Staging: altera: move .h file to proper place
[zen-stable.git] / arch / tile / kernel / setup.c
blob6cdc9ba55fe0443dd8906fd60056d1ad9e6e783f
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mmzone.h>
18 #include <linux/bootmem.h>
19 #include <linux/module.h>
20 #include <linux/node.h>
21 #include <linux/cpu.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/kexec.h>
25 #include <linux/pci.h>
26 #include <linux/initrd.h>
27 #include <linux/io.h>
28 #include <linux/highmem.h>
29 #include <linux/smp.h>
30 #include <linux/timex.h>
31 #include <asm/setup.h>
32 #include <asm/sections.h>
33 #include <asm/cacheflush.h>
34 #include <asm/pgalloc.h>
35 #include <asm/mmu_context.h>
36 #include <hv/hypervisor.h>
37 #include <arch/interrupts.h>
39 /* <linux/smp.h> doesn't provide this definition. */
40 #ifndef CONFIG_SMP
41 #define setup_max_cpus 1
42 #endif
44 static inline int ABS(int x) { return x >= 0 ? x : -x; }
46 /* Chip information */
47 char chip_model[64] __write_once;
49 struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
50 EXPORT_SYMBOL(node_data);
52 /* We only create bootmem data on node 0. */
53 static bootmem_data_t __initdata node0_bdata;
55 /* Information on the NUMA nodes that we compute early */
56 unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
57 unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
58 unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
59 unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
60 unsigned long __initdata node_free_pfn[MAX_NUMNODES];
62 static unsigned long __initdata node_percpu[MAX_NUMNODES];
64 #ifdef CONFIG_HIGHMEM
65 /* Page frame index of end of lowmem on each controller. */
66 unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
68 /* Number of pages that can be mapped into lowmem. */
69 static unsigned long __initdata mappable_physpages;
70 #endif
72 /* Data on which physical memory controller corresponds to which NUMA node */
73 int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
75 #ifdef CONFIG_HIGHMEM
76 /* Map information from VAs to PAs */
77 unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
78 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
79 EXPORT_SYMBOL(pbase_map);
81 /* Map information from PAs to VAs */
82 void *vbase_map[NR_PA_HIGHBIT_VALUES]
83 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
84 EXPORT_SYMBOL(vbase_map);
85 #endif
87 /* Node number as a function of the high PA bits */
88 int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
89 EXPORT_SYMBOL(highbits_to_node);
91 static unsigned int __initdata maxmem_pfn = -1U;
92 static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
93 [0 ... MAX_NUMNODES-1] = -1U
95 static nodemask_t __initdata isolnodes;
97 #ifdef CONFIG_PCI
98 enum { DEFAULT_PCI_RESERVE_MB = 64 };
99 static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
100 unsigned long __initdata pci_reserve_start_pfn = -1U;
101 unsigned long __initdata pci_reserve_end_pfn = -1U;
102 #endif
104 static int __init setup_maxmem(char *str)
106 long maxmem_mb;
107 if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 ||
108 maxmem_mb == 0)
109 return -EINVAL;
111 maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) <<
112 (HPAGE_SHIFT - PAGE_SHIFT);
113 pr_info("Forcing RAM used to no more than %dMB\n",
114 maxmem_pfn >> (20 - PAGE_SHIFT));
115 return 0;
117 early_param("maxmem", setup_maxmem);
119 static int __init setup_maxnodemem(char *str)
121 char *endp;
122 long maxnodemem_mb, node;
124 node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
125 if (node >= MAX_NUMNODES || *endp != ':' ||
126 strict_strtol(endp+1, 0, &maxnodemem_mb) != 0)
127 return -EINVAL;
129 maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) <<
130 (HPAGE_SHIFT - PAGE_SHIFT);
131 pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
132 node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
133 return 0;
135 early_param("maxnodemem", setup_maxnodemem);
137 static int __init setup_isolnodes(char *str)
139 char buf[MAX_NUMNODES * 5];
140 if (str == NULL || nodelist_parse(str, isolnodes) != 0)
141 return -EINVAL;
143 nodelist_scnprintf(buf, sizeof(buf), isolnodes);
144 pr_info("Set isolnodes value to '%s'\n", buf);
145 return 0;
147 early_param("isolnodes", setup_isolnodes);
149 #ifdef CONFIG_PCI
150 static int __init setup_pci_reserve(char* str)
152 unsigned long mb;
154 if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
155 mb > 3 * 1024)
156 return -EINVAL;
158 pci_reserve_mb = mb;
159 pr_info("Reserving %dMB for PCIE root complex mappings\n",
160 pci_reserve_mb);
161 return 0;
163 early_param("pci_reserve", setup_pci_reserve);
164 #endif
166 #ifndef __tilegx__
168 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
169 * This can be used to increase (or decrease) the vmalloc area.
