1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 static int sub_api_initialized
;
63 static struct kmem_cache
*se_cmd_cache
;
64 static struct kmem_cache
*se_sess_cache
;
65 struct kmem_cache
*se_tmr_req_cache
;
66 struct kmem_cache
*se_ua_cache
;
67 struct kmem_cache
*t10_pr_reg_cache
;
68 struct kmem_cache
*t10_alua_lu_gp_cache
;
69 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
70 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
71 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
73 /* Used for transport_dev_get_map_*() */
74 typedef int (*map_func_t
)(struct se_task
*, u32
);
76 static int transport_generic_write_pending(struct se_cmd
*);
77 static int transport_processing_thread(void *param
);
78 static int __transport_execute_tasks(struct se_device
*dev
);
79 static void transport_complete_task_attr(struct se_cmd
*cmd
);
80 static int transport_complete_qf(struct se_cmd
*cmd
);
81 static void transport_handle_queue_full(struct se_cmd
*cmd
,
82 struct se_device
*dev
, int (*qf_callback
)(struct se_cmd
*));
83 static void transport_direct_request_timeout(struct se_cmd
*cmd
);
84 static void transport_free_dev_tasks(struct se_cmd
*cmd
);
85 static u32
transport_allocate_tasks(struct se_cmd
*cmd
,
86 unsigned long long starting_lba
,
87 enum dma_data_direction data_direction
,
88 struct scatterlist
*sgl
, unsigned int nents
);
89 static int transport_generic_get_mem(struct se_cmd
*cmd
);
90 static int transport_generic_remove(struct se_cmd
*cmd
,
91 int session_reinstatement
);
92 static void transport_release_fe_cmd(struct se_cmd
*cmd
);
93 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
94 struct se_queue_obj
*qobj
);
95 static int transport_set_sense_codes(struct se_cmd
*cmd
, u8 asc
, u8 ascq
);
96 static void transport_stop_all_task_timers(struct se_cmd
*cmd
);
98 int init_se_kmem_caches(void)
100 se_cmd_cache
= kmem_cache_create("se_cmd_cache",
101 sizeof(struct se_cmd
), __alignof__(struct se_cmd
), 0, NULL
);
103 pr_err("kmem_cache_create for struct se_cmd failed\n");
106 se_tmr_req_cache
= kmem_cache_create("se_tmr_cache",
107 sizeof(struct se_tmr_req
), __alignof__(struct se_tmr_req
),
109 if (!se_tmr_req_cache
) {
110 pr_err("kmem_cache_create() for struct se_tmr_req"
114 se_sess_cache
= kmem_cache_create("se_sess_cache",
115 sizeof(struct se_session
), __alignof__(struct se_session
),
117 if (!se_sess_cache
) {
118 pr_err("kmem_cache_create() for struct se_session"
122 se_ua_cache
= kmem_cache_create("se_ua_cache",
123 sizeof(struct se_ua
), __alignof__(struct se_ua
),
126 pr_err("kmem_cache_create() for struct se_ua failed\n");
129 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
130 sizeof(struct t10_pr_registration
),
131 __alignof__(struct t10_pr_registration
), 0, NULL
);
132 if (!t10_pr_reg_cache
) {
133 pr_err("kmem_cache_create() for struct t10_pr_registration"
137 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
138 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
140 if (!t10_alua_lu_gp_cache
) {
141 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
145 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
146 sizeof(struct t10_alua_lu_gp_member
),
147 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
148 if (!t10_alua_lu_gp_mem_cache
) {
149 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
153 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
154 sizeof(struct t10_alua_tg_pt_gp
),
155 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
156 if (!t10_alua_tg_pt_gp_cache
) {
157 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
161 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
162 "t10_alua_tg_pt_gp_mem_cache",
163 sizeof(struct t10_alua_tg_pt_gp_member
),
164 __alignof__(struct t10_alua_tg_pt_gp_member
),
166 if (!t10_alua_tg_pt_gp_mem_cache
) {
167 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
175 kmem_cache_destroy(se_cmd_cache
);
176 if (se_tmr_req_cache
)
177 kmem_cache_destroy(se_tmr_req_cache
);
179 kmem_cache_destroy(se_sess_cache
);
181 kmem_cache_destroy(se_ua_cache
);
182 if (t10_pr_reg_cache
)
183 kmem_cache_destroy(t10_pr_reg_cache
);
184 if (t10_alua_lu_gp_cache
)
185 kmem_cache_destroy(t10_alua_lu_gp_cache
);
186 if (t10_alua_lu_gp_mem_cache
)
187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
188 if (t10_alua_tg_pt_gp_cache
)
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
190 if (t10_alua_tg_pt_gp_mem_cache
)
191 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
195 void release_se_kmem_caches(void)
197 kmem_cache_destroy(se_cmd_cache
);
198 kmem_cache_destroy(se_tmr_req_cache
);
199 kmem_cache_destroy(se_sess_cache
);
200 kmem_cache_destroy(se_ua_cache
);
201 kmem_cache_destroy(t10_pr_reg_cache
);
202 kmem_cache_destroy(t10_alua_lu_gp_cache
);
203 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
204 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
205 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
208 /* This code ensures unique mib indexes are handed out. */
209 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
210 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
213 * Allocate a new row index for the entry type specified
215 u32
scsi_get_new_index(scsi_index_t type
)
219 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
221 spin_lock(&scsi_mib_index_lock
);
222 new_index
= ++scsi_mib_index
[type
];
223 spin_unlock(&scsi_mib_index_lock
);
228 void transport_init_queue_obj(struct se_queue_obj
*qobj
)
230 atomic_set(&qobj
->queue_cnt
, 0);
231 INIT_LIST_HEAD(&qobj
->qobj_list
);
232 init_waitqueue_head(&qobj
->thread_wq
);
233 spin_lock_init(&qobj
->cmd_queue_lock
);
235 EXPORT_SYMBOL(transport_init_queue_obj
);
237 static int transport_subsystem_reqmods(void)
241 ret
= request_module("target_core_iblock");
243 pr_err("Unable to load target_core_iblock\n");
245 ret
= request_module("target_core_file");
247 pr_err("Unable to load target_core_file\n");
249 ret
= request_module("target_core_pscsi");
251 pr_err("Unable to load target_core_pscsi\n");
253 ret
= request_module("target_core_stgt");
255 pr_err("Unable to load target_core_stgt\n");
260 int transport_subsystem_check_init(void)
264 if (sub_api_initialized
)
267 * Request the loading of known TCM subsystem plugins..
269 ret
= transport_subsystem_reqmods();
273 sub_api_initialized
= 1;
277 struct se_session
*transport_init_session(void)
279 struct se_session
*se_sess
;
281 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
283 pr_err("Unable to allocate struct se_session from"
285 return ERR_PTR(-ENOMEM
);
287 INIT_LIST_HEAD(&se_sess
->sess_list
);
288 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
292 EXPORT_SYMBOL(transport_init_session
);
295 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
297 void __transport_register_session(
298 struct se_portal_group
*se_tpg
,
299 struct se_node_acl
*se_nacl
,
300 struct se_session
*se_sess
,
301 void *fabric_sess_ptr
)
303 unsigned char buf
[PR_REG_ISID_LEN
];
305 se_sess
->se_tpg
= se_tpg
;
306 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
308 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
310 * Only set for struct se_session's that will actually be moving I/O.
311 * eg: *NOT* discovery sessions.
315 * If the fabric module supports an ISID based TransportID,
316 * save this value in binary from the fabric I_T Nexus now.
318 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
319 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
320 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
321 &buf
[0], PR_REG_ISID_LEN
);
322 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
324 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
326 * The se_nacl->nacl_sess pointer will be set to the
327 * last active I_T Nexus for each struct se_node_acl.
329 se_nacl
->nacl_sess
= se_sess
;
331 list_add_tail(&se_sess
->sess_acl_list
,
332 &se_nacl
->acl_sess_list
);
333 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
335 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
337 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
338 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
340 EXPORT_SYMBOL(__transport_register_session
);
342 void transport_register_session(
343 struct se_portal_group
*se_tpg
,
344 struct se_node_acl
*se_nacl
,
345 struct se_session
*se_sess
,
346 void *fabric_sess_ptr
)
348 spin_lock_bh(&se_tpg
->session_lock
);
349 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
350 spin_unlock_bh(&se_tpg
->session_lock
);
352 EXPORT_SYMBOL(transport_register_session
);
354 void transport_deregister_session_configfs(struct se_session
*se_sess
)
356 struct se_node_acl
*se_nacl
;
359 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
361 se_nacl
= se_sess
->se_node_acl
;
363 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
364 list_del(&se_sess
->sess_acl_list
);
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
370 if (list_empty(&se_nacl
->acl_sess_list
))
371 se_nacl
->nacl_sess
= NULL
;
373 se_nacl
->nacl_sess
= container_of(
374 se_nacl
->acl_sess_list
.prev
,
375 struct se_session
, sess_acl_list
);
377 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
380 EXPORT_SYMBOL(transport_deregister_session_configfs
);
382 void transport_free_session(struct se_session
*se_sess
)
384 kmem_cache_free(se_sess_cache
, se_sess
);
386 EXPORT_SYMBOL(transport_free_session
);
388 void transport_deregister_session(struct se_session
*se_sess
)
390 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
391 struct se_node_acl
*se_nacl
;
395 transport_free_session(se_sess
);
399 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
400 list_del(&se_sess
->sess_list
);
401 se_sess
->se_tpg
= NULL
;
402 se_sess
->fabric_sess_ptr
= NULL
;
403 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
406 * Determine if we need to do extra work for this initiator node's
407 * struct se_node_acl if it had been previously dynamically generated.
409 se_nacl
= se_sess
->se_node_acl
;
411 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
412 if (se_nacl
->dynamic_node_acl
) {
413 if (!se_tpg
->se_tpg_tfo
->tpg_check_demo_mode_cache(
415 list_del(&se_nacl
->acl_list
);
416 se_tpg
->num_node_acls
--;
417 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
419 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
420 core_free_device_list_for_node(se_nacl
, se_tpg
);
421 se_tpg
->se_tpg_tfo
->tpg_release_fabric_acl(se_tpg
,
423 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
426 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
429 transport_free_session(se_sess
);
431 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
432 se_tpg
->se_tpg_tfo
->get_fabric_name());
434 EXPORT_SYMBOL(transport_deregister_session
);
437 * Called with cmd->t_state_lock held.
439 static void transport_all_task_dev_remove_state(struct se_cmd
*cmd
)
441 struct se_device
*dev
;
442 struct se_task
*task
;
445 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
450 if (atomic_read(&task
->task_active
))
453 if (!atomic_read(&task
->task_state_active
))
456 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
457 list_del(&task
->t_state_list
);
458 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
459 cmd
->se_tfo
->get_task_tag(cmd
), dev
, task
);
460 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
462 atomic_set(&task
->task_state_active
, 0);
463 atomic_dec(&cmd
->t_task_cdbs_ex_left
);
467 /* transport_cmd_check_stop():
469 * 'transport_off = 1' determines if t_transport_active should be cleared.
470 * 'transport_off = 2' determines if task_dev_state should be removed.
472 * A non-zero u8 t_state sets cmd->t_state.
473 * Returns 1 when command is stopped, else 0.
475 static int transport_cmd_check_stop(
482 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
484 * Determine if IOCTL context caller in requesting the stopping of this
485 * command for LUN shutdown purposes.
487 if (atomic_read(&cmd
->transport_lun_stop
)) {
488 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
489 " == TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
490 cmd
->se_tfo
->get_task_tag(cmd
));
492 cmd
->deferred_t_state
= cmd
->t_state
;
493 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
494 atomic_set(&cmd
->t_transport_active
, 0);
495 if (transport_off
== 2)
496 transport_all_task_dev_remove_state(cmd
);
497 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
499 complete(&cmd
->transport_lun_stop_comp
);
503 * Determine if frontend context caller is requesting the stopping of
504 * this command for frontend exceptions.
506 if (atomic_read(&cmd
->t_transport_stop
)) {
507 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
508 " TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
509 cmd
->se_tfo
->get_task_tag(cmd
));
511 cmd
->deferred_t_state
= cmd
->t_state
;
512 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
513 if (transport_off
== 2)
514 transport_all_task_dev_remove_state(cmd
);
517 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
520 if (transport_off
== 2)
522 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
524 complete(&cmd
->t_transport_stop_comp
);
528 atomic_set(&cmd
->t_transport_active
, 0);
529 if (transport_off
== 2) {
530 transport_all_task_dev_remove_state(cmd
);
532 * Clear struct se_cmd->se_lun before the transport_off == 2
533 * handoff to fabric module.
537 * Some fabric modules like tcm_loop can release
538 * their internally allocated I/O reference now and
541 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
542 spin_unlock_irqrestore(
543 &cmd
->t_state_lock
, flags
);
545 cmd
->se_tfo
->check_stop_free(cmd
);
549 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
553 cmd
->t_state
= t_state
;
554 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
559 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
561 return transport_cmd_check_stop(cmd
, 2, 0);
564 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
566 struct se_lun
*lun
= cmd
->se_lun
;
572 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
573 if (!atomic_read(&cmd
->transport_dev_active
)) {
574 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
577 atomic_set(&cmd
->transport_dev_active
, 0);
578 transport_all_task_dev_remove_state(cmd
);
579 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
583 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
584 if (atomic_read(&cmd
->transport_lun_active
)) {
585 list_del(&cmd
->se_lun_node
);
586 atomic_set(&cmd
->transport_lun_active
, 0);
588 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
589 cmd
->se_tfo
->get_task_tag(cmd
), lun
->unpacked_lun
);
592 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
595 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
597 transport_remove_cmd_from_queue(cmd
, &cmd
->se_dev
->dev_queue_obj
);
598 transport_lun_remove_cmd(cmd
);
600 if (transport_cmd_check_stop_to_fabric(cmd
))
603 transport_generic_remove(cmd
, 0);
606 void transport_cmd_finish_abort_tmr(struct se_cmd
*cmd
)
608 transport_remove_cmd_from_queue(cmd
, &cmd
->se_dev
->dev_queue_obj
);
610 if (transport_cmd_check_stop_to_fabric(cmd
))
613 transport_generic_remove(cmd
, 0);
616 static void transport_add_cmd_to_queue(
620 struct se_device
*dev
= cmd
->se_dev
;
621 struct se_queue_obj
*qobj
= &dev
->dev_queue_obj
;
624 INIT_LIST_HEAD(&cmd
->se_queue_node
);
627 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
628 cmd
->t_state
= t_state
;
629 atomic_set(&cmd
->t_transport_active
, 1);
630 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
633 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
634 if (cmd
->se_cmd_flags
& SCF_EMULATE_QUEUE_FULL
) {
635 cmd
->se_cmd_flags
&= ~SCF_EMULATE_QUEUE_FULL
;
636 list_add(&cmd
->se_queue_node
, &qobj
->qobj_list
);
638 list_add_tail(&cmd
->se_queue_node
, &qobj
->qobj_list
);
639 atomic_inc(&cmd
->t_transport_queue_active
);
640 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
642 atomic_inc(&qobj
->queue_cnt
);
643 wake_up_interruptible(&qobj
->thread_wq
);
646 static struct se_cmd
*
647 transport_get_cmd_from_queue(struct se_queue_obj
*qobj
)
652 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
653 if (list_empty(&qobj
->qobj_list
)) {
654 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
657 cmd
= list_first_entry(&qobj
->qobj_list
, struct se_cmd
, se_queue_node
);
659 atomic_dec(&cmd
->t_transport_queue_active
);
661 list_del(&cmd
->se_queue_node
);
662 atomic_dec(&qobj
->queue_cnt
);
663 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
668 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
669 struct se_queue_obj
*qobj
)
674 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
675 if (!atomic_read(&cmd
->t_transport_queue_active
)) {
676 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
680 list_for_each_entry(t
, &qobj
->qobj_list
, se_queue_node
)
682 atomic_dec(&cmd
->t_transport_queue_active
);
683 atomic_dec(&qobj
->queue_cnt
);
684 list_del(&cmd
->se_queue_node
);
687 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
689 if (atomic_read(&cmd
->t_transport_queue_active
)) {
690 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
691 cmd
->se_tfo
->get_task_tag(cmd
),
692 atomic_read(&cmd
->t_transport_queue_active
));
697 * Completion function used by TCM subsystem plugins (such as FILEIO)
698 * for queueing up response from struct se_subsystem_api->do_task()
700 void transport_complete_sync_cache(struct se_cmd
*cmd
, int good
)
702 struct se_task
*task
= list_entry(cmd
->t_task_list
.next
,
703 struct se_task
, t_list
);
706 cmd
->scsi_status
= SAM_STAT_GOOD
;
707 task
->task_scsi_status
= GOOD
;
709 task
->task_scsi_status
= SAM_STAT_CHECK_CONDITION
;
710 task
->task_error_status
= PYX_TRANSPORT_ILLEGAL_REQUEST
;
711 task
->task_se_cmd
->transport_error_status
=
712 PYX_TRANSPORT_ILLEGAL_REQUEST
;
715 transport_complete_task(task
, good
);
717 EXPORT_SYMBOL(transport_complete_sync_cache
);
719 /* transport_complete_task():
721 * Called from interrupt and non interrupt context depending
722 * on the transport plugin.
