu_local);
2436 schedstat_inc(p, se.statistics.nr_wakeups_local);
2437 } else {
2438 struct sched_domain *sd;
2440 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2441 rcu_read_lock();
2442 for_each_domain(this_cpu, sd) {
2443 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2444 schedstat_inc(sd, ttwu_wake_remote);
2445 break;
2448 rcu_read_unlock();
2450 #endif /* CONFIG_SMP */
2452 schedstat_inc(rq, ttwu_count);
2453 schedstat_inc(p, se.statistics.nr_wakeups);
2455 if (wake_flags & WF_SYNC)
2456 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2458 if (cpu != task_cpu(p))
2459 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2461 #endif /* CONFIG_SCHEDSTATS */
2464 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2466 activate_task(rq, p, en_flags);
2467 p->on_rq = 1;
2469 /* if a worker is waking up, notify workqueue */
2470 if (p->flags & PF_WQ_WORKER)
2471 wq_worker_waking_up(p, cpu_of(rq));
2475 * Mark the task runnable and perform wakeup-preemption.
2477 static void
2478 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2480 trace_sched_wakeup(p, true);
2481 check_preempt_curr(rq, p, wake_flags);
2483 p->state = TASK_RUNNING;
2484 #ifdef CONFIG_SMP
2485 if (p->sched_class->task_woken)
2486 p->sched_class->task_woken(rq, p);
2488 if (unlikely(rq->idle_stamp)) {
2489 u64 delta = rq->clock - rq->idle_stamp;
2490 u64 max = 2*sysctl_sched_migration_cost;
2492 if (delta > max)
2493 rq->avg_idle = max;
2494 else
2495 update_avg(&rq->avg_idle, delta);
2496 rq->idle_stamp = 0;
2498 #endif
2501 static void
2502 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2504 #ifdef CONFIG_SMP
2505 if (p->sched_contributes_to_load)
2506 rq->nr_uninterruptible--;
2507 #endif
2509 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2510 ttwu_do_wakeup(rq, p, wake_flags);
2514 * Called in case the task @p isn't fully descheduled from its runqueue,
2515 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2516 * since all we need to do is flip p->state to TASK_RUNNING, since
2517 * the task is still ->on_rq.
2519 static int ttwu_remote(struct task_struct *p, int wake_flags)
2521 struct rq *rq;
2522 int ret = 0;
2524 rq = __task_rq_lock(p);
2525 if (p->on_rq) {
2526 ttwu_do_wakeup(rq, p, wake_flags);
2527 ret = 1;
2529 __task_rq_unlock(rq);
2531 return ret;
2534 #ifdef CONFIG_SMP
2535 static void sched_ttwu_pending(void)
2537 struct rq *rq = this_rq();
2538 struct task_struct *list = xchg(&rq->wake_list, NULL);
2540 if (!list)
2541 return;
2543 raw_spin_lock(&rq->lock);
2545 while (list) {
2546 struct task_struct *p = list;
2547 list = list->wake_entry;
2548 ttwu_do_activate(rq, p, 0);
2551 raw_spin_unlock(&rq->lock);
2554 void scheduler_ipi(void)
2556 sched_ttwu_pending();
2559 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2561 struct rq *rq = cpu_rq(cpu);
2562 struct task_struct *next = rq->wake_list;
2564 for (;;) {
2565 struct task_struct *old = next;
2567 p->wake_entry = next;
2568 next = cmpxchg(&rq->wake_list, old, p);
2569 if (next == old)
2570 break;
2573 if (!next)
2574 smp_send_reschedule(cpu);
2577 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2578 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2580 struct rq *rq;
2581 int ret = 0;
2583 rq = __task_rq_lock(p);
2584 if (p->on_cpu) {
2585 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2586 ttwu_do_wakeup(rq, p, wake_flags);
2587 ret = 1;
2589 __task_rq_unlock(rq);
2591 return ret;
2594 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2595 #endif /* CONFIG_SMP */
2597 static void ttwu_queue(struct task_struct *p, int cpu)
2599 struct rq *rq = cpu_rq(cpu);
2601 #if defined(CONFIG_SMP)
2602 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2603 ttwu_queue_remote(p, cpu);
2604 return;
2606 #endif
2608 raw_spin_lock(&rq->lock);
2609 ttwu_do_activate(rq, p, 0);
2610 raw_spin_unlock(&rq->lock);
2614 * try_to_wake_up - wake up a thread
2615 * @p: the thread to be awakened
2616 * @state: the mask of task states that can be woken
2617 * @wake_flags: wake modifier flags (WF_*)
2619 * Put it on the run-queue if it's not already there. The "current"
2620 * thread is always on the run-queue (except when the actual
2621 * re-schedule is in progress), and as such you're allowed to do
2622 * the simpler "current->state = TASK_RUNNING" to mark yourself
2623 * runnable without the overhead of this.
2625 * Returns %true if @p was woken up, %false if it was already running
2626 * or @state didn't match @p's state.
2628 static int
2629 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2631 unsigned long flags;
2632 int cpu, success = 0;
2634 smp_wmb();
2635 raw_spin_lock_irqsave(&p->pi_lock, flags);
2636 if (!(p->state & state))
2637 goto out;
2639 success = 1; /* we're going to change ->state */
2640 cpu = task_cpu(p);
2642 if (p->on_rq && ttwu_remote(p, wake_flags))
2643 goto stat;
2645 #ifdef CONFIG_SMP
2647 * If the owning (remote) cpu is still in the middle of schedule() with
2648 * this task as prev, wait until its done referencing the task.
2650 while (p->on_cpu) {
2651 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2653 * In case the architecture enables interrupts in
2654 * context_switch(), we cannot busy wait, since that
2655 * would lead to deadlocks when an interrupt hits and
2656 * tries to wake up @prev. So bail and do a complete
2657 * remote wakeup.
2659 if (ttwu_activate_remote(p, wake_flags))
2660 goto stat;
2661 #else
2662 cpu_relax();
2663 #endif
2666 * Pairs with the smp_wmb() in finish_lock_switch().
2668 smp_rmb();
2670 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2671 p->state = TASK_WAKING;
2673 if (p->sched_class->task_waking)
2674 p->sched_class->task_waking(p);
2676 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2677 if (task_cpu(p) != cpu)
2678 set_task_cpu(p, cpu);
2679 #endif /* CONFIG_SMP */
2681 ttwu_queue(p, cpu);
2682 stat:
2683 ttwu_stat(p, cpu, wake_flags);
2684 out:
2685 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2687 return success;
2691 * try_to_wake_up_local - try to wake up a local task with rq lock held
2692 * @p: the thread to be awakened
2694 * Put @p on the run-queue if it's not already there. The caller must
2695 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2696 * the current task.
2698 static void try_to_wake_up_local(struct task_struct *p)
2700 struct rq *rq = task_rq(p);
2702 BUG_ON(rq != this_rq());
2703 BUG_ON(p == current);
2704 lockdep_assert_held(&rq->lock);
2706 if (!raw_spin_trylock(&p->pi_lock)) {
2707 raw_spin_unlock(&rq->lock);
2708 raw_spin_lock(&p->pi_lock);
2709 raw_spin_lock(&rq->lock);
2712 if (!(p->state & TASK_NORMAL))
2713 goto out;
2715 if (!p->on_rq)
2716 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2718 ttwu_do_wakeup(rq, p, 0);
2719 ttwu_stat(p, smp_processor_id(), 0);
2720 out:
2721 raw_spin_unlock(&p->pi_lock);
2725 * wake_up_process - Wake up a specific process
2726 * @p: The process to be woken up.
2728 * Attempt to wake up the nominated process and move it to the set of runnable
2729 * processes. Returns 1 if the process was woken up, 0 if it was already
2730 * running.
2732 * It may be assumed that this function implies a write memory barrier before
2733 * changing the task state if and only if any tasks are woken up.
2735 int wake_up_process(struct task_struct *p)
2737 return try_to_wake_up(p, TASK_ALL, 0);
2739 EXPORT_SYMBOL(wake_up_process);
2741 int wake_up_state(struct task_struct *p, unsigned int state)
2743 return try_to_wake_up(p, state, 0);
2747 * Perform scheduler related setup for a newly forked process p.
2748 * p is forked by current.
2750 * __sched_fork() is basic setup used by init_idle() too:
2752 static void __sched_fork(struct task_struct *p)
2754 p->on_rq = 0;
2756 p->se.on_rq = 0;
2757 p->se.exec_start = 0;
2758 p->se.sum_exec_runtime = 0;
2759 p->se.prev_sum_exec_runtime = 0;
2760 p->se.nr_migrations = 0;
2761 p->se.vruntime = 0;
2762 INIT_LIST_HEAD(&p->se.group_node);
2764 #ifdef CONFIG_SCHEDSTATS
2765 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2766 #endif
2768 INIT_LIST_HEAD(&p->rt.run_list);
2770 #ifdef CONFIG_PREEMPT_NOTIFIERS
2771 INIT_HLIST_HEAD(&p->preempt_notifiers);
2772 #endif
2776 * fork()/clone()-time setup:
2778 void sched_fork(struct task_struct *p)
2780 unsigned long flags;
2781 int cpu = get_cpu();
2783 __sched_fork(p);
2785 * We mark the process as running here. This guarantees that
2786 * nobody will actually run it, and a signal or other external
2787 * event cannot wake it up and insert it on the runqueue either.
2789 p->state = TASK_RUNNING;
2792 * Revert to default priority/policy on fork if requested.
2794 if (unlikely(p->sched_reset_on_fork)) {
2795 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2796 p->policy = SCHED_NORMAL;
2797 p->normal_prio = p->static_prio;
2800 if (PRIO_TO_NICE(p->static_prio) < 0) {
2801 p->static_prio = NICE_TO_PRIO(0);
2802 p->normal_prio = p->static_prio;
2803 set_load_weight(p);
2807 * We don't need the reset flag anymore after the fork. It has
2808 * fulfilled its duty:
2810 p->sched_reset_on_fork = 0;
2814 * Make sure we do not leak PI boosting priority to the child.
2816 p->prio = current->normal_prio;
2818 if (!rt_prio(p->prio))
2819 p->sched_class = &fair_sched_class;
2821 if (p->sched_class->task_fork)
2822 p->sched_class->task_fork(p);
2825 * The child is not yet in the pid-hash so no cgroup attach races,
2826 * and the cgroup is pinned to this child due to cgroup_fork()
2827 * is ran before sched_fork().
2829 * Silence PROVE_RCU.
2831 raw_spin_lock_irqsave(&p->pi_lock, flags);
2832 set_task_cpu(p, cpu);
2833 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2835 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2836 if (likely(sched_info_on()))
2837 memset(&p->sched_info, 0, sizeof(p->sched_info));
2838 #endif
2839 #if defined(CONFIG_SMP)
2840 p->on_cpu = 0;
2841 #endif
2842 #ifdef CONFIG_PREEMPT
2843 /* Want to start with kernel preemption disabled. */
2844 task_thread_info(p)->preempt_count = 1;
2845 #endif
2846 #ifdef CONFIG_SMP
2847 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2848 #endif
2850 put_cpu();
2854 * wake_up_new_task - wake up a newly created task for the first time.
2856 * This function will do some initial scheduler statistics housekeeping
2857 * that must be done for every newly created context, then puts the task
2858 * on the runqueue and wakes it.
2860 void wake_up_new_task(struct task_struct *p)
2862 unsigned long flags;
2863 struct rq *rq;
2865 raw_spin_lock_irqsave(&p->pi_lock, flags);
2866 #ifdef CONFIG_SMP
2868 * Fork balancing, do it here and not earlier because:
2869 * - cpus_allowed can change in the fork path
2870 * - any previously selected cpu might disappear through hotplug
2872 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2873 #endif
2875 rq = __task_rq_lock(p);
2876 activate_task(rq, p, 0);
2877 p->on_rq = 1;
2878 trace_sched_wakeup_new(p, true);
2879 check_preempt_curr(rq, p, WF_FORK);
2880 #ifdef CONFIG_SMP
2881 if (p->sched_class->task_woken)
2882 p->sched_class->task_woken(rq, p);
2883 #endif
2884 task_rq_unlock(rq, p, &flags);
2887 #ifdef CONFIG_PREEMPT_NOTIFIERS
2890 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2891 * @notifier: notifier struct to register
2893 void preempt_notifier_register(struct preempt_notifier *notifier)
2895 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2897 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2900 * preempt_notifier_unregister - no longer interested in preemption notifications
2901 * @notifier: notifier struct to unregister
2903 * This is safe to call from within a preemption notifier.
2905 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2907 hlist_del(&notifier->link);
2909 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2911 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2913 struct preempt_notifier *notifier;
2914 struct hlist_node *node;
2916 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2917 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2920 static void
2921 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2922 struct task_struct *next)
2924 struct preempt_notifier *notifier;
2925 struct hlist_node *node;
2927 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2928 notifier->ops->sched_out(notifier, next);
2931 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2933 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2937 static void
2938 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2939 struct task_struct *next)
2943 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2946 * prepare_task_switch - prepare to switch tasks
2947 * @rq: the runqueue preparing to switch
2948 * @prev: the current task that is being switched out
2949 * @next: the task we are going to switch to.
2951 * This is called with the rq lock held and interrupts off. It must
2952 * be paired with a subsequent finish_task_switch after the context
2953 * switch.
2955 * prepare_task_switch sets up locking and calls architecture specific
2956 * hooks.
2958 static inline void
2959 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2960 struct task_struct *next)
2962 sched_info_switch(prev, next);
2963 perf_event_task_sched_out(prev, next);
2964 fire_sched_out_preempt_notifiers(prev, next);
2965 prepare_lock_switch(rq, next);
2966 prepare_arch_switch(next);
2967 trace_sched_switch(prev, next);
2971 * finish_task_switch - clean up after a task-switch
2972 * @rq: runqueue associated with task-switch
2973 * @prev: the thread we just switched away from.
2975 * finish_task_switch must be called after the context switch, paired
2976 * with a prepare_task_switch call before the context switch.
2977 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2978 * and do any other architecture-specific cleanup actions.
2980 * Note that we may have delayed dropping an mm in context_switch(). If
2981 * so, we finish that here outside of the runqueue lock. (Doing it
2982 * with the lock held can cause deadlocks; see schedule() for
2983 * details.)
2985 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2986 __releases(rq->lock)
2988 struct mm_struct *mm = rq->prev_mm;
2989 long prev_state;
2991 rq->prev_mm = NULL;
2994 * A task struct has one reference for the use as "current".
2995 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2996 * schedule one last time. The schedule call will never return, and
2997 * the scheduled task must drop that reference.
2998 * The test for TASK_DEAD must occur while the runqueue locks are
2999 * still held, otherwise prev could be scheduled on another cpu, die
3000 * there before we look at prev->state, and then the reference would
3001 * be dropped twice.
3002 * Manfred Spraul <manfred@colorfullife.com>
3004 prev_state = prev->state;
3005 finish_arch_switch(prev);
3006 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3007 local_irq_disable();
3008 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3009 perf_event_task_sched_in(current);
3010 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3011 local_irq_enable();
3012 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3013 finish_lock_switch(rq, prev);
3015 fire_sched_in_preempt_notifiers(current);
3016 if (mm)
3017 mmdrop(mm);
3018 if (unlikely(prev_state == TASK_DEAD)) {
3020 * Remove function-return probe instances associated with this
3021 * task and put them back on the free list.
3023 kprobe_flush_task(prev);
3024 put_task_struct(prev);
3028 #ifdef CONFIG_SMP
3030 /* assumes rq->lock is held */
3031 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3033 if (prev->sched_class->pre_schedule)
3034 prev->sched_class->pre_schedule(rq, prev);
3037 /* rq->lock is NOT held, but preemption is disabled */
3038 static inline void post_schedule(struct rq *rq)
3040 if (rq->post_schedule) {
3041 unsigned long flags;
3043 raw_spin_lock_irqsave(&rq->lock, flags);
3044 if (rq->curr->sched_class->post_schedule)
3045 rq->curr->sched_class->post_schedule(rq);
3046 raw_spin_unlock_irqrestore(&rq->lock, flags);
3048 rq->post_schedule = 0;
3052 #else
3054 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3058 static inline void post_schedule(struct rq *rq)
3062 #endif
3065 * schedule_tail - first thing a freshly forked thread must call.
3066 * @prev: the thread we just switched away from.
3068 asmlinkage void schedule_tail(struct task_struct *prev)
3069 __releases(rq->lock)
3071 struct rq *rq = this_rq();
3073 finish_task_switch(rq, prev);
3076 * FIXME: do we need to worry about rq being invalidated by the
3077 * task_switch?
3079 post_schedule(rq);
3081 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3082 /* In this case, finish_task_switch does not reenable preemption */
3083 preempt_enable();
3084 #endif
3085 if (current->set_child_tid)
3086 put_user(task_pid_vnr(current), current->set_child_tid);
3090 * context_switch - switch to the new MM and the new
3091 * thread's register state.
3093 static inline void
3094 context_switch(struct rq *rq, struct task_struct *prev,
3095 struct task_struct *next)
3097 struct mm_struct *mm, *oldmm;
3099 prepare_task_switch(rq, prev, next);
3101 mm = next->mm;
3102 oldmm = prev->active_mm;
3104 * For paravirt, this is coupled with an exit in switch_to to
3105 * combine the page table reload and the switch backend into
3106 * one hypercall.
3108 arch_start_context_switch(prev);
3110 if (!mm) {
3111 next->active_mm = oldmm;
3112 atomic_inc(&oldmm->mm_count);
3113 enter_lazy_tlb(oldmm, next);
3114 } else
3115 switch_mm(oldmm, mm, next);
3117 if (!prev->mm) {
3118 prev->active_mm = NULL;
3119 rq->prev_mm = oldmm;
3122 * Since the runqueue lock will be released by the next
3123 * task (which is an invalid locking op but in the case
3124 * of the scheduler it's an obvious special-case), so we
3125 * do an early lockdep release here:
3127 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3128 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3129 #endif
3131 /* Here we just switch the register state and the stack. */
3132 switch_to(prev, next, prev);
3134 barrier();
3136 * this_rq must be evaluated again because prev may have moved
3137 * CPUs since it called schedule(), thus the 'rq' on its stack
3138 * frame will be invalid.
3140 finish_task_switch(this_rq(), prev);
3144 * nr_running, nr_uninterruptible and nr_context_switches:
3146 * externally visible scheduler statistics: current number of runnable
3147 * threads, current number of uninterruptible-sleeping threads, total
3148 * number of context switches performed since bootup.
3150 unsigned long nr_running(void)
3152 unsigned long i, sum = 0;
3154 for_each_online_cpu(i)
3155 sum += cpu_rq(i)->nr_running;
3157 return sum;
3160 unsigned long nr_uninterruptible(void)
3162 unsigned long i, sum = 0;
3164 for_each_possible_cpu(i)
3165 sum += cpu_rq(i)->nr_uninterruptible;
3168 * Since we read the counters lockless, it might be slightly
3169 * inaccurate. Do not allow it to go below zero though:
3171 if (unlikely((long)sum < 0))
3172 sum = 0;
3174 return sum;
3177 unsigned long long nr_context_switches(void)
3179 int i;
3180 unsigned long long sum = 0;
3182 for_each_possible_cpu(i)
3183 sum += cpu_rq(i)->nr_switches;
3185 return sum;
3188 unsigned long nr_iowait(void)
3190 unsigned long i, sum = 0;
3192 for_each_possible_cpu(i)
3193 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3195 return sum;
3198 unsigned long nr_iowait_cpu(int cpu)
3200 struct rq *this = cpu_rq(cpu);
3201 return atomic_read(&this->nr_iowait);
3204 unsigned long this_cpu_load(void)
3206 struct rq *this = this_rq();
3207 return this->cpu_load[0];
3211 /* Variables and functions for calc_load */
3212 static atomic_long_t calc_load_tasks;
3213 static unsigned long calc_load_update;
3214 unsigned long avenrun[3];
3215 EXPORT_SYMBOL(avenrun);
3217 static long calc_load_fold_active(struct rq *this_rq)
3219 long nr_active, delta = 0;
3221 nr_active = this_rq->nr_running;
3222 nr_active += (long) this_rq->nr_uninterruptible;
3224 if (nr_active != this_rq->calc_load_active) {
3225 delta = nr_active - this_rq->calc_load_active;
3226 this_rq->calc_load_active = nr_active;
3229 return delta;
3232 static unsigned long
3233 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3235 load *= exp;
3236 load += active * (FIXED_1 - exp);
3237 load += 1UL << (FSHIFT - 1);
3238 return load >> FSHIFT;
3241 #ifdef CONFIG_NO_HZ
3243 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3245 * When making the ILB scale, we should try to pull this in as well.
3247 static atomic_long_t calc_load_tasks_idle;
3249 static void calc_load_account_idle(struct rq *this_rq)
3251 long delta;
3253 delta = calc_load_fold_active(this_rq);
3254 if (delta)
3255 atomic_long_add(delta, &calc_load_tasks_idle);
3258 static long calc_load_fold_idle(void)
3260 long delta = 0;
3263 * Its got a race, we don't care...
3265 if (atomic_long_read(&calc_load_tasks_idle))
3266 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3268 return delta;
3272 * fixed_power_int - compute: x^n, in O(log n) time
3274 * @x: base of the power
3275 * @frac_bits: fractional bits of @x
3276 * @n: power to raise @x to.
