spi-topcliff-pch: Modify pci-bus number dynamically to get DMA device info
[zen-stable.git] / drivers / cpufreq / cpufreq_ondemand.c
blobc3e0652520a1ff624a5f60fbfbfd027f67f3b8f8
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_SAMPLING_DOWN_FACTOR (1)
34 #define MAX_SAMPLING_DOWN_FACTOR (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 #define MIN_SAMPLING_RATE_RATIO (2)
53 static unsigned int min_sampling_rate;
55 #define LATENCY_MULTIPLIER (1000)
56 #define MIN_LATENCY_MULTIPLIER (100)
57 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
76 struct cpu_dbs_info_s {
77 cputime64_t prev_cpu_idle;
78 cputime64_t prev_cpu_iowait;
79 cputime64_t prev_cpu_wall;
80 cputime64_t prev_cpu_nice;
81 struct cpufreq_policy *cur_policy;
82 struct delayed_work work;
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
87 unsigned int rate_mult;
88 int cpu;
89 unsigned int sample_type:1;
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
95 struct mutex timer_mutex;
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
99 static unsigned int dbs_enable; /* number of CPUs using this policy */
102 * dbs_mutex protects dbs_enable in governor start/stop.
104 static DEFINE_MUTEX(dbs_mutex);
106 static struct dbs_tuners {
107 unsigned int sampling_rate;
108 unsigned int up_threshold;
109 unsigned int down_differential;
110 unsigned int ignore_nice;
111 unsigned int sampling_down_factor;
112 unsigned int powersave_bias;
113 unsigned int io_is_busy;
114 } dbs_tuners_ins = {
115 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118 .ignore_nice = 0,
119 .powersave_bias = 0,
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
124 u64 idle_time;
125 u64 cur_wall_time;
126 u64 busy_time;
128 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
134 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
135 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
137 idle_time = cur_wall_time - busy_time;
138 if (wall)
139 *wall = jiffies_to_usecs(cur_wall_time);
141 return jiffies_to_usecs(idle_time);
144 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
146 u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
148 if (idle_time == -1ULL)
149 return get_cpu_idle_time_jiffy(cpu, wall);
150 else
151 idle_time += get_cpu_iowait_time_us(cpu, wall);
153 return idle_time;
156 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
158 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
160 if (iowait_time == -1ULL)
161 return 0;
163 return iowait_time;
167 * Find right freq to be set now with powersave_bias on.
168 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
171 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172 unsigned int freq_next,
173 unsigned int relation)
175 unsigned int freq_req, freq_reduc, freq_avg;
176 unsigned int freq_hi, freq_lo;
177 unsigned int index = 0;
178 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
179 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180 policy->cpu);
182 if (!dbs_info->freq_table) {
183 dbs_info->freq_lo = 0;
184 dbs_info->freq_lo_jiffies = 0;
185 return freq_next;
188 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189 relation, &index);
190 freq_req = dbs_info->freq_table[index].frequency;
191 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
192 freq_avg = freq_req - freq_reduc;
194 /* Find freq bounds for freq_avg in freq_table */
195 index = 0;
196 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197 CPUFREQ_RELATION_H, &index);
198 freq_lo = dbs_info->freq_table[index].frequency;
199 index = 0;
200 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
201 CPUFREQ_RELATION_L, &index);
202 freq_hi = dbs_info->freq_table[index].frequency;
204 /* Find out how long we have to be in hi and lo freqs */
205 if (freq_hi == freq_lo) {
206 dbs_info->freq_lo = 0;
207 dbs_info->freq_lo_jiffies = 0;
208 return freq_lo;
210 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
211 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212 jiffies_hi += ((freq_hi - freq_lo) / 2);
213 jiffies_hi /= (freq_hi - freq_lo);
214 jiffies_lo = jiffies_total - jiffies_hi;