724 void transport_complete_task(struct se_task
*task
, int success
)
726 struct se_cmd
*cmd
= task
->task_se_cmd
;
727 struct se_device
*dev
= task
->se_dev
;
731 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task
,
732 cmd
->t_task_cdb
[0], dev
);
735 atomic_inc(&dev
->depth_left
);
737 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
738 atomic_set(&task
->task_active
, 0);
741 * See if any sense data exists, if so set the TASK_SENSE flag.
742 * Also check for any other post completion work that needs to be
743 * done by the plugins.
745 if (dev
&& dev
->transport
->transport_complete
) {
746 if (dev
->transport
->transport_complete(task
) != 0) {
747 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
748 task
->task_sense
= 1;
754 * See if we are waiting for outstanding struct se_task
755 * to complete for an exception condition
757 if (atomic_read(&task
->task_stop
)) {
759 * Decrement cmd->t_se_count if this task had
760 * previously thrown its timeout exception handler.
762 if (atomic_read(&task
->task_timeout
)) {
763 atomic_dec(&cmd
->t_se_count
);
764 atomic_set(&task
->task_timeout
, 0);
766 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
768 complete(&task
->task_stop_comp
);
772 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
773 * left counter to determine when the struct se_cmd is ready to be queued to
774 * the processing thread.
776 if (atomic_read(&task
->task_timeout
)) {
777 if (!atomic_dec_and_test(
778 &cmd
->t_task_cdbs_timeout_left
)) {
779 spin_unlock_irqrestore(&cmd
->t_state_lock
,
783 t_state
= TRANSPORT_COMPLETE_TIMEOUT
;
784 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
786 transport_add_cmd_to_queue(cmd
, t_state
);
789 atomic_dec(&cmd
->t_task_cdbs_timeout_left
);
792 * Decrement the outstanding t_task_cdbs_left count. The last
793 * struct se_task from struct se_cmd will complete itself into the
794 * device queue depending upon int success.
796 if (!atomic_dec_and_test(&cmd
->t_task_cdbs_left
)) {
798 cmd
->t_tasks_failed
= 1;
800 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
804 if (!success
|| cmd
->t_tasks_failed
) {
805 t_state
= TRANSPORT_COMPLETE_FAILURE
;
806 if (!task
->task_error_status
) {
807 task
->task_error_status
=
808 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
809 cmd
->transport_error_status
=
810 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
813 atomic_set(&cmd
->t_transport_complete
, 1);
814 t_state
= TRANSPORT_COMPLETE_OK
;
816 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
818 transport_add_cmd_to_queue(cmd
, t_state
);
820 EXPORT_SYMBOL(transport_complete_task
);
823 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
824 * struct se_task list are ready to be added to the active execution list
827 * Called with se_dev_t->execute_task_lock called.
829 static inline int transport_add_task_check_sam_attr(
830 struct se_task
*task
,
831 struct se_task
*task_prev
,
832 struct se_device
*dev
)
835 * No SAM Task attribute emulation enabled, add to tail of
838 if (dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
) {
839 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
843 * HEAD_OF_QUEUE attribute for received CDB, which means
844 * the first task that is associated with a struct se_cmd goes to
845 * head of the struct se_device->execute_task_list, and task_prev
846 * after that for each subsequent task
848 if (task
->task_se_cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
849 list_add(&task
->t_execute_list
,
850 (task_prev
!= NULL
) ?
851 &task_prev
->t_execute_list
:
852 &dev
->execute_task_list
);
854 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
855 " in execution queue\n",
856 task
->task_se_cmd
->t_task_cdb
[0]);
860 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
861 * transitioned from Dermant -> Active state, and are added to the end
862 * of the struct se_device->execute_task_list
864 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
868 /* __transport_add_task_to_execute_queue():
870 * Called with se_dev_t->execute_task_lock called.
872 static void __transport_add_task_to_execute_queue(
873 struct se_task
*task
,
874 struct se_task
*task_prev
,
875 struct se_device
*dev
)
879 head_of_queue
= transport_add_task_check_sam_attr(task
, task_prev
, dev
);
880 atomic_inc(&dev
->execute_tasks
);
882 if (atomic_read(&task
->task_state_active
))
885 * Determine if this task needs to go to HEAD_OF_QUEUE for the
886 * state list as well. Running with SAM Task Attribute emulation
887 * will always return head_of_queue == 0 here
890 list_add(&task
->t_state_list
, (task_prev
) ?
891 &task_prev
->t_state_list
:
892 &dev
->state_task_list
);
894 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
896 atomic_set(&task
->task_state_active
, 1);
898 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
899 task
->task_se_cmd
->se_tfo
->get_task_tag(task
->task_se_cmd
),
903 static void transport_add_tasks_to_state_queue(struct se_cmd
*cmd
)
905 struct se_device
*dev
;
906 struct se_task
*task
;
909 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
910 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
913 if (atomic_read(&task
->task_state_active
))
916 spin_lock(&dev
->execute_task_lock
);
917 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
918 atomic_set(&task
->task_state_active
, 1);
920 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
921 task
->task_se_cmd
->se_tfo
->get_task_tag(
922 task
->task_se_cmd
), task
, dev
);
924 spin_unlock(&dev
->execute_task_lock
);
926 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
929 static void transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
931 struct se_device
*dev
= cmd
->se_dev
;
932 struct se_task
*task
, *task_prev
= NULL
;
935 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
936 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
937 if (atomic_read(&task
->task_execute_queue
))
940 * __transport_add_task_to_execute_queue() handles the
941 * SAM Task Attribute emulation if enabled
943 __transport_add_task_to_execute_queue(task
, task_prev
, dev
);
944 atomic_set(&task
->task_execute_queue
, 1);
947 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
950 /* transport_remove_task_from_execute_queue():
954 void transport_remove_task_from_execute_queue(
955 struct se_task
*task
,
956 struct se_device
*dev
)
960 if (atomic_read(&task
->task_execute_queue
) == 0) {
965 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
966 list_del(&task
->t_execute_list
);
967 atomic_set(&task
->task_execute_queue
, 0);
968 atomic_dec(&dev
->execute_tasks
);
969 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
973 * Handle QUEUE_FULL / -EAGAIN status
976 static void target_qf_do_work(struct work_struct
*work
)
978 struct se_device
*dev
= container_of(work
, struct se_device
,
980 struct se_cmd
*cmd
, *cmd_tmp
;
982 spin_lock_irq(&dev
->qf_cmd_lock
);
983 list_for_each_entry_safe(cmd
, cmd_tmp
, &dev
->qf_cmd_list
, se_qf_node
) {
985 list_del(&cmd
->se_qf_node
);
986 atomic_dec(&dev
->dev_qf_count
);
987 smp_mb__after_atomic_dec();
988 spin_unlock_irq(&dev
->qf_cmd_lock
);
990 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
991 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
992 (cmd
->t_state
== TRANSPORT_COMPLETE_OK
) ? "COMPLETE_OK" :
993 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
996 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
997 * has been added to head of queue
999 transport_add_cmd_to_queue(cmd
, cmd
->t_state
);
1001 spin_lock_irq(&dev
->qf_cmd_lock
);
1003 spin_unlock_irq(&dev
->qf_cmd_lock
);
1006 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
1008 switch (cmd
->data_direction
) {
1011 case DMA_FROM_DEVICE
:
1015 case DMA_BIDIRECTIONAL
:
1024 void transport_dump_dev_state(
1025 struct se_device
*dev
,
1029 *bl
+= sprintf(b
+ *bl
, "Status: ");
1030 switch (dev
->dev_status
) {
1031 case TRANSPORT_DEVICE_ACTIVATED
:
1032 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
1034 case TRANSPORT_DEVICE_DEACTIVATED
:
1035 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
1037 case TRANSPORT_DEVICE_SHUTDOWN
:
1038 *bl
+= sprintf(b
+ *bl
, "SHUTDOWN");
1040 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED
:
1041 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED
:
1042 *bl
+= sprintf(b
+ *bl
, "OFFLINE");
1045 *bl
+= sprintf(b
+ *bl
, "UNKNOWN=%d", dev
->dev_status
);
1049 *bl
+= sprintf(b
+ *bl
, " Execute/Left/Max Queue Depth: %d/%d/%d",
1050 atomic_read(&dev
->execute_tasks
), atomic_read(&dev
->depth_left
),
1052 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u MaxSectors: %u\n",
1053 dev
->se_sub_dev
->se_dev_attrib
.block_size
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
1054 *bl
+= sprintf(b
+ *bl
, " ");
1057 /* transport_release_all_cmds():
1061 static void transport_release_all_cmds(struct se_device
*dev
)
1063 struct se_cmd
*cmd
, *tcmd
;
1064 int bug_out
= 0, t_state
;
1065 unsigned long flags
;
1067 spin_lock_irqsave(&dev
->dev_queue_obj
.cmd_queue_lock
, flags
);
1068 list_for_each_entry_safe(cmd
, tcmd
, &dev
->dev_queue_obj
.qobj_list
,
1070 t_state
= cmd
->t_state
;
1071 list_del(&cmd
->se_queue_node
);
1072 spin_unlock_irqrestore(&dev
->dev_queue_obj
.cmd_queue_lock
,
1075 pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1076 " t_state: %u directly\n",
1077 cmd
->se_tfo
->get_task_tag(cmd
),
1078 cmd
->se_tfo
->get_cmd_state(cmd
), t_state
);
1080 transport_release_fe_cmd(cmd
);
1083 spin_lock_irqsave(&dev
->dev_queue_obj
.cmd_queue_lock
, flags
);
1085 spin_unlock_irqrestore(&dev
->dev_queue_obj
.cmd_queue_lock
, flags
);
1092 void transport_dump_vpd_proto_id(
1093 struct t10_vpd
*vpd
,
1094 unsigned char *p_buf
,
1097 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1100 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1101 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1103 switch (vpd
->protocol_identifier
) {
1105 sprintf(buf
+len
, "Fibre Channel\n");
1108 sprintf(buf
+len
, "Parallel SCSI\n");
1111 sprintf(buf
+len
, "SSA\n");
1114 sprintf(buf
+len
, "IEEE 1394\n");
1117 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1121 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1124 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1127 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1131 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1134 sprintf(buf
+len
, "Unknown 0x%02x\n",
1135 vpd
->protocol_identifier
);
1140 strncpy(p_buf
, buf
, p_buf_len
);
1142 pr_debug("%s", buf
);
1146 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1149 * Check if the Protocol Identifier Valid (PIV) bit is set..
1151 * from spc3r23.pdf section 7.5.1
1153 if (page_83
[1] & 0x80) {
1154 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1155 vpd
->protocol_identifier_set
= 1;
1156 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1159 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1161 int transport_dump_vpd_assoc(
1162 struct t10_vpd
*vpd
,
1163 unsigned char *p_buf
,
1166 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1170 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1171 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1173 switch (vpd
->association
) {
1175 sprintf(buf
+len
, "addressed logical unit\n");
1178 sprintf(buf
+len
, "target port\n");
1181 sprintf(buf
+len
, "SCSI target device\n");
1184 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1190 strncpy(p_buf
, buf
, p_buf_len
);
1192 pr_debug("%s", buf
);
1197 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1200 * The VPD identification association..
1202 * from spc3r23.pdf Section 7.6.3.1 Table 297
1204 vpd
->association
= (page_83
[1] & 0x30);
1205 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1207 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1209 int transport_dump_vpd_ident_type(
1210 struct t10_vpd
*vpd
,
1211 unsigned char *p_buf
,
1214 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1218 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1219 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1221 switch (vpd
->device_identifier_type
) {
1223 sprintf(buf
+len
, "Vendor specific\n");
1226 sprintf(buf
+len
, "T10 Vendor ID based\n");
1229 sprintf(buf
+len
, "EUI-64 based\n");
1232 sprintf(buf
+len
, "NAA\n");
1235 sprintf(buf
+len
, "Relative target port identifier\n");
1238 sprintf(buf
+len
, "SCSI name string\n");
1241 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1242 vpd
->device_identifier_type
);
1248 if (p_buf_len
< strlen(buf
)+1)
1250 strncpy(p_buf
, buf
, p_buf_len
);
1252 pr_debug("%s", buf
);
1258 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1261 * The VPD identifier type..
1263 * from spc3r23.pdf Section 7.6.3.1 Table 298
1265 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1266 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1268 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1270 int transport_dump_vpd_ident(
1271 struct t10_vpd
*vpd
,
1272 unsigned char *p_buf
,
1275 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1278 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1280 switch (vpd
->device_identifier_code_set
) {
1281 case 0x01: /* Binary */
1282 sprintf(buf
, "T10 VPD Binary Device Identifier: %s\n",
1283 &vpd
->device_identifier
[0]);
1285 case 0x02: /* ASCII */
1286 sprintf(buf
, "T10 VPD ASCII Device Identifier: %s\n",
1287 &vpd
->device_identifier
[0]);
1289 case 0x03: /* UTF-8 */
1290 sprintf(buf
, "T10 VPD UTF-8 Device Identifier: %s\n",
1291 &vpd
->device_identifier
[0]);
1294 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1295 " 0x%02x", vpd
->device_identifier_code_set
);
1301 strncpy(p_buf
, buf
, p_buf_len
);
1303 pr_debug("%s", buf
);
1309 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1311 static const char hex_str
[] = "0123456789abcdef";
1312 int j
= 0, i
= 4; /* offset to start of the identifer */
1315 * The VPD Code Set (encoding)
1317 * from spc3r23.pdf Section 7.6.3.1 Table 296
1319 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1320 switch (vpd
->device_identifier_code_set
) {
1321 case 0x01: /* Binary */
1322 vpd
->device_identifier
[j
++] =
1323 hex_str
[vpd
->device_identifier_type
];
1324 while (i
< (4 + page_83
[3])) {
1325 vpd
->device_identifier
[j
++] =
1326 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1327 vpd
->device_identifier
[j
++] =
1328 hex_str
[page_83
[i
] & 0x0f];
1332 case 0x02: /* ASCII */
1333 case 0x03: /* UTF-8 */
1334 while (i
< (4 + page_83
[3]))
1335 vpd
->device_identifier
[j
++] = page_83
[i
++];
1341 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1343 EXPORT_SYMBOL(transport_set_vpd_ident
);
1345 static void core_setup_task_attr_emulation(struct se_device
*dev
)
1348 * If this device is from Target_Core_Mod/pSCSI, disable the
1349 * SAM Task Attribute emulation.
1351 * This is currently not available in upsream Linux/SCSI Target
1352 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1354 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
) {
1355 dev
->dev_task_attr_type
= SAM_TASK_ATTR_PASSTHROUGH
;
1359 dev
->dev_task_attr_type
= SAM_TASK_ATTR_EMULATED
;
1360 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1361 " device\n", dev
->transport
->name
,
1362 dev
->transport
->get_device_rev(dev
));
1365 static void scsi_dump_inquiry(struct se_device
*dev
)
1367 struct t10_wwn
*wwn
= &dev
->se_sub_dev
->t10_wwn
;
1370 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1372 pr_debug(" Vendor: ");
1373 for (i
= 0; i
< 8; i
++)
1374 if (wwn
->vendor
[i
] >= 0x20)
1375 pr_debug("%c", wwn
->vendor
[i
]);
1379 pr_debug(" Model: ");
1380 for (i
= 0; i
< 16; i
++)
1381 if (wwn
->model
[i
] >= 0x20)
1382 pr_debug("%c", wwn
->model
[i
]);
1386 pr_debug(" Revision: ");
1387 for (i
= 0; i
< 4; i
++)
1388 if (wwn
->revision
[i
] >= 0x20)
1389 pr_debug("%c", wwn
->revision
[i
]);
1395 device_type
= dev
->transport
->get_device_type(dev
);
1396 pr_debug(" Type: %s ", scsi_device_type(device_type
));
1397 pr_debug(" ANSI SCSI revision: %02x\n",
1398 dev
->transport
->get_device_rev(dev
));
1401 struct se_device
*transport_add_device_to_core_hba(
1403 struct se_subsystem_api
*transport
,
1404 struct se_subsystem_dev
*se_dev
,
1406 void *transport_dev
,
1407 struct se_dev_limits
*dev_limits
,
1408 const char *inquiry_prod
,
1409 const char *inquiry_rev
)
1412 struct se_device
*dev
;
1414 dev
= kzalloc(sizeof(struct se_device
), GFP_KERNEL
);
1416 pr_err("Unable to allocate memory for se_dev_t\n");
1420 transport_init_queue_obj(&dev
->dev_queue_obj
);
1421 dev
->dev_flags
= device_flags
;
1422 dev
->dev_status
|= TRANSPORT_DEVICE_DEACTIVATED
;
1423 dev
->dev_ptr
= transport_dev
;
1425 dev
->se_sub_dev
= se_dev
;
1426 dev
->transport
= transport
;
1427 atomic_set(&dev
->active_cmds
, 0);
1428 INIT_LIST_HEAD(&dev
->dev_list
);
1429 INIT_LIST_HEAD(&dev
->dev_sep_list
);
1430 INIT_LIST_HEAD(&dev
->dev_tmr_list
);
1431 INIT_LIST_HEAD(&dev
->execute_task_list
);
1432 INIT_LIST_HEAD(&dev
->delayed_cmd_list
);
1433 INIT_LIST_HEAD(&dev
->ordered_cmd_list
);
1434 INIT_LIST_HEAD(&dev
->state_task_list
);
1435 INIT_LIST_HEAD(&dev
->qf_cmd_list
);
1436 spin_lock_init(&dev
->execute_task_lock
);
1437 spin_lock_init(&dev
->delayed_cmd_lock
);
1438 spin_lock_init(&dev
->ordered_cmd_lock
);
1439 spin_lock_init(&dev
->state_task_lock
);
1440 spin_lock_init(&dev
->dev_alua_lock
);
1441 spin_lock_init(&dev
->dev_reservation_lock
);
1442 spin_lock_init(&dev
->dev_status_lock
);
1443 spin_lock_init(&dev
->dev_status_thr_lock
);
1444 spin_lock_init(&dev
->se_port_lock
);
1445 spin_lock_init(&dev
->se_tmr_lock
);
1446 spin_lock_init(&dev
->qf_cmd_lock
);
1448 dev
->queue_depth
= dev_limits
->queue_depth
;
1449 atomic_set(&dev
->depth_left
, dev
->queue_depth
);
1450 atomic_set(&dev
->dev_ordered_id
, 0);
1452 se_dev_set_default_attribs(dev
, dev_limits
);
1454 dev
->dev_index
= scsi_get_new_index(SCSI_DEVICE_INDEX
);
1455 dev
->creation_time
= get_jiffies_64();
1456 spin_lock_init(&dev
->stats_lock
);
1458 spin_lock(&hba
->device_lock
);
1459 list_add_tail(&dev
->dev_list
, &hba
->hba_dev_list
);
1461 spin_unlock(&hba
->device_lock
);
1463 * Setup the SAM Task Attribute emulation for struct se_device
1465 core_setup_task_attr_emulation(dev
);
1467 * Force PR and ALUA passthrough emulation with internal object use.