3278 * By exploiting the relation between the definition of the natural power
3279 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3280 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3281 * (where: n_i \elem {0, 1}, the binary vector representing n),
3282 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3283 * of course trivially computable in O(log_2 n), the length of our binary
3284 * vector.
3286 static unsigned long
3287 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3289 unsigned long result = 1UL << frac_bits;
3291 if (n) for (;;) {
3292 if (n & 1) {
3293 result *= x;
3294 result += 1UL << (frac_bits - 1);
3295 result >>= frac_bits;
3297 n >>= 1;
3298 if (!n)
3299 break;
3300 x *= x;
3301 x += 1UL << (frac_bits - 1);
3302 x >>= frac_bits;
3305 return result;
3309 * a1 = a0 * e + a * (1 - e)
3311 * a2 = a1 * e + a * (1 - e)
3312 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3313 * = a0 * e^2 + a * (1 - e) * (1 + e)
3315 * a3 = a2 * e + a * (1 - e)
3316 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3317 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3319 * ...
3321 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3322 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3323 * = a0 * e^n + a * (1 - e^n)
3325 * [1] application of the geometric series:
3327 * n 1 - x^(n+1)
3328 * S_n := \Sum x^i = -------------
3329 * i=0 1 - x
3331 static unsigned long
3332 calc_load_n(unsigned long load, unsigned long exp,
3333 unsigned long active, unsigned int n)
3336 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3340 * NO_HZ can leave us missing all per-cpu ticks calling
3341 * calc_load_account_active(), but since an idle CPU folds its delta into
3342 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3343 * in the pending idle delta if our idle period crossed a load cycle boundary.
3345 * Once we've updated the global active value, we need to apply the exponential
3346 * weights adjusted to the number of cycles missed.
3348 static void calc_global_nohz(unsigned long ticks)
3350 long delta, active, n;
3352 if (time_before(jiffies, calc_load_update))
3353 return;
3356 * If we crossed a calc_load_update boundary, make sure to fold
3357 * any pending idle changes, the respective CPUs might have
3358 * missed the tick driven calc_load_account_active() update
3359 * due to NO_HZ.
3361 delta = calc_load_fold_idle();
3362 if (delta)
3363 atomic_long_add(delta, &calc_load_tasks);
3366 * If we were idle for multiple load cycles, apply them.
3368 if (ticks >= LOAD_FREQ) {
3369 n = ticks / LOAD_FREQ;
3371 active = atomic_long_read(&calc_load_tasks);
3372 active = active > 0 ? active * FIXED_1 : 0;
3374 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3375 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3376 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3378 calc_load_update += n * LOAD_FREQ;
3382 * Its possible the remainder of the above division also crosses
3383 * a LOAD_FREQ period, the regular check in calc_global_load()
3384 * which comes after this will take care of that.
3386 * Consider us being 11 ticks before a cycle completion, and us
3387 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3388 * age us 4 cycles, and the test in calc_global_load() will
3389 * pick up the final one.
3392 #else
3393 static void calc_load_account_idle(struct rq *this_rq)
3397 static inline long calc_load_fold_idle(void)
3399 return 0;
3402 static void calc_global_nohz(unsigned long ticks)
3405 #endif
3408 * get_avenrun - get the load average array
3409 * @loads: pointer to dest load array
3410 * @offset: offset to add
3411 * @shift: shift count to shift the result left
3413 * These values are estimates at best, so no need for locking.
3415 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3417 loads[0] = (avenrun[0] + offset) << shift;
3418 loads[1] = (avenrun[1] + offset) << shift;
3419 loads[2] = (avenrun[2] + offset) << shift;
3423 * calc_load - update the avenrun load estimates 10 ticks after the
3424 * CPUs have updated calc_load_tasks.
3426 void calc_global_load(unsigned long ticks)
3428 long active;
3430 calc_global_nohz(ticks);
3432 if (time_before(jiffies, calc_load_update + 10))
3433 return;
3435 active = atomic_long_read(&calc_load_tasks);
3436 active = active > 0 ? active * FIXED_1 : 0;
3438 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3439 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3440 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3442 calc_load_update += LOAD_FREQ;
3446 * Called from update_cpu_load() to periodically update this CPU's
3447 * active count.
3449 static void calc_load_account_active(struct rq *this_rq)
3451 long delta;
3453 if (time_before(jiffies, this_rq->calc_load_update))
3454 return;
3456 delta = calc_load_fold_active(this_rq);
3457 delta += calc_load_fold_idle();
3458 if (delta)
3459 atomic_long_add(delta, &calc_load_tasks);
3461 this_rq->calc_load_update += LOAD_FREQ;
3465 * The exact cpuload at various idx values, calculated at every tick would be
3466 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3468 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3469 * on nth tick when cpu may be busy, then we have:
3470 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3471 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3473 * decay_load_missed() below does efficient calculation of
3474 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3475 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3477 * The calculation is approximated on a 128 point scale.
3478 * degrade_zero_ticks is the number of ticks after which load at any
3479 * particular idx is approximated to be zero.
3480 * degrade_factor is a precomputed table, a row for each load idx.
3481 * Each column corresponds to degradation factor for a power of two ticks,
3482 * based on 128 point scale.
3483 * Example:
3484 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3485 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3487 * With this power of 2 load factors, we can degrade the load n times
3488 * by looking at 1 bits in n and doing as many mult/shift instead of
3489 * n mult/shifts needed by the exact degradation.
3491 #define DEGRADE_SHIFT 7
3492 static const unsigned char
3493 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3494 static const unsigned char
3495 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3496 {0, 0, 0, 0, 0, 0, 0, 0},
3497 {64, 32, 8, 0, 0, 0, 0, 0},
3498 {96, 72, 40, 12, 1, 0, 0},
3499 {112, 98, 75, 43, 15, 1, 0},
3500 {120, 112, 98, 76, 45, 16, 2} };
3503 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3504 * would be when CPU is idle and so we just decay the old load without
3505 * adding any new load.
3507 static unsigned long
3508 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3510 int j = 0;
3512 if (!missed_updates)
3513 return load;
3515 if (missed_updates >= degrade_zero_ticks[idx])
3516 return 0;
3518 if (idx == 1)
3519 return load >> missed_updates;
3521 while (missed_updates) {
3522 if (missed_updates % 2)
3523 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3525 missed_updates >>= 1;
3526 j++;
3528 return load;
3532 * Update rq->cpu_load[] statistics. This function is usually called every
3533 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3534 * every tick. We fix it up based on jiffies.
3536 static void update_cpu_load(struct rq *this_rq)
3538 unsigned long this_load = this_rq->load.weight;
3539 unsigned long curr_jiffies = jiffies;
3540 unsigned long pending_updates;
3541 int i, scale;
3543 this_rq->nr_load_updates++;
3545 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3546 if (curr_jiffies == this_rq->last_load_update_tick)
3547 return;
3549 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3550 this_rq->last_load_update_tick = curr_jiffies;
3552 /* Update our load: */
3553 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3554 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3555 unsigned long old_load, new_load;
3557 /* scale is effectively 1 << i now, and >> i divides by scale */
3559 old_load = this_rq->cpu_load[i];
3560 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3561 new_load = this_load;
3563 * Round up the averaging division if load is increasing. This
3564 * prevents us from getting stuck on 9 if the load is 10, for
3565 * example.
3567 if (new_load > old_load)
3568 new_load += scale - 1;
3570 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3573 sched_avg_update(this_rq);
3576 static void update_cpu_load_active(struct rq *this_rq)
3578 update_cpu_load(this_rq);
3580 calc_load_account_active(this_rq);
3583 #ifdef CONFIG_SMP
3586 * sched_exec - execve() is a valuable balancing opportunity, because at
3587 * this point the task has the smallest effective memory and cache footprint.
3589 void sched_exec(void)
3591 struct task_struct *p = current;
3592 unsigned long flags;
3593 int dest_cpu;
3595 raw_spin_lock_irqsave(&p->pi_lock, flags);
3596 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3597 if (dest_cpu == smp_processor_id())
3598 goto unlock;
3600 if (likely(cpu_active(dest_cpu))) {
3601 struct migration_arg arg = { p, dest_cpu };
3603 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3604 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3605 return;
3607 unlock:
3608 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3611 #endif
3613 DEFINE_PER_CPU(struct kernel_stat, kstat);
3615 EXPORT_PER_CPU_SYMBOL(kstat);
3618 * Return any ns on the sched_clock that have not yet been accounted in
3619 * @p in case that task is currently running.
3621 * Called with task_rq_lock() held on @rq.
3623 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3625 u64 ns = 0;
3627 if (task_current(rq, p)) {
3628 update_rq_clock(rq);
3629 ns = rq->clock_task - p->se.exec_start;
3630 if ((s64)ns < 0)
3631 ns = 0;
3634 return ns;
3637 unsigned long long task_delta_exec(struct task_struct *p)
3639 unsigned long flags;
3640 struct rq *rq;
3641 u64 ns = 0;
3643 rq = task_rq_lock(p, &flags);
3644 ns = do_task_delta_exec(p, rq);
3645 task_rq_unlock(rq, p, &flags);
3647 return ns;
3651 * Return accounted runtime for the task.
3652 * In case the task is currently running, return the runtime plus current's
3653 * pending runtime that have not been accounted yet.
3655 unsigned long long task_sched_runtime(struct task_struct *p)
3657 unsigned long flags;
3658 struct rq *rq;
3659 u64 ns = 0;
3661 rq = task_rq_lock(p, &flags);
3662 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3663 task_rq_unlock(rq, p, &flags);
3665 return ns;
3669 * Return sum_exec_runtime for the thread group.
3670 * In case the task is currently running, return the sum plus current's
3671 * pending runtime that have not been accounted yet.
3673 * Note that the thread group might have other running tasks as well,
3674 * so the return value not includes other pending runtime that other
3675 * running tasks might have.
3677 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3679 struct task_cputime totals;
3680 unsigned long flags;
3681 struct rq *rq;
3682 u64 ns;
3684 rq = task_rq_lock(p, &flags);
3685 thread_group_cputime(p, &totals);
3686 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3687 task_rq_unlock(rq, p, &flags);
3689 return ns;
3693 * Account user cpu time to a process.
3694 * @p: the process that the cpu time gets accounted to
3695 * @cputime: the cpu time spent in user space since the last update
3696 * @cputime_scaled: cputime scaled by cpu frequency
3698 void account_user_time(struct task_struct *p, cputime_t cputime,
3699 cputime_t cputime_scaled)
3701 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3702 cputime64_t tmp;
3704 /* Add user time to process. */
3705 p->utime = cputime_add(p->utime, cputime);
3706 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3707 account_group_user_time(p, cputime);
3709 /* Add user time to cpustat. */
3710 tmp = cputime_to_cputime64(cputime);
3711 if (TASK_NICE(p) > 0)
3712 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3713 else
3714 cpustat->user = cputime64_add(cpustat->user, tmp);
3716 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3717 /* Account for user time used */
3718 acct_update_integrals(p);
3722 * Account guest cpu time to a process.
3723 * @p: the process that the cpu time gets accounted to
3724 * @cputime: the cpu time spent in virtual machine since the last update
3725 * @cputime_scaled: cputime scaled by cpu frequency
3727 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3728 cputime_t cputime_scaled)
3730 cputime64_t tmp;
3731 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3733 tmp = cputime_to_cputime64(cputime);
3735 /* Add guest time to process. */
3736 p->utime = cputime_add(p->utime, cputime);
3737 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3738 account_group_user_time(p, cputime);
3739 p->gtime = cputime_add(p->gtime, cputime);
3741 /* Add guest time to cpustat. */
3742 if (TASK_NICE(p) > 0) {
3743 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3744 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3745 } else {
3746 cpustat->user = cputime64_add(cpustat->user, tmp);
3747 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3752 * Account system cpu time to a process and desired cpustat field
3753 * @p: the process that the cpu time gets accounted to
3754 * @cputime: the cpu time spent in kernel space since the last update
3755 * @cputime_scaled: cputime scaled by cpu frequency
3756 * @target_cputime64: pointer to cpustat field that has to be updated
3758 static inline
3759 void __account_system_time(struct task_struct *p, cputime_t cputime,
3760 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3762 cputime64_t tmp = cputime_to_cputime64(cputime);
3764 /* Add system time to process. */
3765 p->stime = cputime_add(p->stime, cputime);
3766 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3767 account_group_system_time(p, cputime);
3769 /* Add system time to cpustat. */
3770 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3771 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3773 /* Account for system time used */
3774 acct_update_integrals(p);
3778 * Account system cpu time to a process.
3779 * @p: the process that the cpu time gets accounted to
3780 * @hardirq_offset: the offset to subtract from hardirq_count()
3781 * @cputime: the cpu time spent in kernel space since the last update
3782 * @cputime_scaled: cputime scaled by cpu frequency
3784 void account_system_time(struct task_struct *p, int hardirq_offset,
3785 cputime_t cputime, cputime_t cputime_scaled)
3787 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3788 cputime64_t *target_cputime64;
3790 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3791 account_guest_time(p, cputime, cputime_scaled);
3792 return;
3795 if (hardirq_count() - hardirq_offset)
3796 target_cputime64 = &cpustat->irq;
3797 else if (in_serving_softirq())
3798 target_cputime64 = &cpustat->softirq;
3799 else
3800 target_cputime64 = &cpustat->system;
3802 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3806 * Account for involuntary wait time.
3807 * @cputime: the cpu time spent in involuntary wait
3809 void account_steal_time(cputime_t cputime)
3811 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3812 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3814 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3818 * Account for idle time.
3819 * @cputime: the cpu time spent in idle wait
3821 void account_idle_time(cputime_t cputime)
3823 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3824 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3825 struct rq *rq = this_rq();
3827 if (atomic_read(&rq->nr_iowait) > 0)
3828 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3829 else
3830 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3833 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3835 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3837 * Account a tick to a process and cpustat
3838 * @p: the process that the cpu time gets accounted to
3839 * @user_tick: is the tick from userspace
3840 * @rq: the pointer to rq
3842 * Tick demultiplexing follows the order
3843 * - pending hardirq update
3844 * - pending softirq update
3845 * - user_time
3846 * - idle_time
3847 * - system time
3848 * - check for guest_time
3849 * - else account as system_time
3851 * Check for hardirq is done both for system and user time as there is
3852 * no timer going off while we are on hardirq and hence we may never get an
3853 * opportunity to update it solely in system time.
3854 * p->stime and friends are only updated on system time and not on irq
3855 * softirq as those do not count in task exec_runtime any more.
3857 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3858 struct rq *rq)
3860 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3861 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3862 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3864 if (irqtime_account_hi_update()) {
3865 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3866 } else if (irqtime_account_si_update()) {
3867 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3868 } else if (this_cpu_ksoftirqd() == p) {
3870 * ksoftirqd time do not get accounted in cpu_softirq_time.
3871 * So, we have to handle it separately here.
3872 * Also, p->stime needs to be updated for ksoftirqd.
3874 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3875 &cpustat->softirq);
3876 } else if (user_tick) {
3877 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3878 } else if (p == rq->idle) {
3879 account_idle_time(cputime_one_jiffy);
3880 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3881 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3882 } else {
3883 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3884 &cpustat->system);
3888 static void irqtime_account_idle_ticks(int ticks)
3890 int i;
3891 struct rq *rq = this_rq();
3893 for (i = 0; i < ticks; i++)
3894 irqtime_account_process_tick(current, 0, rq);
3896 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3897 static void irqtime_account_idle_ticks(int ticks) {}
3898 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3899 struct rq *rq) {}
3900 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3903 * Account a single tick of cpu time.
3904 * @p: the process that the cpu time gets accounted to
3905 * @user_tick: indicates if the tick is a user or a system tick
3907 void account_process_tick(struct task_struct *p, int user_tick)
3909 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3910 struct rq *rq = this_rq();
3912 if (sched_clock_irqtime) {
3913 irqtime_account_process_tick(p, user_tick, rq);
3914 return;
3917 if (user_tick)
3918 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3919 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3920 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3921 one_jiffy_scaled);
3922 else
3923 account_idle_time(cputime_one_jiffy);
3927 * Account multiple ticks of steal time.
3928 * @p: the process from which the cpu time has been stolen
3929 * @ticks: number of stolen ticks
3931 void account_steal_ticks(unsigned long ticks)
3933 account_steal_time(jiffies_to_cputime(ticks));
3937 * Account multiple ticks of idle time.
3938 * @ticks: number of stolen ticks
3940 void account_idle_ticks(unsigned long ticks)
3943 if (sched_clock_irqtime) {
3944 irqtime_account_idle_ticks(ticks);
3945 return;
3948 account_idle_time(jiffies_to_cputime(ticks));
3951 #endif
3954 * Use precise platform statistics if available:
3956 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3957 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3959 *ut = p->utime;
3960 *st = p->stime;
3963 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3965 struct task_cputime cputime;
3967 thread_group_cputime(p, &cputime);
3969 *ut = cputime.utime;
3970 *st = cputime.stime;
3972 #else
3974 #ifndef nsecs_to_cputime
3975 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3976 #endif
3978 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3980 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3983 * Use CFS's precise accounting:
3985 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3987 if (total) {
3988 u64 temp = rtime;
3990 temp *= utime;
3991 do_div(temp, total);
3992 utime = (cputime_t)temp;
3993 } else
3994 utime = rtime;
3997 * Compare with previous values, to keep monotonicity:
3999 p->prev_utime = max(p->prev_utime, utime);
4000 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4002 *ut = p->prev_utime;
4003 *st = p->prev_stime;
4007 * Must be called with siglock held.
4009 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4011 struct signal_struct *sig = p->signal;
4012 struct task_cputime cputime;
4013 cputime_t rtime, utime, total;
4015 thread_group_cputime(p, &cputime);
4017 total = cputime_add(cputime.utime, cputime.stime);
4018 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4020 if (total) {
4021 u64 temp = rtime;
4023 temp *= cputime.utime;
4024 do_div(temp, total);
4025 utime = (cputime_t)temp;
4026 } else
4027 utime = rtime;
4029 sig->prev_utime = max(sig->prev_utime, utime);
4030 sig->prev_stime = max(sig->prev_stime,
4031 cputime_sub(rtime, sig->prev_utime));
4033 *ut = sig->prev_utime;
4034 *st = sig->prev_stime;
4036 #endif
4039 * This function gets called by the timer code, with HZ frequency.
4040 * We call it with interrupts disabled.
4042 void scheduler_tick(void)
4044 int cpu = smp_processor_id();
4045 struct rq *rq = cpu_rq(cpu);
4046 struct task_struct *curr = rq->curr;
4048 sched_clock_tick();
4050 raw_spin_lock(&rq->lock);
4051 update_rq_clock(rq);
4052 update_cpu_load_active(rq);
4053 curr->sched_class->task_tick(rq, curr, 0);
4054 raw_spin_unlock(&rq->lock);
4056 perf_event_task_tick();
4058 #ifdef CONFIG_SMP
4059 rq->idle_at_tick = idle_cpu(cpu);
4060 trigger_load_balance(rq, cpu);
4061 #endif
4064 notrace unsigned long get_parent_ip(unsigned long addr)
4066 if (in_lock_functions(addr)) {
4067 addr = CALLER_ADDR2;
4068 if (in_lock_functions(addr))
4069 addr = CALLER_ADDR3;
4071 return addr;
4074 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4075 defined(CONFIG_PREEMPT_TRACER))
4077 void __kprobes add_preempt_count(int val)
4079 #ifdef CONFIG_DEBUG_PREEMPT
4081 * Underflow?
4083 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4084 return;
4085 #endif
4086 preempt_count() += val;
4087 #ifdef CONFIG_DEBUG_PREEMPT
4089 * Spinlock count overflowing soon?
4091 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4092 PREEMPT_MASK - 10);
4093 #endif
4094 if (preempt_count() == val)
4095 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4097 EXPORT_SYMBOL(add_preempt_count);
4099 void __kprobes sub_preempt_count(int val)
4101 #ifdef CONFIG_DEBUG_PREEMPT
4103 * Underflow?
4105 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4106 return;
4108 * Is the spinlock portion underflowing?
4110 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4111 !(preempt_count() & PREEMPT_MASK)))
4112 return;
4113 #endif
4115 if (preempt_count() == val)
4116 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4117 preempt_count() -= val;
4119 EXPORT_SYMBOL(sub_preempt_count);
4121 #endif
4124 * Print scheduling while atomic bug:
4126 static noinline void __schedule_bug(struct task_struct *prev)
4128 struct pt_regs *regs = get_irq_regs();
4130 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4131 prev->comm, prev->pid, preempt_count());
4133 debug_show_held_locks(prev);
4134 print_modules();
4135 if (irqs_disabled())
4136 print_irqtrace_events(prev);
4138 if (regs)
4139 show_regs(regs);
4140 else
4141 dump_stack();
4145 * Various schedule()-time debugging checks and statistics:
4147 static inline void schedule_debug(struct task_struct *prev)
4150 * Test if we are atomic. Since do_exit() needs to call into
4151 * schedule() atomically, we ignore that path for now.
4152 * Otherwise, whine if we are scheduling when we should not be.