215 dbs_info->freq_lo = freq_lo;
216 dbs_info->freq_lo_jiffies = jiffies_lo;
217 dbs_info->freq_hi_jiffies = jiffies_hi;
218 return freq_hi;
221 static void ondemand_powersave_bias_init_cpu(int cpu)
223 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
224 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225 dbs_info->freq_lo = 0;
228 static void ondemand_powersave_bias_init(void)
230 int i;
231 for_each_online_cpu(i) {
232 ondemand_powersave_bias_init_cpu(i);
236 /************************** sysfs interface ************************/
238 static ssize_t show_sampling_rate_min(struct kobject *kobj,
239 struct attribute *attr, char *buf)
241 return sprintf(buf, "%u\n", min_sampling_rate);
244 define_one_global_ro(sampling_rate_min);
246 /* cpufreq_ondemand Governor Tunables */
247 #define show_one(file_name, object) \
248 static ssize_t show_##file_name \
249 (struct kobject *kobj, struct attribute *attr, char *buf) \
251 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
253 show_one(sampling_rate, sampling_rate);
254 show_one(io_is_busy, io_is_busy);
255 show_one(up_threshold, up_threshold);
256 show_one(sampling_down_factor, sampling_down_factor);
257 show_one(ignore_nice_load, ignore_nice);
258 show_one(powersave_bias, powersave_bias);
260 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
261 const char *buf, size_t count)
263 unsigned int input;
264 int ret;
265 ret = sscanf(buf, "%u", &input);
266 if (ret != 1)
267 return -EINVAL;
268 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
269 return count;
272 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
273 const char *buf, size_t count)
275 unsigned int input;
276 int ret;
278 ret = sscanf(buf, "%u", &input);
279 if (ret != 1)
280 return -EINVAL;
281 dbs_tuners_ins.io_is_busy = !!input;
282 return count;
285 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
286 const char *buf, size_t count)
288 unsigned int input;
289 int ret;
290 ret = sscanf(buf, "%u", &input);
292 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
293 input < MIN_FREQUENCY_UP_THRESHOLD) {
294 return -EINVAL;
296 dbs_tuners_ins.up_threshold = input;
297 return count;
300 static ssize_t store_sampling_down_factor(struct kobject *a,
301 struct attribute *b, const char *buf, size_t count)
303 unsigned int input, j;
304 int ret;
305 ret = sscanf(buf, "%u", &input);
307 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
308 return -EINVAL;
309 dbs_tuners_ins.sampling_down_factor = input;
311 /* Reset down sampling multiplier in case it was active */
312 for_each_online_cpu(j) {
313 struct cpu_dbs_info_s *dbs_info;
314 dbs_info = &per_cpu(od_cpu_dbs_info, j);
315 dbs_info->rate_mult = 1;
317 return count;
320 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
321 const char *buf, size_t count)
323 unsigned int input;
324 int ret;
326 unsigned int j;
328 ret = sscanf(buf, "%u", &input);
329 if (ret != 1)
330 return -EINVAL;
332 if (input > 1)
333 input = 1;
335 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
336 return count;
338 dbs_tuners_ins.ignore_nice = input;
340 /* we need to re-evaluate prev_cpu_idle */
341 for_each_online_cpu(j) {
342 struct cpu_dbs_info_s *dbs_info;
343 dbs_info = &per_cpu(od_cpu_dbs_info, j);
344 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
345 &dbs_info->prev_cpu_wall);
346 if (dbs_tuners_ins.ignore_nice)
347 dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
350 return count;
353 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
354 const char *buf, size_t count)
356 unsigned int input;
357 int ret;
358 ret = sscanf(buf, "%u", &input);
360 if (ret != 1)
361 return -EINVAL;
363 if (input > 1000)
364 input = 1000;
366 dbs_tuners_ins.powersave_bias = input;
367 ondemand_powersave_bias_init();
368 return count;
371 define_one_global_rw(sampling_rate);
372 define_one_global_rw(io_is_busy);
373 define_one_global_rw(up_threshold);
374 define_one_global_rw(sampling_down_factor);
375 define_one_global_rw(ignore_nice_load);
376 define_one_global_rw(powersave_bias);