1469 force_pt
= (hba
->hba_flags
& HBA_FLAGS_INTERNAL_USE
);
1471 * Setup the Reservations infrastructure for struct se_device
1473 core_setup_reservations(dev
, force_pt
);
1475 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1477 if (core_setup_alua(dev
, force_pt
) < 0)
1481 * Startup the struct se_device processing thread
1483 dev
->process_thread
= kthread_run(transport_processing_thread
, dev
,
1484 "LIO_%s", dev
->transport
->name
);
1485 if (IS_ERR(dev
->process_thread
)) {
1486 pr_err("Unable to create kthread: LIO_%s\n",
1487 dev
->transport
->name
);
1491 * Setup work_queue for QUEUE_FULL
1493 INIT_WORK(&dev
->qf_work_queue
, target_qf_do_work
);
1495 * Preload the initial INQUIRY const values if we are doing
1496 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1497 * passthrough because this is being provided by the backend LLD.
1498 * This is required so that transport_get_inquiry() copies these
1499 * originals once back into DEV_T10_WWN(dev) for the virtual device
1502 if (dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
1503 if (!inquiry_prod
|| !inquiry_rev
) {
1504 pr_err("All non TCM/pSCSI plugins require"
1505 " INQUIRY consts\n");
1509 strncpy(&dev
->se_sub_dev
->t10_wwn
.vendor
[0], "LIO-ORG", 8);
1510 strncpy(&dev
->se_sub_dev
->t10_wwn
.model
[0], inquiry_prod
, 16);
1511 strncpy(&dev
->se_sub_dev
->t10_wwn
.revision
[0], inquiry_rev
, 4);
1513 scsi_dump_inquiry(dev
);
1517 kthread_stop(dev
->process_thread
);
1519 spin_lock(&hba
->device_lock
);
1520 list_del(&dev
->dev_list
);
1522 spin_unlock(&hba
->device_lock
);
1524 se_release_vpd_for_dev(dev
);
1530 EXPORT_SYMBOL(transport_add_device_to_core_hba
);
1532 /* transport_generic_prepare_cdb():
1534 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1535 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1536 * The point of this is since we are mapping iSCSI LUNs to
1537 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1538 * devices and HBAs for a loop.
1540 static inline void transport_generic_prepare_cdb(
1544 case READ_10
: /* SBC - RDProtect */
1545 case READ_12
: /* SBC - RDProtect */
1546 case READ_16
: /* SBC - RDProtect */
1547 case SEND_DIAGNOSTIC
: /* SPC - SELF-TEST Code */
1548 case VERIFY
: /* SBC - VRProtect */
1549 case VERIFY_16
: /* SBC - VRProtect */
1550 case WRITE_VERIFY
: /* SBC - VRProtect */
1551 case WRITE_VERIFY_12
: /* SBC - VRProtect */
1554 cdb
[1] &= 0x1f; /* clear logical unit number */
1559 static struct se_task
*
1560 transport_generic_get_task(struct se_cmd
*cmd
,
1561 enum dma_data_direction data_direction
)
1563 struct se_task
*task
;
1564 struct se_device
*dev
= cmd
->se_dev
;
1566 task
= dev
->transport
->alloc_task(cmd
->t_task_cdb
);
1568 pr_err("Unable to allocate struct se_task\n");
1572 INIT_LIST_HEAD(&task
->t_list
);
1573 INIT_LIST_HEAD(&task
->t_execute_list
);
1574 INIT_LIST_HEAD(&task
->t_state_list
);
1575 init_completion(&task
->task_stop_comp
);
1576 task
->task_se_cmd
= cmd
;
1578 task
->task_data_direction
= data_direction
;
1583 static int transport_generic_cmd_sequencer(struct se_cmd
*, unsigned char *);
1586 * Used by fabric modules containing a local struct se_cmd within their
1587 * fabric dependent per I/O descriptor.
1589 void transport_init_se_cmd(
1591 struct target_core_fabric_ops
*tfo
,
1592 struct se_session
*se_sess
,
1596 unsigned char *sense_buffer
)
1598 INIT_LIST_HEAD(&cmd
->se_lun_node
);
1599 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1600 INIT_LIST_HEAD(&cmd
->se_ordered_node
);
1601 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1603 INIT_LIST_HEAD(&cmd
->t_task_list
);
1604 init_completion(&cmd
->transport_lun_fe_stop_comp
);
1605 init_completion(&cmd
->transport_lun_stop_comp
);
1606 init_completion(&cmd
->t_transport_stop_comp
);
1607 spin_lock_init(&cmd
->t_state_lock
);
1608 atomic_set(&cmd
->transport_dev_active
, 1);
1611 cmd
->se_sess
= se_sess
;
1612 cmd
->data_length
= data_length
;
1613 cmd
->data_direction
= data_direction
;
1614 cmd
->sam_task_attr
= task_attr
;
1615 cmd
->sense_buffer
= sense_buffer
;
1617 EXPORT_SYMBOL(transport_init_se_cmd
);
1619 static int transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1622 * Check if SAM Task Attribute emulation is enabled for this
1623 * struct se_device storage object
1625 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1628 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1629 pr_debug("SAM Task Attribute ACA"
1630 " emulation is not supported\n");
1634 * Used to determine when ORDERED commands should go from
1635 * Dormant to Active status.
1637 cmd
->se_ordered_id
= atomic_inc_return(&cmd
->se_dev
->dev_ordered_id
);
1638 smp_mb__after_atomic_inc();
1639 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1640 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1641 cmd
->se_dev
->transport
->name
);
1645 void transport_free_se_cmd(
1646 struct se_cmd
*se_cmd
)
1648 if (se_cmd
->se_tmr_req
)
1649 core_tmr_release_req(se_cmd
->se_tmr_req
);
1651 * Check and free any extended CDB buffer that was allocated
1653 if (se_cmd
->t_task_cdb
!= se_cmd
->__t_task_cdb
)
1654 kfree(se_cmd
->t_task_cdb
);
1656 EXPORT_SYMBOL(transport_free_se_cmd
);
1658 static void transport_generic_wait_for_tasks(struct se_cmd
*, int, int);
1660 /* transport_generic_allocate_tasks():
1662 * Called from fabric RX Thread.
1664 int transport_generic_allocate_tasks(
1670 transport_generic_prepare_cdb(cdb
);
1673 * This is needed for early exceptions.
1675 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
1678 * Ensure that the received CDB is less than the max (252 + 8) bytes
1679 * for VARIABLE_LENGTH_CMD
1681 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1682 pr_err("Received SCSI CDB with command_size: %d that"
1683 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1684 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1688 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1689 * allocate the additional extended CDB buffer now.. Otherwise
1690 * setup the pointer from __t_task_cdb to t_task_cdb.
1692 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1693 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1695 if (!cmd
->t_task_cdb
) {
1696 pr_err("Unable to allocate cmd->t_task_cdb"
1697 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1698 scsi_command_size(cdb
),
1699 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1703 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1705 * Copy the original CDB into cmd->
1707 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1709 * Setup the received CDB based on SCSI defined opcodes and
1710 * perform unit attention, persistent reservations and ALUA
1711 * checks for virtual device backends. The cmd->t_task_cdb
1712 * pointer is expected to be setup before we reach this point.
1714 ret
= transport_generic_cmd_sequencer(cmd
, cdb
);
1718 * Check for SAM Task Attribute Emulation
1720 if (transport_check_alloc_task_attr(cmd
) < 0) {
1721 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1722 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1725 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1726 if (cmd
->se_lun
->lun_sep
)
1727 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1728 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1731 EXPORT_SYMBOL(transport_generic_allocate_tasks
);
1734 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1735 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1737 int transport_generic_handle_cdb(
1742 pr_err("cmd->se_lun is NULL\n");
1746 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD
);
1749 EXPORT_SYMBOL(transport_generic_handle_cdb
);
1751 static void transport_generic_request_failure(struct se_cmd
*,
1752 struct se_device
*, int, int);
1754 * Used by fabric module frontends to queue tasks directly.
1755 * Many only be used from process context only
1757 int transport_handle_cdb_direct(
1764 pr_err("cmd->se_lun is NULL\n");
1767 if (in_interrupt()) {
1769 pr_err("transport_generic_handle_cdb cannot be called"
1770 " from interrupt context\n");
1774 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1775 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1776 * in existing usage to ensure that outstanding descriptors are handled
1777 * correctly during shutdown via transport_generic_wait_for_tasks()
1779 * Also, we don't take cmd->t_state_lock here as we only expect
1780 * this to be called for initial descriptor submission.
1782 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1783 atomic_set(&cmd
->t_transport_active
, 1);
1785 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1786 * so follow TRANSPORT_NEW_CMD processing thread context usage
1787 * and call transport_generic_request_failure() if necessary..
1789 ret
= transport_generic_new_cmd(cmd
);
1793 cmd
->transport_error_status
= ret
;
1794 transport_generic_request_failure(cmd
, NULL
, 0,
1795 (cmd
->data_direction
!= DMA_TO_DEVICE
));
1799 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1802 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1803 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1804 * complete setup in TCM process context w/ TFO->new_cmd_map().
1806 int transport_generic_handle_cdb_map(
1811 pr_err("cmd->se_lun is NULL\n");
1815 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD_MAP
);
1818 EXPORT_SYMBOL(transport_generic_handle_cdb_map
);
1820 /* transport_generic_handle_data():
1824 int transport_generic_handle_data(
1828 * For the software fabric case, then we assume the nexus is being
1829 * failed/shutdown when signals are pending from the kthread context
1830 * caller, so we return a failure. For the HW target mode case running
1831 * in interrupt code, the signal_pending() check is skipped.
1833 if (!in_interrupt() && signal_pending(current
))
1836 * If the received CDB has aleady been ABORTED by the generic
1837 * target engine, we now call transport_check_aborted_status()
1838 * to queue any delated TASK_ABORTED status for the received CDB to the
1839 * fabric module as we are expecting no further incoming DATA OUT
1840 * sequences at this point.
1842 if (transport_check_aborted_status(cmd
, 1) != 0)
1845 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_WRITE
);
1848 EXPORT_SYMBOL(transport_generic_handle_data
);
1850 /* transport_generic_handle_tmr():
1854 int transport_generic_handle_tmr(
1858 * This is needed for early exceptions.
1860 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
1862 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_TMR
);
1865 EXPORT_SYMBOL(transport_generic_handle_tmr
);
1867 void transport_generic_free_cmd_intr(
1870 transport_add_cmd_to_queue(cmd
, TRANSPORT_FREE_CMD_INTR
);
1872 EXPORT_SYMBOL(transport_generic_free_cmd_intr
);
1874 static int transport_stop_tasks_for_cmd(struct se_cmd
*cmd
)
1876 struct se_task
*task
, *task_tmp
;
1877 unsigned long flags
;
1880 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1881 cmd
->se_tfo
->get_task_tag(cmd
));
1884 * No tasks remain in the execution queue
1886 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1887 list_for_each_entry_safe(task
, task_tmp
,
1888 &cmd
->t_task_list
, t_list
) {
1889 pr_debug("task_no[%d] - Processing task %p\n",
1890 task
->task_no
, task
);
1892 * If the struct se_task has not been sent and is not active,
1893 * remove the struct se_task from the execution queue.
1895 if (!atomic_read(&task
->task_sent
) &&
1896 !atomic_read(&task
->task_active
)) {
1897 spin_unlock_irqrestore(&cmd
->t_state_lock
,
1899 transport_remove_task_from_execute_queue(task
,
1902 pr_debug("task_no[%d] - Removed from execute queue\n",
1904 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1909 * If the struct se_task is active, sleep until it is returned
1912 if (atomic_read(&task
->task_active
)) {
1913 atomic_set(&task
->task_stop
, 1);
1914 spin_unlock_irqrestore(&cmd
->t_state_lock
,
1917 pr_debug("task_no[%d] - Waiting to complete\n",
1919 wait_for_completion(&task
->task_stop_comp
);
1920 pr_debug("task_no[%d] - Stopped successfully\n",
1923 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1924 atomic_dec(&cmd
->t_task_cdbs_left
);
1926 atomic_set(&task
->task_active
, 0);
1927 atomic_set(&task
->task_stop
, 0);
1929 pr_debug("task_no[%d] - Did nothing\n", task
->task_no
);
1933 __transport_stop_task_timer(task
, &flags
);
1935 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
1941 * Handle SAM-esque emulation for generic transport request failures.
1943 static void transport_generic_request_failure(
1945 struct se_device
*dev
,
1951 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1952 " CDB: 0x%02x\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
1953 cmd
->t_task_cdb
[0]);
1954 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1955 " %d/%d transport_error_status: %d\n",
1956 cmd
->se_tfo
->get_cmd_state(cmd
),
1957 cmd
->t_state
, cmd
->deferred_t_state
,
1958 cmd
->transport_error_status
);
1959 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1960 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1961 " t_transport_active: %d t_transport_stop: %d"
1962 " t_transport_sent: %d\n", cmd
->t_task_list_num
,
1963 atomic_read(&cmd
->t_task_cdbs_left
),
1964 atomic_read(&cmd
->t_task_cdbs_sent
),
1965 atomic_read(&cmd
->t_task_cdbs_ex_left
),
1966 atomic_read(&cmd
->t_transport_active
),
1967 atomic_read(&cmd
->t_transport_stop
),
1968 atomic_read(&cmd
->t_transport_sent
));
1970 transport_stop_all_task_timers(cmd
);
1973 atomic_inc(&dev
->depth_left
);
1975 * For SAM Task Attribute emulation for failed struct se_cmd
1977 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
1978 transport_complete_task_attr(cmd
);
1981 transport_direct_request_timeout(cmd
);
1982 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
1985 switch (cmd
->transport_error_status
) {
1986 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
:
1987 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1989 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
:
1990 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
1992 case PYX_TRANSPORT_INVALID_CDB_FIELD
:
1993 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1995 case PYX_TRANSPORT_INVALID_PARAMETER_LIST
:
1996 cmd
->scsi_sense_reason
= TCM_INVALID_PARAMETER_LIST
;
1998 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
:
2000 transport_new_cmd_failure(cmd
);
2002 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2003 * we force this session to fall back to session
2006 cmd
->se_tfo
->fall_back_to_erl0(cmd
->se_sess
);
2007 cmd
->se_tfo
->stop_session(cmd
->se_sess
, 0, 0);
2010 case PYX_TRANSPORT_LU_COMM_FAILURE
:
2011 case PYX_TRANSPORT_ILLEGAL_REQUEST
:
2012 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2014 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE
:
2015 cmd
->scsi_sense_reason
= TCM_UNKNOWN_MODE_PAGE
;
2017 case PYX_TRANSPORT_WRITE_PROTECTED
:
2018 cmd
->scsi_sense_reason
= TCM_WRITE_PROTECTED
;
2020 case PYX_TRANSPORT_RESERVATION_CONFLICT
:
2022 * No SENSE Data payload for this case, set SCSI Status
2023 * and queue the response to $FABRIC_MOD.
