spi-topcliff-pch: Modify pci-bus number dynamically to get DMA device info
[zen-stable.git] / drivers / cpufreq / s3c64xx-cpufreq.c
bloba5e72cb5f53cf708706a99b1d98ed983e629a81c
1 /*
2 * Copyright 2009 Wolfson Microelectronics plc
4 * S3C64xx CPUfreq Support
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #define pr_fmt(fmt) "cpufreq: " fmt
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/module.h>
22 static struct clk *armclk;
23 static struct regulator *vddarm;
24 static unsigned long regulator_latency;
26 #ifdef CONFIG_CPU_S3C6410
27 struct s3c64xx_dvfs {
28 unsigned int vddarm_min;
29 unsigned int vddarm_max;
32 static struct s3c64xx_dvfs s3c64xx_dvfs_table[] = {
33 [0] = { 1000000, 1150000 },
34 [1] = { 1050000, 1150000 },
35 [2] = { 1100000, 1150000 },
36 [3] = { 1200000, 1350000 },
37 [4] = { 1300000, 1350000 },
40 static struct cpufreq_frequency_table s3c64xx_freq_table[] = {
41 { 0, 66000 },
42 { 0, 100000 },
43 { 0, 133000 },
44 { 1, 200000 },
45 { 1, 222000 },
46 { 1, 266000 },
47 { 2, 333000 },
48 { 2, 400000 },
49 { 2, 532000 },
50 { 2, 533000 },
51 { 3, 667000 },
52 { 4, 800000 },
53 { 0, CPUFREQ_TABLE_END },
55 #endif
57 static int s3c64xx_cpufreq_verify_speed(struct cpufreq_policy *policy)
59 if (policy->cpu != 0)
60 return -EINVAL;
62 return cpufreq_frequency_table_verify(policy, s3c64xx_freq_table);
65 static unsigned int s3c64xx_cpufreq_get_speed(unsigned int cpu)
67 if (cpu != 0)
68 return 0;
70 return clk_get_rate(armclk) / 1000;
73 static int s3c64xx_cpufreq_set_target(struct cpufreq_policy *policy,
74 unsigned int target_freq,
75 unsigned int relation)
77 int ret;
78 unsigned int i;
79 struct cpufreq_freqs freqs;
80 struct s3c64xx_dvfs *dvfs;
82 ret = cpufreq_frequency_table_target(policy, s3c64xx_freq_table,
83 target_freq, relation, &i);
84 if (ret != 0)
85 return ret;
87 freqs.cpu = 0;
88 freqs.old = clk_get_rate(armclk) / 1000;
89 freqs.new = s3c64xx_freq_table[i].frequency;
90 freqs.flags = 0;
91 dvfs = &s3c64xx_dvfs_table[s3c64xx_freq_table[i].index];
93 if (freqs.old == freqs.new)
94 return 0;
96 pr_debug("Transition %d-%dkHz\n", freqs.old, freqs.new);
98 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
100 #ifdef CONFIG_REGULATOR
101 if (vddarm && freqs.new > freqs.old) {
102 ret = regulator_set_voltage(vddarm,
103 dvfs->vddarm_min,
104 dvfs->vddarm_max);
105 if (ret != 0) {
106 pr_err("Failed to set VDDARM for %dkHz: %d\n",
107 freqs.new, ret);
108 goto err;
111 #endif
113 ret = clk_set_rate(armclk, freqs.new * 1000);
114 if (ret < 0) {
115 pr_err("Failed to set rate %dkHz: %d\n",
116 freqs.new, ret);
117 goto err;
120 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
122 #ifdef CONFIG_REGULATOR
123 if (vddarm && freqs.new < freqs.old) {
124 ret = regulator_set_voltage(vddarm,
125 dvfs->vddarm_min,
126 dvfs->vddarm_max);
127 if (ret != 0) {
128 pr_err("Failed to set VDDARM for %dkHz: %d\n",
129 freqs.new, ret);
130 goto err_clk;
133 #endif
135 pr_debug("Set actual frequency %lukHz\n",
136 clk_get_rate(armclk) / 1000);
138 return 0;
140 err_clk:
141 if (clk_set_rate(armclk, freqs.old * 1000) < 0)
142 pr_err("Failed to restore original clock rate\n");
143 err:
144 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
146 return ret;
149 #ifdef CONFIG_REGULATOR
150 static void __init s3c64xx_cpufreq_config_regulator(void)