4154 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4155 __schedule_bug(prev);
4157 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4159 schedstat_inc(this_rq(), sched_count);
4162 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4164 if (prev->on_rq || rq->skip_clock_update < 0)
4165 update_rq_clock(rq);
4166 prev->sched_class->put_prev_task(rq, prev);
4170 * Pick up the highest-prio task:
4172 static inline struct task_struct *
4173 pick_next_task(struct rq *rq)
4175 const struct sched_class *class;
4176 struct task_struct *p;
4179 * Optimization: we know that if all tasks are in
4180 * the fair class we can call that function directly:
4182 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4183 p = fair_sched_class.pick_next_task(rq);
4184 if (likely(p))
4185 return p;
4188 for_each_class(class) {
4189 p = class->pick_next_task(rq);
4190 if (p)
4191 return p;
4194 BUG(); /* the idle class will always have a runnable task */
4198 * schedule() is the main scheduler function.
4200 asmlinkage void __sched schedule(void)
4202 struct task_struct *prev, *next;
4203 unsigned long *switch_count;
4204 struct rq *rq;
4205 int cpu;
4207 need_resched:
4208 preempt_disable();
4209 cpu = smp_processor_id();
4210 rq = cpu_rq(cpu);
4211 rcu_note_context_switch(cpu);
4212 prev = rq->curr;
4214 schedule_debug(prev);
4216 if (sched_feat(HRTICK))
4217 hrtick_clear(rq);
4219 raw_spin_lock_irq(&rq->lock);
4221 switch_count = &prev->nivcsw;
4222 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4223 if (unlikely(signal_pending_state(prev->state, prev))) {
4224 prev->state = TASK_RUNNING;
4225 } else {
4226 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4227 prev->on_rq = 0;
4230 * If a worker went to sleep, notify and ask workqueue
4231 * whether it wants to wake up a task to maintain
4232 * concurrency.
4234 if (prev->flags & PF_WQ_WORKER) {
4235 struct task_struct *to_wakeup;
4237 to_wakeup = wq_worker_sleeping(prev, cpu);
4238 if (to_wakeup)
4239 try_to_wake_up_local(to_wakeup);
4243 * If we are going to sleep and we have plugged IO
4244 * queued, make sure to submit it to avoid deadlocks.
4246 if (blk_needs_flush_plug(prev)) {
4247 raw_spin_unlock(&rq->lock);
4248 blk_schedule_flush_plug(prev);
4249 raw_spin_lock(&rq->lock);
4252 switch_count = &prev->nvcsw;
4255 pre_schedule(rq, prev);
4257 if (unlikely(!rq->nr_running))
4258 idle_balance(cpu, rq);
4260 put_prev_task(rq, prev);
4261 next = pick_next_task(rq);
4262 clear_tsk_need_resched(prev);
4263 rq->skip_clock_update = 0;
4265 if (likely(prev != next)) {
4266 rq->nr_switches++;
4267 rq->curr = next;
4268 ++*switch_count;
4270 context_switch(rq, prev, next); /* unlocks the rq */
4272 * The context switch have flipped the stack from under us
4273 * and restored the local variables which were saved when
4274 * this task called schedule() in the past. prev == current
4275 * is still correct, but it can be moved to another cpu/rq.
4277 cpu = smp_processor_id();
4278 rq = cpu_rq(cpu);
4279 } else
4280 raw_spin_unlock_irq(&rq->lock);
4282 post_schedule(rq);
4284 preempt_enable_no_resched();
4285 if (need_resched())
4286 goto need_resched;
4288 EXPORT_SYMBOL(schedule);
4290 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4292 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4294 bool ret = false;
4296 rcu_read_lock();
4297 if (lock->owner != owner)
4298 goto fail;
4301 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4302 * lock->owner still matches owner, if that fails, owner might
4303 * point to free()d memory, if it still matches, the rcu_read_lock()
4304 * ensures the memory stays valid.
4306 barrier();
4308 ret = owner->on_cpu;
4309 fail:
4310 rcu_read_unlock();
4312 return ret;
4316 * Look out! "owner" is an entirely speculative pointer
4317 * access and not reliable.
4319 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4321 if (!sched_feat(OWNER_SPIN))
4322 return 0;
4324 while (owner_running(lock, owner)) {
4325 if (need_resched())
4326 return 0;
4328 arch_mutex_cpu_relax();
4332 * If the owner changed to another task there is likely
4333 * heavy contention, stop spinning.
4335 if (lock->owner)
4336 return 0;
4338 return 1;
4340 #endif
4342 #ifdef CONFIG_PREEMPT
4344 * this is the entry point to schedule() from in-kernel preemption
4345 * off of preempt_enable. Kernel preemptions off return from interrupt
4346 * occur there and call schedule directly.
4348 asmlinkage void __sched notrace preempt_schedule(void)
4350 struct thread_info *ti = current_thread_info();
4353 * If there is a non-zero preempt_count or interrupts are disabled,
4354 * we do not want to preempt the current task. Just return..
4356 if (likely(ti->preempt_count || irqs_disabled()))
4357 return;
4359 do {
4360 add_preempt_count_notrace(PREEMPT_ACTIVE);
4361 schedule();
4362 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4365 * Check again in case we missed a preemption opportunity
4366 * between schedule and now.
4368 barrier();
4369 } while (need_resched());
4371 EXPORT_SYMBOL(preempt_schedule);
4374 * this is the entry point to schedule() from kernel preemption
4375 * off of irq context.
4376 * Note, that this is called and return with irqs disabled. This will
4377 * protect us against recursive calling from irq.
4379 asmlinkage void __sched preempt_schedule_irq(void)
4381 struct thread_info *ti = current_thread_info();
4383 /* Catch callers which need to be fixed */
4384 BUG_ON(ti->preempt_count || !irqs_disabled());
4386 do {
4387 add_preempt_count(PREEMPT_ACTIVE);
4388 local_irq_enable();
4389 schedule();
4390 local_irq_disable();
4391 sub_preempt_count(PREEMPT_ACTIVE);
4394 * Check again in case we missed a preemption opportunity
4395 * between schedule and now.
4397 barrier();
4398 } while (need_resched());
4401 #endif /* CONFIG_PREEMPT */
4403 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4404 void *key)
4406 return try_to_wake_up(curr->private, mode, wake_flags);
4408 EXPORT_SYMBOL(default_wake_function);
4411 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4412 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4413 * number) then we wake all the non-exclusive tasks and one exclusive task.
4415 * There are circumstances in which we can try to wake a task which has already
4416 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4417 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4419 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4420 int nr_exclusive, int wake_flags, void *key)
4422 wait_queue_t *curr, *next;
4424 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4425 unsigned flags = curr->flags;
4427 if (curr->func(curr, mode, wake_flags, key) &&
4428 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4429 break;
4434 * __wake_up - wake up threads blocked on a waitqueue.
4435 * @q: the waitqueue
4436 * @mode: which threads
4437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4438 * @key: is directly passed to the wakeup function
4440 * It may be assumed that this function implies a write memory barrier before
4441 * changing the task state if and only if any tasks are woken up.
4443 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4444 int nr_exclusive, void *key)
4446 unsigned long flags;
4448 spin_lock_irqsave(&q->lock, flags);
4449 __wake_up_common(q, mode, nr_exclusive, 0, key);
4450 spin_unlock_irqrestore(&q->lock, flags);
4452 EXPORT_SYMBOL(__wake_up);
4455 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4457 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4459 __wake_up_common(q, mode, 1, 0, NULL);
4461 EXPORT_SYMBOL_GPL(__wake_up_locked);
4463 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4465 __wake_up_common(q, mode, 1, 0, key);
4467 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4470 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4471 * @q: the waitqueue
4472 * @mode: which threads
4473 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4474 * @key: opaque value to be passed to wakeup targets
4476 * The sync wakeup differs that the waker knows that it will schedule
4477 * away soon, so while the target thread will be woken up, it will not
4478 * be migrated to another CPU - ie. the two threads are 'synchronized'
4479 * with each other. This can prevent needless bouncing between CPUs.
4481 * On UP it can prevent extra preemption.
4483 * It may be assumed that this function implies a write memory barrier before
4484 * changing the task state if and only if any tasks are woken up.
4486 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4487 int nr_exclusive, void *key)
4489 unsigned long flags;
4490 int wake_flags = WF_SYNC;
4492 if (unlikely(!q))
4493 return;
4495 if (unlikely(!nr_exclusive))
4496 wake_flags = 0;
4498 spin_lock_irqsave(&q->lock, flags);
4499 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4500 spin_unlock_irqrestore(&q->lock, flags);
4502 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4505 * __wake_up_sync - see __wake_up_sync_key()
4507 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4509 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4511 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4514 * complete: - signals a single thread waiting on this completion
4515 * @x: holds the state of this particular completion
4517 * This will wake up a single thread waiting on this completion. Threads will be
4518 * awakened in the same order in which they were queued.
4520 * See also complete_all(), wait_for_completion() and related routines.
4522 * It may be assumed that this function implies a write memory barrier before
4523 * changing the task state if and only if any tasks are woken up.
4525 void complete(struct completion *x)
4527 unsigned long flags;
4529 spin_lock_irqsave(&x->wait.lock, flags);
4530 x->done++;
4531 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4532 spin_unlock_irqrestore(&x->wait.lock, flags);
4534 EXPORT_SYMBOL(complete);
4537 * complete_all: - signals all threads waiting on this completion
4538 * @x: holds the state of this particular completion
4540 * This will wake up all threads waiting on this particular completion event.
4542 * It may be assumed that this function implies a write memory barrier before
4543 * changing the task state if and only if any tasks are woken up.
4545 void complete_all(struct completion *x)
4547 unsigned long flags;
4549 spin_lock_irqsave(&x->wait.lock, flags);
4550 x->done += UINT_MAX/2;
4551 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4552 spin_unlock_irqrestore(&x->wait.lock, flags);
4554 EXPORT_SYMBOL(complete_all);
4556 static inline long __sched
4557 do_wait_for_common(struct completion *x, long timeout, int state)
4559 if (!x->done) {
4560 DECLARE_WAITQUEUE(wait, current);
4562 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4563 do {
4564 if (signal_pending_state(state, current)) {
4565 timeout = -ERESTARTSYS;
4566 break;
4568 __set_current_state(state);
4569 spin_unlock_irq(&x->wait.lock);
4570 timeout = schedule_timeout(timeout);
4571 spin_lock_irq(&x->wait.lock);
4572 } while (!x->done && timeout);
4573 __remove_wait_queue(&x->wait, &wait);
4574 if (!x->done)
4575 return timeout;
4577 x->done--;
4578 return timeout ?: 1;
4581 static long __sched
4582 wait_for_common(struct completion *x, long timeout, int state)
4584 might_sleep();
4586 spin_lock_irq(&x->wait.lock);
4587 timeout = do_wait_for_common(x, timeout, state);
4588 spin_unlock_irq(&x->wait.lock);
4589 return timeout;
4593 * wait_for_completion: - waits for completion of a task
4594 * @x: holds the state of this particular completion
4596 * This waits to be signaled for completion of a specific task. It is NOT
4597 * interruptible and there is no timeout.
4599 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4600 * and interrupt capability. Also see complete().
4602 void __sched wait_for_completion(struct completion *x)
4604 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4606 EXPORT_SYMBOL(wait_for_completion);
4609 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4610 * @x: holds the state of this particular completion
4611 * @timeout: timeout value in jiffies
4613 * This waits for either a completion of a specific task to be signaled or for a
4614 * specified timeout to expire. The timeout is in jiffies. It is not
4615 * interruptible.
4617 unsigned long __sched
4618 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4620 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4622 EXPORT_SYMBOL(wait_for_completion_timeout);
4625 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4626 * @x: holds the state of this particular completion
4628 * This waits for completion of a specific task to be signaled. It is
4629 * interruptible.
4631 int __sched wait_for_completion_interruptible(struct completion *x)
4633 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4634 if (t == -ERESTARTSYS)
4635 return t;
4636 return 0;
4638 EXPORT_SYMBOL(wait_for_completion_interruptible);
4641 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4642 * @x: holds the state of this particular completion
4643 * @timeout: timeout value in jiffies
4645 * This waits for either a completion of a specific task to be signaled or for a
4646 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4648 long __sched
4649 wait_for_completion_interruptible_timeout(struct completion *x,
4650 unsigned long timeout)
4652 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4654 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4657 * wait_for_completion_killable: - waits for completion of a task (killable)
4658 * @x: holds the state of this particular completion
4660 * This waits to be signaled for completion of a specific task. It can be
4661 * interrupted by a kill signal.
4663 int __sched wait_for_completion_killable(struct completion *x)
4665 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4666 if (t == -ERESTARTSYS)
4667 return t;
4668 return 0;
4670 EXPORT_SYMBOL(wait_for_completion_killable);
4673 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4674 * @x: holds the state of this particular completion
4675 * @timeout: timeout value in jiffies
4677 * This waits for either a completion of a specific task to be
4678 * signaled or for a specified timeout to expire. It can be
4679 * interrupted by a kill signal. The timeout is in jiffies.
4681 long __sched
4682 wait_for_completion_killable_timeout(struct completion *x,
4683 unsigned long timeout)
4685 return wait_for_common(x, timeout, TASK_KILLABLE);
4687 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4690 * try_wait_for_completion - try to decrement a completion without blocking
4691 * @x: completion structure
4693 * Returns: 0 if a decrement cannot be done without blocking
4694 * 1 if a decrement succeeded.
4696 * If a completion is being used as a counting completion,
4697 * attempt to decrement the counter without blocking. This
4698 * enables us to avoid waiting if the resource the completion
4699 * is protecting is not available.
4701 bool try_wait_for_completion(struct completion *x)
4703 unsigned long flags;
4704 int ret = 1;
4706 spin_lock_irqsave(&x->wait.lock, flags);
4707 if (!x->done)
4708 ret = 0;
4709 else
4710 x->done--;
4711 spin_unlock_irqrestore(&x->wait.lock, flags);
4712 return ret;
4714 EXPORT_SYMBOL(try_wait_for_completion);
4717 * completion_done - Test to see if a completion has any waiters
4718 * @x: completion structure
4720 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4721 * 1 if there are no waiters.
4724 bool completion_done(struct completion *x)
4726 unsigned long flags;
4727 int ret = 1;
4729 spin_lock_irqsave(&x->wait.lock, flags);
4730 if (!x->done)
4731 ret = 0;
4732 spin_unlock_irqrestore(&x->wait.lock, flags);
4733 return ret;
4735 EXPORT_SYMBOL(completion_done);
4737 static long __sched
4738 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4740 unsigned long flags;
4741 wait_queue_t wait;
4743 init_waitqueue_entry(&wait, current);
4745 __set_current_state(state);
4747 spin_lock_irqsave(&q->lock, flags);
4748 __add_wait_queue(q, &wait);
4749 spin_unlock(&q->lock);
4750 timeout = schedule_timeout(timeout);
4751 spin_lock_irq(&q->lock);
4752 __remove_wait_queue(q, &wait);
4753 spin_unlock_irqrestore(&q->lock, flags);
4755 return timeout;
4758 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4760 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4762 EXPORT_SYMBOL(interruptible_sleep_on);
4764 long __sched
4765 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4767 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4769 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4771 void __sched sleep_on(wait_queue_head_t *q)
4773 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4775 EXPORT_SYMBOL(sleep_on);
4777 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4779 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4781 EXPORT_SYMBOL(sleep_on_timeout);
4783 #ifdef CONFIG_RT_MUTEXES
4786 * rt_mutex_setprio - set the current priority of a task
4787 * @p: task
4788 * @prio: prio value (kernel-internal form)
4790 * This function changes the 'effective' priority of a task. It does
4791 * not touch ->normal_prio like __setscheduler().
4793 * Used by the rt_mutex code to implement priority inheritance logic.
4795 void rt_mutex_setprio(struct task_struct *p, int prio)
4797 int oldprio, on_rq, running;
4798 struct rq *rq;
4799 const struct sched_class *prev_class;
4801 BUG_ON(prio < 0 || prio > MAX_PRIO);
4803 rq = __task_rq_lock(p);
4805 trace_sched_pi_setprio(p, prio);
4806 oldprio = p->prio;
4807 prev_class = p->sched_class;
4808 on_rq = p->on_rq;
4809 running = task_current(rq, p);
4810 if (on_rq)
4811 dequeue_task(rq, p, 0);
4812 if (running)
4813 p->sched_class->put_prev_task(rq, p);
4815 if (rt_prio(prio))
4816 p->sched_class = &rt_sched_class;
4817 else
4818 p->sched_class = &fair_sched_class;
4820 p->prio = prio;
4822 if (running)
4823 p->sched_class->set_curr_task(rq);
4824 if (on_rq)
4825 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4827 check_class_changed(rq, p, prev_class, oldprio);
4828 __task_rq_unlock(rq);
4831 #endif
4833 void set_user_nice(struct task_struct *p, long nice)
4835 int old_prio, delta, on_rq;
4836 unsigned long flags;
4837 struct rq *rq;
4839 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4840 return;
4842 * We have to be careful, if called from sys_setpriority(),
4843 * the task might be in the middle of scheduling on another CPU.
4845 rq = task_rq_lock(p, &flags);
4847 * The RT priorities are set via sched_setscheduler(), but we still
4848 * allow the 'normal' nice value to be set - but as expected
4849 * it wont have any effect on scheduling until the task is
4850 * SCHED_FIFO/SCHED_RR:
4852 if (task_has_rt_policy(p)) {
4853 p->static_prio = NICE_TO_PRIO(nice);
4854 goto out_unlock;
4856 on_rq = p->on_rq;
4857 if (on_rq)
4858 dequeue_task(rq, p, 0);
4860 p->static_prio = NICE_TO_PRIO(nice);
4861 set_load_weight(p);
4862 old_prio = p->prio;
4863 p->prio = effective_prio(p);
4864 delta = p->prio - old_prio;
4866 if (on_rq) {
4867 enqueue_task(rq, p, 0);
4869 * If the task increased its priority or is running and
4870 * lowered its priority, then reschedule its CPU:
4872 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4873 resched_task(rq->curr);
4875 out_unlock:
4876 task_rq_unlock(rq, p, &flags);
4878 EXPORT_SYMBOL(set_user_nice);
4881 * can_nice - check if a task can reduce its nice value
4882 * @p: task
4883 * @nice: nice value
4885 int can_nice(const struct task_struct *p, const int nice)
4887 /* convert nice value [19,-20] to rlimit style value [1,40] */
4888 int nice_rlim = 20 - nice;
4890 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4891 capable(CAP_SYS_NICE));
4894 #ifdef __ARCH_WANT_SYS_NICE
4897 * sys_nice - change the priority of the current process.
4898 * @increment: priority increment
4900 * sys_setpriority is a more generic, but much slower function that
4901 * does similar things.
4903 SYSCALL_DEFINE1(nice, int, increment)
4905 long nice, retval;
4908 * Setpriority might change our priority at the same moment.
4909 * We don't have to worry. Conceptually one call occurs first
4910 * and we have a single winner.
4912 if (increment < -40)
4913 increment = -40;
4914 if (increment > 40)
4915 increment = 40;
4917 nice = TASK_NICE(current) + increment;
4918 if (nice < -20)
4919 nice = -20;
4920 if (nice > 19)
4921 nice = 19;
4923 if (increment < 0 && !can_nice(current, nice))
4924 return -EPERM;
4926 retval = security_task_setnice(current, nice);
4927 if (retval)
4928 return retval;
4930 set_user_nice(current, nice);
4931 return 0;
4934 #endif
4937 * task_prio - return the priority value of a given task.
4938 * @p: the task in question.
4940 * This is the priority value as seen by users in /proc.
4941 * RT tasks are offset by -200. Normal tasks are centered
4942 * around 0, value goes from -16 to +15.
4944 int task_prio(const struct task_struct *p)
4946 return p->prio - MAX_RT_PRIO;
4950 * task_nice - return the nice value of a given task.
4951 * @p: the task in question.
4953 int task_nice(const struct task_struct *p)
4955 return TASK_NICE(p);
4957 EXPORT_SYMBOL(task_nice);
4960 * idle_cpu - is a given cpu idle currently?
4961 * @cpu: the processor in question.
4963 int idle_cpu(int cpu)
4965 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4969 * idle_task - return the idle task for a given cpu.
4970 * @cpu: the processor in question.
4972 struct task_struct *idle_task(int cpu)
4974 return cpu_rq(cpu)->idle;
4978 * find_process_by_pid - find a process with a matching PID value.
4979 * @pid: the pid in question.