2025 * Uses linux/include/scsi/scsi.h SAM status codes defs
2027 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2029 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2030 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2033 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2036 cmd
->se_dev
->se_sub_dev
->se_dev_attrib
.emulate_ua_intlck_ctrl
== 2)
2037 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
2038 cmd
->orig_fe_lun
, 0x2C,
2039 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2041 ret
= cmd
->se_tfo
->queue_status(cmd
);
2045 case PYX_TRANSPORT_USE_SENSE_REASON
:
2047 * struct se_cmd->scsi_sense_reason already set
2051 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2053 cmd
->transport_error_status
);
2054 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2058 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2059 * make the call to transport_send_check_condition_and_sense()
2060 * directly. Otherwise expect the fabric to make the call to
2061 * transport_send_check_condition_and_sense() after handling
2062 * possible unsoliticied write data payloads.
2064 if (!sc
&& !cmd
->se_tfo
->new_cmd_map
)
2065 transport_new_cmd_failure(cmd
);
2067 ret
= transport_send_check_condition_and_sense(cmd
,
2068 cmd
->scsi_sense_reason
, 0);
2074 transport_lun_remove_cmd(cmd
);
2075 if (!transport_cmd_check_stop_to_fabric(cmd
))
2080 cmd
->t_state
= TRANSPORT_COMPLETE_OK
;
2081 transport_handle_queue_full(cmd
, cmd
->se_dev
, transport_complete_qf
);
2084 static void transport_direct_request_timeout(struct se_cmd
*cmd
)
2086 unsigned long flags
;
2088 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2089 if (!atomic_read(&cmd
->t_transport_timeout
)) {
2090 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2093 if (atomic_read(&cmd
->t_task_cdbs_timeout_left
)) {
2094 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2098 atomic_sub(atomic_read(&cmd
->t_transport_timeout
),
2100 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2103 static void transport_generic_request_timeout(struct se_cmd
*cmd
)
2105 unsigned long flags
;
2108 * Reset cmd->t_se_count to allow transport_generic_remove()
2109 * to allow last call to free memory resources.
2111 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2112 if (atomic_read(&cmd
->t_transport_timeout
) > 1) {
2113 int tmp
= (atomic_read(&cmd
->t_transport_timeout
) - 1);
2115 atomic_sub(tmp
, &cmd
->t_se_count
);
2117 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2119 transport_generic_remove(cmd
, 0);
2122 static inline u32
transport_lba_21(unsigned char *cdb
)
2124 return ((cdb
[1] & 0x1f) << 16) | (cdb
[2] << 8) | cdb
[3];
2127 static inline u32
transport_lba_32(unsigned char *cdb
)
2129 return (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2132 static inline unsigned long long transport_lba_64(unsigned char *cdb
)
2134 unsigned int __v1
, __v2
;
2136 __v1
= (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2137 __v2
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2139 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2143 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2145 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb
)
2147 unsigned int __v1
, __v2
;
2149 __v1
= (cdb
[12] << 24) | (cdb
[13] << 16) | (cdb
[14] << 8) | cdb
[15];
2150 __v2
= (cdb
[16] << 24) | (cdb
[17] << 16) | (cdb
[18] << 8) | cdb
[19];
2152 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2155 static void transport_set_supported_SAM_opcode(struct se_cmd
*se_cmd
)
2157 unsigned long flags
;
2159 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2160 se_cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
2161 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2165 * Called from interrupt context.
2167 static void transport_task_timeout_handler(unsigned long data
)
2169 struct se_task
*task
= (struct se_task
*)data
;
2170 struct se_cmd
*cmd
= task
->task_se_cmd
;
2171 unsigned long flags
;
2173 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task
, cmd
);
2175 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2176 if (task
->task_flags
& TF_STOP
) {
2177 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2180 task
->task_flags
&= ~TF_RUNNING
;
2183 * Determine if transport_complete_task() has already been called.
2185 if (!atomic_read(&task
->task_active
)) {
2186 pr_debug("transport task: %p cmd: %p timeout task_active"
2187 " == 0\n", task
, cmd
);
2188 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2192 atomic_inc(&cmd
->t_se_count
);
2193 atomic_inc(&cmd
->t_transport_timeout
);
2194 cmd
->t_tasks_failed
= 1;
2196 atomic_set(&task
->task_timeout
, 1);
2197 task
->task_error_status
= PYX_TRANSPORT_TASK_TIMEOUT
;
2198 task
->task_scsi_status
= 1;
2200 if (atomic_read(&task
->task_stop
)) {
2201 pr_debug("transport task: %p cmd: %p timeout task_stop"
2202 " == 1\n", task
, cmd
);
2203 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2204 complete(&task
->task_stop_comp
);
2208 if (!atomic_dec_and_test(&cmd
->t_task_cdbs_left
)) {
2209 pr_debug("transport task: %p cmd: %p timeout non zero"
2210 " t_task_cdbs_left\n", task
, cmd
);
2211 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2214 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2217 cmd
->t_state
= TRANSPORT_COMPLETE_FAILURE
;
2218 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2220 transport_add_cmd_to_queue(cmd
, TRANSPORT_COMPLETE_FAILURE
);
2224 * Called with cmd->t_state_lock held.
2226 static void transport_start_task_timer(struct se_task
*task
)
2228 struct se_device
*dev
= task
->se_dev
;
2231 if (task
->task_flags
& TF_RUNNING
)
2234 * If the task_timeout is disabled, exit now.
2236 timeout
= dev
->se_sub_dev
->se_dev_attrib
.task_timeout
;
2240 init_timer(&task
->task_timer
);
2241 task
->task_timer
.expires
= (get_jiffies_64() + timeout
* HZ
);
2242 task
->task_timer
.data
= (unsigned long) task
;
2243 task
->task_timer
.function
= transport_task_timeout_handler
;
2245 task
->task_flags
|= TF_RUNNING
;
2246 add_timer(&task
->task_timer
);
2248 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2249 " %d\n", task
->task_se_cmd
, task
, timeout
);
2254 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2256 void __transport_stop_task_timer(struct se_task
*task
, unsigned long *flags
)
2258 struct se_cmd
*cmd
= task
->task_se_cmd
;
2260 if (!task
->task_flags
& TF_RUNNING
)
2263 task
->task_flags
|= TF_STOP
;
2264 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2266 del_timer_sync(&task
->task_timer
);
2268 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2269 task
->task_flags
&= ~TF_RUNNING
;
2270 task
->task_flags
&= ~TF_STOP
;
2273 static void transport_stop_all_task_timers(struct se_cmd
*cmd
)
2275 struct se_task
*task
= NULL
, *task_tmp
;
2276 unsigned long flags
;
2278 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2279 list_for_each_entry_safe(task
, task_tmp
,
2280 &cmd
->t_task_list
, t_list
)
2281 __transport_stop_task_timer(task
, &flags
);
2282 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2285 static inline int transport_tcq_window_closed(struct se_device
*dev
)
2287 if (dev
->dev_tcq_window_closed
++ <
2288 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD
) {
2289 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT
);
2291 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG
);
2293 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
2298 * Called from Fabric Module context from transport_execute_tasks()
2300 * The return of this function determins if the tasks from struct se_cmd
2301 * get added to the execution queue in transport_execute_tasks(),
2302 * or are added to the delayed or ordered lists here.
2304 static inline int transport_execute_task_attr(struct se_cmd
*cmd
)
2306 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
2309 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2310 * to allow the passed struct se_cmd list of tasks to the front of the list.
2312 if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
2313 atomic_inc(&cmd
->se_dev
->dev_hoq_count
);
2314 smp_mb__after_atomic_inc();
2315 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2316 " 0x%02x, se_ordered_id: %u\n",
2318 cmd
->se_ordered_id
);
2320 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
2321 spin_lock(&cmd
->se_dev
->ordered_cmd_lock
);
2322 list_add_tail(&cmd
->se_ordered_node
,
2323 &cmd
->se_dev
->ordered_cmd_list
);
2324 spin_unlock(&cmd
->se_dev
->ordered_cmd_lock
);
2326 atomic_inc(&cmd
->se_dev
->dev_ordered_sync
);
2327 smp_mb__after_atomic_inc();
2329 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2330 " list, se_ordered_id: %u\n",
2332 cmd
->se_ordered_id
);
2334 * Add ORDERED command to tail of execution queue if
2335 * no other older commands exist that need to be
2338 if (!atomic_read(&cmd
->se_dev
->simple_cmds
))
2342 * For SIMPLE and UNTAGGED Task Attribute commands
2344 atomic_inc(&cmd
->se_dev
->simple_cmds
);
2345 smp_mb__after_atomic_inc();
2348 * Otherwise if one or more outstanding ORDERED task attribute exist,
2349 * add the dormant task(s) built for the passed struct se_cmd to the
2350 * execution queue and become in Active state for this struct se_device.
2352 if (atomic_read(&cmd
->se_dev
->dev_ordered_sync
) != 0) {
2354 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2355 * will be drained upon completion of HEAD_OF_QUEUE task.
2357 spin_lock(&cmd
->se_dev
->delayed_cmd_lock
);
2358 cmd
->se_cmd_flags
|= SCF_DELAYED_CMD_FROM_SAM_ATTR
;
2359 list_add_tail(&cmd
->se_delayed_node
,
2360 &cmd
->se_dev
->delayed_cmd_list
);
2361 spin_unlock(&cmd
->se_dev
->delayed_cmd_lock
);
2363 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2364 " delayed CMD list, se_ordered_id: %u\n",
2365 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
,
2366 cmd
->se_ordered_id
);
2368 * Return zero to let transport_execute_tasks() know
2369 * not to add the delayed tasks to the execution list.
2374 * Otherwise, no ORDERED task attributes exist..
2380 * Called from fabric module context in transport_generic_new_cmd() and
2381 * transport_generic_process_write()
2383 static int transport_execute_tasks(struct se_cmd
*cmd
)
2387 if (se_dev_check_online(cmd
->se_orig_obj_ptr
) != 0) {
2388 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
2389 transport_generic_request_failure(cmd
, NULL
, 0, 1);
2394 * Call transport_cmd_check_stop() to see if a fabric exception
2395 * has occurred that prevents execution.
2397 if (!transport_cmd_check_stop(cmd
, 0, TRANSPORT_PROCESSING
)) {
2399 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2400 * attribute for the tasks of the received struct se_cmd CDB
2402 add_tasks
= transport_execute_task_attr(cmd
);
2406 * This calls transport_add_tasks_from_cmd() to handle
2407 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2408 * (if enabled) in __transport_add_task_to_execute_queue() and
2409 * transport_add_task_check_sam_attr().
2411 transport_add_tasks_from_cmd(cmd
);
2414 * Kick the execution queue for the cmd associated struct se_device
2418 __transport_execute_tasks(cmd
->se_dev
);
2423 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2424 * from struct se_device->execute_task_list and
2426 * Called from transport_processing_thread()
2428 static int __transport_execute_tasks(struct se_device
*dev
)
2431 struct se_cmd
*cmd
= NULL
;
2432 struct se_task
*task
= NULL
;
2433 unsigned long flags
;
2436 * Check if there is enough room in the device and HBA queue to send
2437 * struct se_tasks to the selected transport.
2440 if (!atomic_read(&dev
->depth_left
))
2441 return transport_tcq_window_closed(dev
);
2443 dev
->dev_tcq_window_closed
= 0;
2445 spin_lock_irq(&dev
->execute_task_lock
);
2446 if (list_empty(&dev
->execute_task_list
)) {
2447 spin_unlock_irq(&dev
->execute_task_lock
);
2450 task
= list_first_entry(&dev
->execute_task_list
,
2451 struct se_task
, t_execute_list
);
2452 list_del(&task
->t_execute_list
);
2453 atomic_set(&task
->task_execute_queue
, 0);
2454 atomic_dec(&dev
->execute_tasks
);
2455 spin_unlock_irq(&dev
->execute_task_lock
);
2457 atomic_dec(&dev
->depth_left
);
2459 cmd
= task
->task_se_cmd
;
2461 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2462 atomic_set(&task
->task_active
, 1);
2463 atomic_set(&task
->task_sent
, 1);
2464 atomic_inc(&cmd
->t_task_cdbs_sent
);
2466 if (atomic_read(&cmd
->t_task_cdbs_sent
) ==
2467 cmd
->t_task_list_num
)
2468 atomic_set(&cmd
->transport_sent
, 1);
2470 transport_start_task_timer(task
);
2471 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2473 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2474 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2475 * struct se_subsystem_api->do_task() caller below.
2477 if (cmd
->transport_emulate_cdb
) {
2478 error
= cmd
->transport_emulate_cdb(cmd
);
2480 cmd
->transport_error_status
= error
;
2481 atomic_set(&task
->task_active
, 0);
2482 atomic_set(&cmd
->transport_sent
, 0);
2483 transport_stop_tasks_for_cmd(cmd
);
2484 transport_generic_request_failure(cmd
, dev
, 0, 1);
2488 * Handle the successful completion for transport_emulate_cdb()
2489 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2490 * Otherwise the caller is expected to complete the task with
2493 if (!(cmd
->se_cmd_flags
& SCF_EMULATE_CDB_ASYNC
)) {
2494 cmd
->scsi_status
= SAM_STAT_GOOD
;
2495 task
->task_scsi_status
= GOOD
;
2496 transport_complete_task(task
, 1);
2500 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2501 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2502 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2503 * LUN emulation code.
2505 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2506 * call ->do_task() directly and let the underlying TCM subsystem plugin
2507 * code handle the CDB emulation.
2509 if ((dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) &&
2510 (!(task
->task_se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)))
2511 error
= transport_emulate_control_cdb(task
);
2513 error
= dev
->transport
->do_task(task
);
2516 cmd
->transport_error_status
= error
;
2517 atomic_set(&task
->task_active
, 0);
2518 atomic_set(&cmd
->transport_sent
, 0);
2519 transport_stop_tasks_for_cmd(cmd
);
2520 transport_generic_request_failure(cmd
, dev
, 0, 1);
2529 void transport_new_cmd_failure(struct se_cmd
*se_cmd
)
2531 unsigned long flags
;
2533 * Any unsolicited data will get dumped for failed command inside of
2536 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2537 se_cmd
->se_cmd_flags
|= SCF_SE_CMD_FAILED
;
2538 se_cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2539 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2542 static void transport_nop_wait_for_tasks(struct se_cmd
*, int, int);
2544 static inline u32
transport_get_sectors_6(
2549 struct se_device
*dev
= cmd
->se_dev
;
2552 * Assume TYPE_DISK for non struct se_device objects.
2553 * Use 8-bit sector value.
2559 * Use 24-bit allocation length for TYPE_TAPE.
2561 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2562 return (u32
)(cdb
[2] << 16) + (cdb
[3] << 8) + cdb
[4];
2565 * Everything else assume TYPE_DISK Sector CDB location.
2566 * Use 8-bit sector value.
2572 static inline u32
transport_get_sectors_10(
2577 struct se_device
*dev
= cmd
->se_dev
;
2580 * Assume TYPE_DISK for non struct se_device objects.
2581 * Use 16-bit sector value.
2587 * XXX_10 is not defined in SSC, throw an exception
2589 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2595 * Everything else assume TYPE_DISK Sector CDB location.
2596 * Use 16-bit sector value.
2599 return (u32
)(cdb
[7] << 8) + cdb
[8];
2602 static inline u32
transport_get_sectors_12(
2607 struct se_device
*dev
= cmd
->se_dev
;
2610 * Assume TYPE_DISK for non struct se_device objects.
2611 * Use 32-bit sector value.
2617 * XXX_12 is not defined in SSC, throw an exception
2619 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2625 * Everything else assume TYPE_DISK Sector CDB location.
2626 * Use 32-bit sector value.
2629 return (u32
)(cdb
[6] << 24) + (cdb
[7] << 16) + (cdb
[8] << 8) + cdb
[9];
2632 static inline u32
transport_get_sectors_16(
2637 struct se_device
*dev
= cmd
->se_dev
;
2640 * Assume TYPE_DISK for non struct se_device objects.
2641 * Use 32-bit sector value.
2647 * Use 24-bit allocation length for TYPE_TAPE.
2649 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2650 return (u32
)(cdb
[12] << 16) + (cdb
[13] << 8) + cdb
[14];
2653 return (u32
)(cdb
[10] << 24) + (cdb
[11] << 16) +
2654 (cdb
[12] << 8) + cdb
[13];
2658 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2660 static inline u32
transport_get_sectors_32(
2666 * Assume TYPE_DISK for non struct se_device objects.
2667 * Use 32-bit sector value.
2669 return (u32
)(cdb
[28] << 24) + (cdb
[29] << 16) +
2670 (cdb
[30] << 8) + cdb
[31];
2674 static inline u32
transport_get_size(
2679 struct se_device
*dev
= cmd
->se_dev
;
2681 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2682 if (cdb
[1] & 1) { /* sectors */
2683 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2688 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2689 " %s object\n", dev
->se_sub_dev
->se_dev_attrib
.block_size
, sectors
,
2690 dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
,
2691 dev
->transport
->name
);
2693 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2696 static void transport_xor_callback(struct se_cmd
*cmd
)
2698 unsigned char *buf
, *addr
;
2699 struct scatterlist
*sg
;
2700 unsigned int offset
;
2704 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2706 * 1) read the specified logical block(s);
2707 * 2) transfer logical blocks from the data-out buffer;
2708 * 3) XOR the logical blocks transferred from the data-out buffer with
2709 * the logical blocks read, storing the resulting XOR data in a buffer;
2710 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2711 * blocks transferred from the data-out buffer; and
2712 * 5) transfer the resulting XOR data to the data-in buffer.