152 int count, v, i, found;
153 struct cpufreq_frequency_table *freq;
154 struct s3c64xx_dvfs *dvfs;
156 count = regulator_count_voltages(vddarm);
157 if (count < 0) {
158 pr_err("Unable to check supported voltages\n");
161 freq = s3c64xx_freq_table;
162 while (count > 0 && freq->frequency != CPUFREQ_TABLE_END) {
163 if (freq->frequency == CPUFREQ_ENTRY_INVALID)
164 continue;
166 dvfs = &s3c64xx_dvfs_table[freq->index];
167 found = 0;
169 for (i = 0; i < count; i++) {
170 v = regulator_list_voltage(vddarm, i);
171 if (v >= dvfs->vddarm_min && v <= dvfs->vddarm_max)
172 found = 1;
175 if (!found) {
176 pr_debug("%dkHz unsupported by regulator\n",
177 freq->frequency);
178 freq->frequency = CPUFREQ_ENTRY_INVALID;
181 freq++;
184 /* Guess based on having to do an I2C/SPI write; in future we
185 * will be able to query the regulator performance here. */
186 regulator_latency = 1 * 1000 * 1000;
188 #endif
190 static int s3c64xx_cpufreq_driver_init(struct cpufreq_policy *policy)
192 int ret;
193 struct cpufreq_frequency_table *freq;
195 if (policy->cpu != 0)
196 return -EINVAL;
198 if (s3c64xx_freq_table == NULL) {
199 pr_err("No frequency information for this CPU\n");
200 return -ENODEV;
203 armclk = clk_get(NULL, "armclk");
204 if (IS_ERR(armclk)) {
205 pr_err("Unable to obtain ARMCLK: %ld\n",
206 PTR_ERR(armclk));
207 return PTR_ERR(armclk);
210 #ifdef CONFIG_REGULATOR
211 vddarm = regulator_get(NULL, "vddarm");
212 if (IS_ERR(vddarm)) {
213 ret = PTR_ERR(vddarm);
214 pr_err("Failed to obtain VDDARM: %d\n", ret);
215 pr_err("Only frequency scaling available\n");
216 vddarm = NULL;
217 } else {
218 s3c64xx_cpufreq_config_regulator();
221 vddint = regulator_get(NULL, "vddint");
222 if (IS_ERR(vddint)) {
223 ret = PTR_ERR(vddint);
224 pr_err("Failed to obtain VDDINT: %d\n", ret);
225 vddint = NULL;
227 #endif
229 freq = s3c64xx_freq_table;
230 while (freq->frequency != CPUFREQ_TABLE_END) {
231 unsigned long r;
233 /* Check for frequencies we can generate */
234 r = clk_round_rate(armclk, freq->frequency * 1000);
235 r /= 1000;
236 if (r != freq->frequency) {
237 pr_debug("%dkHz unsupported by clock\n",
238 freq->frequency);
239 freq->frequency = CPUFREQ_ENTRY_INVALID;
242 /* If we have no regulator then assume startup
243 * frequency is the maximum we can support. */
244 if (!vddarm && freq->frequency > s3c64xx_cpufreq_get_speed(0))
245 freq->frequency = CPUFREQ_ENTRY_INVALID;
247 freq++;
250 policy->cur = clk_get_rate(armclk) / 1000;
252 /* Datasheet says PLL stabalisation time (if we were to use
253 * the PLLs, which we don't currently) is ~300us worst case,
254 * but add some fudge.
256 policy->cpuinfo.transition_latency = (500 * 1000) + regulator_latency;
258 ret = cpufreq_frequency_table_cpuinfo(policy, s3c64xx_freq_table);
259 if (ret != 0) {
260 pr_err("Failed to configure frequency table: %d\n",
261 ret);
262 regulator_put(vddarm);
263 clk_put(armclk);
266 return ret;
269 static struct cpufreq_driver s3c64xx_cpufreq_driver = {
270 .owner = THIS_MODULE,
271 .flags = 0,
272 .verify = s3c64xx_cpufreq_verify_speed,
273 .target = s3c64xx_cpufreq_set_target,
274 .get = s3c64xx_cpufreq_get_speed,
275 .init = s3c64xx_cpufreq_driver_init,
276 .name = "s3c",
279 static int __init s3c64xx_cpufreq_init(void)
281 return cpufreq_register_driver(&s3c64xx_cpufreq_driver);
283 module_init(s3c64xx_cpufreq_init);