spi-topcliff-pch: Modify pci-bus number dynamically to get DMA device info
[zen-stable.git] / drivers / input / misc / hp_sdc_rtc.c
blob0b4f54265f62d31031598aaeadd3240c50af7d1b
1 /*
2 * HP i8042 SDC + MSM-58321 BBRTC driver.
4 * Copyright (c) 2001 Brian S. Julin
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * References:
30 * System Device Controller Microprocessor Firmware Theory of Operation
31 * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
32 * efirtc.c by Stephane Eranian/Hewlett Packard
36 #include <linux/hp_sdc.h>
37 #include <linux/errno.h>
38 #include <linux/types.h>
39 #include <linux/init.h>
40 #include <linux/module.h>
41 #include <linux/time.h>
42 #include <linux/miscdevice.h>
43 #include <linux/proc_fs.h>
44 #include <linux/poll.h>
45 #include <linux/rtc.h>
46 #include <linux/mutex.h>
47 #include <linux/semaphore.h>
49 MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
50 MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
51 MODULE_LICENSE("Dual BSD/GPL");
53 #define RTC_VERSION "1.10d"
55 static DEFINE_MUTEX(hp_sdc_rtc_mutex);
56 static unsigned long epoch = 2000;
58 static struct semaphore i8042tregs;
60 static hp_sdc_irqhook hp_sdc_rtc_isr;
62 static struct fasync_struct *hp_sdc_rtc_async_queue;
64 static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
66 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
67 size_t count, loff_t *ppos);
69 static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
70 unsigned int cmd, unsigned long arg);
72 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
74 static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
75 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
77 static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
78 int count, int *eof, void *data);
80 static void hp_sdc_rtc_isr (int irq, void *dev_id,
81 uint8_t status, uint8_t data)
83 return;
86 static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
88 struct semaphore tsem;
89 hp_sdc_transaction t;
90 uint8_t tseq[91];
91 int i;
93 i = 0;
94 while (i < 91) {
95 tseq[i++] = HP_SDC_ACT_DATAREG |
96 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
97 tseq[i++] = 0x01; /* write i8042[0x70] */
98 tseq[i] = i / 7; /* BBRTC reg address */
99 i++;
100 tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */
101 tseq[i++] = 2; /* expect 1 stat/dat pair back. */
102 i++; i++; /* buffer for stat/dat pair */
104 tseq[84] |= HP_SDC_ACT_SEMAPHORE;
105 t.endidx = 91;
106 t.seq = tseq;
107 t.act.semaphore = &tsem;
108 sema_init(&tsem, 0);
110 if (hp_sdc_enqueue_transaction(&t)) return -1;
112 down_interruptible(&tsem); /* Put ourselves to sleep for results. */
114 /* Check for nonpresence of BBRTC */
115 if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
116 tseq[55] | tseq[62] | tseq[34] | tseq[41] |
117 tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f))
118 return -1;
120 memset(rtctm, 0, sizeof(struct rtc_time));
121 rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
122 rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
123 rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
124 rtctm->tm_wday = (tseq[48] & 0x0f);
125 rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
126 rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
127 rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10;
129 return 0;
132 static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
134 struct rtc_time tm, tm_last;
135 int i = 0;
137 /* MSM-58321 has no read latch, so must read twice and compare. */
139 if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
140 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
142 while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
143 if (i++ > 4) return -1;
144 memcpy(&tm_last, &tm, sizeof(struct rtc_time));
145 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
148 memcpy(rtctm, &tm, sizeof(struct rtc_time));
150 return 0;
154 static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
156 hp_sdc_transaction t;
157 uint8_t tseq[26] = {
158 HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
160 HP_SDC_CMD_READ_T1, 2, 0, 0,
161 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
162 HP_SDC_CMD_READ_T2, 2, 0, 0,
163 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
164 HP_SDC_CMD_READ_T3, 2, 0, 0,
165 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
166 HP_SDC_CMD_READ_T4, 2, 0, 0,
167 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
168 HP_SDC_CMD_READ_T5, 2, 0, 0
171 t.endidx = numreg * 5;
173 tseq[1] = loadcmd;
174 tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
176 t.seq = tseq;
177 t.act.semaphore = &i8042tregs;
179 down_interruptible(&i8042tregs); /* Sleep if output regs in use. */
181 if (hp_sdc_enqueue_transaction(&t)) return -1;