2714 buf
= kmalloc(cmd
->data_length
, GFP_KERNEL
);
2716 pr_err("Unable to allocate xor_callback buf\n");
2720 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2721 * into the locally allocated *buf
2723 sg_copy_to_buffer(cmd
->t_data_sg
,
2729 * Now perform the XOR against the BIDI read memory located at
2730 * cmd->t_mem_bidi_list
2734 for_each_sg(cmd
->t_bidi_data_sg
, sg
, cmd
->t_bidi_data_nents
, count
) {
2735 addr
= kmap_atomic(sg_page(sg
), KM_USER0
);
2739 for (i
= 0; i
< sg
->length
; i
++)
2740 *(addr
+ sg
->offset
+ i
) ^= *(buf
+ offset
+ i
);
2742 offset
+= sg
->length
;
2743 kunmap_atomic(addr
, KM_USER0
);
2751 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2753 static int transport_get_sense_data(struct se_cmd
*cmd
)
2755 unsigned char *buffer
= cmd
->sense_buffer
, *sense_buffer
= NULL
;
2756 struct se_device
*dev
;
2757 struct se_task
*task
= NULL
, *task_tmp
;
2758 unsigned long flags
;
2761 WARN_ON(!cmd
->se_lun
);
2763 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2764 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2765 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2769 list_for_each_entry_safe(task
, task_tmp
,
2770 &cmd
->t_task_list
, t_list
) {
2772 if (!task
->task_sense
)
2779 if (!dev
->transport
->get_sense_buffer
) {
2780 pr_err("dev->transport->get_sense_buffer"
2785 sense_buffer
= dev
->transport
->get_sense_buffer(task
);
2786 if (!sense_buffer
) {
2787 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2788 " sense buffer for task with sense\n",
2789 cmd
->se_tfo
->get_task_tag(cmd
), task
->task_no
);
2792 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2794 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
2795 TRANSPORT_SENSE_BUFFER
);
2797 memcpy(&buffer
[offset
], sense_buffer
,
2798 TRANSPORT_SENSE_BUFFER
);
2799 cmd
->scsi_status
= task
->task_scsi_status
;
2800 /* Automatically padded */
2801 cmd
->scsi_sense_length
=
2802 (TRANSPORT_SENSE_BUFFER
+ offset
);
2804 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2806 dev
->se_hba
->hba_id
, dev
->transport
->name
,
2810 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2816 transport_handle_reservation_conflict(struct se_cmd
*cmd
)
2818 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
2819 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2820 cmd
->se_cmd_flags
|= SCF_SCSI_RESERVATION_CONFLICT
;
2821 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2823 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2824 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2827 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2830 cmd
->se_dev
->se_sub_dev
->se_dev_attrib
.emulate_ua_intlck_ctrl
== 2)
2831 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
2832 cmd
->orig_fe_lun
, 0x2C,
2833 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2837 static inline long long transport_dev_end_lba(struct se_device
*dev
)
2839 return dev
->transport
->get_blocks(dev
) + 1;
2842 static int transport_cmd_get_valid_sectors(struct se_cmd
*cmd
)
2844 struct se_device
*dev
= cmd
->se_dev
;
2847 if (dev
->transport
->get_device_type(dev
) != TYPE_DISK
)
2850 sectors
= (cmd
->data_length
/ dev
->se_sub_dev
->se_dev_attrib
.block_size
);
2852 if ((cmd
->t_task_lba
+ sectors
) > transport_dev_end_lba(dev
)) {
2853 pr_err("LBA: %llu Sectors: %u exceeds"
2854 " transport_dev_end_lba(): %llu\n",
2855 cmd
->t_task_lba
, sectors
,
2856 transport_dev_end_lba(dev
));
2863 static int target_check_write_same_discard(unsigned char *flags
, struct se_device
*dev
)
2866 * Determine if the received WRITE_SAME is used to for direct
2867 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2868 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2869 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2871 int passthrough
= (dev
->transport
->transport_type
==
2872 TRANSPORT_PLUGIN_PHBA_PDEV
);
2875 if ((flags
[0] & 0x04) || (flags
[0] & 0x02)) {
2876 pr_err("WRITE_SAME PBDATA and LBDATA"
2877 " bits not supported for Block Discard"
2882 * Currently for the emulated case we only accept
2883 * tpws with the UNMAP=1 bit set.
2885 if (!(flags
[0] & 0x08)) {
2886 pr_err("WRITE_SAME w/o UNMAP bit not"
2887 " supported for Block Discard Emulation\n");
2895 /* transport_generic_cmd_sequencer():
2897 * Generic Command Sequencer that should work for most DAS transport
2900 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2903 * FIXME: Need to support other SCSI OPCODES where as well.
2905 static int transport_generic_cmd_sequencer(
2909 struct se_device
*dev
= cmd
->se_dev
;
2910 struct se_subsystem_dev
*su_dev
= dev
->se_sub_dev
;
2911 int ret
= 0, sector_ret
= 0, passthrough
;
2912 u32 sectors
= 0, size
= 0, pr_reg_type
= 0;
2916 * Check for an existing UNIT ATTENTION condition
2918 if (core_scsi3_ua_check(cmd
, cdb
) < 0) {
2919 cmd
->transport_wait_for_tasks
=
2920 &transport_nop_wait_for_tasks
;
2921 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2922 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_UNIT_ATTENTION
;
2926 * Check status of Asymmetric Logical Unit Assignment port
2928 ret
= su_dev
->t10_alua
.alua_state_check(cmd
, cdb
, &alua_ascq
);
2930 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
2932 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2933 * The ALUA additional sense code qualifier (ASCQ) is determined
2934 * by the ALUA primary or secondary access state..
2938 pr_debug("[%s]: ALUA TG Port not available,"
2939 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2940 cmd
->se_tfo
->get_fabric_name(), alua_ascq
);
2942 transport_set_sense_codes(cmd
, 0x04, alua_ascq
);
2943 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2944 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_NOT_READY
;
2947 goto out_invalid_cdb_field
;
2950 * Check status for SPC-3 Persistent Reservations
2952 if (su_dev
->t10_pr
.pr_ops
.t10_reservation_check(cmd
, &pr_reg_type
) != 0) {
2953 if (su_dev
->t10_pr
.pr_ops
.t10_seq_non_holder(
2954 cmd
, cdb
, pr_reg_type
) != 0)
2955 return transport_handle_reservation_conflict(cmd
);
2957 * This means the CDB is allowed for the SCSI Initiator port
2958 * when said port is *NOT* holding the legacy SPC-2 or
2959 * SPC-3 Persistent Reservation.
2965 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
2967 goto out_unsupported_cdb
;
2968 size
= transport_get_size(sectors
, cdb
, cmd
);
2969 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
2970 cmd
->t_task_lba
= transport_lba_21(cdb
);
2971 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2974 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2976 goto out_unsupported_cdb
;
2977 size
= transport_get_size(sectors
, cdb
, cmd
);
2978 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
2979 cmd
->t_task_lba
= transport_lba_32(cdb
);
2980 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2983 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
2985 goto out_unsupported_cdb
;
2986 size
= transport_get_size(sectors
, cdb
, cmd
);
2987 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
2988 cmd
->t_task_lba
= transport_lba_32(cdb
);
2989 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2992 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2994 goto out_unsupported_cdb
;
2995 size
= transport_get_size(sectors
, cdb
, cmd
);
2996 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
2997 cmd
->t_task_lba
= transport_lba_64(cdb
);
2998 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3001 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
3003 goto out_unsupported_cdb
;
3004 size
= transport_get_size(sectors
, cdb
, cmd
);
3005 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
3006 cmd
->t_task_lba
= transport_lba_21(cdb
);
3007 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3010 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3012 goto out_unsupported_cdb
;
3013 size
= transport_get_size(sectors
, cdb
, cmd
);
3014 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3015 cmd
->t_task_lba
= transport_lba_32(cdb
);
3016 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
3017 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3020 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
3022 goto out_unsupported_cdb
;
3023 size
= transport_get_size(sectors
, cdb
, cmd
);
3024 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
3025 cmd
->t_task_lba
= transport_lba_32(cdb
);
3026 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
3027 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3030 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3032 goto out_unsupported_cdb
;
3033 size
= transport_get_size(sectors
, cdb
, cmd
);
3034 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
3035 cmd
->t_task_lba
= transport_lba_64(cdb
);
3036 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
3037 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3039 case XDWRITEREAD_10
:
3040 if ((cmd
->data_direction
!= DMA_TO_DEVICE
) ||
3041 !(cmd
->t_tasks_bidi
))
3042 goto out_invalid_cdb_field
;
3043 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3045 goto out_unsupported_cdb
;
3046 size
= transport_get_size(sectors
, cdb
, cmd
);
3047 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3048 cmd
->t_task_lba
= transport_lba_32(cdb
);
3049 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3050 passthrough
= (dev
->transport
->transport_type
==
3051 TRANSPORT_PLUGIN_PHBA_PDEV
);
3053 * Skip the remaining assignments for TCM/PSCSI passthrough
3058 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3060 cmd
->transport_complete_callback
= &transport_xor_callback
;
3061 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
3063 case VARIABLE_LENGTH_CMD
:
3064 service_action
= get_unaligned_be16(&cdb
[8]);
3066 * Determine if this is TCM/PSCSI device and we should disable
3067 * internal emulation for this CDB.
3069 passthrough
= (dev
->transport
->transport_type
==
3070 TRANSPORT_PLUGIN_PHBA_PDEV
);
3072 switch (service_action
) {
3073 case XDWRITEREAD_32
:
3074 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3076 goto out_unsupported_cdb
;
3077 size
= transport_get_size(sectors
, cdb
, cmd
);
3079 * Use WRITE_32 and READ_32 opcodes for the emulated
3080 * XDWRITE_READ_32 logic.
3082 cmd
->transport_split_cdb
= &split_cdb_XX_32
;
3083 cmd
->t_task_lba
= transport_lba_64_ext(cdb
);
3084 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3087 * Skip the remaining assignments for TCM/PSCSI passthrough
3093 * Setup BIDI XOR callback to be run during
3094 * transport_generic_complete_ok()
3096 cmd
->transport_complete_callback
= &transport_xor_callback
;
3097 cmd
->t_tasks_fua
= (cdb
[10] & 0x8);
3100 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3102 goto out_unsupported_cdb
;
3105 size
= transport_get_size(1, cdb
, cmd
);
3107 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3109 goto out_invalid_cdb_field
;
3112 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[12]);
3113 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3115 if (target_check_write_same_discard(&cdb
[10], dev
) < 0)
3116 goto out_invalid_cdb_field
;
3120 pr_err("VARIABLE_LENGTH_CMD service action"
3121 " 0x%04x not supported\n", service_action
);
3122 goto out_unsupported_cdb
;
3125 case MAINTENANCE_IN
:
3126 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
3127 /* MAINTENANCE_IN from SCC-2 */
3129 * Check for emulated MI_REPORT_TARGET_PGS.
3131 if (cdb
[1] == MI_REPORT_TARGET_PGS
) {
3132 cmd
->transport_emulate_cdb
=
3133 (su_dev
->t10_alua
.alua_type
==
3134 SPC3_ALUA_EMULATED
) ?
3135 core_emulate_report_target_port_groups
:
3138 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3139 (cdb
[8] << 8) | cdb
[9];
3141 /* GPCMD_SEND_KEY from multi media commands */
3142 size
= (cdb
[8] << 8) + cdb
[9];
3144 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3148 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3150 case MODE_SELECT_10
:
3151 size
= (cdb
[7] << 8) + cdb
[8];
3152 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3156 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3159 case GPCMD_READ_BUFFER_CAPACITY
:
3160 case GPCMD_SEND_OPC
:
3163 size
= (cdb
[7] << 8) + cdb
[8];
3164 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3166 case READ_BLOCK_LIMITS
:
3167 size
= READ_BLOCK_LEN
;
3168 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3170 case GPCMD_GET_CONFIGURATION
:
3171 case GPCMD_READ_FORMAT_CAPACITIES
:
3172 case GPCMD_READ_DISC_INFO
:
3173 case GPCMD_READ_TRACK_RZONE_INFO
:
3174 size
= (cdb
[7] << 8) + cdb
[8];
3175 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3177 case PERSISTENT_RESERVE_IN
:
3178 case PERSISTENT_RESERVE_OUT
:
3179 cmd
->transport_emulate_cdb
=
3180 (su_dev
->t10_pr
.res_type
==
3181 SPC3_PERSISTENT_RESERVATIONS
) ?
3182 core_scsi3_emulate_pr
: NULL
;
3183 size
= (cdb
[7] << 8) + cdb
[8];
3184 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3186 case GPCMD_MECHANISM_STATUS
:
3187 case GPCMD_READ_DVD_STRUCTURE
:
3188 size
= (cdb
[8] << 8) + cdb
[9];
3189 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3192 size
= READ_POSITION_LEN
;
3193 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3195 case MAINTENANCE_OUT
:
3196 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
3197 /* MAINTENANCE_OUT from SCC-2
3199 * Check for emulated MO_SET_TARGET_PGS.
3201 if (cdb
[1] == MO_SET_TARGET_PGS
) {
3202 cmd
->transport_emulate_cdb
=
3203 (su_dev
->t10_alua
.alua_type
==
3204 SPC3_ALUA_EMULATED
) ?
3205 core_emulate_set_target_port_groups
:
3209 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3210 (cdb
[8] << 8) | cdb
[9];
3212 /* GPCMD_REPORT_KEY from multi media commands */
3213 size
= (cdb
[8] << 8) + cdb
[9];
3215 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3218 size
= (cdb
[3] << 8) + cdb
[4];
3220 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3221 * See spc4r17 section 5.3
3223 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3224 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3225 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3228 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3229 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3232 size
= READ_CAP_LEN
;
3233 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3235 case READ_MEDIA_SERIAL_NUMBER
:
3236 case SECURITY_PROTOCOL_IN
:
3237 case SECURITY_PROTOCOL_OUT
:
3238 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3239 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3241 case SERVICE_ACTION_IN
:
3242 case ACCESS_CONTROL_IN
:
3243 case ACCESS_CONTROL_OUT
:
3245 case READ_ATTRIBUTE
:
3246 case RECEIVE_COPY_RESULTS
:
3247 case WRITE_ATTRIBUTE
:
3248 size
= (cdb
[10] << 24) | (cdb
[11] << 16) |
3249 (cdb
[12] << 8) | cdb
[13];
3250 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3252 case RECEIVE_DIAGNOSTIC
:
3253 case SEND_DIAGNOSTIC
:
3254 size
= (cdb
[3] << 8) | cdb
[4];
3255 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3257 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3260 sectors
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3261 size
= (2336 * sectors
);
3262 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3267 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3271 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3273 case READ_ELEMENT_STATUS
:
3274 size
= 65536 * cdb
[7] + 256 * cdb
[8] + cdb
[9];
3275 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3278 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3279 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3284 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3285 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3287 if (cdb
[0] == RESERVE_10
)
3288 size
= (cdb
[7] << 8) | cdb
[8];
3290 size
= cmd
->data_length
;
3293 * Setup the legacy emulated handler for SPC-2 and
3294 * >= SPC-3 compatible reservation handling (CRH=1)
3295 * Otherwise, we assume the underlying SCSI logic is
3296 * is running in SPC_PASSTHROUGH, and wants reservations
3297 * emulation disabled.