4981 static struct task_struct *find_process_by_pid(pid_t pid)
4983 return pid ? find_task_by_vpid(pid) : current;
4986 /* Actually do priority change: must hold rq lock. */
4987 static void
4988 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4990 p->policy = policy;
4991 p->rt_priority = prio;
4992 p->normal_prio = normal_prio(p);
4993 /* we are holding p->pi_lock already */
4994 p->prio = rt_mutex_getprio(p);
4995 if (rt_prio(p->prio))
4996 p->sched_class = &rt_sched_class;
4997 else
4998 p->sched_class = &fair_sched_class;
4999 set_load_weight(p);
5003 * check the target process has a UID that matches the current process's
5005 static bool check_same_owner(struct task_struct *p)
5007 const struct cred *cred = current_cred(), *pcred;
5008 bool match;
5010 rcu_read_lock();
5011 pcred = __task_cred(p);
5012 if (cred->user->user_ns == pcred->user->user_ns)
5013 match = (cred->euid == pcred->euid ||
5014 cred->euid == pcred->uid);
5015 else
5016 match = false;
5017 rcu_read_unlock();
5018 return match;
5021 static int __sched_setscheduler(struct task_struct *p, int policy,
5022 const struct sched_param *param, bool user)
5024 int retval, oldprio, oldpolicy = -1, on_rq, running;
5025 unsigned long flags;
5026 const struct sched_class *prev_class;
5027 struct rq *rq;
5028 int reset_on_fork;
5030 /* may grab non-irq protected spin_locks */
5031 BUG_ON(in_interrupt());
5032 recheck:
5033 /* double check policy once rq lock held */
5034 if (policy < 0) {
5035 reset_on_fork = p->sched_reset_on_fork;
5036 policy = oldpolicy = p->policy;
5037 } else {
5038 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5039 policy &= ~SCHED_RESET_ON_FORK;
5041 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5042 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5043 policy != SCHED_IDLE)
5044 return -EINVAL;
5048 * Valid priorities for SCHED_FIFO and SCHED_RR are
5049 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5050 * SCHED_BATCH and SCHED_IDLE is 0.
5052 if (param->sched_priority < 0 ||
5053 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5054 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5055 return -EINVAL;
5056 if (rt_policy(policy) != (param->sched_priority != 0))
5057 return -EINVAL;
5060 * Allow unprivileged RT tasks to decrease priority:
5062 if (user && !capable(CAP_SYS_NICE)) {
5063 if (rt_policy(policy)) {
5064 unsigned long rlim_rtprio =
5065 task_rlimit(p, RLIMIT_RTPRIO);
5067 /* can't set/change the rt policy */
5068 if (policy != p->policy && !rlim_rtprio)
5069 return -EPERM;
5071 /* can't increase priority */
5072 if (param->sched_priority > p->rt_priority &&
5073 param->sched_priority > rlim_rtprio)
5074 return -EPERM;
5078 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5079 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5081 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5082 if (!can_nice(p, TASK_NICE(p)))
5083 return -EPERM;
5086 /* can't change other user's priorities */
5087 if (!check_same_owner(p))
5088 return -EPERM;
5090 /* Normal users shall not reset the sched_reset_on_fork flag */
5091 if (p->sched_reset_on_fork && !reset_on_fork)
5092 return -EPERM;
5095 if (user) {
5096 retval = security_task_setscheduler(p);
5097 if (retval)
5098 return retval;
5102 * make sure no PI-waiters arrive (or leave) while we are
5103 * changing the priority of the task:
5105 * To be able to change p->policy safely, the appropriate
5106 * runqueue lock must be held.
5108 rq = task_rq_lock(p, &flags);
5111 * Changing the policy of the stop threads its a very bad idea
5113 if (p == rq->stop) {
5114 task_rq_unlock(rq, p, &flags);
5115 return -EINVAL;
5119 * If not changing anything there's no need to proceed further:
5121 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5122 param->sched_priority == p->rt_priority))) {
5124 __task_rq_unlock(rq);
5125 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5126 return 0;
5129 #ifdef CONFIG_RT_GROUP_SCHED
5130 if (user) {
5132 * Do not allow realtime tasks into groups that have no runtime
5133 * assigned.
5135 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5136 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5137 !task_group_is_autogroup(task_group(p))) {
5138 task_rq_unlock(rq, p, &flags);
5139 return -EPERM;
5142 #endif
5144 /* recheck policy now with rq lock held */
5145 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5146 policy = oldpolicy = -1;
5147 task_rq_unlock(rq, p, &flags);
5148 goto recheck;
5150 on_rq = p->on_rq;
5151 running = task_current(rq, p);
5152 if (on_rq)
5153 deactivate_task(rq, p, 0);
5154 if (running)
5155 p->sched_class->put_prev_task(rq, p);
5157 p->sched_reset_on_fork = reset_on_fork;
5159 oldprio = p->prio;
5160 prev_class = p->sched_class;
5161 __setscheduler(rq, p, policy, param->sched_priority);
5163 if (running)
5164 p->sched_class->set_curr_task(rq);
5165 if (on_rq)
5166 activate_task(rq, p, 0);
5168 check_class_changed(rq, p, prev_class, oldprio);
5169 task_rq_unlock(rq, p, &flags);
5171 rt_mutex_adjust_pi(p);
5173 return 0;
5177 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5178 * @p: the task in question.
5179 * @policy: new policy.
5180 * @param: structure containing the new RT priority.
5182 * NOTE that the task may be already dead.
5184 int sched_setscheduler(struct task_struct *p, int policy,
5185 const struct sched_param *param)
5187 return __sched_setscheduler(p, policy, param, true);
5189 EXPORT_SYMBOL_GPL(sched_setscheduler);
5192 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5193 * @p: the task in question.
5194 * @policy: new policy.
5195 * @param: structure containing the new RT priority.
5197 * Just like sched_setscheduler, only don't bother checking if the
5198 * current context has permission. For example, this is needed in
5199 * stop_machine(): we create temporary high priority worker threads,
5200 * but our caller might not have that capability.
5202 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5203 const struct sched_param *param)
5205 return __sched_setscheduler(p, policy, param, false);
5208 static int
5209 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5211 struct sched_param lparam;
5212 struct task_struct *p;
5213 int retval;
5215 if (!param || pid < 0)
5216 return -EINVAL;
5217 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5218 return -EFAULT;
5220 rcu_read_lock();
5221 retval = -ESRCH;
5222 p = find_process_by_pid(pid);
5223 if (p != NULL)
5224 retval = sched_setscheduler(p, policy, &lparam);
5225 rcu_read_unlock();
5227 return retval;
5231 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5232 * @pid: the pid in question.
5233 * @policy: new policy.
5234 * @param: structure containing the new RT priority.
5236 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5237 struct sched_param __user *, param)
5239 /* negative values for policy are not valid */
5240 if (policy < 0)
5241 return -EINVAL;
5243 return do_sched_setscheduler(pid, policy, param);
5247 * sys_sched_setparam - set/change the RT priority of a thread
5248 * @pid: the pid in question.
5249 * @param: structure containing the new RT priority.
5251 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5253 return do_sched_setscheduler(pid, -1, param);
5257 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5258 * @pid: the pid in question.
5260 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5262 struct task_struct *p;
5263 int retval;
5265 if (pid < 0)
5266 return -EINVAL;
5268 retval = -ESRCH;
5269 rcu_read_lock();
5270 p = find_process_by_pid(pid);
5271 if (p) {
5272 retval = security_task_getscheduler(p);
5273 if (!retval)
5274 retval = p->policy
5275 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5277 rcu_read_unlock();
5278 return retval;
5282 * sys_sched_getparam - get the RT priority of a thread
5283 * @pid: the pid in question.
5284 * @param: structure containing the RT priority.
5286 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5288 struct sched_param lp;
5289 struct task_struct *p;
5290 int retval;
5292 if (!param || pid < 0)
5293 return -EINVAL;
5295 rcu_read_lock();
5296 p = find_process_by_pid(pid);
5297 retval = -ESRCH;
5298 if (!p)
5299 goto out_unlock;
5301 retval = security_task_getscheduler(p);
5302 if (retval)
5303 goto out_unlock;
5305 lp.sched_priority = p->rt_priority;
5306 rcu_read_unlock();
5309 * This one might sleep, we cannot do it with a spinlock held ...
5311 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5313 return retval;
5315 out_unlock:
5316 rcu_read_unlock();
5317 return retval;
5320 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5322 cpumask_var_t cpus_allowed, new_mask;
5323 struct task_struct *p;
5324 int retval;
5326 get_online_cpus();
5327 rcu_read_lock();
5329 p = find_process_by_pid(pid);
5330 if (!p) {
5331 rcu_read_unlock();
5332 put_online_cpus();
5333 return -ESRCH;
5336 /* Prevent p going away */
5337 get_task_struct(p);
5338 rcu_read_unlock();
5340 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5341 retval = -ENOMEM;
5342 goto out_put_task;
5344 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5345 retval = -ENOMEM;
5346 goto out_free_cpus_allowed;
5348 retval = -EPERM;
5349 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5350 goto out_unlock;
5352 retval = security_task_setscheduler(p);
5353 if (retval)
5354 goto out_unlock;
5356 cpuset_cpus_allowed(p, cpus_allowed);
5357 cpumask_and(new_mask, in_mask, cpus_allowed);
5358 again:
5359 retval = set_cpus_allowed_ptr(p, new_mask);
5361 if (!retval) {
5362 cpuset_cpus_allowed(p, cpus_allowed);
5363 if (!cpumask_subset(new_mask, cpus_allowed)) {
5365 * We must have raced with a concurrent cpuset
5366 * update. Just reset the cpus_allowed to the
5367 * cpuset's cpus_allowed
5369 cpumask_copy(new_mask, cpus_allowed);
5370 goto again;
5373 out_unlock:
5374 free_cpumask_var(new_mask);
5375 out_free_cpus_allowed:
5376 free_cpumask_var(cpus_allowed);
5377 out_put_task:
5378 put_task_struct(p);
5379 put_online_cpus();
5380 return retval;
5383 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5384 struct cpumask *new_mask)
5386 if (len < cpumask_size())
5387 cpumask_clear(new_mask);
5388 else if (len > cpumask_size())
5389 len = cpumask_size();
5391 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5395 * sys_sched_setaffinity - set the cpu affinity of a process
5396 * @pid: pid of the process
5397 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5398 * @user_mask_ptr: user-space pointer to the new cpu mask
5400 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5401 unsigned long __user *, user_mask_ptr)
5403 cpumask_var_t new_mask;
5404 int retval;
5406 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5407 return -ENOMEM;
5409 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5410 if (retval == 0)
5411 retval = sched_setaffinity(pid, new_mask);
5412 free_cpumask_var(new_mask);
5413 return retval;
5416 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5418 struct task_struct *p;
5419 unsigned long flags;
5420 int retval;
5422 get_online_cpus();
5423 rcu_read_lock();
5425 retval = -ESRCH;
5426 p = find_process_by_pid(pid);
5427 if (!p)
5428 goto out_unlock;
5430 retval = security_task_getscheduler(p);
5431 if (retval)
5432 goto out_unlock;
5434 raw_spin_lock_irqsave(&p->pi_lock, flags);
5435 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5436 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5438 out_unlock:
5439 rcu_read_unlock();
5440 put_online_cpus();
5442 return retval;
5446 * sys_sched_getaffinity - get the cpu affinity of a process
5447 * @pid: pid of the process
5448 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5449 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5451 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5452 unsigned long __user *, user_mask_ptr)
5454 int ret;
5455 cpumask_var_t mask;
5457 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5458 return -EINVAL;
5459 if (len & (sizeof(unsigned long)-1))
5460 return -EINVAL;
5462 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5463 return -ENOMEM;
5465 ret = sched_getaffinity(pid, mask);
5466 if (ret == 0) {
5467 size_t retlen = min_t(size_t, len, cpumask_size());
5469 if (copy_to_user(user_mask_ptr, mask, retlen))
5470 ret = -EFAULT;
5471 else
5472 ret = retlen;
5474 free_cpumask_var(mask);
5476 return ret;
5480 * sys_sched_yield - yield the current processor to other threads.
5482 * This function yields the current CPU to other tasks. If there are no
5483 * other threads running on this CPU then this function will return.
5485 SYSCALL_DEFINE0(sched_yield)
5487 struct rq *rq = this_rq_lock();
5489 schedstat_inc(rq, yld_count);
5490 current->sched_class->yield_task(rq);
5493 * Since we are going to call schedule() anyway, there's
5494 * no need to preempt or enable interrupts:
5496 __release(rq->lock);
5497 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5498 do_raw_spin_unlock(&rq->lock);
5499 preempt_enable_no_resched();
5501 schedule();
5503 return 0;
5506 static inline int should_resched(void)
5508 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5511 static void __cond_resched(void)
5513 add_preempt_count(PREEMPT_ACTIVE);
5514 schedule();
5515 sub_preempt_count(PREEMPT_ACTIVE);
5518 int __sched _cond_resched(void)
5520 if (should_resched()) {
5521 __cond_resched();
5522 return 1;
5524 return 0;
5526 EXPORT_SYMBOL(_cond_resched);
5529 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5530 * call schedule, and on return reacquire the lock.
5532 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5533 * operations here to prevent schedule() from being called twice (once via
5534 * spin_unlock(), once by hand).
5536 int __cond_resched_lock(spinlock_t *lock)
5538 int resched = should_resched();
5539 int ret = 0;
5541 lockdep_assert_held(lock);
5543 if (spin_needbreak(lock) || resched) {
5544 spin_unlock(lock);
5545 if (resched)
5546 __cond_resched();
5547 else
5548 cpu_relax();
5549 ret = 1;
5550 spin_lock(lock);
5552 return ret;
5554 EXPORT_SYMBOL(__cond_resched_lock);
5556 int __sched __cond_resched_softirq(void)
5558 BUG_ON(!in_softirq());
5560 if (should_resched()) {
5561 local_bh_enable();
5562 __cond_resched();
5563 local_bh_disable();
5564 return 1;
5566 return 0;
5568 EXPORT_SYMBOL(__cond_resched_softirq);
5571 * yield - yield the current processor to other threads.
5573 * This is a shortcut for kernel-space yielding - it marks the
5574 * thread runnable and calls sys_sched_yield().
5576 void __sched yield(void)
5578 set_current_state(TASK_RUNNING);
5579 sys_sched_yield();
5581 EXPORT_SYMBOL(yield);
5584 * yield_to - yield the current processor to another thread in
5585 * your thread group, or accelerate that thread toward the
5586 * processor it's on.
5587 * @p: target task
5588 * @preempt: whether task preemption is allowed or not
5590 * It's the caller's job to ensure that the target task struct
5591 * can't go away on us before we can do any checks.
5593 * Returns true if we indeed boosted the target task.
5595 bool __sched yield_to(struct task_struct *p, bool preempt)
5597 struct task_struct *curr = current;
5598 struct rq *rq, *p_rq;
5599 unsigned long flags;
5600 bool yielded = 0;
5602 local_irq_save(flags);
5603 rq = this_rq();
5605 again:
5606 p_rq = task_rq(p);
5607 double_rq_lock(rq, p_rq);
5608 while (task_rq(p) != p_rq) {
5609 double_rq_unlock(rq, p_rq);
5610 goto again;
5613 if (!curr->sched_class->yield_to_task)
5614 goto out;
5616 if (curr->sched_class != p->sched_class)
5617 goto out;
5619 if (task_running(p_rq, p) || p->state)
5620 goto out;
5622 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5623 if (yielded) {
5624 schedstat_inc(rq, yld_count);
5626 * Make p's CPU reschedule; pick_next_entity takes care of
5627 * fairness.
5629 if (preempt && rq != p_rq)
5630 resched_task(p_rq->curr);
5633 out:
5634 double_rq_unlock(rq, p_rq);
5635 local_irq_restore(flags);
5637 if (yielded)
5638 schedule();
5640 return yielded;
5642 EXPORT_SYMBOL_GPL(yield_to);
5645 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5646 * that process accounting knows that this is a task in IO wait state.
5648 void __sched io_schedule(void)
5650 struct rq *rq = raw_rq();
5652 delayacct_blkio_start();
5653 atomic_inc(&rq->nr_iowait);
5654 blk_flush_plug(current);
5655 current->in_iowait = 1;
5656 schedule();
5657 current->in_iowait = 0;
5658 atomic_dec(&rq->nr_iowait);
5659 delayacct_blkio_end();
5661 EXPORT_SYMBOL(io_schedule);
5663 long __sched io_schedule_timeout(long timeout)
5665 struct rq *rq = raw_rq();
5666 long ret;
5668 delayacct_blkio_start();
5669 atomic_inc(&rq->nr_iowait);
5670 blk_flush_plug(current);
5671 current->in_iowait = 1;
5672 ret = schedule_timeout(timeout);
5673 current->in_iowait = 0;
5674 atomic_dec(&rq->nr_iowait);
5675 delayacct_blkio_end();
5676 return ret;
5680 * sys_sched_get_priority_max - return maximum RT priority.
5681 * @policy: scheduling class.
5683 * this syscall returns the maximum rt_priority that can be used
5684 * by a given scheduling class.
5686 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5688 int ret = -EINVAL;
5690 switch (policy) {
5691 case SCHED_FIFO:
5692 case SCHED_RR:
5693 ret = MAX_USER_RT_PRIO-1;
5694 break;
5695 case SCHED_NORMAL:
5696 case SCHED_BATCH:
5697 case SCHED_IDLE:
5698 ret = 0;
5699 break;
5701 return ret;
5705 * sys_sched_get_priority_min - return minimum RT priority.
5706 * @policy: scheduling class.
5708 * this syscall returns the minimum rt_priority that can be used
5709 * by a given scheduling class.
5711 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5713 int ret = -EINVAL;
5715 switch (policy) {
5716 case SCHED_FIFO:
5717 case SCHED_RR:
5718 ret = 1;
5719 break;
5720 case SCHED_NORMAL:
5721 case SCHED_BATCH:
5722 case SCHED_IDLE:
5723 ret = 0;
5725 return ret;
5729 * sys_sched_rr_get_interval - return the default timeslice of a process.
5730 * @pid: pid of the process.
5731 * @interval: userspace pointer to the timeslice value.
5733 * this syscall writes the default timeslice value of a given process
5734 * into the user-space timespec buffer. A value of '0' means infinity.
5736 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5737 struct timespec __user *, interval)
5739 struct task_struct *p;
5740 unsigned int time_slice;
5741 unsigned long flags;
5742 struct rq *rq;
5743 int retval;
5744 struct timespec t;
5746 if (pid < 0)
5747 return -EINVAL;
5749 retval = -ESRCH;
5750 rcu_read_lock();
5751 p = find_process_by_pid(pid);
5752 if (!p)
5753 goto out_unlock;
5755 retval = security_task_getscheduler(p);
5756 if (retval)
5757 goto out_unlock;
5759 rq = task_rq_lock(p, &flags);
5760 time_slice = p->sched_class->get_rr_interval(rq, p);
5761 task_rq_unlock(rq, p, &flags);
5763 rcu_read_unlock();
5764 jiffies_to_timespec(time_slice, &t);
5765 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5766 return retval;
5768 out_unlock:
5769 rcu_read_unlock();
5770 return retval;
5773 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5775 void sched_show_task(struct task_struct *p)
5777 unsigned long free = 0;
5778 unsigned state;
5780 state = p->state ? __ffs(p->state) + 1 : 0;
5781 printk(KERN_INFO "%-15.15s %c", p->comm,
5782 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5783 #if BITS_PER_LONG == 32
5784 if (state == TASK_RUNNING)
5785 printk(KERN_CONT " running ");
5786 else
5787 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5788 #else
5789 if (state == TASK_RUNNING)
5790 printk(KERN_CONT " running task ");
5791 else
5792 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5793 #endif
5794 #ifdef CONFIG_DEBUG_STACK_USAGE
5795 free = stack_not_used(p);
5796 #endif
5797 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5798 task_pid_nr(p), task_pid_nr(p->real_parent),
5799 (unsigned long)task_thread_info(p)->flags);
5801 show_stack(p, NULL);
5804 void show_state_filter(unsigned long state_filter)
5806 struct task_struct *g, *p;
5808 #if BITS_PER_LONG == 32
5809 printk(KERN_INFO
5810 " task PC stack pid father\n");
5811 #else
5812 printk(KERN_INFO
5813 " task PC stack pid father\n");
5814 #endif
5815 read_lock(&tasklist_lock);
5816 do_each_thread(g, p) {
5818 * reset the NMI-timeout, listing all files on a slow
5819 * console might take a lot of time:
5821 touch_nmi_watchdog();
5822 if (!state_filter || (p->state & state_filter))
5823 sched_show_task(p);
5824 } while_each_thread(g, p);
5826 touch_all_softlockup_watchdogs();
5828 #ifdef CONFIG_SCHED_DEBUG
5829 sysrq_sched_debug_show();
5830 #endif
5831 read_unlock(&tasklist_lock);
5833 * Only show locks if all tasks are dumped:
5835 if (!state_filter)
5836 debug_show_all_locks();
5839 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5841 idle->sched_class = &idle_sched_class;
5845 * init_idle - set up an idle thread for a given CPU
5846 * @idle: task in question
5847 * @cpu: cpu the idle task belongs to
5849 * NOTE: this function does not set the idle thread's NEED_RESCHED
5850 * flag, to make booting more robust.
5852 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5854 struct rq *rq = cpu_rq(cpu);
5855 unsigned long flags;
5857 raw_spin_lock_irqsave(&rq->lock, flags);
5859 __sched_fork(idle);
5860 idle->state = TASK_RUNNING;
5861 idle->se.exec_start = sched_clock();
5863 do_set_cpus_allowed(idle, cpumask_of(cpu));
5865 * We're having a chicken and egg problem, even though we are
5866 * holding rq->lock, the cpu isn't yet set to this cpu so the
5867 * lockdep check in task_group() will fail.
5869 * Similar case to sched_fork(). / Alternatively we could
5870 * use task_rq_lock() here and obtain the other rq->lock.