183 down_interruptible(&i8042tregs); /* Sleep until results come back. */
184 up(&i8042tregs);
186 return (tseq[5] |
187 ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) |
188 ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
192 /* Read the i8042 real-time clock */
193 static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
194 int64_t raw;
195 uint32_t tenms;
196 unsigned int days;
198 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
199 if (raw < 0) return -1;
201 tenms = (uint32_t)raw & 0xffffff;
202 days = (unsigned int)(raw >> 24) & 0xffff;
204 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
205 res->tv_sec = (time_t)(tenms / 100) + days * 86400;
207 return 0;
211 /* Read the i8042 fast handshake timer */
212 static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
213 int64_t raw;
214 unsigned int tenms;
216 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
217 if (raw < 0) return -1;
219 tenms = (unsigned int)raw & 0xffff;
221 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
222 res->tv_sec = (time_t)(tenms / 100);
224 return 0;
228 /* Read the i8042 match timer (a.k.a. alarm) */
229 static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
230 int64_t raw;
231 uint32_t tenms;
233 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
234 if (raw < 0) return -1;
236 tenms = (uint32_t)raw & 0xffffff;
238 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
239 res->tv_sec = (time_t)(tenms / 100);
241 return 0;
245 /* Read the i8042 delay timer */
246 static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
247 int64_t raw;
248 uint32_t tenms;
250 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
251 if (raw < 0) return -1;
253 tenms = (uint32_t)raw & 0xffffff;
255 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
256 res->tv_sec = (time_t)(tenms / 100);
258 return 0;
262 /* Read the i8042 cycle timer (a.k.a. periodic) */
263 static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
264 int64_t raw;
265 uint32_t tenms;
267 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
268 if (raw < 0) return -1;
270 tenms = (uint32_t)raw & 0xffffff;
272 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
273 res->tv_sec = (time_t)(tenms / 100);
275 return 0;
279 /* Set the i8042 real-time clock */
280 static int hp_sdc_rtc_set_rt (struct timeval *setto)
282 uint32_t tenms;
283 unsigned int days;
284 hp_sdc_transaction t;
285 uint8_t tseq[11] = {
286 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
287 HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
288 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
289 HP_SDC_CMD_SET_RTD, 2, 0, 0
292 t.endidx = 10;
294 if (0xffff < setto->tv_sec / 86400) return -1;
295 days = setto->tv_sec / 86400;
296 if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
297 days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
298 if (days > 0xffff) return -1;
300 if (0xffffff < setto->tv_sec) return -1;
301 tenms = setto->tv_sec * 100;
302 if (0xffffff < setto->tv_usec / 10000) return -1;
303 tenms += setto->tv_usec / 10000;
304 if (tenms > 0xffffff) return -1;
306 tseq[3] = (uint8_t)(tenms & 0xff);
307 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
308 tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
310 tseq[9] = (uint8_t)(days & 0xff);
311 tseq[10] = (uint8_t)((days >> 8) & 0xff);
313 t.seq = tseq;
315 if (hp_sdc_enqueue_transaction(&t)) return -1;
316 return 0;
319 /* Set the i8042 fast handshake timer */
320 static int hp_sdc_rtc_set_fhs (struct timeval *setto)
322 uint32_t tenms;
323 hp_sdc_transaction t;
324 uint8_t tseq[5] = {
325 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
326 HP_SDC_CMD_SET_FHS, 2, 0, 0
329 t.endidx = 4;
331 if (0xffff < setto->tv_sec) return -1;
332 tenms = setto->tv_sec * 100;
333 if (0xffff < setto->tv_usec / 10000) return -1;
334 tenms += setto->tv_usec / 10000;
335 if (tenms > 0xffff) return -1;
337 tseq[3] = (uint8_t)(tenms & 0xff);
338 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
340 t.seq = tseq;
342 if (hp_sdc_enqueue_transaction(&t)) return -1;
343 return 0;
347 /* Set the i8042 match timer (a.k.a. alarm) */
348 #define hp_sdc_rtc_set_mt (setto) \
349 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
351 /* Set the i8042 delay timer */
352 #define hp_sdc_rtc_set_dt (setto) \
353 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
355 /* Set the i8042 cycle timer (a.k.a. periodic) */
356 #define hp_sdc_rtc_set_ct (setto) \
357 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
359 /* Set one of the i8042 3-byte wide timers */
360 static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
362 uint32_t tenms;
363 hp_sdc_transaction t;
364 uint8_t tseq[6] = {