3299 cmd
->transport_emulate_cdb
=
3300 (su_dev
->t10_pr
.res_type
!=
3302 core_scsi2_emulate_crh
: NULL
;
3303 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3308 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3309 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3311 if (cdb
[0] == RELEASE_10
)
3312 size
= (cdb
[7] << 8) | cdb
[8];
3314 size
= cmd
->data_length
;
3316 cmd
->transport_emulate_cdb
=
3317 (su_dev
->t10_pr
.res_type
!=
3319 core_scsi2_emulate_crh
: NULL
;
3320 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3322 case SYNCHRONIZE_CACHE
:
3323 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3325 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3327 if (cdb
[0] == SYNCHRONIZE_CACHE
) {
3328 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3329 cmd
->t_task_lba
= transport_lba_32(cdb
);
3331 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3332 cmd
->t_task_lba
= transport_lba_64(cdb
);
3335 goto out_unsupported_cdb
;
3337 size
= transport_get_size(sectors
, cdb
, cmd
);
3338 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3341 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3343 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
3346 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3347 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3349 cmd
->se_cmd_flags
|= SCF_EMULATE_CDB_ASYNC
;
3351 * Check to ensure that LBA + Range does not exceed past end of
3352 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3354 if ((cmd
->t_task_lba
!= 0) || (sectors
!= 0)) {
3355 if (transport_cmd_get_valid_sectors(cmd
) < 0)
3356 goto out_invalid_cdb_field
;
3360 size
= get_unaligned_be16(&cdb
[7]);
3361 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3364 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3366 goto out_unsupported_cdb
;
3369 size
= transport_get_size(1, cdb
, cmd
);
3371 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3372 goto out_invalid_cdb_field
;
3375 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[2]);
3376 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3378 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
3379 goto out_invalid_cdb_field
;
3382 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3384 goto out_unsupported_cdb
;
3387 size
= transport_get_size(1, cdb
, cmd
);
3389 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3390 goto out_invalid_cdb_field
;
3393 cmd
->t_task_lba
= get_unaligned_be32(&cdb
[2]);
3394 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3396 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3397 * of byte 1 bit 3 UNMAP instead of original reserved field
3399 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
3400 goto out_invalid_cdb_field
;
3402 case ALLOW_MEDIUM_REMOVAL
:
3403 case GPCMD_CLOSE_TRACK
:
3405 case INITIALIZE_ELEMENT_STATUS
:
3406 case GPCMD_LOAD_UNLOAD
:
3409 case GPCMD_SET_SPEED
:
3412 case TEST_UNIT_READY
:
3414 case WRITE_FILEMARKS
:
3416 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3419 cmd
->transport_emulate_cdb
=
3420 transport_core_report_lun_response
;
3421 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3423 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3424 * See spc4r17 section 5.3
3426 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3427 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3428 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3431 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3432 " 0x%02x, sending CHECK_CONDITION.\n",
3433 cmd
->se_tfo
->get_fabric_name(), cdb
[0]);
3434 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3435 goto out_unsupported_cdb
;
3438 if (size
!= cmd
->data_length
) {
3439 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3440 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3441 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
3442 cmd
->data_length
, size
, cdb
[0]);
3444 cmd
->cmd_spdtl
= size
;
3446 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3447 pr_err("Rejecting underflow/overflow"
3449 goto out_invalid_cdb_field
;
3452 * Reject READ_* or WRITE_* with overflow/underflow for
3453 * type SCF_SCSI_DATA_SG_IO_CDB.
3455 if (!ret
&& (dev
->se_sub_dev
->se_dev_attrib
.block_size
!= 512)) {
3456 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3457 " CDB on non 512-byte sector setup subsystem"
3458 " plugin: %s\n", dev
->transport
->name
);
3459 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3460 goto out_invalid_cdb_field
;
3463 if (size
> cmd
->data_length
) {
3464 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
3465 cmd
->residual_count
= (size
- cmd
->data_length
);
3467 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
3468 cmd
->residual_count
= (cmd
->data_length
- size
);
3470 cmd
->data_length
= size
;
3473 /* Let's limit control cdbs to a page, for simplicity's sake. */
3474 if ((cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) &&
3476 goto out_invalid_cdb_field
;
3478 transport_set_supported_SAM_opcode(cmd
);
3481 out_unsupported_cdb
:
3482 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3483 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
3485 out_invalid_cdb_field
:
3486 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3487 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3492 * Called from transport_generic_complete_ok() and
3493 * transport_generic_request_failure() to determine which dormant/delayed
3494 * and ordered cmds need to have their tasks added to the execution queue.
3496 static void transport_complete_task_attr(struct se_cmd
*cmd
)
3498 struct se_device
*dev
= cmd
->se_dev
;
3499 struct se_cmd
*cmd_p
, *cmd_tmp
;
3500 int new_active_tasks
= 0;
3502 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
3503 atomic_dec(&dev
->simple_cmds
);
3504 smp_mb__after_atomic_dec();
3505 dev
->dev_cur_ordered_id
++;
3506 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3507 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
3508 cmd
->se_ordered_id
);
3509 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
3510 atomic_dec(&dev
->dev_hoq_count
);
3511 smp_mb__after_atomic_dec();
3512 dev
->dev_cur_ordered_id
++;
3513 pr_debug("Incremented dev_cur_ordered_id: %u for"
3514 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
3515 cmd
->se_ordered_id
);
3516 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
3517 spin_lock(&dev
->ordered_cmd_lock
);
3518 list_del(&cmd
->se_ordered_node
);
3519 atomic_dec(&dev
->dev_ordered_sync
);
3520 smp_mb__after_atomic_dec();
3521 spin_unlock(&dev
->ordered_cmd_lock
);
3523 dev
->dev_cur_ordered_id
++;
3524 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3525 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
3528 * Process all commands up to the last received
3529 * ORDERED task attribute which requires another blocking
3532 spin_lock(&dev
->delayed_cmd_lock
);
3533 list_for_each_entry_safe(cmd_p
, cmd_tmp
,
3534 &dev
->delayed_cmd_list
, se_delayed_node
) {
3536 list_del(&cmd_p
->se_delayed_node
);
3537 spin_unlock(&dev
->delayed_cmd_lock
);
3539 pr_debug("Calling add_tasks() for"
3540 " cmd_p: 0x%02x Task Attr: 0x%02x"
3541 " Dormant -> Active, se_ordered_id: %u\n",
3542 cmd_p
->t_task_cdb
[0],
3543 cmd_p
->sam_task_attr
, cmd_p
->se_ordered_id
);
3545 transport_add_tasks_from_cmd(cmd_p
);
3548 spin_lock(&dev
->delayed_cmd_lock
);
3549 if (cmd_p
->sam_task_attr
== MSG_ORDERED_TAG
)
3552 spin_unlock(&dev
->delayed_cmd_lock
);
3554 * If new tasks have become active, wake up the transport thread
3555 * to do the processing of the Active tasks.
3557 if (new_active_tasks
!= 0)
3558 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
3561 static int transport_complete_qf(struct se_cmd
*cmd
)
3565 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
3566 return cmd
->se_tfo
->queue_status(cmd
);
3568 switch (cmd
->data_direction
) {
3569 case DMA_FROM_DEVICE
:
3570 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3573 if (cmd
->t_bidi_data_sg
) {
3574 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3578 /* Fall through for DMA_TO_DEVICE */
3580 ret
= cmd
->se_tfo
->queue_status(cmd
);
3589 static void transport_handle_queue_full(
3591 struct se_device
*dev
,
3592 int (*qf_callback
)(struct se_cmd
*))
3594 spin_lock_irq(&dev
->qf_cmd_lock
);
3595 cmd
->se_cmd_flags
|= SCF_EMULATE_QUEUE_FULL
;
3596 cmd
->transport_qf_callback
= qf_callback
;
3597 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
3598 atomic_inc(&dev
->dev_qf_count
);
3599 smp_mb__after_atomic_inc();
3600 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
3602 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3605 static void transport_generic_complete_ok(struct se_cmd
*cmd
)
3607 int reason
= 0, ret
;
3609 * Check if we need to move delayed/dormant tasks from cmds on the
3610 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3613 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3614 transport_complete_task_attr(cmd
);
3616 * Check to schedule QUEUE_FULL work, or execute an existing
3617 * cmd->transport_qf_callback()
3619 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
3620 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3622 if (cmd
->transport_qf_callback
) {
3623 ret
= cmd
->transport_qf_callback(cmd
);
3627 cmd
->transport_qf_callback
= NULL
;
3631 * Check if we need to retrieve a sense buffer from
3632 * the struct se_cmd in question.
3634 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3635 if (transport_get_sense_data(cmd
) < 0)
3636 reason
= TCM_NON_EXISTENT_LUN
;
3639 * Only set when an struct se_task->task_scsi_status returned
3640 * a non GOOD status.
3642 if (cmd
->scsi_status
) {
3643 ret
= transport_send_check_condition_and_sense(
3648 transport_lun_remove_cmd(cmd
);
3649 transport_cmd_check_stop_to_fabric(cmd
);
3654 * Check for a callback, used by amongst other things
3655 * XDWRITE_READ_10 emulation.
3657 if (cmd
->transport_complete_callback
)
3658 cmd
->transport_complete_callback(cmd
);
3660 switch (cmd
->data_direction
) {
3661 case DMA_FROM_DEVICE
:
3662 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3663 if (cmd
->se_lun
->lun_sep
) {
3664 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3667 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3669 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3674 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3675 if (cmd
->se_lun
->lun_sep
) {
3676 cmd
->se_lun
->lun_sep
->sep_stats
.rx_data_octets
+=
3679 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3681 * Check if we need to send READ payload for BIDI-COMMAND
3683 if (cmd
->t_bidi_data_sg
) {
3684 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3685 if (cmd
->se_lun
->lun_sep
) {
3686 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3689 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3690 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3695 /* Fall through for DMA_TO_DEVICE */
3697 ret
= cmd
->se_tfo
->queue_status(cmd
);
3706 transport_lun_remove_cmd(cmd
);
3707 transport_cmd_check_stop_to_fabric(cmd
);
3711 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3712 " data_direction: %d\n", cmd
, cmd
->data_direction
);
3713 transport_handle_queue_full(cmd
, cmd
->se_dev
, transport_complete_qf
);
3716 static void transport_free_dev_tasks(struct se_cmd
*cmd
)
3718 struct se_task
*task
, *task_tmp
;
3719 unsigned long flags
;
3721 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3722 list_for_each_entry_safe(task
, task_tmp
,
3723 &cmd
->t_task_list
, t_list
) {
3724 if (atomic_read(&task
->task_active
))
3727 kfree(task
->task_sg_bidi
);
3728 kfree(task
->task_sg
);
3730 list_del(&task
->t_list
);
3732 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3734 task
->se_dev
->transport
->free_task(task
);
3736 pr_err("task[%u] - task->se_dev is NULL\n",
3738 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3740 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3743 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
3745 struct scatterlist
*sg
;
3748 for_each_sg(sgl
, sg
, nents
, count
)
3749 __free_page(sg_page(sg
));
3754 static inline void transport_free_pages(struct se_cmd
*cmd
)
3756 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)
3759 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
3760 cmd
->t_data_sg
= NULL
;
3761 cmd
->t_data_nents
= 0;
3763 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
3764 cmd
->t_bidi_data_sg
= NULL
;
3765 cmd
->t_bidi_data_nents
= 0;
3768 static inline void transport_release_tasks(struct se_cmd
*cmd
)
3770 transport_free_dev_tasks(cmd
);
3773 static inline int transport_dec_and_check(struct se_cmd
*cmd
)
3775 unsigned long flags
;
3777 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3778 if (atomic_read(&cmd
->t_fe_count
)) {
3779 if (!atomic_dec_and_test(&cmd
->t_fe_count
)) {
3780 spin_unlock_irqrestore(&cmd
->t_state_lock
,
3786 if (atomic_read(&cmd
->t_se_count
)) {
3787 if (!atomic_dec_and_test(&cmd
->t_se_count
)) {
3788 spin_unlock_irqrestore(&cmd
->t_state_lock
,
3793 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3798 static void transport_release_fe_cmd(struct se_cmd
*cmd
)
3800 unsigned long flags
;
3802 if (transport_dec_and_check(cmd
))
3805 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3806 if (!atomic_read(&cmd
->transport_dev_active
)) {
3807 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3810 atomic_set(&cmd
->transport_dev_active
, 0);
3811 transport_all_task_dev_remove_state(cmd
);
3812 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3814 transport_release_tasks(cmd
);
3816 transport_free_pages(cmd
);
3817 transport_free_se_cmd(cmd
);
3818 cmd
->se_tfo
->release_cmd(cmd
);
3822 transport_generic_remove(struct se_cmd
*cmd
, int session_reinstatement
)
3824 unsigned long flags
;
3826 if (transport_dec_and_check(cmd
)) {
3827 if (session_reinstatement
) {
3828 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3829 transport_all_task_dev_remove_state(cmd
);
3830 spin_unlock_irqrestore(&cmd
->t_state_lock
,
3836 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3837 if (!atomic_read(&cmd
->transport_dev_active
)) {
3838 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3841 atomic_set(&cmd
->transport_dev_active
, 0);
3842 transport_all_task_dev_remove_state(cmd
);
3843 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3845 transport_release_tasks(cmd
);
3848 transport_free_pages(cmd
);
3849 transport_release_cmd(cmd
);
3854 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3855 * allocating in the core.
3856 * @cmd: Associated se_cmd descriptor
3857 * @mem: SGL style memory for TCM WRITE / READ
3858 * @sg_mem_num: Number of SGL elements
3859 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3860 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3862 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3865 int transport_generic_map_mem_to_cmd(
3867 struct scatterlist
*sgl
,
3869 struct scatterlist
*sgl_bidi
,
3872 if (!sgl
|| !sgl_count
)
3875 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
3876 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
)) {
3878 cmd
->t_data_sg
= sgl
;
3879 cmd
->t_data_nents
= sgl_count
;
3881 if (sgl_bidi
&& sgl_bidi_count
) {
3882 cmd
->t_bidi_data_sg
= sgl_bidi
;
3883 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
3885 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
3890 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd
);
3892 static int transport_new_cmd_obj(struct se_cmd
*cmd
)
3894 struct se_device
*dev
= cmd
->se_dev
;
3895 int set_counts
= 1, rc
, task_cdbs
;
3898 * Setup any BIDI READ tasks and memory from
3899 * cmd->t_mem_bidi_list so the READ struct se_tasks
3900 * are queued first for the non pSCSI passthrough case.
3902 if (cmd
->t_bidi_data_sg
&&
3903 (dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
)) {
3904 rc
= transport_allocate_tasks(cmd
,
3907 cmd
->t_bidi_data_sg
,
3908 cmd
->t_bidi_data_nents
);
3910 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3911 cmd
->scsi_sense_reason
=
3912 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
3915 atomic_inc(&cmd
->t_fe_count
);
3916 atomic_inc(&cmd
->t_se_count
);
3920 * Setup the tasks and memory from cmd->t_mem_list
3921 * Note for BIDI transfers this will contain the WRITE payload
3923 task_cdbs
= transport_allocate_tasks(cmd
,
3925 cmd
->data_direction
,
3928 if (task_cdbs
<= 0) {
3929 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3930 cmd
->scsi_sense_reason
=
3931 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
3936 atomic_inc(&cmd
->t_fe_count
);
3937 atomic_inc(&cmd
->t_se_count
);
3940 cmd
->t_task_list_num
= task_cdbs
;
3942 atomic_set(&cmd
->t_task_cdbs_left
, task_cdbs
);
3943 atomic_set(&cmd
->t_task_cdbs_ex_left
, task_cdbs
);
3944 atomic_set(&cmd
->t_task_cdbs_timeout_left
, task_cdbs
);
3948 void *transport_kmap_first_data_page(struct se_cmd
*cmd
)
3950 struct scatterlist
*sg
= cmd
->t_data_sg
;
3954 * We need to take into account a possible offset here for fabrics like
3955 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3956 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3958 return kmap(sg_page(sg
)) + sg
->offset
;
3960 EXPORT_SYMBOL(transport_kmap_first_data_page
);
3962 void transport_kunmap_first_data_page(struct se_cmd
*cmd
)
3964 kunmap(sg_page(cmd
->t_data_sg
));
3966 EXPORT_SYMBOL(transport_kunmap_first_data_page
);
3969 transport_generic_get_mem(struct se_cmd
*cmd
)
3971 u32 length
= cmd
->data_length
;
3976 nents
= DIV_ROUND_UP(length
, PAGE_SIZE
);
3977 cmd
->t_data_sg
= kmalloc(sizeof(struct scatterlist
) * nents
, GFP_KERNEL
);
3978 if (!cmd
->t_data_sg
)
3981 cmd
->t_data_nents
= nents
;
3982 sg_init_table(cmd
->t_data_sg
, nents
);
3985 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
3986 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
3990 sg_set_page(&cmd
->t_data_sg
[i
], page
, page_len
, 0);
3998 __free_page(sg_page(&cmd
->t_data_sg
[i
]));
4001 kfree(cmd
->t_data_sg
);
4002 cmd
->t_data_sg
= NULL
;
4006 /* Reduce sectors if they are too long for the device */
4007 static inline sector_t
transport_limit_task_sectors(
4008 struct se_device
*dev
,
4009 unsigned long long lba
,
4012 sectors
= min_t(sector_t
, sectors
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
4014 if (dev
->transport
->get_device_type(dev
) == TYPE_DISK
)
4015 if ((lba
+ sectors
) > transport_dev_end_lba(dev
))
4016 sectors
= ((transport_dev_end_lba(dev
) - lba
) + 1);
4023 * This function can be used by HW target mode drivers to create a linked
4024 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4025 * This is intended to be called during the completion path by TCM Core
4026 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4028 void transport_do_task_sg_chain(struct se_cmd
*cmd
)
4030 struct scatterlist
*sg_first
= NULL
;
4031 struct scatterlist
*sg_prev
= NULL
;
4032 int sg_prev_nents
= 0;
4033 struct scatterlist
*sg
;
4034 struct se_task
*task
;
4035 u32 chained_nents
= 0;
4038 BUG_ON(!cmd
->se_tfo
->task_sg_chaining
);
4041 * Walk the struct se_task list and setup scatterlist chains
4042 * for each contiguously allocated struct se_task->task_sg[].