5872 * Silence PROVE_RCU
5874 rcu_read_lock();
5875 __set_task_cpu(idle, cpu);
5876 rcu_read_unlock();
5878 rq->curr = rq->idle = idle;
5879 #if defined(CONFIG_SMP)
5880 idle->on_cpu = 1;
5881 #endif
5882 raw_spin_unlock_irqrestore(&rq->lock, flags);
5884 /* Set the preempt count _outside_ the spinlocks! */
5885 task_thread_info(idle)->preempt_count = 0;
5888 * The idle tasks have their own, simple scheduling class:
5890 idle->sched_class = &idle_sched_class;
5891 ftrace_graph_init_idle_task(idle, cpu);
5895 * In a system that switches off the HZ timer nohz_cpu_mask
5896 * indicates which cpus entered this state. This is used
5897 * in the rcu update to wait only for active cpus. For system
5898 * which do not switch off the HZ timer nohz_cpu_mask should
5899 * always be CPU_BITS_NONE.
5901 cpumask_var_t nohz_cpu_mask;
5904 * Increase the granularity value when there are more CPUs,
5905 * because with more CPUs the 'effective latency' as visible
5906 * to users decreases. But the relationship is not linear,
5907 * so pick a second-best guess by going with the log2 of the
5908 * number of CPUs.
5910 * This idea comes from the SD scheduler of Con Kolivas:
5912 static int get_update_sysctl_factor(void)
5914 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5915 unsigned int factor;
5917 switch (sysctl_sched_tunable_scaling) {
5918 case SCHED_TUNABLESCALING_NONE:
5919 factor = 1;
5920 break;
5921 case SCHED_TUNABLESCALING_LINEAR:
5922 factor = cpus;
5923 break;
5924 case SCHED_TUNABLESCALING_LOG:
5925 default:
5926 factor = 1 + ilog2(cpus);
5927 break;
5930 return factor;
5933 static void update_sysctl(void)
5935 unsigned int factor = get_update_sysctl_factor();
5937 #define SET_SYSCTL(name) \
5938 (sysctl_##name = (factor) * normalized_sysctl_##name)
5939 SET_SYSCTL(sched_min_granularity);
5940 SET_SYSCTL(sched_latency);
5941 SET_SYSCTL(sched_wakeup_granularity);
5942 #undef SET_SYSCTL
5945 static inline void sched_init_granularity(void)
5947 update_sysctl();
5950 #ifdef CONFIG_SMP
5951 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5953 if (p->sched_class && p->sched_class->set_cpus_allowed)
5954 p->sched_class->set_cpus_allowed(p, new_mask);
5955 else {
5956 cpumask_copy(&p->cpus_allowed, new_mask);
5957 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5962 * This is how migration works:
5964 * 1) we invoke migration_cpu_stop() on the target CPU using
5965 * stop_one_cpu().
5966 * 2) stopper starts to run (implicitly forcing the migrated thread
5967 * off the CPU)
5968 * 3) it checks whether the migrated task is still in the wrong runqueue.
5969 * 4) if it's in the wrong runqueue then the migration thread removes
5970 * it and puts it into the right queue.
5971 * 5) stopper completes and stop_one_cpu() returns and the migration
5972 * is done.
5976 * Change a given task's CPU affinity. Migrate the thread to a
5977 * proper CPU and schedule it away if the CPU it's executing on
5978 * is removed from the allowed bitmask.
5980 * NOTE: the caller must have a valid reference to the task, the
5981 * task must not exit() & deallocate itself prematurely. The
5982 * call is not atomic; no spinlocks may be held.
5984 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5986 unsigned long flags;
5987 struct rq *rq;
5988 unsigned int dest_cpu;
5989 int ret = 0;
5991 rq = task_rq_lock(p, &flags);
5993 if (cpumask_equal(&p->cpus_allowed, new_mask))
5994 goto out;
5996 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5997 ret = -EINVAL;
5998 goto out;
6001 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6002 ret = -EINVAL;
6003 goto out;
6006 do_set_cpus_allowed(p, new_mask);
6008 /* Can the task run on the task's current CPU? If so, we're done */
6009 if (cpumask_test_cpu(task_cpu(p), new_mask))
6010 goto out;
6012 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6013 if (p->on_rq) {
6014 struct migration_arg arg = { p, dest_cpu };
6015 /* Need help from migration thread: drop lock and wait. */
6016 task_rq_unlock(rq, p, &flags);
6017 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6018 tlb_migrate_finish(p->mm);
6019 return 0;
6021 out:
6022 task_rq_unlock(rq, p, &flags);
6024 return ret;
6026 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6029 * Move (not current) task off this cpu, onto dest cpu. We're doing
6030 * this because either it can't run here any more (set_cpus_allowed()
6031 * away from this CPU, or CPU going down), or because we're
6032 * attempting to rebalance this task on exec (sched_exec).
6034 * So we race with normal scheduler movements, but that's OK, as long
6035 * as the task is no longer on this CPU.
6037 * Returns non-zero if task was successfully migrated.
6039 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6041 struct rq *rq_dest, *rq_src;
6042 int ret = 0;
6044 if (unlikely(!cpu_active(dest_cpu)))
6045 return ret;
6047 rq_src = cpu_rq(src_cpu);
6048 rq_dest = cpu_rq(dest_cpu);
6050 raw_spin_lock(&p->pi_lock);
6051 double_rq_lock(rq_src, rq_dest);
6052 /* Already moved. */
6053 if (task_cpu(p) != src_cpu)
6054 goto done;
6055 /* Affinity changed (again). */
6056 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6057 goto fail;
6060 * If we're not on a rq, the next wake-up will ensure we're
6061 * placed properly.
6063 if (p->on_rq) {
6064 deactivate_task(rq_src, p, 0);
6065 set_task_cpu(p, dest_cpu);
6066 activate_task(rq_dest, p, 0);
6067 check_preempt_curr(rq_dest, p, 0);
6069 done:
6070 ret = 1;
6071 fail:
6072 double_rq_unlock(rq_src, rq_dest);
6073 raw_spin_unlock(&p->pi_lock);
6074 return ret;
6078 * migration_cpu_stop - this will be executed by a highprio stopper thread
6079 * and performs thread migration by bumping thread off CPU then
6080 * 'pushing' onto another runqueue.
6082 static int migration_cpu_stop(void *data)
6084 struct migration_arg *arg = data;
6087 * The original target cpu might have gone down and we might
6088 * be on another cpu but it doesn't matter.
6090 local_irq_disable();
6091 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6092 local_irq_enable();
6093 return 0;
6096 #ifdef CONFIG_HOTPLUG_CPU
6099 * Ensures that the idle task is using init_mm right before its cpu goes
6100 * offline.
6102 void idle_task_exit(void)
6104 struct mm_struct *mm = current->active_mm;
6106 BUG_ON(cpu_online(smp_processor_id()));
6108 if (mm != &init_mm)
6109 switch_mm(mm, &init_mm, current);
6110 mmdrop(mm);
6114 * While a dead CPU has no uninterruptible tasks queued at this point,
6115 * it might still have a nonzero ->nr_uninterruptible counter, because
6116 * for performance reasons the counter is not stricly tracking tasks to
6117 * their home CPUs. So we just add the counter to another CPU's counter,
6118 * to keep the global sum constant after CPU-down:
6120 static void migrate_nr_uninterruptible(struct rq *rq_src)
6122 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6124 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6125 rq_src->nr_uninterruptible = 0;
6129 * remove the tasks which were accounted by rq from calc_load_tasks.
6131 static void calc_global_load_remove(struct rq *rq)
6133 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6134 rq->calc_load_active = 0;
6138 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6139 * try_to_wake_up()->select_task_rq().
6141 * Called with rq->lock held even though we'er in stop_machine() and
6142 * there's no concurrency possible, we hold the required locks anyway
6143 * because of lock validation efforts.
6145 static void migrate_tasks(unsigned int dead_cpu)
6147 struct rq *rq = cpu_rq(dead_cpu);
6148 struct task_struct *next, *stop = rq->stop;
6149 int dest_cpu;
6152 * Fudge the rq selection such that the below task selection loop
6153 * doesn't get stuck on the currently eligible stop task.
6155 * We're currently inside stop_machine() and the rq is either stuck
6156 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6157 * either way we should never end up calling schedule() until we're
6158 * done here.
6160 rq->stop = NULL;
6162 for ( ; ; ) {
6164 * There's this thread running, bail when that's the only
6165 * remaining thread.
6167 if (rq->nr_running == 1)
6168 break;
6170 next = pick_next_task(rq);
6171 BUG_ON(!next);
6172 next->sched_class->put_prev_task(rq, next);
6174 /* Find suitable destination for @next, with force if needed. */
6175 dest_cpu = select_fallback_rq(dead_cpu, next);
6176 raw_spin_unlock(&rq->lock);
6178 __migrate_task(next, dead_cpu, dest_cpu);
6180 raw_spin_lock(&rq->lock);
6183 rq->stop = stop;
6186 #endif /* CONFIG_HOTPLUG_CPU */
6188 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6190 static struct ctl_table sd_ctl_dir[] = {
6192 .procname = "sched_domain",
6193 .mode = 0555,
6198 static struct ctl_table sd_ctl_root[] = {
6200 .procname = "kernel",
6201 .mode = 0555,
6202 .child = sd_ctl_dir,
6207 static struct ctl_table *sd_alloc_ctl_entry(int n)
6209 struct ctl_table *entry =
6210 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6212 return entry;
6215 static void sd_free_ctl_entry(struct ctl_table **tablep)
6217 struct ctl_table *entry;
6220 * In the intermediate directories, both the child directory and
6221 * procname are dynamically allocated and could fail but the mode
6222 * will always be set. In the lowest directory the names are
6223 * static strings and all have proc handlers.
6225 for (entry = *tablep; entry->mode; entry++) {
6226 if (entry->child)
6227 sd_free_ctl_entry(&entry->child);
6228 if (entry->proc_handler == NULL)
6229 kfree(entry->procname);
6232 kfree(*tablep);
6233 *tablep = NULL;
6236 static void
6237 set_table_entry(struct ctl_table *entry,
6238 const char *procname, void *data, int maxlen,
6239 mode_t mode, proc_handler *proc_handler)
6241 entry->procname = procname;
6242 entry->data = data;
6243 entry->maxlen = maxlen;
6244 entry->mode = mode;
6245 entry->proc_handler = proc_handler;
6248 static struct ctl_table *
6249 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6251 struct ctl_table *table = sd_alloc_ctl_entry(13);
6253 if (table == NULL)
6254 return NULL;
6256 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6257 sizeof(long), 0644, proc_doulongvec_minmax);
6258 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6259 sizeof(long), 0644, proc_doulongvec_minmax);
6260 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6261 sizeof(int), 0644, proc_dointvec_minmax);
6262 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6263 sizeof(int), 0644, proc_dointvec_minmax);
6264 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6265 sizeof(int), 0644, proc_dointvec_minmax);
6266 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6267 sizeof(int), 0644, proc_dointvec_minmax);
6268 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6269 sizeof(int), 0644, proc_dointvec_minmax);
6270 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6271 sizeof(int), 0644, proc_dointvec_minmax);
6272 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6273 sizeof(int), 0644, proc_dointvec_minmax);
6274 set_table_entry(&table[9], "cache_nice_tries",
6275 &sd->cache_nice_tries,
6276 sizeof(int), 0644, proc_dointvec_minmax);
6277 set_table_entry(&table[10], "flags", &sd->flags,
6278 sizeof(int), 0644, proc_dointvec_minmax);
6279 set_table_entry(&table[11], "name", sd->name,
6280 CORENAME_MAX_SIZE, 0444, proc_dostring);
6281 /* &table[12] is terminator */
6283 return table;
6286 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6288 struct ctl_table *entry, *table;
6289 struct sched_domain *sd;
6290 int domain_num = 0, i;
6291 char buf[32];
6293 for_each_domain(cpu, sd)
6294 domain_num++;
6295 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6296 if (table == NULL)
6297 return NULL;
6299 i = 0;
6300 for_each_domain(cpu, sd) {
6301 snprintf(buf, 32, "domain%d", i);
6302 entry->procname = kstrdup(buf, GFP_KERNEL);
6303 entry->mode = 0555;
6304 entry->child = sd_alloc_ctl_domain_table(sd);
6305 entry++;
6306 i++;
6308 return table;
6311 static struct ctl_table_header *sd_sysctl_header;
6312 static void register_sched_domain_sysctl(void)
6314 int i, cpu_num = num_possible_cpus();
6315 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6316 char buf[32];
6318 WARN_ON(sd_ctl_dir[0].child);
6319 sd_ctl_dir[0].child = entry;
6321 if (entry == NULL)
6322 return;
6324 for_each_possible_cpu(i) {
6325 snprintf(buf, 32, "cpu%d", i);
6326 entry->procname = kstrdup(buf, GFP_KERNEL);
6327 entry->mode = 0555;
6328 entry->child = sd_alloc_ctl_cpu_table(i);
6329 entry++;
6332 WARN_ON(sd_sysctl_header);
6333 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6336 /* may be called multiple times per register */
6337 static void unregister_sched_domain_sysctl(void)
6339 if (sd_sysctl_header)
6340 unregister_sysctl_table(sd_sysctl_header);
6341 sd_sysctl_header = NULL;
6342 if (sd_ctl_dir[0].child)
6343 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6345 #else
6346 static void register_sched_domain_sysctl(void)
6349 static void unregister_sched_domain_sysctl(void)
6352 #endif
6354 static void set_rq_online(struct rq *rq)
6356 if (!rq->online) {
6357 const struct sched_class *class;
6359 cpumask_set_cpu(rq->cpu, rq->rd->online);
6360 rq->online = 1;
6362 for_each_class(class) {
6363 if (class->rq_online)
6364 class->rq_online(rq);
6369 static void set_rq_offline(struct rq *rq)
6371 if (rq->online) {
6372 const struct sched_class *class;
6374 for_each_class(class) {
6375 if (class->rq_offline)
6376 class->rq_offline(rq);
6379 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6380 rq->online = 0;
6385 * migration_call - callback that gets triggered when a CPU is added.
6386 * Here we can start up the necessary migration thread for the new CPU.
6388 static int __cpuinit
6389 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6391 int cpu = (long)hcpu;
6392 unsigned long flags;
6393 struct rq *rq = cpu_rq(cpu);
6395 switch (action & ~CPU_TASKS_FROZEN) {
6397 case CPU_UP_PREPARE:
6398 rq->calc_load_update = calc_load_update;
6399 break;
6401 case CPU_ONLINE:
6402 /* Update our root-domain */
6403 raw_spin_lock_irqsave(&rq->lock, flags);
6404 if (rq->rd) {
6405 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6407 set_rq_online(rq);
6409 raw_spin_unlock_irqrestore(&rq->lock, flags);
6410 break;
6412 #ifdef CONFIG_HOTPLUG_CPU
6413 case CPU_DYING:
6414 sched_ttwu_pending();
6415 /* Update our root-domain */
6416 raw_spin_lock_irqsave(&rq->lock, flags);
6417 if (rq->rd) {
6418 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6419 set_rq_offline(rq);
6421 migrate_tasks(cpu);
6422 BUG_ON(rq->nr_running != 1); /* the migration thread */
6423 raw_spin_unlock_irqrestore(&rq->lock, flags);
6425 migrate_nr_uninterruptible(rq);
6426 calc_global_load_remove(rq);
6427 break;
6428 #endif
6431 update_max_interval();
6433 return NOTIFY_OK;
6437 * Register at high priority so that task migration (migrate_all_tasks)
6438 * happens before everything else. This has to be lower priority than
6439 * the notifier in the perf_event subsystem, though.
6441 static struct notifier_block __cpuinitdata migration_notifier = {
6442 .notifier_call = migration_call,
6443 .priority = CPU_PRI_MIGRATION,
6446 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6447 unsigned long action, void *hcpu)
6449 switch (action & ~CPU_TASKS_FROZEN) {
6450 case CPU_ONLINE:
6451 case CPU_DOWN_FAILED:
6452 set_cpu_active((long)hcpu, true);
6453 return NOTIFY_OK;
6454 default:
6455 return NOTIFY_DONE;
6459 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6460 unsigned long action, void *hcpu)
6462 switch (action & ~CPU_TASKS_FROZEN) {
6463 case CPU_DOWN_PREPARE:
6464 set_cpu_active((long)hcpu, false);
6465 return NOTIFY_OK;
6466 default:
6467 return NOTIFY_DONE;
6471 static int __init migration_init(void)
6473 void *cpu = (void *)(long)smp_processor_id();
6474 int err;
6476 /* Initialize migration for the boot CPU */
6477 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6478 BUG_ON(err == NOTIFY_BAD);
6479 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6480 register_cpu_notifier(&migration_notifier);
6482 /* Register cpu active notifiers */
6483 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6484 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6486 return 0;
6488 early_initcall(migration_init);
6489 #endif
6491 #ifdef CONFIG_SMP
6493 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6495 #ifdef CONFIG_SCHED_DEBUG
6497 static __read_mostly int sched_domain_debug_enabled;
6499 static int __init sched_domain_debug_setup(char *str)
6501 sched_domain_debug_enabled = 1;
6503 return 0;
6505 early_param("sched_debug", sched_domain_debug_setup);
6507 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6508 struct cpumask *groupmask)
6510 struct sched_group *group = sd->groups;
6511 char str[256];
6513 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6514 cpumask_clear(groupmask);
6516 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6518 if (!(sd->flags & SD_LOAD_BALANCE)) {
6519 printk("does not load-balance\n");
6520 if (sd->parent)
6521 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6522 " has parent");
6523 return -1;
6526 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6528 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6529 printk(KERN_ERR "ERROR: domain->span does not contain "
6530 "CPU%d\n", cpu);
6532 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6533 printk(KERN_ERR "ERROR: domain->groups does not contain"
6534 " CPU%d\n", cpu);
6537 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6538 do {
6539 if (!group) {
6540 printk("\n");
6541 printk(KERN_ERR "ERROR: group is NULL\n");
6542 break;
6545 if (!group->cpu_power) {
6546 printk(KERN_CONT "\n");
6547 printk(KERN_ERR "ERROR: domain->cpu_power not "
6548 "set\n");
6549 break;
6552 if (!cpumask_weight(sched_group_cpus(group))) {
6553 printk(KERN_CONT "\n");
6554 printk(KERN_ERR "ERROR: empty group\n");
6555 break;
6558 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6559 printk(KERN_CONT "\n");
6560 printk(KERN_ERR "ERROR: repeated CPUs\n");
6561 break;
6564 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6566 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6568 printk(KERN_CONT " %s", str);
6569 if (group->cpu_power != SCHED_POWER_SCALE) {
6570 printk(KERN_CONT " (cpu_power = %d)",
6571 group->cpu_power);
6574 group = group->next;
6575 } while (group != sd->groups);
6576 printk(KERN_CONT "\n");
6578 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6579 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6581 if (sd->parent &&
6582 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6583 printk(KERN_ERR "ERROR: parent span is not a superset "
6584 "of domain->span\n");
6585 return 0;
6588 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6590 int level = 0;
6592 if (!sched_domain_debug_enabled)
6593 return;
6595 if (!sd) {
6596 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6597 return;
6600 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6602 for (;;) {
6603 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6604 break;
6605 level++;
6606 sd = sd->parent;
6607 if (!sd)
6608 break;
6611 #else /* !CONFIG_SCHED_DEBUG */
6612 # define sched_domain_debug(sd, cpu) do { } while (0)
6613 #endif /* CONFIG_SCHED_DEBUG */
6615 static int sd_degenerate(struct sched_domain *sd)
6617 if (cpumask_weight(sched_domain_span(sd)) == 1)
6618 return 1;
6620 /* Following flags need at least 2 groups */
6621 if (sd->flags & (SD_LOAD_BALANCE |
6622 SD_BALANCE_NEWIDLE |
6623 SD_BALANCE_FORK |
6624 SD_BALANCE_EXEC |
6625 SD_SHARE_CPUPOWER |
6626 SD_SHARE_PKG_RESOURCES)) {
6627 if (sd->groups != sd->groups->next)
6628 return 0;
6631 /* Following flags don't use groups */
6632 if (sd->flags & (SD_WAKE_AFFINE))
6633 return 0;
6635 return 1;
6638 static int
6639 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6641 unsigned long cflags = sd->flags, pflags = parent->flags;
6643 if (sd_degenerate(parent))
6644 return 1;
6646 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6647 return 0;
6649 /* Flags needing groups don't count if only 1 group in parent */
6650 if (parent->groups == parent->groups->next) {
6651 pflags &= ~(SD_LOAD_BALANCE |
6652 SD_BALANCE_NEWIDLE |
6653 SD_BALANCE_FORK |
6654 SD_BALANCE_EXEC |
6655 SD_SHARE_CPUPOWER |
6656 SD_SHARE_PKG_RESOURCES);
6657 if (nr_node_ids == 1)
6658 pflags &= ~SD_SERIALIZE;
6660 if (~cflags & pflags)
6661 return 0;
6663 return 1;
6666 static void free_rootdomain(struct rcu_head *rcu)
6668 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6670 cpupri_cleanup(&rd->cpupri);
6671 free_cpumask_var(rd->rto_mask);
6672 free_cpumask_var(rd->online);
6673 free_cpumask_var(rd->span);
6674 kfree(rd);
6677 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6679 struct root_domain *old_rd = NULL;
6680 unsigned long flags;
6682 raw_spin_lock_irqsave(&rq->lock, flags);
6684 if (rq->rd) {
6685 old_rd = rq->rd;
6687 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6688 set_rq_offline(rq);
6690 cpumask_clear_cpu(rq->cpu, old_rd->span);
6693 * If we dont want to free the old_rt yet then
6694 * set old_rd to NULL to skip the freeing later
6695 * in this function:
6697 if (!atomic_dec_and_test(&old_rd->refcount))
6698 old_rd = NULL;
6701 atomic_inc(&rd->refcount);
6702 rq->rd = rd;
6704 cpumask_set_cpu(rq->cpu, rd->span);
6705 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6706 set_rq_online(rq);
6708 raw_spin_unlock_irqrestore(&rq->lock, flags);
6710 if (old_rd)
6711 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6714 static int init_rootdomain(struct root_domain *rd)
6716 memset(rd, 0, sizeof(*rd));
6718 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6719 goto out;
6720 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6721 goto free_span;
6722 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6723 goto free_online;
6725 if (cpupri_init(&rd->cpupri) != 0)
6726 goto free_rto_mask;
6727 return 0;
6729 free_rto_mask:
6730 free_cpumask_var(rd->rto_mask);
6731 free_online:
6732 free_cpumask_var(rd->online);
6733 free_span:
6734 free_cpumask_var(rd->span);
6735 out:
6736 return -ENOMEM;
6739 static void init_defrootdomain(void)
6741 init_rootdomain(&def_root_domain);
6743 atomic_set(&def_root_domain.refcount, 1);
6746 static struct root_domain *alloc_rootdomain(void)
6748 struct root_domain *rd;
6750 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6751 if (!rd)
6752 return NULL;
6754 if (init_rootdomain(rd) != 0) {
6755 kfree(rd);
6756 return NULL;
6759 return rd;
6762 static void free_sched_domain(struct rcu_head *rcu)
6764 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6765 if (atomic_dec_and_test(&sd->groups->ref))
6766 kfree(sd->groups);
6767 kfree(sd);
6770 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6772 call_rcu(&sd->rcu, free_sched_domain);
6775 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6777 for (; sd; sd = sd->parent)
6778 destroy_sched_domain(sd, cpu);
6782 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6783 * hold the hotplug lock.