365 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
366 0, 3, 0, 0, 0
369 t.endidx = 6;
371 if (0xffffff < setto->tv_sec) return -1;
372 tenms = setto->tv_sec * 100;
373 if (0xffffff < setto->tv_usec / 10000) return -1;
374 tenms += setto->tv_usec / 10000;
375 if (tenms > 0xffffff) return -1;
377 tseq[1] = setcmd;
378 tseq[3] = (uint8_t)(tenms & 0xff);
379 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
380 tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
382 t.seq = tseq;
384 if (hp_sdc_enqueue_transaction(&t)) {
385 return -1;
387 return 0;
390 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
391 size_t count, loff_t *ppos) {
392 ssize_t retval;
394 if (count < sizeof(unsigned long))
395 return -EINVAL;
397 retval = put_user(68, (unsigned long __user *)buf);
398 return retval;
401 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
403 unsigned long l;
405 l = 0;
406 if (l != 0)
407 return POLLIN | POLLRDNORM;
408 return 0;
411 static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
413 return 0;
416 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
418 return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
421 static int hp_sdc_rtc_proc_output (char *buf)
423 #define YN(bit) ("no")
424 #define NY(bit) ("yes")
425 char *p;
426 struct rtc_time tm;
427 struct timeval tv;
429 memset(&tm, 0, sizeof(struct rtc_time));
431 p = buf;
433 if (hp_sdc_rtc_read_bbrtc(&tm)) {
434 p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
435 } else {
436 p += sprintf(p,
437 "rtc_time\t: %02d:%02d:%02d\n"
438 "rtc_date\t: %04d-%02d-%02d\n"
439 "rtc_epoch\t: %04lu\n",
440 tm.tm_hour, tm.tm_min, tm.tm_sec,
441 tm.tm_year + 1900, tm.tm_mon + 1,
442 tm.tm_mday, epoch);
445 if (hp_sdc_rtc_read_rt(&tv)) {
446 p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
447 } else {
448 p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
449 tv.tv_sec, (int)tv.tv_usec/1000);
452 if (hp_sdc_rtc_read_fhs(&tv)) {
453 p += sprintf(p, "handshake\t: READ FAILED!\n");
454 } else {
455 p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
456 tv.tv_sec, (int)tv.tv_usec/1000);
459 if (hp_sdc_rtc_read_mt(&tv)) {
460 p += sprintf(p, "alarm\t\t: READ FAILED!\n");
461 } else {
462 p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
463 tv.tv_sec, (int)tv.tv_usec/1000);
466 if (hp_sdc_rtc_read_dt(&tv)) {
467 p += sprintf(p, "delay\t\t: READ FAILED!\n");
468 } else {
469 p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
470 tv.tv_sec, (int)tv.tv_usec/1000);
473 if (hp_sdc_rtc_read_ct(&tv)) {
474 p += sprintf(p, "periodic\t: READ FAILED!\n");
475 } else {
476 p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
477 tv.tv_sec, (int)tv.tv_usec/1000);
480 p += sprintf(p,
481 "DST_enable\t: %s\n"
482 "BCD\t\t: %s\n"
483 "24hr\t\t: %s\n"
484 "square_wave\t: %s\n"
485 "alarm_IRQ\t: %s\n"
486 "update_IRQ\t: %s\n"
487 "periodic_IRQ\t: %s\n"
488 "periodic_freq\t: %ld\n"
489 "batt_status\t: %s\n",
490 YN(RTC_DST_EN),
491 NY(RTC_DM_BINARY),
492 YN(RTC_24H),
493 YN(RTC_SQWE),
494 YN(RTC_AIE),
495 YN(RTC_UIE),
496 YN(RTC_PIE),
497 1UL,
498 1 ? "okay" : "dead");
500 return p - buf;
501 #undef YN
502 #undef NY
505 static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
506 int count, int *eof, void *data)
508 int len = hp_sdc_rtc_proc_output (page);
509 if (len <= off+count) *eof = 1;
510 *start = page + off;
511 len -= off;
512 if (len>count) len = count;
513 if (len<0) len = 0;
514 return len;
517 static int hp_sdc_rtc_ioctl(struct file *file,
518 unsigned int cmd, unsigned long arg)
520 #if 1
521 return -EINVAL;
522 #else
524 struct rtc_time wtime;
525 struct timeval ttime;
526 int use_wtime = 0;
528 /* This needs major work. */
530 switch (cmd) {
532 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
533 case RTC_AIE_ON: /* Allow alarm interrupts. */
534 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
535 case RTC_PIE_ON: /* Allow periodic ints */
536 case RTC_UIE_ON: /* Allow ints for RTC updates. */
537 case RTC_UIE_OFF: /* Allow ints for RTC updates. */
539 /* We cannot mask individual user timers and we
540 cannot tell them apart when they occur, so it
541 would be disingenuous to succeed these IOCTLs */
542 return -EINVAL;
544 case RTC_ALM_READ: /* Read the present alarm time */
546 if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
547 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
549 wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600;
550 wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60;
551 wtime.tm_sec = ttime.tv_sec;
553 break;
555 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
557 return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
559 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
562 * The max we can do is 100Hz.