4044 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
4049 sg_first
= task
->task_sg
;
4050 chained_nents
= task
->task_sg_nents
;
4052 sg_chain(sg_prev
, sg_prev_nents
, task
->task_sg
);
4053 chained_nents
+= task
->task_sg_nents
;
4056 * For the padded tasks, use the extra SGL vector allocated
4057 * in transport_allocate_data_tasks() for the sg_prev_nents
4058 * offset into sg_chain() above.. The last task of a
4059 * multi-task list, or a single task will not have
4060 * task->task_sg_padded set..
4062 if (task
->task_padded_sg
)
4063 sg_prev_nents
= (task
->task_sg_nents
+ 1);
4065 sg_prev_nents
= task
->task_sg_nents
;
4067 sg_prev
= task
->task_sg
;
4070 * Setup the starting pointer and total t_tasks_sg_linked_no including
4071 * padding SGs for linking and to mark the end.
4073 cmd
->t_tasks_sg_chained
= sg_first
;
4074 cmd
->t_tasks_sg_chained_no
= chained_nents
;
4076 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4077 " t_tasks_sg_chained_no: %u\n", cmd
, cmd
->t_tasks_sg_chained
,
4078 cmd
->t_tasks_sg_chained_no
);
4080 for_each_sg(cmd
->t_tasks_sg_chained
, sg
,
4081 cmd
->t_tasks_sg_chained_no
, i
) {
4083 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
4084 i
, sg
, sg_page(sg
), sg
->length
, sg
->offset
);
4085 if (sg_is_chain(sg
))
4086 pr_debug("SG: %p sg_is_chain=1\n", sg
);
4088 pr_debug("SG: %p sg_is_last=1\n", sg
);
4091 EXPORT_SYMBOL(transport_do_task_sg_chain
);
4094 * Break up cmd into chunks transport can handle
4096 static int transport_allocate_data_tasks(
4098 unsigned long long lba
,
4099 enum dma_data_direction data_direction
,
4100 struct scatterlist
*sgl
,
4101 unsigned int sgl_nents
)
4103 unsigned char *cdb
= NULL
;
4104 struct se_task
*task
;
4105 struct se_device
*dev
= cmd
->se_dev
;
4106 unsigned long flags
;
4107 int task_count
, i
, ret
;
4108 sector_t sectors
, dev_max_sectors
= dev
->se_sub_dev
->se_dev_attrib
.max_sectors
;
4109 u32 sector_size
= dev
->se_sub_dev
->se_dev_attrib
.block_size
;
4110 struct scatterlist
*sg
;
4111 struct scatterlist
*cmd_sg
;
4113 WARN_ON(cmd
->data_length
% sector_size
);
4114 sectors
= DIV_ROUND_UP(cmd
->data_length
, sector_size
);
4115 task_count
= DIV_ROUND_UP_SECTOR_T(sectors
, dev_max_sectors
);
4118 for (i
= 0; i
< task_count
; i
++) {
4119 unsigned int task_size
, task_sg_nents_padded
;
4122 task
= transport_generic_get_task(cmd
, data_direction
);
4126 task
->task_lba
= lba
;
4127 task
->task_sectors
= min(sectors
, dev_max_sectors
);
4128 task
->task_size
= task
->task_sectors
* sector_size
;
4130 cdb
= dev
->transport
->get_cdb(task
);
4133 memcpy(cdb
, cmd
->t_task_cdb
,
4134 scsi_command_size(cmd
->t_task_cdb
));
4136 /* Update new cdb with updated lba/sectors */
4137 cmd
->transport_split_cdb(task
->task_lba
, task
->task_sectors
, cdb
);
4139 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
4140 * in order to calculate the number per task SGL entries
4142 task
->task_sg_nents
= DIV_ROUND_UP(task
->task_size
, PAGE_SIZE
);
4144 * Check if the fabric module driver is requesting that all
4145 * struct se_task->task_sg[] be chained together.. If so,
4146 * then allocate an extra padding SG entry for linking and
4147 * marking the end of the chained SGL for every task except
4148 * the last one for (task_count > 1) operation, or skipping
4149 * the extra padding for the (task_count == 1) case.
4151 if (cmd
->se_tfo
->task_sg_chaining
&& (i
< (task_count
- 1))) {
4152 task_sg_nents_padded
= (task
->task_sg_nents
+ 1);
4153 task
->task_padded_sg
= 1;
4155 task_sg_nents_padded
= task
->task_sg_nents
;
4157 task
->task_sg
= kmalloc(sizeof(struct scatterlist
) *
4158 task_sg_nents_padded
, GFP_KERNEL
);
4159 if (!task
->task_sg
) {
4160 cmd
->se_dev
->transport
->free_task(task
);
4164 sg_init_table(task
->task_sg
, task_sg_nents_padded
);
4166 task_size
= task
->task_size
;
4168 /* Build new sgl, only up to task_size */
4169 for_each_sg(task
->task_sg
, sg
, task
->task_sg_nents
, count
) {
4170 if (cmd_sg
->length
> task_size
)
4174 task_size
-= cmd_sg
->length
;
4175 cmd_sg
= sg_next(cmd_sg
);
4178 lba
+= task
->task_sectors
;
4179 sectors
-= task
->task_sectors
;
4181 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4182 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
4183 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4186 * Now perform the memory map of task->task_sg[] into backend
4187 * subsystem memory..
4189 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
4190 if (atomic_read(&task
->task_sent
))
4192 if (!dev
->transport
->map_data_SG
)
4195 ret
= dev
->transport
->map_data_SG(task
);
4204 transport_allocate_control_task(struct se_cmd
*cmd
)
4206 struct se_device
*dev
= cmd
->se_dev
;
4208 struct se_task
*task
;
4209 unsigned long flags
;
4212 task
= transport_generic_get_task(cmd
, cmd
->data_direction
);
4216 cdb
= dev
->transport
->get_cdb(task
);
4218 memcpy(cdb
, cmd
->t_task_cdb
,
4219 scsi_command_size(cmd
->t_task_cdb
));
4221 task
->task_sg
= kmalloc(sizeof(struct scatterlist
) * cmd
->t_data_nents
,
4223 if (!task
->task_sg
) {
4224 cmd
->se_dev
->transport
->free_task(task
);
4228 memcpy(task
->task_sg
, cmd
->t_data_sg
,
4229 sizeof(struct scatterlist
) * cmd
->t_data_nents
);
4230 task
->task_size
= cmd
->data_length
;
4231 task
->task_sg_nents
= cmd
->t_data_nents
;
4233 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4234 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
4235 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4237 if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) {
4238 if (dev
->transport
->map_control_SG
)
4239 ret
= dev
->transport
->map_control_SG(task
);
4240 } else if (cmd
->se_cmd_flags
& SCF_SCSI_NON_DATA_CDB
) {
4241 if (dev
->transport
->cdb_none
)
4242 ret
= dev
->transport
->cdb_none(task
);
4244 pr_err("target: Unknown control cmd type!\n");
4248 /* Success! Return number of tasks allocated */
4254 static u32
transport_allocate_tasks(
4256 unsigned long long lba
,
4257 enum dma_data_direction data_direction
,
4258 struct scatterlist
*sgl
,
4259 unsigned int sgl_nents
)
4261 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) {
4262 if (transport_cmd_get_valid_sectors(cmd
) < 0)
4265 return transport_allocate_data_tasks(cmd
, lba
, data_direction
,
4268 return transport_allocate_control_task(cmd
);
4273 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4275 * Allocate storage transport resources from a set of values predefined
4276 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4277 * Any non zero return here is treated as an "out of resource' op here.
4280 * Generate struct se_task(s) and/or their payloads for this CDB.
4282 int transport_generic_new_cmd(struct se_cmd
*cmd
)
4287 * Determine is the TCM fabric module has already allocated physical
4288 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4291 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
4293 ret
= transport_generic_get_mem(cmd
);
4298 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4299 * control or data CDB types, and perform the map to backend subsystem
4300 * code from SGL memory allocated here by transport_generic_get_mem(), or
4301 * via pre-existing SGL memory setup explictly by fabric module code with
4302 * transport_generic_map_mem_to_cmd().
4304 ret
= transport_new_cmd_obj(cmd
);
4308 * For WRITEs, let the fabric know its buffer is ready..
4309 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4310 * will be added to the struct se_device execution queue after its WRITE
4311 * data has arrived. (ie: It gets handled by the transport processing
4312 * thread a second time)
4314 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
4315 transport_add_tasks_to_state_queue(cmd
);
4316 return transport_generic_write_pending(cmd
);
4319 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4320 * to the execution queue.
4322 transport_execute_tasks(cmd
);
4325 EXPORT_SYMBOL(transport_generic_new_cmd
);
4327 /* transport_generic_process_write():
4331 void transport_generic_process_write(struct se_cmd
*cmd
)
4333 transport_execute_tasks(cmd
);
4335 EXPORT_SYMBOL(transport_generic_process_write
);
4337 static int transport_write_pending_qf(struct se_cmd
*cmd
)
4339 return cmd
->se_tfo
->write_pending(cmd
);
4342 /* transport_generic_write_pending():
4346 static int transport_generic_write_pending(struct se_cmd
*cmd
)
4348 unsigned long flags
;
4351 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4352 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
4353 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4355 if (cmd
->transport_qf_callback
) {
4356 ret
= cmd
->transport_qf_callback(cmd
);
4362 cmd
->transport_qf_callback
= NULL
;
4367 * Clear the se_cmd for WRITE_PENDING status in order to set
4368 * cmd->t_transport_active=0 so that transport_generic_handle_data
4369 * can be called from HW target mode interrupt code. This is safe
4370 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4371 * because the se_cmd->se_lun pointer is not being cleared.
4373 transport_cmd_check_stop(cmd
, 1, 0);
4376 * Call the fabric write_pending function here to let the
4377 * frontend know that WRITE buffers are ready.
4379 ret
= cmd
->se_tfo
->write_pending(cmd
);
4385 return PYX_TRANSPORT_WRITE_PENDING
;
4388 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
4389 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
4390 transport_handle_queue_full(cmd
, cmd
->se_dev
,
4391 transport_write_pending_qf
);
4395 void transport_release_cmd(struct se_cmd
*cmd
)
4397 BUG_ON(!cmd
->se_tfo
);
4399 transport_free_se_cmd(cmd
);
4400 cmd
->se_tfo
->release_cmd(cmd
);
4402 EXPORT_SYMBOL(transport_release_cmd
);
4404 /* transport_generic_free_cmd():
4406 * Called from processing frontend to release storage engine resources
4408 void transport_generic_free_cmd(
4411 int session_reinstatement
)
4413 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
))
4414 transport_release_cmd(cmd
);
4416 core_dec_lacl_count(cmd
->se_sess
->se_node_acl
, cmd
);
4420 pr_debug("cmd: %p ITT: 0x%08x contains"
4421 " cmd->se_lun\n", cmd
,
4422 cmd
->se_tfo
->get_task_tag(cmd
));
4424 transport_lun_remove_cmd(cmd
);
4427 if (wait_for_tasks
&& cmd
->transport_wait_for_tasks
)
4428 cmd
->transport_wait_for_tasks(cmd
, 0, 0);
4430 transport_free_dev_tasks(cmd
);
4432 transport_generic_remove(cmd
, session_reinstatement
);
4435 EXPORT_SYMBOL(transport_generic_free_cmd
);
4437 static void transport_nop_wait_for_tasks(
4440 int session_reinstatement
)
4445 /* transport_lun_wait_for_tasks():
4447 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4448 * an struct se_lun to be successfully shutdown.
4450 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
4452 unsigned long flags
;
4455 * If the frontend has already requested this struct se_cmd to
4456 * be stopped, we can safely ignore this struct se_cmd.
4458 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4459 if (atomic_read(&cmd
->t_transport_stop
)) {
4460 atomic_set(&cmd
->transport_lun_stop
, 0);
4461 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4462 " TRUE, skipping\n", cmd
->se_tfo
->get_task_tag(cmd
));
4463 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4464 transport_cmd_check_stop(cmd
, 1, 0);
4467 atomic_set(&cmd
->transport_lun_fe_stop
, 1);
4468 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4470 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4472 ret
= transport_stop_tasks_for_cmd(cmd
);
4474 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4475 " %d\n", cmd
, cmd
->t_task_list_num
, ret
);
4477 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4478 cmd
->se_tfo
->get_task_tag(cmd
));
4479 wait_for_completion(&cmd
->transport_lun_stop_comp
);
4480 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4481 cmd
->se_tfo
->get_task_tag(cmd
));
4483 transport_remove_cmd_from_queue(cmd
, &cmd
->se_dev
->dev_queue_obj
);
4488 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
4490 struct se_cmd
*cmd
= NULL
;
4491 unsigned long lun_flags
, cmd_flags
;
4493 * Do exception processing and return CHECK_CONDITION status to the
4496 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4497 while (!list_empty(&lun
->lun_cmd_list
)) {
4498 cmd
= list_first_entry(&lun
->lun_cmd_list
,
4499 struct se_cmd
, se_lun_node
);
4500 list_del(&cmd
->se_lun_node
);
4502 atomic_set(&cmd
->transport_lun_active
, 0);
4504 * This will notify iscsi_target_transport.c:
4505 * transport_cmd_check_stop() that a LUN shutdown is in
4506 * progress for the iscsi_cmd_t.
4508 spin_lock(&cmd
->t_state_lock
);
4509 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4510 "_lun_stop for ITT: 0x%08x\n",
4511 cmd
->se_lun
->unpacked_lun
,
4512 cmd
->se_tfo
->get_task_tag(cmd
));
4513 atomic_set(&cmd
->transport_lun_stop
, 1);
4514 spin_unlock(&cmd
->t_state_lock
);
4516 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4519 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4520 cmd
->se_tfo
->get_task_tag(cmd
),
4521 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
4525 * If the Storage engine still owns the iscsi_cmd_t, determine
4526 * and/or stop its context.
4528 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4529 "_lun_wait_for_tasks()\n", cmd
->se_lun
->unpacked_lun
,
4530 cmd
->se_tfo
->get_task_tag(cmd
));
4532 if (transport_lun_wait_for_tasks(cmd
, cmd
->se_lun
) < 0) {
4533 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4537 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4538 "_wait_for_tasks(): SUCCESS\n",
4539 cmd
->se_lun
->unpacked_lun
,
4540 cmd
->se_tfo
->get_task_tag(cmd
));
4542 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4543 if (!atomic_read(&cmd
->transport_dev_active
)) {
4544 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4547 atomic_set(&cmd
->transport_dev_active
, 0);
4548 transport_all_task_dev_remove_state(cmd
);
4549 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4551 transport_free_dev_tasks(cmd
);
4553 * The Storage engine stopped this struct se_cmd before it was
4554 * send to the fabric frontend for delivery back to the
4555 * Initiator Node. Return this SCSI CDB back with an
4556 * CHECK_CONDITION status.
4559 transport_send_check_condition_and_sense(cmd
,
4560 TCM_NON_EXISTENT_LUN
, 0);
4562 * If the fabric frontend is waiting for this iscsi_cmd_t to
4563 * be released, notify the waiting thread now that LU has
4564 * finished accessing it.
4566 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4567 if (atomic_read(&cmd
->transport_lun_fe_stop
)) {
4568 pr_debug("SE_LUN[%d] - Detected FE stop for"
4569 " struct se_cmd: %p ITT: 0x%08x\n",
4571 cmd
, cmd
->se_tfo
->get_task_tag(cmd
));
4573 spin_unlock_irqrestore(&cmd
->t_state_lock
,
4575 transport_cmd_check_stop(cmd
, 1, 0);
4576 complete(&cmd
->transport_lun_fe_stop_comp
);
4577 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4580 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4581 lun
->unpacked_lun
, cmd
->se_tfo
->get_task_tag(cmd
));
4583 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4584 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4586 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4589 static int transport_clear_lun_thread(void *p
)
4591 struct se_lun
*lun
= (struct se_lun
*)p
;
4593 __transport_clear_lun_from_sessions(lun
);
4594 complete(&lun
->lun_shutdown_comp
);
4599 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
4601 struct task_struct
*kt
;
4603 kt
= kthread_run(transport_clear_lun_thread
, lun
,
4604 "tcm_cl_%u", lun
->unpacked_lun
);
4606 pr_err("Unable to start clear_lun thread\n");
4609 wait_for_completion(&lun
->lun_shutdown_comp
);
4614 /* transport_generic_wait_for_tasks():
4616 * Called from frontend or passthrough context to wait for storage engine
4617 * to pause and/or release frontend generated struct se_cmd.
4619 static void transport_generic_wait_for_tasks(
4622 int session_reinstatement
)
4624 unsigned long flags
;
4626 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) && !(cmd
->se_tmr_req
))
4629 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4631 * If we are already stopped due to an external event (ie: LUN shutdown)
4632 * sleep until the connection can have the passed struct se_cmd back.
4633 * The cmd->transport_lun_stopped_sem will be upped by
4634 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4635 * has completed its operation on the struct se_cmd.