6785 static void
6786 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6788 struct rq *rq = cpu_rq(cpu);
6789 struct sched_domain *tmp;
6791 /* Remove the sched domains which do not contribute to scheduling. */
6792 for (tmp = sd; tmp; ) {
6793 struct sched_domain *parent = tmp->parent;
6794 if (!parent)
6795 break;
6797 if (sd_parent_degenerate(tmp, parent)) {
6798 tmp->parent = parent->parent;
6799 if (parent->parent)
6800 parent->parent->child = tmp;
6801 destroy_sched_domain(parent, cpu);
6802 } else
6803 tmp = tmp->parent;
6806 if (sd && sd_degenerate(sd)) {
6807 tmp = sd;
6808 sd = sd->parent;
6809 destroy_sched_domain(tmp, cpu);
6810 if (sd)
6811 sd->child = NULL;
6814 sched_domain_debug(sd, cpu);
6816 rq_attach_root(rq, rd);
6817 tmp = rq->sd;
6818 rcu_assign_pointer(rq->sd, sd);
6819 destroy_sched_domains(tmp, cpu);
6822 /* cpus with isolated domains */
6823 static cpumask_var_t cpu_isolated_map;
6825 /* Setup the mask of cpus configured for isolated domains */
6826 static int __init isolated_cpu_setup(char *str)
6828 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6829 cpulist_parse(str, cpu_isolated_map);
6830 return 1;
6833 __setup("isolcpus=", isolated_cpu_setup);
6835 #define SD_NODES_PER_DOMAIN 16
6837 #ifdef CONFIG_NUMA
6840 * find_next_best_node - find the next node to include in a sched_domain
6841 * @node: node whose sched_domain we're building
6842 * @used_nodes: nodes already in the sched_domain
6844 * Find the next node to include in a given scheduling domain. Simply
6845 * finds the closest node not already in the @used_nodes map.
6847 * Should use nodemask_t.
6849 static int find_next_best_node(int node, nodemask_t *used_nodes)
6851 int i, n, val, min_val, best_node = -1;
6853 min_val = INT_MAX;
6855 for (i = 0; i < nr_node_ids; i++) {
6856 /* Start at @node */
6857 n = (node + i) % nr_node_ids;
6859 if (!nr_cpus_node(n))
6860 continue;
6862 /* Skip already used nodes */
6863 if (node_isset(n, *used_nodes))
6864 continue;
6866 /* Simple min distance search */
6867 val = node_distance(node, n);
6869 if (val < min_val) {
6870 min_val = val;
6871 best_node = n;
6875 if (best_node != -1)
6876 node_set(best_node, *used_nodes);
6877 return best_node;
6881 * sched_domain_node_span - get a cpumask for a node's sched_domain
6882 * @node: node whose cpumask we're constructing
6883 * @span: resulting cpumask
6885 * Given a node, construct a good cpumask for its sched_domain to span. It
6886 * should be one that prevents unnecessary balancing, but also spreads tasks
6887 * out optimally.
6889 static void sched_domain_node_span(int node, struct cpumask *span)
6891 nodemask_t used_nodes;
6892 int i;
6894 cpumask_clear(span);
6895 nodes_clear(used_nodes);
6897 cpumask_or(span, span, cpumask_of_node(node));
6898 node_set(node, used_nodes);
6900 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6901 int next_node = find_next_best_node(node, &used_nodes);
6902 if (next_node < 0)
6903 break;
6904 cpumask_or(span, span, cpumask_of_node(next_node));
6908 static const struct cpumask *cpu_node_mask(int cpu)
6910 lockdep_assert_held(&sched_domains_mutex);
6912 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6914 return sched_domains_tmpmask;
6917 static const struct cpumask *cpu_allnodes_mask(int cpu)
6919 return cpu_possible_mask;
6921 #endif /* CONFIG_NUMA */
6923 static const struct cpumask *cpu_cpu_mask(int cpu)
6925 return cpumask_of_node(cpu_to_node(cpu));
6928 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6930 struct sd_data {
6931 struct sched_domain **__percpu sd;
6932 struct sched_group **__percpu sg;
6935 struct s_data {
6936 struct sched_domain ** __percpu sd;
6937 struct root_domain *rd;
6940 enum s_alloc {
6941 sa_rootdomain,
6942 sa_sd,
6943 sa_sd_storage,
6944 sa_none,
6947 struct sched_domain_topology_level;
6949 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6950 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6952 struct sched_domain_topology_level {
6953 sched_domain_init_f init;
6954 sched_domain_mask_f mask;
6955 struct sd_data data;
6959 * Assumes the sched_domain tree is fully constructed
6961 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6963 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6964 struct sched_domain *child = sd->child;
6966 if (child)
6967 cpu = cpumask_first(sched_domain_span(child));
6969 if (sg)
6970 *sg = *per_cpu_ptr(sdd->sg, cpu);
6972 return cpu;
6976 * build_sched_groups takes the cpumask we wish to span, and a pointer
6977 * to a function which identifies what group(along with sched group) a CPU
6978 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6979 * (due to the fact that we keep track of groups covered with a struct cpumask).
6981 * build_sched_groups will build a circular linked list of the groups
6982 * covered by the given span, and will set each group's ->cpumask correctly,
6983 * and ->cpu_power to 0.
6985 static void
6986 build_sched_groups(struct sched_domain *sd)
6988 struct sched_group *first = NULL, *last = NULL;
6989 struct sd_data *sdd = sd->private;
6990 const struct cpumask *span = sched_domain_span(sd);
6991 struct cpumask *covered;
6992 int i;
6994 lockdep_assert_held(&sched_domains_mutex);
6995 covered = sched_domains_tmpmask;
6997 cpumask_clear(covered);
6999 for_each_cpu(i, span) {
7000 struct sched_group *sg;
7001 int group = get_group(i, sdd, &sg);
7002 int j;
7004 if (cpumask_test_cpu(i, covered))
7005 continue;
7007 cpumask_clear(sched_group_cpus(sg));
7008 sg->cpu_power = 0;
7010 for_each_cpu(j, span) {
7011 if (get_group(j, sdd, NULL) != group)
7012 continue;
7014 cpumask_set_cpu(j, covered);
7015 cpumask_set_cpu(j, sched_group_cpus(sg));
7018 if (!first)
7019 first = sg;
7020 if (last)
7021 last->next = sg;
7022 last = sg;
7024 last->next = first;
7028 * Initialize sched groups cpu_power.
7030 * cpu_power indicates the capacity of sched group, which is used while
7031 * distributing the load between different sched groups in a sched domain.
7032 * Typically cpu_power for all the groups in a sched domain will be same unless
7033 * there are asymmetries in the topology. If there are asymmetries, group
7034 * having more cpu_power will pickup more load compared to the group having
7035 * less cpu_power.
7037 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7039 WARN_ON(!sd || !sd->groups);
7041 if (cpu != group_first_cpu(sd->groups))
7042 return;
7044 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7046 update_group_power(sd, cpu);
7050 * Initializers for schedule domains
7051 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7054 #ifdef CONFIG_SCHED_DEBUG
7055 # define SD_INIT_NAME(sd, type) sd->name = #type
7056 #else
7057 # define SD_INIT_NAME(sd, type) do { } while (0)
7058 #endif
7060 #define SD_INIT_FUNC(type) \
7061 static noinline struct sched_domain * \
7062 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7064 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7065 *sd = SD_##type##_INIT; \
7066 SD_INIT_NAME(sd, type); \
7067 sd->private = &tl->data; \
7068 return sd; \
7071 SD_INIT_FUNC(CPU)
7072 #ifdef CONFIG_NUMA
7073 SD_INIT_FUNC(ALLNODES)
7074 SD_INIT_FUNC(NODE)
7075 #endif
7076 #ifdef CONFIG_SCHED_SMT
7077 SD_INIT_FUNC(SIBLING)
7078 #endif
7079 #ifdef CONFIG_SCHED_MC
7080 SD_INIT_FUNC(MC)
7081 #endif
7082 #ifdef CONFIG_SCHED_BOOK
7083 SD_INIT_FUNC(BOOK)
7084 #endif
7086 static int default_relax_domain_level = -1;
7087 int sched_domain_level_max;
7089 static int __init setup_relax_domain_level(char *str)
7091 unsigned long val;
7093 val = simple_strtoul(str, NULL, 0);
7094 if (val < sched_domain_level_max)
7095 default_relax_domain_level = val;
7097 return 1;
7099 __setup("relax_domain_level=", setup_relax_domain_level);
7101 static void set_domain_attribute(struct sched_domain *sd,
7102 struct sched_domain_attr *attr)
7104 int request;
7106 if (!attr || attr->relax_domain_level < 0) {
7107 if (default_relax_domain_level < 0)
7108 return;
7109 else
7110 request = default_relax_domain_level;
7111 } else
7112 request = attr->relax_domain_level;
7113 if (request < sd->level) {
7114 /* turn off idle balance on this domain */
7115 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7116 } else {
7117 /* turn on idle balance on this domain */
7118 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7122 static void __sdt_free(const struct cpumask *cpu_map);
7123 static int __sdt_alloc(const struct cpumask *cpu_map);
7125 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7126 const struct cpumask *cpu_map)
7128 switch (what) {
7129 case sa_rootdomain:
7130 if (!atomic_read(&d->rd->refcount))
7131 free_rootdomain(&d->rd->rcu); /* fall through */
7132 case sa_sd:
7133 free_percpu(d->sd); /* fall through */
7134 case sa_sd_storage:
7135 __sdt_free(cpu_map); /* fall through */
7136 case sa_none:
7137 break;
7141 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7142 const struct cpumask *cpu_map)
7144 memset(d, 0, sizeof(*d));
7146 if (__sdt_alloc(cpu_map))
7147 return sa_sd_storage;
7148 d->sd = alloc_percpu(struct sched_domain *);
7149 if (!d->sd)
7150 return sa_sd_storage;
7151 d->rd = alloc_rootdomain();
7152 if (!d->rd)
7153 return sa_sd;
7154 return sa_rootdomain;
7158 * NULL the sd_data elements we've used to build the sched_domain and
7159 * sched_group structure so that the subsequent __free_domain_allocs()
7160 * will not free the data we're using.
7162 static void claim_allocations(int cpu, struct sched_domain *sd)
7164 struct sd_data *sdd = sd->private;
7165 struct sched_group *sg = sd->groups;
7167 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7168 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7170 if (cpu == cpumask_first(sched_group_cpus(sg))) {
7171 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7172 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7176 #ifdef CONFIG_SCHED_SMT
7177 static const struct cpumask *cpu_smt_mask(int cpu)
7179 return topology_thread_cpumask(cpu);
7181 #endif
7184 * Topology list, bottom-up.
7186 static struct sched_domain_topology_level default_topology[] = {
7187 #ifdef CONFIG_SCHED_SMT
7188 { sd_init_SIBLING, cpu_smt_mask, },
7189 #endif
7190 #ifdef CONFIG_SCHED_MC
7191 { sd_init_MC, cpu_coregroup_mask, },
7192 #endif
7193 #ifdef CONFIG_SCHED_BOOK
7194 { sd_init_BOOK, cpu_book_mask, },
7195 #endif
7196 { sd_init_CPU, cpu_cpu_mask, },
7197 #ifdef CONFIG_NUMA
7198 { sd_init_NODE, cpu_node_mask, },
7199 { sd_init_ALLNODES, cpu_allnodes_mask, },
7200 #endif
7201 { NULL, },
7204 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7206 static int __sdt_alloc(const struct cpumask *cpu_map)
7208 struct sched_domain_topology_level *tl;
7209 int j;
7211 for (tl = sched_domain_topology; tl->init; tl++) {
7212 struct sd_data *sdd = &tl->data;
7214 sdd->sd = alloc_percpu(struct sched_domain *);
7215 if (!sdd->sd)
7216 return -ENOMEM;
7218 sdd->sg = alloc_percpu(struct sched_group *);
7219 if (!sdd->sg)
7220 return -ENOMEM;
7222 for_each_cpu(j, cpu_map) {
7223 struct sched_domain *sd;
7224 struct sched_group *sg;
7226 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7227 GFP_KERNEL, cpu_to_node(j));
7228 if (!sd)
7229 return -ENOMEM;
7231 *per_cpu_ptr(sdd->sd, j) = sd;
7233 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7234 GFP_KERNEL, cpu_to_node(j));
7235 if (!sg)
7236 return -ENOMEM;
7238 *per_cpu_ptr(sdd->sg, j) = sg;
7242 return 0;
7245 static void __sdt_free(const struct cpumask *cpu_map)
7247 struct sched_domain_topology_level *tl;
7248 int j;
7250 for (tl = sched_domain_topology; tl->init; tl++) {
7251 struct sd_data *sdd = &tl->data;
7253 for_each_cpu(j, cpu_map) {
7254 kfree(*per_cpu_ptr(sdd->sd, j));
7255 kfree(*per_cpu_ptr(sdd->sg, j));
7257 free_percpu(sdd->sd);
7258 free_percpu(sdd->sg);
7262 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7263 struct s_data *d, const struct cpumask *cpu_map,
7264 struct sched_domain_attr *attr, struct sched_domain *child,
7265 int cpu)
7267 struct sched_domain *sd = tl->init(tl, cpu);
7268 if (!sd)
7269 return child;
7271 set_domain_attribute(sd, attr);
7272 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7273 if (child) {
7274 sd->level = child->level + 1;
7275 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7276 child->parent = sd;
7278 sd->child = child;
7280 return sd;
7284 * Build sched domains for a given set of cpus and attach the sched domains
7285 * to the individual cpus
7287 static int build_sched_domains(const struct cpumask *cpu_map,
7288 struct sched_domain_attr *attr)
7290 enum s_alloc alloc_state = sa_none;
7291 struct sched_domain *sd;
7292 struct s_data d;
7293 int i, ret = -ENOMEM;
7295 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7296 if (alloc_state != sa_rootdomain)
7297 goto error;
7299 /* Set up domains for cpus specified by the cpu_map. */
7300 for_each_cpu(i, cpu_map) {
7301 struct sched_domain_topology_level *tl;
7303 sd = NULL;
7304 for (tl = sched_domain_topology; tl->init; tl++)
7305 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7307 while (sd->child)
7308 sd = sd->child;
7310 *per_cpu_ptr(d.sd, i) = sd;
7313 /* Build the groups for the domains */
7314 for_each_cpu(i, cpu_map) {
7315 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7316 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7317 get_group(i, sd->private, &sd->groups);
7318 atomic_inc(&sd->groups->ref);
7320 if (i != cpumask_first(sched_domain_span(sd)))
7321 continue;
7323 build_sched_groups(sd);
7327 /* Calculate CPU power for physical packages and nodes */
7328 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7329 if (!cpumask_test_cpu(i, cpu_map))
7330 continue;
7332 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7333 claim_allocations(i, sd);
7334 init_sched_groups_power(i, sd);
7338 /* Attach the domains */
7339 rcu_read_lock();
7340 for_each_cpu(i, cpu_map) {
7341 sd = *per_cpu_ptr(d.sd, i);
7342 cpu_attach_domain(sd, d.rd, i);
7344 rcu_read_unlock();
7346 ret = 0;
7347 error:
7348 __free_domain_allocs(&d, alloc_state, cpu_map);
7349 return ret;
7352 static cpumask_var_t *doms_cur; /* current sched domains */
7353 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7354 static struct sched_domain_attr *dattr_cur;
7355 /* attribues of custom domains in 'doms_cur' */
7358 * Special case: If a kmalloc of a doms_cur partition (array of
7359 * cpumask) fails, then fallback to a single sched domain,
7360 * as determined by the single cpumask fallback_doms.
7362 static cpumask_var_t fallback_doms;
7365 * arch_update_cpu_topology lets virtualized architectures update the
7366 * cpu core maps. It is supposed to return 1 if the topology changed
7367 * or 0 if it stayed the same.
7369 int __attribute__((weak)) arch_update_cpu_topology(void)
7371 return 0;
7374 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7376 int i;
7377 cpumask_var_t *doms;
7379 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7380 if (!doms)
7381 return NULL;
7382 for (i = 0; i < ndoms; i++) {
7383 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7384 free_sched_domains(doms, i);
7385 return NULL;
7388 return doms;
7391 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7393 unsigned int i;
7394 for (i = 0; i < ndoms; i++)
7395 free_cpumask_var(doms[i]);
7396 kfree(doms);
7400 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7401 * For now this just excludes isolated cpus, but could be used to
7402 * exclude other special cases in the future.
7404 static int init_sched_domains(const struct cpumask *cpu_map)
7406 int err;
7408 arch_update_cpu_topology();
7409 ndoms_cur = 1;
7410 doms_cur = alloc_sched_domains(ndoms_cur);
7411 if (!doms_cur)
7412 doms_cur = &fallback_doms;
7413 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7414 dattr_cur = NULL;
7415 err = build_sched_domains(doms_cur[0], NULL);
7416 register_sched_domain_sysctl();
7418 return err;
7422 * Detach sched domains from a group of cpus specified in cpu_map
7423 * These cpus will now be attached to the NULL domain
7425 static void detach_destroy_domains(const struct cpumask *cpu_map)
7427 int i;
7429 rcu_read_lock();
7430 for_each_cpu(i, cpu_map)
7431 cpu_attach_domain(NULL, &def_root_domain, i);
7432 rcu_read_unlock();
7435 /* handle null as "default" */
7436 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7437 struct sched_domain_attr *new, int idx_new)
7439 struct sched_domain_attr tmp;
7441 /* fast path */
7442 if (!new && !cur)
7443 return 1;
7445 tmp = SD_ATTR_INIT;
7446 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7447 new ? (new + idx_new) : &tmp,
7448 sizeof(struct sched_domain_attr));
7452 * Partition sched domains as specified by the 'ndoms_new'
7453 * cpumasks in the array doms_new[] of cpumasks. This compares
7454 * doms_new[] to the current sched domain partitioning, doms_cur[].
7455 * It destroys each deleted domain and builds each new domain.
7457 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7458 * The masks don't intersect (don't overlap.) We should setup one
7459 * sched domain for each mask. CPUs not in any of the cpumasks will
7460 * not be load balanced. If the same cpumask appears both in the
7461 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7462 * it as it is.
7464 * The passed in 'doms_new' should be allocated using
7465 * alloc_sched_domains. This routine takes ownership of it and will
7466 * free_sched_domains it when done with it. If the caller failed the
7467 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7468 * and partition_sched_domains() will fallback to the single partition
7469 * 'fallback_doms', it also forces the domains to be rebuilt.
7471 * If doms_new == NULL it will be replaced with cpu_online_mask.
7472 * ndoms_new == 0 is a special case for destroying existing domains,
7473 * and it will not create the default domain.