565 if ((arg < 1) || (arg > 100)) return -EINVAL;
566 ttime.tv_sec = 0;
567 ttime.tv_usec = 1000000 / arg;
568 if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
569 hp_sdc_rtc_freq = arg;
570 return 0;
572 case RTC_ALM_SET: /* Store a time into the alarm */
575 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
576 * "don't care" or "match all" for PC timers. The HP SDC
577 * does not support that perk, but it could be emulated fairly
578 * easily. Only the tm_hour, tm_min and tm_sec are used.
579 * We could do it with 10ms accuracy with the HP SDC, if the
580 * rtc interface left us a way to do that.
582 struct hp_sdc_rtc_time alm_tm;
584 if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
585 sizeof(struct hp_sdc_rtc_time)))
586 return -EFAULT;
588 if (alm_tm.tm_hour > 23) return -EINVAL;
589 if (alm_tm.tm_min > 59) return -EINVAL;
590 if (alm_tm.tm_sec > 59) return -EINVAL;
592 ttime.sec = alm_tm.tm_hour * 3600 +
593 alm_tm.tm_min * 60 + alm_tm.tm_sec;
594 ttime.usec = 0;
595 if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
596 return 0;
598 case RTC_RD_TIME: /* Read the time/date from RTC */
600 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
601 break;
603 case RTC_SET_TIME: /* Set the RTC */
605 struct rtc_time hp_sdc_rtc_tm;
606 unsigned char mon, day, hrs, min, sec, leap_yr;
607 unsigned int yrs;
609 if (!capable(CAP_SYS_TIME))
610 return -EACCES;
611 if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
612 sizeof(struct rtc_time)))
613 return -EFAULT;
615 yrs = hp_sdc_rtc_tm.tm_year + 1900;
616 mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
617 day = hp_sdc_rtc_tm.tm_mday;
618 hrs = hp_sdc_rtc_tm.tm_hour;
619 min = hp_sdc_rtc_tm.tm_min;
620 sec = hp_sdc_rtc_tm.tm_sec;
622 if (yrs < 1970)
623 return -EINVAL;
625 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
627 if ((mon > 12) || (day == 0))
628 return -EINVAL;
629 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
630 return -EINVAL;
631 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
632 return -EINVAL;
634 if ((yrs -= eH) > 255) /* They are unsigned */
635 return -EINVAL;
638 return 0;
640 case RTC_EPOCH_READ: /* Read the epoch. */
642 return put_user (epoch, (unsigned long *)arg);
644 case RTC_EPOCH_SET: /* Set the epoch. */
647 * There were no RTC clocks before 1900.
649 if (arg < 1900)
650 return -EINVAL;
651 if (!capable(CAP_SYS_TIME))
652 return -EACCES;
654 epoch = arg;
655 return 0;
657 default:
658 return -EINVAL;
660 return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
661 #endif
664 static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
665 unsigned int cmd, unsigned long arg)
667 int ret;
669 mutex_lock(&hp_sdc_rtc_mutex);
670 ret = hp_sdc_rtc_ioctl(file, cmd, arg);
671 mutex_unlock(&hp_sdc_rtc_mutex);
673 return ret;
677 static const struct file_operations hp_sdc_rtc_fops = {
678 .owner = THIS_MODULE,
679 .llseek = no_llseek,
680 .read = hp_sdc_rtc_read,
681 .poll = hp_sdc_rtc_poll,
682 .unlocked_ioctl = hp_sdc_rtc_unlocked_ioctl,
683 .open = hp_sdc_rtc_open,
684 .fasync = hp_sdc_rtc_fasync,
687 static struct miscdevice hp_sdc_rtc_dev = {
688 .minor = RTC_MINOR,
689 .name = "rtc_HIL",
690 .fops = &hp_sdc_rtc_fops
693 static int __init hp_sdc_rtc_init(void)
695 int ret;
697 #ifdef __mc68000__
698 if (!MACH_IS_HP300)
699 return -ENODEV;
700 #endif
702 sema_init(&i8042tregs, 1);
704 if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
705 return ret;
706 if (misc_register(&hp_sdc_rtc_dev) != 0)
707 printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
709 create_proc_read_entry ("driver/rtc", 0, NULL,
710 hp_sdc_rtc_read_proc, NULL);
712 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
713 "(RTC v " RTC_VERSION ")\n");
715 return 0;
718 static void __exit hp_sdc_rtc_exit(void)
720 remove_proc_entry ("driver/rtc", NULL);
721 misc_deregister(&hp_sdc_rtc_dev);
722 hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
723 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
726 module_init(hp_sdc_rtc_init);
727 module_exit(hp_sdc_rtc_exit);