378 static struct attribute *dbs_attributes[] = {
379 &sampling_rate_min.attr,
380 &sampling_rate.attr,
381 &up_threshold.attr,
382 &sampling_down_factor.attr,
383 &ignore_nice_load.attr,
384 &powersave_bias.attr,
385 &io_is_busy.attr,
386 NULL
389 static struct attribute_group dbs_attr_group = {
390 .attrs = dbs_attributes,
391 .name = "ondemand",
394 /************************** sysfs end ************************/
396 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
398 if (dbs_tuners_ins.powersave_bias)
399 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
400 else if (p->cur == p->max)
401 return;
403 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
404 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
407 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
409 unsigned int max_load_freq;
411 struct cpufreq_policy *policy;
412 unsigned int j;
414 this_dbs_info->freq_lo = 0;
415 policy = this_dbs_info->cur_policy;
418 * Every sampling_rate, we check, if current idle time is less
419 * than 20% (default), then we try to increase frequency
420 * Every sampling_rate, we look for a the lowest
421 * frequency which can sustain the load while keeping idle time over
422 * 30%. If such a frequency exist, we try to decrease to this frequency.
424 * Any frequency increase takes it to the maximum frequency.
425 * Frequency reduction happens at minimum steps of
426 * 5% (default) of current frequency
429 /* Get Absolute Load - in terms of freq */
430 max_load_freq = 0;
432 for_each_cpu(j, policy->cpus) {
433 struct cpu_dbs_info_s *j_dbs_info;
434 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
435 unsigned int idle_time, wall_time, iowait_time;
436 unsigned int load, load_freq;
437 int freq_avg;
439 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
441 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
442 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
444 wall_time = (unsigned int)
445 (cur_wall_time - j_dbs_info->prev_cpu_wall);
446 j_dbs_info->prev_cpu_wall = cur_wall_time;
448 idle_time = (unsigned int)
449 (cur_idle_time - j_dbs_info->prev_cpu_idle);
450 j_dbs_info->prev_cpu_idle = cur_idle_time;
452 iowait_time = (unsigned int)
453 (cur_iowait_time - j_dbs_info->prev_cpu_iowait);
454 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
456 if (dbs_tuners_ins.ignore_nice) {
457 u64 cur_nice;
458 unsigned long cur_nice_jiffies;
460 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
461 j_dbs_info->prev_cpu_nice;
463 * Assumption: nice time between sampling periods will
464 * be less than 2^32 jiffies for 32 bit sys
466 cur_nice_jiffies = (unsigned long)
467 cputime64_to_jiffies64(cur_nice);
469 j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
470 idle_time += jiffies_to_usecs(cur_nice_jiffies);
474 * For the purpose of ondemand, waiting for disk IO is an
475 * indication that you're performance critical, and not that
476 * the system is actually idle. So subtract the iowait time
477 * from the cpu idle time.
480 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
481 idle_time -= iowait_time;
483 if (unlikely(!wall_time || wall_time < idle_time))
484 continue;
486 load = 100 * (wall_time - idle_time) / wall_time;
488 freq_avg = __cpufreq_driver_getavg(policy, j);
489 if (freq_avg <= 0)
490 freq_avg = policy->cur;
492 load_freq = load * freq_avg;
493 if (load_freq > max_load_freq)
494 max_load_freq = load_freq;
497 /* Check for frequency increase */
498 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
499 /* If switching to max speed, apply sampling_down_factor */
500 if (policy->cur < policy->max)
501 this_dbs_info->rate_mult =
502 dbs_tuners_ins.sampling_down_factor;
503 dbs_freq_increase(policy, policy->max);
504 return;
507 /* Check for frequency decrease */
508 /* if we cannot reduce the frequency anymore, break out early */
509 if (policy->cur == policy->min)
510 return;
513 * The optimal frequency is the frequency that is the lowest that
514 * can support the current CPU usage without triggering the up
515 * policy. To be safe, we focus 10 points under the threshold.