4637 if (atomic_read(&cmd
->transport_lun_stop
)) {
4639 pr_debug("wait_for_tasks: Stopping"
4640 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4641 "_stop_comp); for ITT: 0x%08x\n",
4642 cmd
->se_tfo
->get_task_tag(cmd
));
4644 * There is a special case for WRITES where a FE exception +
4645 * LUN shutdown means ConfigFS context is still sleeping on
4646 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4647 * We go ahead and up transport_lun_stop_comp just to be sure
4650 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4651 complete(&cmd
->transport_lun_stop_comp
);
4652 wait_for_completion(&cmd
->transport_lun_fe_stop_comp
);
4653 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4655 transport_all_task_dev_remove_state(cmd
);
4657 * At this point, the frontend who was the originator of this
4658 * struct se_cmd, now owns the structure and can be released through
4659 * normal means below.
4661 pr_debug("wait_for_tasks: Stopped"
4662 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4663 "stop_comp); for ITT: 0x%08x\n",
4664 cmd
->se_tfo
->get_task_tag(cmd
));
4666 atomic_set(&cmd
->transport_lun_stop
, 0);
4668 if (!atomic_read(&cmd
->t_transport_active
) ||
4669 atomic_read(&cmd
->t_transport_aborted
))
4672 atomic_set(&cmd
->t_transport_stop
, 1);
4674 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4675 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4676 " = TRUE\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
4677 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
,
4678 cmd
->deferred_t_state
);
4680 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4682 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4684 wait_for_completion(&cmd
->t_transport_stop_comp
);
4686 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4687 atomic_set(&cmd
->t_transport_active
, 0);
4688 atomic_set(&cmd
->t_transport_stop
, 0);
4690 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4691 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4692 cmd
->se_tfo
->get_task_tag(cmd
));
4694 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4698 transport_generic_free_cmd(cmd
, 0, session_reinstatement
);
4701 static int transport_get_sense_codes(
4706 *asc
= cmd
->scsi_asc
;
4707 *ascq
= cmd
->scsi_ascq
;
4712 static int transport_set_sense_codes(
4717 cmd
->scsi_asc
= asc
;
4718 cmd
->scsi_ascq
= ascq
;
4723 int transport_send_check_condition_and_sense(
4728 unsigned char *buffer
= cmd
->sense_buffer
;
4729 unsigned long flags
;
4731 u8 asc
= 0, ascq
= 0;
4733 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4734 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
4735 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4738 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
4739 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4741 if (!reason
&& from_transport
)
4744 if (!from_transport
)
4745 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
4747 * Data Segment and SenseLength of the fabric response PDU.
4749 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4750 * from include/scsi/scsi_cmnd.h
4752 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
4753 TRANSPORT_SENSE_BUFFER
);
4755 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4756 * SENSE KEY values from include/scsi/scsi.h
4759 case TCM_NON_EXISTENT_LUN
:
4761 buffer
[offset
] = 0x70;
4762 /* ILLEGAL REQUEST */
4763 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4764 /* LOGICAL UNIT NOT SUPPORTED */
4765 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x25;
4767 case TCM_UNSUPPORTED_SCSI_OPCODE
:
4768 case TCM_SECTOR_COUNT_TOO_MANY
:
4770 buffer
[offset
] = 0x70;
4771 /* ILLEGAL REQUEST */
4772 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4773 /* INVALID COMMAND OPERATION CODE */
4774 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x20;
4776 case TCM_UNKNOWN_MODE_PAGE
:
4778 buffer
[offset
] = 0x70;
4779 /* ILLEGAL REQUEST */
4780 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4781 /* INVALID FIELD IN CDB */
4782 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4784 case TCM_CHECK_CONDITION_ABORT_CMD
:
4786 buffer
[offset
] = 0x70;
4787 /* ABORTED COMMAND */
4788 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4789 /* BUS DEVICE RESET FUNCTION OCCURRED */
4790 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x29;
4791 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x03;
4793 case TCM_INCORRECT_AMOUNT_OF_DATA
:
4795 buffer
[offset
] = 0x70;
4796 /* ABORTED COMMAND */
4797 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4799 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4800 /* NOT ENOUGH UNSOLICITED DATA */
4801 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0d;
4803 case TCM_INVALID_CDB_FIELD
:
4805 buffer
[offset
] = 0x70;
4806 /* ABORTED COMMAND */
4807 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4808 /* INVALID FIELD IN CDB */
4809 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4811 case TCM_INVALID_PARAMETER_LIST
:
4813 buffer
[offset
] = 0x70;
4814 /* ABORTED COMMAND */
4815 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4816 /* INVALID FIELD IN PARAMETER LIST */
4817 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x26;
4819 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
4821 buffer
[offset
] = 0x70;
4822 /* ABORTED COMMAND */
4823 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4825 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4826 /* UNEXPECTED_UNSOLICITED_DATA */
4827 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0c;
4829 case TCM_SERVICE_CRC_ERROR
:
4831 buffer
[offset
] = 0x70;
4832 /* ABORTED COMMAND */
4833 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4834 /* PROTOCOL SERVICE CRC ERROR */
4835 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x47;
4837 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x05;
4839 case TCM_SNACK_REJECTED
:
4841 buffer
[offset
] = 0x70;
4842 /* ABORTED COMMAND */
4843 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4845 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x11;
4846 /* FAILED RETRANSMISSION REQUEST */
4847 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x13;
4849 case TCM_WRITE_PROTECTED
:
4851 buffer
[offset
] = 0x70;
4853 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
4854 /* WRITE PROTECTED */
4855 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x27;
4857 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
4859 buffer
[offset
] = 0x70;
4860 /* UNIT ATTENTION */
4861 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
4862 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
4863 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4864 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4866 case TCM_CHECK_CONDITION_NOT_READY
:
4868 buffer
[offset
] = 0x70;
4870 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
4871 transport_get_sense_codes(cmd
, &asc
, &ascq
);
4872 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4873 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4875 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
4878 buffer
[offset
] = 0x70;
4879 /* ILLEGAL REQUEST */
4880 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4881 /* LOGICAL UNIT COMMUNICATION FAILURE */
4882 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x80;
4886 * This code uses linux/include/scsi/scsi.h SAM status codes!
4888 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
4890 * Automatically padded, this value is encoded in the fabric's
4891 * data_length response PDU containing the SCSI defined sense data.
4893 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
+ offset
;
4896 return cmd
->se_tfo
->queue_status(cmd
);
4898 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
4900 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
4904 if (atomic_read(&cmd
->t_transport_aborted
) != 0) {
4906 (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
4909 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4910 " status for CDB: 0x%02x ITT: 0x%08x\n",
4912 cmd
->se_tfo
->get_task_tag(cmd
));
4914 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
4915 cmd
->se_tfo
->queue_status(cmd
);
4920 EXPORT_SYMBOL(transport_check_aborted_status
);
4922 void transport_send_task_abort(struct se_cmd
*cmd
)
4925 * If there are still expected incoming fabric WRITEs, we wait
4926 * until until they have completed before sending a TASK_ABORTED
4927 * response. This response with TASK_ABORTED status will be
4928 * queued back to fabric module by transport_check_aborted_status().
4930 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
4931 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
4932 atomic_inc(&cmd
->t_transport_aborted
);
4933 smp_mb__after_atomic_inc();
4934 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
4935 transport_new_cmd_failure(cmd
);
4939 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
4941 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4942 " ITT: 0x%08x\n", cmd
->t_task_cdb
[0],
4943 cmd
->se_tfo
->get_task_tag(cmd
));
4945 cmd
->se_tfo
->queue_status(cmd
);
4948 /* transport_generic_do_tmr():
4952 int transport_generic_do_tmr(struct se_cmd
*cmd
)
4954 struct se_device
*dev
= cmd
->se_dev
;
4955 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
4958 switch (tmr
->function
) {
4959 case TMR_ABORT_TASK
:
4960 tmr
->response
= TMR_FUNCTION_REJECTED
;
4962 case TMR_ABORT_TASK_SET
:
4964 case TMR_CLEAR_TASK_SET
:
4965 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
4968 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
4969 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
4970 TMR_FUNCTION_REJECTED
;
4972 case TMR_TARGET_WARM_RESET
:
4973 tmr
->response
= TMR_FUNCTION_REJECTED
;
4975 case TMR_TARGET_COLD_RESET
:
4976 tmr
->response
= TMR_FUNCTION_REJECTED
;
4979 pr_err("Uknown TMR function: 0x%02x.\n",
4981 tmr
->response
= TMR_FUNCTION_REJECTED
;
4985 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
4986 cmd
->se_tfo
->queue_tm_rsp(cmd
);
4988 transport_cmd_check_stop(cmd
, 2, 0);
4993 * Called with spin_lock_irq(&dev->execute_task_lock); held
4996 static struct se_task
*
4997 transport_get_task_from_state_list(struct se_device
*dev
)
4999 struct se_task
*task
;
5001 if (list_empty(&dev
->state_task_list
))
5004 list_for_each_entry(task
, &dev
->state_task_list
, t_state_list
)
5007 list_del(&task
->t_state_list
);
5008 atomic_set(&task
->task_state_active
, 0);
5013 static void transport_processing_shutdown(struct se_device
*dev
)
5016 struct se_task
*task
;
5017 unsigned long flags
;
5019 * Empty the struct se_device's struct se_task state list.
5021 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5022 while ((task
= transport_get_task_from_state_list(dev
))) {
5023 if (!task
->task_se_cmd
) {
5024 pr_err("task->task_se_cmd is NULL!\n");
5027 cmd
= task
->task_se_cmd
;
5029 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
5031 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
5033 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
5034 " i_state: %d, t_state/def_t_state:"
5035 " %d/%d cdb: 0x%02x\n", cmd
, task
,
5036 cmd
->se_tfo
->get_task_tag(cmd
),
5037 cmd
->se_tfo
->get_cmd_state(cmd
),
5038 cmd
->t_state
, cmd
->deferred_t_state
,
5039 cmd
->t_task_cdb
[0]);
5040 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
5041 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5042 " t_transport_stop: %d t_transport_sent: %d\n",
5043 cmd
->se_tfo
->get_task_tag(cmd
),
5044 cmd
->t_task_list_num
,
5045 atomic_read(&cmd
->t_task_cdbs_left
),
5046 atomic_read(&cmd
->t_task_cdbs_sent
),
5047 atomic_read(&cmd
->t_transport_active
),
5048 atomic_read(&cmd
->t_transport_stop
),
5049 atomic_read(&cmd
->t_transport_sent
));
5051 if (atomic_read(&task
->task_active
)) {
5052 atomic_set(&task
->task_stop
, 1);
5053 spin_unlock_irqrestore(
5054 &cmd
->t_state_lock
, flags
);
5056 pr_debug("Waiting for task: %p to shutdown for dev:"
5057 " %p\n", task
, dev
);
5058 wait_for_completion(&task
->task_stop_comp
);
5059 pr_debug("Completed task: %p shutdown for dev: %p\n",
5062 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
5063 atomic_dec(&cmd
->t_task_cdbs_left
);
5065 atomic_set(&task
->task_active
, 0);
5066 atomic_set(&task
->task_stop
, 0);
5068 if (atomic_read(&task
->task_execute_queue
) != 0)
5069 transport_remove_task_from_execute_queue(task
, dev
);
5071 __transport_stop_task_timer(task
, &flags
);
5073 if (!atomic_dec_and_test(&cmd
->t_task_cdbs_ex_left
)) {
5074 spin_unlock_irqrestore(
5075 &cmd
->t_state_lock
, flags
);
5077 pr_debug("Skipping task: %p, dev: %p for"
5078 " t_task_cdbs_ex_left: %d\n", task
, dev
,
5079 atomic_read(&cmd
->t_task_cdbs_ex_left
));
5081 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5085 if (atomic_read(&cmd
->t_transport_active
)) {
5086 pr_debug("got t_transport_active = 1 for task: %p, dev:"
5087 " %p\n", task
, dev
);
5089 if (atomic_read(&cmd
->t_fe_count
)) {
5090 spin_unlock_irqrestore(
5091 &cmd
->t_state_lock
, flags
);
5092 transport_send_check_condition_and_sense(
5093 cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
,
5095 transport_remove_cmd_from_queue(cmd
,
5096 &cmd
->se_dev
->dev_queue_obj
);
5098 transport_lun_remove_cmd(cmd
);
5099 transport_cmd_check_stop(cmd
, 1, 0);
5101 spin_unlock_irqrestore(
5102 &cmd
->t_state_lock
, flags
);
5104 transport_remove_cmd_from_queue(cmd
,
5105 &cmd
->se_dev
->dev_queue_obj
);
5107 transport_lun_remove_cmd(cmd
);
5109 if (transport_cmd_check_stop(cmd
, 1, 0))
5110 transport_generic_remove(cmd
, 0);
5113 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5116 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
5119 if (atomic_read(&cmd
->t_fe_count
)) {
5120 spin_unlock_irqrestore(
5121 &cmd
->t_state_lock
, flags
);
5122 transport_send_check_condition_and_sense(cmd
,
5123 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
5124 transport_remove_cmd_from_queue(cmd
,
5125 &cmd
->se_dev
->dev_queue_obj
);
5127 transport_lun_remove_cmd(cmd
);
5128 transport_cmd_check_stop(cmd
, 1, 0);
5130 spin_unlock_irqrestore(
5131 &cmd
->t_state_lock
, flags
);
5133 transport_remove_cmd_from_queue(cmd
,
5134 &cmd
->se_dev
->dev_queue_obj
);
5135 transport_lun_remove_cmd(cmd
);
5137 if (transport_cmd_check_stop(cmd
, 1, 0))
5138 transport_generic_remove(cmd
, 0);
5141 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5143 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
5145 * Empty the struct se_device's struct se_cmd list.
5147 while ((cmd
= transport_get_cmd_from_queue(&dev
->dev_queue_obj
))) {
5149 pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5152 if (atomic_read(&cmd
->t_fe_count
)) {
5153 transport_send_check_condition_and_sense(cmd
,
5154 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
5156 transport_lun_remove_cmd(cmd
);
5157 transport_cmd_check_stop(cmd
, 1, 0);
5159 transport_lun_remove_cmd(cmd
);
5160 if (transport_cmd_check_stop(cmd
, 1, 0))
5161 transport_generic_remove(cmd
, 0);
5166 /* transport_processing_thread():
5170 static int transport_processing_thread(void *param
)
5174 struct se_device
*dev
= (struct se_device
*) param
;
5176 set_user_nice(current
, -20);
5178 while (!kthread_should_stop()) {
5179 ret
= wait_event_interruptible(dev
->dev_queue_obj
.thread_wq
,
5180 atomic_read(&dev
->dev_queue_obj
.queue_cnt
) ||
5181 kthread_should_stop());
5185 spin_lock_irq(&dev
->dev_status_lock
);
5186 if (dev
->dev_status
& TRANSPORT_DEVICE_SHUTDOWN
) {
5187 spin_unlock_irq(&dev
->dev_status_lock
);
5188 transport_processing_shutdown(dev
);
5191 spin_unlock_irq(&dev
->dev_status_lock
);
5194 __transport_execute_tasks(dev
);
5196 cmd
= transport_get_cmd_from_queue(&dev
->dev_queue_obj
);
5200 switch (cmd
->t_state
) {
5201 case TRANSPORT_NEW_CMD_MAP
:
5202 if (!cmd
->se_tfo
->new_cmd_map
) {
5203 pr_err("cmd->se_tfo->new_cmd_map is"
5204 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5207 ret
= cmd
->se_tfo
->new_cmd_map(cmd
);
5209 cmd
->transport_error_status
= ret
;
5210 transport_generic_request_failure(cmd
, NULL
,
5211 0, (cmd
->data_direction
!=
5216 case TRANSPORT_NEW_CMD
:
5217 ret
= transport_generic_new_cmd(cmd
);
5221 cmd
->transport_error_status
= ret
;
5222 transport_generic_request_failure(cmd
, NULL
,
5223 0, (cmd
->data_direction
!=
5227 case TRANSPORT_PROCESS_WRITE
:
5228 transport_generic_process_write(cmd
);
5230 case TRANSPORT_COMPLETE_OK
:
5231 transport_stop_all_task_timers(cmd
);
5232 transport_generic_complete_ok(cmd
);
5234 case TRANSPORT_REMOVE
:
5235 transport_generic_remove(cmd
, 0);
5237 case TRANSPORT_FREE_CMD_INTR
:
5238 transport_generic_free_cmd(cmd
, 0, 0);
5240 case TRANSPORT_PROCESS_TMR
:
5241 transport_generic_do_tmr(cmd
);
5243 case TRANSPORT_COMPLETE_FAILURE
:
5244 transport_generic_request_failure(cmd
, NULL
, 1, 1);
5246 case TRANSPORT_COMPLETE_TIMEOUT
:
5247 transport_stop_all_task_timers(cmd
);
5248 transport_generic_request_timeout(cmd
);
5250 case TRANSPORT_COMPLETE_QF_WP
:
5251 transport_generic_write_pending(cmd
);
5254 pr_err("Unknown t_state: %d deferred_t_state:"
5255 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5256 " %u\n", cmd
->t_state
, cmd
->deferred_t_state
,
5257 cmd
->se_tfo
->get_task_tag(cmd
),
5258 cmd
->se_tfo
->get_cmd_state(cmd
),
5259 cmd
->se_lun
->unpacked_lun
);
5267 transport_release_all_cmds(dev
);
5268 dev
->process_thread
= NULL
;