7475 * Call with hotplug lock held
7477 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7478 struct sched_domain_attr *dattr_new)
7480 int i, j, n;
7481 int new_topology;
7483 mutex_lock(&sched_domains_mutex);
7485 /* always unregister in case we don't destroy any domains */
7486 unregister_sched_domain_sysctl();
7488 /* Let architecture update cpu core mappings. */
7489 new_topology = arch_update_cpu_topology();
7491 n = doms_new ? ndoms_new : 0;
7493 /* Destroy deleted domains */
7494 for (i = 0; i < ndoms_cur; i++) {
7495 for (j = 0; j < n && !new_topology; j++) {
7496 if (cpumask_equal(doms_cur[i], doms_new[j])
7497 && dattrs_equal(dattr_cur, i, dattr_new, j))
7498 goto match1;
7500 /* no match - a current sched domain not in new doms_new[] */
7501 detach_destroy_domains(doms_cur[i]);
7502 match1:
7506 if (doms_new == NULL) {
7507 ndoms_cur = 0;
7508 doms_new = &fallback_doms;
7509 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7510 WARN_ON_ONCE(dattr_new);
7513 /* Build new domains */
7514 for (i = 0; i < ndoms_new; i++) {
7515 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7516 if (cpumask_equal(doms_new[i], doms_cur[j])
7517 && dattrs_equal(dattr_new, i, dattr_cur, j))
7518 goto match2;
7520 /* no match - add a new doms_new */
7521 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7522 match2:
7526 /* Remember the new sched domains */
7527 if (doms_cur != &fallback_doms)
7528 free_sched_domains(doms_cur, ndoms_cur);
7529 kfree(dattr_cur); /* kfree(NULL) is safe */
7530 doms_cur = doms_new;
7531 dattr_cur = dattr_new;
7532 ndoms_cur = ndoms_new;
7534 register_sched_domain_sysctl();
7536 mutex_unlock(&sched_domains_mutex);
7539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7540 static void reinit_sched_domains(void)
7542 get_online_cpus();
7544 /* Destroy domains first to force the rebuild */
7545 partition_sched_domains(0, NULL, NULL);
7547 rebuild_sched_domains();
7548 put_online_cpus();
7551 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7553 unsigned int level = 0;
7555 if (sscanf(buf, "%u", &level) != 1)
7556 return -EINVAL;
7559 * level is always be positive so don't check for
7560 * level < POWERSAVINGS_BALANCE_NONE which is 0
7561 * What happens on 0 or 1 byte write,
7562 * need to check for count as well?
7565 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7566 return -EINVAL;
7568 if (smt)
7569 sched_smt_power_savings = level;
7570 else
7571 sched_mc_power_savings = level;
7573 reinit_sched_domains();
7575 return count;
7578 #ifdef CONFIG_SCHED_MC
7579 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7580 struct sysdev_class_attribute *attr,
7581 char *page)
7583 return sprintf(page, "%u\n", sched_mc_power_savings);
7585 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7586 struct sysdev_class_attribute *attr,
7587 const char *buf, size_t count)
7589 return sched_power_savings_store(buf, count, 0);
7591 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7592 sched_mc_power_savings_show,
7593 sched_mc_power_savings_store);
7594 #endif
7596 #ifdef CONFIG_SCHED_SMT
7597 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7598 struct sysdev_class_attribute *attr,
7599 char *page)
7601 return sprintf(page, "%u\n", sched_smt_power_savings);
7603 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7604 struct sysdev_class_attribute *attr,
7605 const char *buf, size_t count)
7607 return sched_power_savings_store(buf, count, 1);
7609 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7610 sched_smt_power_savings_show,
7611 sched_smt_power_savings_store);
7612 #endif
7614 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7616 int err = 0;
7618 #ifdef CONFIG_SCHED_SMT
7619 if (smt_capable())
7620 err = sysfs_create_file(&cls->kset.kobj,
7621 &attr_sched_smt_power_savings.attr);
7622 #endif
7623 #ifdef CONFIG_SCHED_MC
7624 if (!err && mc_capable())
7625 err = sysfs_create_file(&cls->kset.kobj,
7626 &attr_sched_mc_power_savings.attr);
7627 #endif
7628 return err;
7630 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7633 * Update cpusets according to cpu_active mask. If cpusets are
7634 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7635 * around partition_sched_domains().
7637 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7638 void *hcpu)
7640 switch (action & ~CPU_TASKS_FROZEN) {
7641 case CPU_ONLINE:
7642 case CPU_DOWN_FAILED:
7643 cpuset_update_active_cpus();
7644 return NOTIFY_OK;
7645 default:
7646 return NOTIFY_DONE;
7650 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7651 void *hcpu)
7653 switch (action & ~CPU_TASKS_FROZEN) {
7654 case CPU_DOWN_PREPARE:
7655 cpuset_update_active_cpus();
7656 return NOTIFY_OK;
7657 default:
7658 return NOTIFY_DONE;
7662 static int update_runtime(struct notifier_block *nfb,
7663 unsigned long action, void *hcpu)
7665 int cpu = (int)(long)hcpu;
7667 switch (action) {
7668 case CPU_DOWN_PREPARE:
7669 case CPU_DOWN_PREPARE_FROZEN:
7670 disable_runtime(cpu_rq(cpu));
7671 return NOTIFY_OK;
7673 case CPU_DOWN_FAILED:
7674 case CPU_DOWN_FAILED_FROZEN:
7675 case CPU_ONLINE:
7676 case CPU_ONLINE_FROZEN:
7677 enable_runtime(cpu_rq(cpu));
7678 return NOTIFY_OK;
7680 default:
7681 return NOTIFY_DONE;
7685 void __init sched_init_smp(void)
7687 cpumask_var_t non_isolated_cpus;
7689 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7690 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7692 get_online_cpus();
7693 mutex_lock(&sched_domains_mutex);
7694 init_sched_domains(cpu_active_mask);
7695 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7696 if (cpumask_empty(non_isolated_cpus))
7697 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7698 mutex_unlock(&sched_domains_mutex);
7699 put_online_cpus();
7701 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7702 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7704 /* RT runtime code needs to handle some hotplug events */
7705 hotcpu_notifier(update_runtime, 0);
7707 init_hrtick();
7709 /* Move init over to a non-isolated CPU */
7710 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7711 BUG();
7712 sched_init_granularity();
7713 free_cpumask_var(non_isolated_cpus);
7715 init_sched_rt_class();
7717 #else
7718 void __init sched_init_smp(void)
7720 sched_init_granularity();
7722 #endif /* CONFIG_SMP */
7724 const_debug unsigned int sysctl_timer_migration = 1;
7726 int in_sched_functions(unsigned long addr)
7728 return in_lock_functions(addr) ||
7729 (addr >= (unsigned long)__sched_text_start
7730 && addr < (unsigned long)__sched_text_end);
7733 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7735 cfs_rq->tasks_timeline = RB_ROOT;
7736 INIT_LIST_HEAD(&cfs_rq->tasks);
7737 #ifdef CONFIG_FAIR_GROUP_SCHED
7738 cfs_rq->rq = rq;
7739 /* allow initial update_cfs_load() to truncate */
7740 #ifdef CONFIG_SMP
7741 cfs_rq->load_stamp = 1;
7742 #endif
7743 #endif
7744 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7747 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7749 struct rt_prio_array *array;
7750 int i;
7752 array = &rt_rq->active;
7753 for (i = 0; i < MAX_RT_PRIO; i++) {
7754 INIT_LIST_HEAD(array->queue + i);
7755 __clear_bit(i, array->bitmap);
7757 /* delimiter for bitsearch: */
7758 __set_bit(MAX_RT_PRIO, array->bitmap);
7760 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7761 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7762 #ifdef CONFIG_SMP
7763 rt_rq->highest_prio.next = MAX_RT_PRIO;
7764 #endif
7765 #endif
7766 #ifdef CONFIG_SMP
7767 rt_rq->rt_nr_migratory = 0;
7768 rt_rq->overloaded = 0;
7769 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7770 #endif
7772 rt_rq->rt_time = 0;
7773 rt_rq->rt_throttled = 0;
7774 rt_rq->rt_runtime = 0;
7775 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7777 #ifdef CONFIG_RT_GROUP_SCHED
7778 rt_rq->rt_nr_boosted = 0;
7779 rt_rq->rq = rq;
7780 #endif
7783 #ifdef CONFIG_FAIR_GROUP_SCHED
7784 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7785 struct sched_entity *se, int cpu,
7786 struct sched_entity *parent)
7788 struct rq *rq = cpu_rq(cpu);
7789 tg->cfs_rq[cpu] = cfs_rq;
7790 init_cfs_rq(cfs_rq, rq);
7791 cfs_rq->tg = tg;
7793 tg->se[cpu] = se;
7794 /* se could be NULL for root_task_group */
7795 if (!se)
7796 return;
7798 if (!parent)
7799 se->cfs_rq = &rq->cfs;
7800 else
7801 se->cfs_rq = parent->my_q;
7803 se->my_q = cfs_rq;
7804 update_load_set(&se->load, 0);
7805 se->parent = parent;
7807 #endif
7809 #ifdef CONFIG_RT_GROUP_SCHED
7810 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7811 struct sched_rt_entity *rt_se, int cpu,
7812 struct sched_rt_entity *parent)
7814 struct rq *rq = cpu_rq(cpu);
7816 tg->rt_rq[cpu] = rt_rq;
7817 init_rt_rq(rt_rq, rq);
7818 rt_rq->tg = tg;
7819 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7821 tg->rt_se[cpu] = rt_se;
7822 if (!rt_se)
7823 return;
7825 if (!parent)
7826 rt_se->rt_rq = &rq->rt;
7827 else
7828 rt_se->rt_rq = parent->my_q;
7830 rt_se->my_q = rt_rq;
7831 rt_se->parent = parent;
7832 INIT_LIST_HEAD(&rt_se->run_list);
7834 #endif
7836 void __init sched_init(void)
7838 int i, j;
7839 unsigned long alloc_size = 0, ptr;
7841 #ifdef CONFIG_FAIR_GROUP_SCHED
7842 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7843 #endif
7844 #ifdef CONFIG_RT_GROUP_SCHED
7845 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7846 #endif
7847 #ifdef CONFIG_CPUMASK_OFFSTACK
7848 alloc_size += num_possible_cpus() * cpumask_size();
7849 #endif
7850 if (alloc_size) {
7851 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7853 #ifdef CONFIG_FAIR_GROUP_SCHED
7854 root_task_group.se = (struct sched_entity **)ptr;
7855 ptr += nr_cpu_ids * sizeof(void **);
7857 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7858 ptr += nr_cpu_ids * sizeof(void **);
7860 #endif /* CONFIG_FAIR_GROUP_SCHED */
7861 #ifdef CONFIG_RT_GROUP_SCHED
7862 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7863 ptr += nr_cpu_ids * sizeof(void **);
7865 root_task_group.rt_rq = (struct rt_rq **)ptr;
7866 ptr += nr_cpu_ids * sizeof(void **);
7868 #endif /* CONFIG_RT_GROUP_SCHED */
7869 #ifdef CONFIG_CPUMASK_OFFSTACK
7870 for_each_possible_cpu(i) {
7871 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7872 ptr += cpumask_size();
7874 #endif /* CONFIG_CPUMASK_OFFSTACK */
7877 #ifdef CONFIG_SMP
7878 init_defrootdomain();
7879 #endif
7881 init_rt_bandwidth(&def_rt_bandwidth,
7882 global_rt_period(), global_rt_runtime());
7884 #ifdef CONFIG_RT_GROUP_SCHED
7885 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7886 global_rt_period(), global_rt_runtime());
7887 #endif /* CONFIG_RT_GROUP_SCHED */
7889 #ifdef CONFIG_CGROUP_SCHED
7890 list_add(&root_task_group.list, &task_groups);
7891 INIT_LIST_HEAD(&root_task_group.children);
7892 autogroup_init(&init_task);
7893 #endif /* CONFIG_CGROUP_SCHED */
7895 for_each_possible_cpu(i) {
7896 struct rq *rq;
7898 rq = cpu_rq(i);
7899 raw_spin_lock_init(&rq->lock);
7900 rq->nr_running = 0;
7901 rq->calc_load_active = 0;
7902 rq->calc_load_update = jiffies + LOAD_FREQ;
7903 init_cfs_rq(&rq->cfs, rq);
7904 init_rt_rq(&rq->rt, rq);
7905 #ifdef CONFIG_FAIR_GROUP_SCHED
7906 root_task_group.shares = root_task_group_load;
7907 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7909 * How much cpu bandwidth does root_task_group get?
7911 * In case of task-groups formed thr' the cgroup filesystem, it
7912 * gets 100% of the cpu resources in the system. This overall
7913 * system cpu resource is divided among the tasks of
7914 * root_task_group and its child task-groups in a fair manner,
7915 * based on each entity's (task or task-group's) weight
7916 * (se->load.weight).
7918 * In other words, if root_task_group has 10 tasks of weight
7919 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7920 * then A0's share of the cpu resource is:
7922 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7924 * We achieve this by letting root_task_group's tasks sit
7925 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7927 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7928 #endif /* CONFIG_FAIR_GROUP_SCHED */
7930 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7931 #ifdef CONFIG_RT_GROUP_SCHED
7932 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7933 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7934 #endif
7936 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7937 rq->cpu_load[j] = 0;
7939 rq->last_load_update_tick = jiffies;
7941 #ifdef CONFIG_SMP
7942 rq->sd = NULL;
7943 rq->rd = NULL;
7944 rq->cpu_power = SCHED_POWER_SCALE;
7945 rq->post_schedule = 0;
7946 rq->active_balance = 0;
7947 rq->next_balance = jiffies;
7948 rq->push_cpu = 0;
7949 rq->cpu = i;
7950 rq->online = 0;
7951 rq->idle_stamp = 0;
7952 rq->avg_idle = 2*sysctl_sched_migration_cost;
7953 rq_attach_root(rq, &def_root_domain);
7954 #ifdef CONFIG_NO_HZ
7955 rq->nohz_balance_kick = 0;
7956 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7957 #endif
7958 #endif
7959 init_rq_hrtick(rq);
7960 atomic_set(&rq->nr_iowait, 0);
7963 set_load_weight(&init_task);
7965 #ifdef CONFIG_PREEMPT_NOTIFIERS
7966 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7967 #endif
7969 #ifdef CONFIG_SMP
7970 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7971 #endif
7973 #ifdef CONFIG_RT_MUTEXES
7974 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7975 #endif
7978 * The boot idle thread does lazy MMU switching as well:
7980 atomic_inc(&init_mm.mm_count);
7981 enter_lazy_tlb(&init_mm, current);
7984 * Make us the idle thread. Technically, schedule() should not be
7985 * called from this thread, however somewhere below it might be,
7986 * but because we are the idle thread, we just pick up running again
7987 * when this runqueue becomes "idle".
7989 init_idle(current, smp_processor_id());
7991 calc_load_update = jiffies + LOAD_FREQ;
7994 * During early bootup we pretend to be a normal task:
7996 current->sched_class = &fair_sched_class;
7998 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7999 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8000 #ifdef CONFIG_SMP
8001 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8002 #ifdef CONFIG_NO_HZ
8003 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8004 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8005 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8006 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8007 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8008 #endif
8009 /* May be allocated at isolcpus cmdline parse time */
8010 if (cpu_isolated_map == NULL)
8011 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8012 #endif /* SMP */
8014 scheduler_running = 1;
8017 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8018 static inline int preempt_count_equals(int preempt_offset)
8020 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8022 return (nested == preempt_offset);
8025 void __might_sleep(const char *file, int line, int preempt_offset)
8027 #ifdef in_atomic
8028 static unsigned long prev_jiffy; /* ratelimiting */
8030 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8031 system_state != SYSTEM_RUNNING || oops_in_progress)
8032 return;
8033 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8034 return;
8035 prev_jiffy = jiffies;
8037 printk(KERN_ERR
8038 "BUG: sleeping function called from invalid context at %s:%d\n",
8039 file, line);
8040 printk(KERN_ERR
8041 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8042 in_atomic(), irqs_disabled(),
8043 current->pid, current->comm);
8045 debug_show_held_locks(current);
8046 if (irqs_disabled())
8047 print_irqtrace_events(current);
8048 dump_stack();
8049 #endif
8051 EXPORT_SYMBOL(__might_sleep);
8052 #endif
8054 #ifdef CONFIG_MAGIC_SYSRQ
8055 static void normalize_task(struct rq *rq, struct task_struct *p)
8057 const struct sched_class *prev_class = p->sched_class;
8058 int old_prio = p->prio;
8059 int on_rq;
8061 on_rq = p->on_rq;
8062 if (on_rq)
8063 deactivate_task(rq, p, 0);
8064 __setscheduler(rq, p, SCHED_NORMAL, 0);
8065 if (on_rq) {
8066 activate_task(rq, p, 0);
8067 resched_task(rq->curr);
8070 check_class_changed(rq, p, prev_class, old_prio);
8073 void normalize_rt_tasks(void)
8075 struct task_struct *g, *p;
8076 unsigned long flags;
8077 struct rq *rq;
8079 read_lock_irqsave(&tasklist_lock, flags);
8080 do_each_thread(g, p) {
8082 * Only normalize user tasks:
8084 if (!p->mm)
8085 continue;
8087 p->se.exec_start = 0;
8088 #ifdef CONFIG_SCHEDSTATS
8089 p->se.statistics.wait_start = 0;
8090 p->se.statistics.sleep_start = 0;
8091 p->se.statistics.block_start = 0;
8092 #endif
8094 if (!rt_task(p)) {
8096 * Renice negative nice level userspace
8097 * tasks back to 0:
8099 if (TASK_NICE(p) < 0 && p->mm)
8100 set_user_nice(p, 0);
8101 continue;
8104 raw_spin_lock(&p->pi_lock);
8105 rq = __task_rq_lock(p);
8107 normalize_task(rq, p);
8109 __task_rq_unlock(rq);
8110 raw_spin_unlock(&p->pi_lock);
8111 } while_each_thread(g, p);
8113 read_unlock_irqrestore(&tasklist_lock, flags);
8116 #endif /* CONFIG_MAGIC_SYSRQ */
8118 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8120 * These functions are only useful for the IA64 MCA handling, or kdb.
8122 * They can only be called when the whole system has been
8123 * stopped - every CPU needs to be quiescent, and no scheduling
8124 * activity can take place. Using them for anything else would
8125 * be a serious bug, and as a result, they aren't even visible
8126 * under any other configuration.
8130 * curr_task - return the current task for a given cpu.
8131 * @cpu: the processor in question.
8133 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8135 struct task_struct *curr_task(int cpu)
8137 return cpu_curr(cpu);
8140 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8142 #ifdef CONFIG_IA64
8144 * set_curr_task - set the current task for a given cpu.
8145 * @cpu: the processor in question.
8146 * @p: the task pointer to set.
8148 * Description: This function must only be used when non-maskable interrupts
8149 * are serviced on a separate stack. It allows the architecture to switch the
8150 * notion of the current task on a cpu in a non-blocking manner. This function
8151 * must be called with all CPU's synchronized, and interrupts disabled, the
8152 * and caller must save the original value of the current task (see
8153 * curr_task() above) and restore that value before reenabling interrupts and
8154 * re-starting the system.
8156 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8158 void set_curr_task(int cpu, struct task_struct *p)
8160 cpu_curr(cpu) = p;
8163 #endif
8165 #ifdef CONFIG_FAIR_GROUP_SCHED
8166 static void free_fair_sched_group(struct task_group *tg)
8168 int i;
8170 for_each_possible_cpu(i) {
8171 if (tg->cfs_rq)
8172 kfree(tg->cfs_rq[i]);
8173 if (tg->se)
8174 kfree(tg->se[i]);
8177 kfree(tg->cfs_rq);
8178 kfree(tg->se);
8181 static
8182 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8184 struct cfs_rq *cfs_rq;
8185 struct sched_entity *se;
8186 int i;
8188 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8189 if (!tg->cfs_rq)
8190 goto err;
8191 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8192 if (!tg->se)
8193 goto err;
8195 tg->shares = NICE_0_LOAD;
8197 for_each_possible_cpu(i) {
8198 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8199 GFP_KERNEL, cpu_to_node(i));
8200 if (!cfs_rq)
8201 goto err;
8203 se = kzalloc_node(sizeof(struct sched_entity),
8204 GFP_KERNEL, cpu_to_node(i));
8205 if (!se)
8206 goto err_free_rq;
8208 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8211 return 1;
8213 err_free_rq:
8214 kfree(cfs_rq);
8215 err:
8216 return 0;
8219 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8221 struct rq *rq = cpu_rq(cpu);
8222 unsigned long flags;
8225 * Only empty task groups can be destroyed; so we can speculatively
8226 * check on_list without danger of it being re-added.