517 if (max_load_freq <
518 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
519 policy->cur) {
520 unsigned int freq_next;
521 freq_next = max_load_freq /
522 (dbs_tuners_ins.up_threshold -
523 dbs_tuners_ins.down_differential);
525 /* No longer fully busy, reset rate_mult */
526 this_dbs_info->rate_mult = 1;
528 if (freq_next < policy->min)
529 freq_next = policy->min;
531 if (!dbs_tuners_ins.powersave_bias) {
532 __cpufreq_driver_target(policy, freq_next,
533 CPUFREQ_RELATION_L);
534 } else {
535 int freq = powersave_bias_target(policy, freq_next,
536 CPUFREQ_RELATION_L);
537 __cpufreq_driver_target(policy, freq,
538 CPUFREQ_RELATION_L);
543 static void do_dbs_timer(struct work_struct *work)
545 struct cpu_dbs_info_s *dbs_info =
546 container_of(work, struct cpu_dbs_info_s, work.work);
547 unsigned int cpu = dbs_info->cpu;
548 int sample_type = dbs_info->sample_type;
550 int delay;
552 mutex_lock(&dbs_info->timer_mutex);
554 /* Common NORMAL_SAMPLE setup */
555 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
556 if (!dbs_tuners_ins.powersave_bias ||
557 sample_type == DBS_NORMAL_SAMPLE) {
558 dbs_check_cpu(dbs_info);
559 if (dbs_info->freq_lo) {
560 /* Setup timer for SUB_SAMPLE */
561 dbs_info->sample_type = DBS_SUB_SAMPLE;
562 delay = dbs_info->freq_hi_jiffies;
563 } else {
564 /* We want all CPUs to do sampling nearly on
565 * same jiffy
567 delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
568 * dbs_info->rate_mult);
570 if (num_online_cpus() > 1)
571 delay -= jiffies % delay;
573 } else {
574 __cpufreq_driver_target(dbs_info->cur_policy,
575 dbs_info->freq_lo, CPUFREQ_RELATION_H);
576 delay = dbs_info->freq_lo_jiffies;
578 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
579 mutex_unlock(&dbs_info->timer_mutex);
582 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
584 /* We want all CPUs to do sampling nearly on same jiffy */
585 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
587 if (num_online_cpus() > 1)
588 delay -= jiffies % delay;
590 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
591 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
592 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
595 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
597 cancel_delayed_work_sync(&dbs_info->work);
601 * Not all CPUs want IO time to be accounted as busy; this dependson how
602 * efficient idling at a higher frequency/voltage is.
603 * Pavel Machek says this is not so for various generations of AMD and old
604 * Intel systems.
605 * Mike Chan (androidlcom) calis this is also not true for ARM.
606 * Because of this, whitelist specific known (series) of CPUs by default, and
607 * leave all others up to the user.
609 static int should_io_be_busy(void)
611 #if defined(CONFIG_X86)
613 * For Intel, Core 2 (model 15) andl later have an efficient idle.
615 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
616 boot_cpu_data.x86 == 6 &&
617 boot_cpu_data.x86_model >= 15)
618 return 1;
619 #endif
620 return 0;
623 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
624 unsigned int event)
626 unsigned int cpu = policy->cpu;
627 struct cpu_dbs_info_s *this_dbs_info;
628 unsigned int j;
629 int rc;
631 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
633 switch (event) {
634 case CPUFREQ_GOV_START:
635 if ((!cpu_online(cpu)) || (!policy->cur))
636 return -EINVAL;
638 mutex_lock(&dbs_mutex);
640 dbs_enable++;
641 for_each_cpu(j, policy->cpus) {
642 struct cpu_dbs_info_s *j_dbs_info;
643 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
644 j_dbs_info->cur_policy = policy;
646 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
647 &j_dbs_info->prev_cpu_wall);
648 if (dbs_tuners_ins.ignore_nice)
649 j_dbs_info->prev_cpu_nice =
650 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
652 this_dbs_info->cpu = cpu;
653 this_dbs_info->rate_mult = 1;
654 ondemand_powersave_bias_init_cpu(cpu);
656 * Start the timerschedule work, when this governor
657 * is used for first time
659 if (dbs_enable == 1) {
660 unsigned int latency;
662 rc = sysfs_create_group(cpufreq_global_kobject,
663 &dbs_attr_group);
664 if (rc) {
665 mutex_unlock(&dbs_mutex);
666 return rc;
669 /* policy latency is in nS. Convert it to uS first */
670 latency = policy->cpuinfo.transition_latency / 1000;
671 if (latency == 0)
672 latency = 1;
673 /* Bring kernel and HW constraints together */
674 min_sampling_rate = max(min_sampling_rate,
675 MIN_LATENCY_MULTIPLIER * latency);
676 dbs_tuners_ins.sampling_rate =
677 max(min_sampling_rate,
678 latency * LATENCY_MULTIPLIER);
679 dbs_tuners_ins.io_is_busy = should_io_be_busy();
681 mutex_unlock(&dbs_mutex);
683 mutex_init(&this_dbs_info->timer_mutex);
684 dbs_timer_init(this_dbs_info);
685 break;
687 case CPUFREQ_GOV_STOP:
688 dbs_timer_exit(this_dbs_info);
690 mutex_lock(&dbs_mutex);
691 mutex_destroy(&this_dbs_info->timer_mutex);
692 dbs_enable--;
693 mutex_unlock(&dbs_mutex);
694 if (!dbs_enable)
695 sysfs_remove_group(cpufreq_global_kobject,
696 &dbs_attr_group);
698 break;
700 case CPUFREQ_GOV_LIMITS:
701 mutex_lock(&this_dbs_info->timer_mutex);
702 if (policy->max < this_dbs_info->cur_policy->cur)
703 __cpufreq_driver_target(this_dbs_info->cur_policy,
704 policy->max, CPUFREQ_RELATION_H);
705 else if (policy->min > this_dbs_info->cur_policy->cur)
706 __cpufreq_driver_target(this_dbs_info->cur_policy,
707 policy->min, CPUFREQ_RELATION_L);
708 mutex_unlock(&this_dbs_info->timer_mutex);
709 break;
711 return 0;
714 static int __init cpufreq_gov_dbs_init(void)
716 u64 idle_time;
717 int cpu = get_cpu();
719 idle_time = get_cpu_idle_time_us(cpu, NULL);
720 put_cpu();
721 if (idle_time != -1ULL) {
722 /* Idle micro accounting is supported. Use finer thresholds */
723 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
724 dbs_tuners_ins.down_differential =
725 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
727 * In nohz/micro accounting case we set the minimum frequency
728 * not depending on HZ, but fixed (very low). The deferred
729 * timer might skip some samples if idle/sleeping as needed.
731 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
732 } else {
733 /* For correct statistics, we need 10 ticks for each measure */
734 min_sampling_rate =
735 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
738 return cpufreq_register_governor(&cpufreq_gov_ondemand);
741 static void __exit cpufreq_gov_dbs_exit(void)
743 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
747 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
748 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
749 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
750 "Low Latency Frequency Transition capable processors");
751 MODULE_LICENSE("GPL");
753 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
754 fs_initcall(cpufreq_gov_dbs_init);
755 #else
756 module_init(cpufreq_gov_dbs_init);
757 #endif
758 module_exit(cpufreq_gov_dbs_exit);