8228 if (!tg->cfs_rq[cpu]->on_list)
8229 return;
8231 raw_spin_lock_irqsave(&rq->lock, flags);
8232 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8233 raw_spin_unlock_irqrestore(&rq->lock, flags);
8235 #else /* !CONFG_FAIR_GROUP_SCHED */
8236 static inline void free_fair_sched_group(struct task_group *tg)
8240 static inline
8241 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8243 return 1;
8246 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8249 #endif /* CONFIG_FAIR_GROUP_SCHED */
8251 #ifdef CONFIG_RT_GROUP_SCHED
8252 static void free_rt_sched_group(struct task_group *tg)
8254 int i;
8256 destroy_rt_bandwidth(&tg->rt_bandwidth);
8258 for_each_possible_cpu(i) {
8259 if (tg->rt_rq)
8260 kfree(tg->rt_rq[i]);
8261 if (tg->rt_se)
8262 kfree(tg->rt_se[i]);
8265 kfree(tg->rt_rq);
8266 kfree(tg->rt_se);
8269 static
8270 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8272 struct rt_rq *rt_rq;
8273 struct sched_rt_entity *rt_se;
8274 int i;
8276 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8277 if (!tg->rt_rq)
8278 goto err;
8279 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8280 if (!tg->rt_se)
8281 goto err;
8283 init_rt_bandwidth(&tg->rt_bandwidth,
8284 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8286 for_each_possible_cpu(i) {
8287 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8288 GFP_KERNEL, cpu_to_node(i));
8289 if (!rt_rq)
8290 goto err;
8292 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8293 GFP_KERNEL, cpu_to_node(i));
8294 if (!rt_se)
8295 goto err_free_rq;
8297 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8300 return 1;
8302 err_free_rq:
8303 kfree(rt_rq);
8304 err:
8305 return 0;
8307 #else /* !CONFIG_RT_GROUP_SCHED */
8308 static inline void free_rt_sched_group(struct task_group *tg)
8312 static inline
8313 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8315 return 1;
8317 #endif /* CONFIG_RT_GROUP_SCHED */
8319 #ifdef CONFIG_CGROUP_SCHED
8320 static void free_sched_group(struct task_group *tg)
8322 free_fair_sched_group(tg);
8323 free_rt_sched_group(tg);
8324 autogroup_free(tg);
8325 kfree(tg);
8328 /* allocate runqueue etc for a new task group */
8329 struct task_group *sched_create_group(struct task_group *parent)
8331 struct task_group *tg;
8332 unsigned long flags;
8334 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8335 if (!tg)
8336 return ERR_PTR(-ENOMEM);
8338 if (!alloc_fair_sched_group(tg, parent))
8339 goto err;
8341 if (!alloc_rt_sched_group(tg, parent))
8342 goto err;
8344 spin_lock_irqsave(&task_group_lock, flags);
8345 list_add_rcu(&tg->list, &task_groups);
8347 WARN_ON(!parent); /* root should already exist */
8349 tg->parent = parent;
8350 INIT_LIST_HEAD(&tg->children);
8351 list_add_rcu(&tg->siblings, &parent->children);
8352 spin_unlock_irqrestore(&task_group_lock, flags);
8354 return tg;
8356 err:
8357 free_sched_group(tg);
8358 return ERR_PTR(-ENOMEM);
8361 /* rcu callback to free various structures associated with a task group */
8362 static void free_sched_group_rcu(struct rcu_head *rhp)
8364 /* now it should be safe to free those cfs_rqs */
8365 free_sched_group(container_of(rhp, struct task_group, rcu));
8368 /* Destroy runqueue etc associated with a task group */
8369 void sched_destroy_group(struct task_group *tg)
8371 unsigned long flags;
8372 int i;
8374 /* end participation in shares distribution */
8375 for_each_possible_cpu(i)
8376 unregister_fair_sched_group(tg, i);
8378 spin_lock_irqsave(&task_group_lock, flags);
8379 list_del_rcu(&tg->list);
8380 list_del_rcu(&tg->siblings);
8381 spin_unlock_irqrestore(&task_group_lock, flags);
8383 /* wait for possible concurrent references to cfs_rqs complete */
8384 call_rcu(&tg->rcu, free_sched_group_rcu);
8387 /* change task's runqueue when it moves between groups.
8388 * The caller of this function should have put the task in its new group
8389 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8390 * reflect its new group.
8392 void sched_move_task(struct task_struct *tsk)
8394 int on_rq, running;
8395 unsigned long flags;
8396 struct rq *rq;
8398 rq = task_rq_lock(tsk, &flags);
8400 running = task_current(rq, tsk);
8401 on_rq = tsk->on_rq;
8403 if (on_rq)
8404 dequeue_task(rq, tsk, 0);
8405 if (unlikely(running))
8406 tsk->sched_class->put_prev_task(rq, tsk);
8408 #ifdef CONFIG_FAIR_GROUP_SCHED
8409 if (tsk->sched_class->task_move_group)
8410 tsk->sched_class->task_move_group(tsk, on_rq);
8411 else
8412 #endif
8413 set_task_rq(tsk, task_cpu(tsk));
8415 if (unlikely(running))
8416 tsk->sched_class->set_curr_task(rq);
8417 if (on_rq)
8418 enqueue_task(rq, tsk, 0);
8420 task_rq_unlock(rq, tsk, &flags);
8422 #endif /* CONFIG_CGROUP_SCHED */
8424 #ifdef CONFIG_FAIR_GROUP_SCHED
8425 static DEFINE_MUTEX(shares_mutex);
8427 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8429 int i;
8430 unsigned long flags;
8433 * We can't change the weight of the root cgroup.
8435 if (!tg->se[0])
8436 return -EINVAL;
8438 if (shares < MIN_SHARES)
8439 shares = MIN_SHARES;
8440 else if (shares > MAX_SHARES)
8441 shares = MAX_SHARES;
8443 mutex_lock(&shares_mutex);
8444 if (tg->shares == shares)
8445 goto done;
8447 tg->shares = shares;
8448 for_each_possible_cpu(i) {
8449 struct rq *rq = cpu_rq(i);
8450 struct sched_entity *se;
8452 se = tg->se[i];
8453 /* Propagate contribution to hierarchy */
8454 raw_spin_lock_irqsave(&rq->lock, flags);
8455 for_each_sched_entity(se)
8456 update_cfs_shares(group_cfs_rq(se));
8457 raw_spin_unlock_irqrestore(&rq->lock, flags);
8460 done:
8461 mutex_unlock(&shares_mutex);
8462 return 0;
8465 unsigned long sched_group_shares(struct task_group *tg)
8467 return tg->shares;
8469 #endif
8471 #ifdef CONFIG_RT_GROUP_SCHED
8473 * Ensure that the real time constraints are schedulable.
8475 static DEFINE_MUTEX(rt_constraints_mutex);
8477 static unsigned long to_ratio(u64 period, u64 runtime)
8479 if (runtime == RUNTIME_INF)
8480 return 1ULL << 20;
8482 return div64_u64(runtime << 20, period);
8485 /* Must be called with tasklist_lock held */
8486 static inline int tg_has_rt_tasks(struct task_group *tg)
8488 struct task_struct *g, *p;
8490 do_each_thread(g, p) {
8491 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8492 return 1;
8493 } while_each_thread(g, p);
8495 return 0;
8498 struct rt_schedulable_data {
8499 struct task_group *tg;
8500 u64 rt_period;
8501 u64 rt_runtime;
8504 static int tg_schedulable(struct task_group *tg, void *data)
8506 struct rt_schedulable_data *d = data;
8507 struct task_group *child;
8508 unsigned long total, sum = 0;
8509 u64 period, runtime;
8511 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8512 runtime = tg->rt_bandwidth.rt_runtime;
8514 if (tg == d->tg) {
8515 period = d->rt_period;
8516 runtime = d->rt_runtime;
8520 * Cannot have more runtime than the period.
8522 if (runtime > period && runtime != RUNTIME_INF)
8523 return -EINVAL;
8526 * Ensure we don't starve existing RT tasks.
8528 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8529 return -EBUSY;
8531 total = to_ratio(period, runtime);
8534 * Nobody can have more than the global setting allows.
8536 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8537 return -EINVAL;
8540 * The sum of our children's runtime should not exceed our own.
8542 list_for_each_entry_rcu(child, &tg->children, siblings) {
8543 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8544 runtime = child->rt_bandwidth.rt_runtime;
8546 if (child == d->tg) {
8547 period = d->rt_period;
8548 runtime = d->rt_runtime;
8551 sum += to_ratio(period, runtime);
8554 if (sum > total)
8555 return -EINVAL;
8557 return 0;
8560 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8562 struct rt_schedulable_data data = {
8563 .tg = tg,
8564 .rt_period = period,
8565 .rt_runtime = runtime,
8568 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8571 static int tg_set_bandwidth(struct task_group *tg,
8572 u64 rt_period, u64 rt_runtime)
8574 int i, err = 0;
8576 mutex_lock(&rt_constraints_mutex);
8577 read_lock(&tasklist_lock);
8578 err = __rt_schedulable(tg, rt_period, rt_runtime);
8579 if (err)
8580 goto unlock;
8582 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8583 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8584 tg->rt_bandwidth.rt_runtime = rt_runtime;
8586 for_each_possible_cpu(i) {
8587 struct rt_rq *rt_rq = tg->rt_rq[i];
8589 raw_spin_lock(&rt_rq->rt_runtime_lock);
8590 rt_rq->rt_runtime = rt_runtime;
8591 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8593 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8594 unlock:
8595 read_unlock(&tasklist_lock);
8596 mutex_unlock(&rt_constraints_mutex);
8598 return err;
8601 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8603 u64 rt_runtime, rt_period;
8605 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8606 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8607 if (rt_runtime_us < 0)
8608 rt_runtime = RUNTIME_INF;
8610 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8613 long sched_group_rt_runtime(struct task_group *tg)
8615 u64 rt_runtime_us;
8617 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8618 return -1;
8620 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8621 do_div(rt_runtime_us, NSEC_PER_USEC);
8622 return rt_runtime_us;
8625 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8627 u64 rt_runtime, rt_period;
8629 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8630 rt_runtime = tg->rt_bandwidth.rt_runtime;
8632 if (rt_period == 0)
8633 return -EINVAL;
8635 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8638 long sched_group_rt_period(struct task_group *tg)
8640 u64 rt_period_us;
8642 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8643 do_div(rt_period_us, NSEC_PER_USEC);
8644 return rt_period_us;
8647 static int sched_rt_global_constraints(void)
8649 u64 runtime, period;
8650 int ret = 0;
8652 if (sysctl_sched_rt_period <= 0)
8653 return -EINVAL;
8655 runtime = global_rt_runtime();
8656 period = global_rt_period();
8659 * Sanity check on the sysctl variables.
8661 if (runtime > period && runtime != RUNTIME_INF)
8662 return -EINVAL;
8664 mutex_lock(&rt_constraints_mutex);
8665 read_lock(&tasklist_lock);
8666 ret = __rt_schedulable(NULL, 0, 0);
8667 read_unlock(&tasklist_lock);
8668 mutex_unlock(&rt_constraints_mutex);
8670 return ret;
8673 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8675 /* Don't accept realtime tasks when there is no way for them to run */
8676 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8677 return 0;
8679 return 1;
8682 #else /* !CONFIG_RT_GROUP_SCHED */
8683 static int sched_rt_global_constraints(void)
8685 unsigned long flags;
8686 int i;
8688 if (sysctl_sched_rt_period <= 0)
8689 return -EINVAL;
8692 * There's always some RT tasks in the root group
8693 * -- migration, kstopmachine etc..
8695 if (sysctl_sched_rt_runtime == 0)
8696 return -EBUSY;
8698 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8699 for_each_possible_cpu(i) {
8700 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8702 raw_spin_lock(&rt_rq->rt_runtime_lock);
8703 rt_rq->rt_runtime = global_rt_runtime();
8704 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8706 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8708 return 0;
8710 #endif /* CONFIG_RT_GROUP_SCHED */
8712 int sched_rt_handler(struct ctl_table *table, int write,
8713 void __user *buffer, size_t *lenp,
8714 loff_t *ppos)
8716 int ret;
8717 int old_period, old_runtime;
8718 static DEFINE_MUTEX(mutex);
8720 mutex_lock(&mutex);
8721 old_period = sysctl_sched_rt_period;
8722 old_runtime = sysctl_sched_rt_runtime;
8724 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8726 if (!ret && write) {
8727 ret = sched_rt_global_constraints();
8728 if (ret) {
8729 sysctl_sched_rt_period = old_period;
8730 sysctl_sched_rt_runtime = old_runtime;
8731 } else {
8732 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8733 def_rt_bandwidth.rt_period =
8734 ns_to_ktime(global_rt_period());
8737 mutex_unlock(&mutex);
8739 return ret;
8742 #ifdef CONFIG_CGROUP_SCHED
8744 /* return corresponding task_group object of a cgroup */
8745 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8747 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8748 struct task_group, css);
8751 static struct cgroup_subsys_state *
8752 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8754 struct task_group *tg, *parent;
8756 if (!cgrp->parent) {
8757 /* This is early initialization for the top cgroup */
8758 return &root_task_group.css;
8761 parent = cgroup_tg(cgrp->parent);
8762 tg = sched_create_group(parent);
8763 if (IS_ERR(tg))
8764 return ERR_PTR(-ENOMEM);
8766 return &tg->css;
8769 static void
8770 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8772 struct task_group *tg = cgroup_tg(cgrp);
8774 sched_destroy_group(tg);
8777 static int
8778 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8780 #ifdef CONFIG_RT_GROUP_SCHED
8781 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8782 return -EINVAL;
8783 #else
8784 /* We don't support RT-tasks being in separate groups */
8785 if (tsk->sched_class != &fair_sched_class)
8786 return -EINVAL;
8787 #endif
8788 return 0;
8791 static void
8792 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8794 sched_move_task(tsk);
8797 static void
8798 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8799 struct cgroup *old_cgrp, struct task_struct *task)
8802 * cgroup_exit() is called in the copy_process() failure path.
8803 * Ignore this case since the task hasn't ran yet, this avoids
8804 * trying to poke a half freed task state from generic code.
8806 if (!(task->flags & PF_EXITING))
8807 return;
8809 sched_move_task(task);
8812 #ifdef CONFIG_FAIR_GROUP_SCHED
8813 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8814 u64 shareval)
8816 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8819 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8821 struct task_group *tg = cgroup_tg(cgrp);
8823 return (u64) scale_load_down(tg->shares);
8825 #endif /* CONFIG_FAIR_GROUP_SCHED */
8827 #ifdef CONFIG_RT_GROUP_SCHED
8828 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8829 s64 val)
8831 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8834 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8836 return sched_group_rt_runtime(cgroup_tg(cgrp));
8839 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8840 u64 rt_period_us)
8842 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8845 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8847 return sched_group_rt_period(cgroup_tg(cgrp));
8849 #endif /* CONFIG_RT_GROUP_SCHED */
8851 static struct cftype cpu_files[] = {
8852 #ifdef CONFIG_FAIR_GROUP_SCHED
8854 .name = "shares",
8855 .read_u64 = cpu_shares_read_u64,
8856 .write_u64 = cpu_shares_write_u64,
8858 #endif
8859 #ifdef CONFIG_RT_GROUP_SCHED
8861 .name = "rt_runtime_us",
8862 .read_s64 = cpu_rt_runtime_read,
8863 .write_s64 = cpu_rt_runtime_write,
8866 .name = "rt_period_us",
8867 .read_u64 = cpu_rt_period_read_uint,
8868 .write_u64 = cpu_rt_period_write_uint,
8870 #endif
8873 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8875 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8878 struct cgroup_subsys cpu_cgroup_subsys = {
8879 .name = "cpu",
8880 .create = cpu_cgroup_create,
8881 .destroy = cpu_cgroup_destroy,
8882 .can_attach_task = cpu_cgroup_can_attach_task,
8883 .attach_task = cpu_cgroup_attach_task,
8884 .exit = cpu_cgroup_exit,
8885 .populate = cpu_cgroup_populate,
8886 .subsys_id = cpu_cgroup_subsys_id,
8887 .early_init = 1,
8890 #endif /* CONFIG_CGROUP_SCHED */
8892 #ifdef CONFIG_CGROUP_CPUACCT
8895 * CPU accounting code for task groups.
8897 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8898 * (balbir@in.ibm.com).
8901 /* track cpu usage of a group of tasks and its child groups */
8902 struct cpuacct {
8903 struct cgroup_subsys_state css;
8904 /* cpuusage holds pointer to a u64-type object on every cpu */
8905 u64 __percpu *cpuusage;
8906 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8907 struct cpuacct *parent;
8910 struct cgroup_subsys cpuacct_subsys;
8912 /* return cpu accounting group corresponding to this container */
8913 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8915 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8916 struct cpuacct, css);
8919 /* return cpu accounting group to which this task belongs */
8920 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8922 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8923 struct cpuacct, css);
8926 /* create a new cpu accounting group */
8927 static struct cgroup_subsys_state *cpuacct_create(
8928 struct cgroup_subsys *ss, struct cgroup *cgrp)
8930 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8931 int i;
8933 if (!ca)
8934 goto out;
8936 ca->cpuusage = alloc_percpu(u64);
8937 if (!ca->cpuusage)
8938 goto out_free_ca;
8940 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8941 if (percpu_counter_init(&ca->cpustat[i], 0))
8942 goto out_free_counters;
8944 if (cgrp->parent)
8945 ca->parent = cgroup_ca(cgrp->parent);
8947 return &ca->css;
8949 out_free_counters:
8950 while (--i >= 0)
8951 percpu_counter_destroy(&ca->cpustat[i]);
8952 free_percpu(ca->cpuusage);
8953 out_free_ca:
8954 kfree(ca);
8955 out:
8956 return ERR_PTR(-ENOMEM);
8959 /* destroy an existing cpu accounting group */
8960 static void
8961 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8963 struct cpuacct *ca = cgroup_ca(cgrp);
8964 int i;
8966 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8967 percpu_counter_destroy(&ca->cpustat[i]);
8968 free_percpu(ca->cpuusage);
8969 kfree(ca);
8972 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8974 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8975 u64 data;
8977 #ifndef CONFIG_64BIT
8979 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8981 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8982 data = *cpuusage;
8983 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8984 #else
8985 data = *cpuusage;
8986 #endif
8988 return data;
8991 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8993 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8995 #ifndef CONFIG_64BIT
8997 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8999 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9000 *cpuusage = val;
9001 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9002 #else
9003 *cpuusage = val;
9004 #endif
9007 /* return total cpu usage (in nanoseconds) of a group */
9008 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9010 struct cpuacct *ca = cgroup_ca(cgrp);
9011 u64 totalcpuusage = 0;
9012 int i;
9014 for_each_present_cpu(i)
9015 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9017 return totalcpuusage;
9020 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9021 u64 reset)
9023 struct cpuacct *ca = cgroup_ca(cgrp);
9024 int err = 0;
9025 int i;
9027 if (reset) {
9028 err = -EINVAL;
9029 goto out;
9032 for_each_present_cpu(i)
9033 cpuacct_cpuusage_write(ca, i, 0);
9035 out:
9036 return err;
9039 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9040 struct seq_file *m)
9042 struct cpuacct *ca = cgroup_ca(cgroup);
9043 u64 percpu;
9044 int i;
9046 for_each_present_cpu(i) {
9047 percpu = cpuacct_cpuusage_read(ca, i);
9048 seq_printf(m, "%llu ", (unsigned long long) percpu);
9050 seq_printf(m, "\n");
9051 return 0;
9054 static const char *cpuacct_stat_desc[] = {
9055 [CPUACCT_STAT_USER] = "user",
9056 [CPUACCT_STAT_SYSTEM] = "system",
9059 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9060 struct cgroup_map_cb *cb)
9062 struct cpuacct *ca = cgroup_ca(cgrp);
9063 int i;
9065 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9066 s64 val = percpu_counter_read(&ca->cpustat[i]);
9067 val = cputime64_to_clock_t(val);
9068 cb->fill(cb, cpuacct_stat_desc[i], val);
9070 return 0;
9073 static struct cftype files[] = {
9075 .name = "usage",
9076 .read_u64 = cpuusage_read,
9077 .write_u64 = cpuusage_write,
9080 .name = "usage_percpu",
9081 .read_seq_string = cpuacct_percpu_seq_read,
9084 .name = "stat",
9085 .read_map = cpuacct_stats_show,
9089 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9091 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9095 * charge this task's execution time to its accounting group.
9097 * called with rq->lock held.
9099 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9101 struct cpuacct *ca;
9102 int cpu;
9104 if (unlikely(!cpuacct_subsys.active))
9105 return;
9107 cpu = task_cpu(tsk);
9109 rcu_read_lock();
9111 ca = task_ca(tsk);
9113 for (; ca; ca = ca->parent) {
9114 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9115 *cpuusage += cputime;
9118 rcu_read_unlock();
9122 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9123 * in cputime_t units. As a result, cpuacct_update_stats calls
9124 * percpu_counter_add with values large enough to always overflow the
9125 * per cpu batch limit causing bad SMP scalability.
9127 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9128 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9129 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9131 #ifdef CONFIG_SMP
9132 #define CPUACCT_BATCH \
9133 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9134 #else
9135 #define CPUACCT_BATCH 0
9136 #endif
9139 * Charge the system/user time to the task's accounting group.
9141 static void cpuacct_update_stats(struct task_struct *tsk,
9142 enum cpuacct_stat_index idx, cputime_t val)
9144 struct cpuacct *ca;
9145 int batch = CPUACCT_BATCH;
9147 if (unlikely(!cpuacct_subsys.active))
9148 return;
9150 rcu_read_lock();
9151 ca = task_ca(tsk);
9153 do {
9154 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9155 ca = ca->parent;
9156 } while (ca);
9157 rcu_read_unlock();
9160 struct cgroup_subsys cpuacct_subsys = {
9161 .name = "cpuacct",
9162 .create = cpuacct_create,
9163 .destroy = cpuacct_destroy,
9164 .populate = cpuacct_populate,
9165 .subsys_id = cpuacct_subsys_id,
9167 #endif /* CONFIG_CGROUP_CPUACCT */