171 static int __init parse_vmalloc(char *arg)
173 if (!arg)
174 return -EINVAL;
176 VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
178 /* See validate_va() for more on this test. */
179 if ((long)_VMALLOC_START >= 0)
180 early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
181 VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
183 return 0;
185 early_param("vmalloc", parse_vmalloc);
186 #endif
188 #ifdef CONFIG_HIGHMEM
190 * Determine for each controller where its lowmem is mapped and how much of
191 * it is mapped there. On controller zero, the first few megabytes are
192 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
193 * start our data mappings higher up, but for now we don't bother, to avoid
194 * additional confusion.
196 * One question is whether, on systems with more than 768 Mb and
197 * controllers of different sizes, to map in a proportionate amount of
198 * each one, or to try to map the same amount from each controller.
199 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
200 * respectively, do we map 256MB from each, or do we map 128 MB, 512
201 * MB, and 128 MB respectively?) For now we use a proportionate
202 * solution like the latter.
204 * The VA/PA mapping demands that we align our decisions at 16 MB
205 * boundaries so that we can rapidly convert VA to PA.
207 static void *__init setup_pa_va_mapping(void)
209 unsigned long curr_pages = 0;
210 unsigned long vaddr = PAGE_OFFSET;
211 nodemask_t highonlynodes = isolnodes;
212 int i, j;
214 memset(pbase_map, -1, sizeof(pbase_map));
215 memset(vbase_map, -1, sizeof(vbase_map));
217 /* Node zero cannot be isolated for LOWMEM purposes. */
218 node_clear(0, highonlynodes);
220 /* Count up the number of pages on non-highonlynodes controllers. */
221 mappable_physpages = 0;
222 for_each_online_node(i) {
223 if (!node_isset(i, highonlynodes))
224 mappable_physpages +=
225 node_end_pfn[i] - node_start_pfn[i];
228 for_each_online_node(i) {
229 unsigned long start = node_start_pfn[i];
230 unsigned long end = node_end_pfn[i];
231 unsigned long size = end - start;
232 unsigned long vaddr_end;
234 if (node_isset(i, highonlynodes)) {
235 /* Mark this controller as having no lowmem. */
236 node_lowmem_end_pfn[i] = start;
237 continue;
240 curr_pages += size;
241 if (mappable_physpages > MAXMEM_PFN) {
242 vaddr_end = PAGE_OFFSET +
243 (((u64)curr_pages * MAXMEM_PFN /
244 mappable_physpages)
245 << PAGE_SHIFT);
246 } else {
247 vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
249 for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
250 unsigned long this_pfn =
251 start + (j << HUGETLB_PAGE_ORDER);
252 pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
253 if (vbase_map[__pfn_to_highbits(this_pfn)] ==
254 (void *)-1)
255 vbase_map[__pfn_to_highbits(this_pfn)] =
256 (void *)(vaddr & HPAGE_MASK);
258 node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
259 BUG_ON(node_lowmem_end_pfn[i] > end);
262 /* Return highest address of any mapped memory. */
263 return (void *)vaddr;
265 #endif /* CONFIG_HIGHMEM */
268 * Register our most important memory mappings with the debug stub.
270 * This is up to 4 mappings for lowmem, one mapping per memory
271 * controller, plus one for our text segment.
273 static void __cpuinit store_permanent_mappings(void)
275 int i;
277 for_each_online_node(i) {
278 HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
279 #ifdef CONFIG_HIGHMEM
280 HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
281 #else
282 HV_PhysAddr high_mapped_pa = node_end_pfn[i];
283 #endif
285 unsigned long pages = high_mapped_pa - node_start_pfn[i];
286 HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
287 hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
290 hv_store_mapping((HV_VirtAddr)_stext,
291 (uint32_t)(_einittext - _stext), 0);
295 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
296 * and node_online_map, doing suitable sanity-checking.
297 * Also set min_low_pfn, max_low_pfn, and max_pfn.
299 static void __init setup_memory(void)
301 int i, j;
302 int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
303 #ifdef CONFIG_HIGHMEM
304 long highmem_pages;
305 #endif
306 #ifndef __tilegx__
307 int cap;
308 #endif
309 #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
310 long lowmem_pages;
311 #endif
313 /* We are using a char to hold the cpu_2_node[] mapping */
314 BUILD_BUG_ON(MAX_NUMNODES > 127);
316 /* Discover the ranges of memory available to us */
317 for (i = 0; ; ++i) {
318 unsigned long start, size, end, highbits;
319 HV_PhysAddrRange range = hv_inquire_physical(i);
320 if (range.size == 0)
321 break;
322 #ifdef CONFIG_FLATMEM
323 if (i > 0) {
324 pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
325 range.size, range.start + range.size);
326 continue;
328 #endif
329 #ifndef __tilegx__
330 if ((unsigned long)range.start) {
331 pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
332 range.start, range.start + range.size);
333 continue;
335 #endif
336 if ((range.start & (HPAGE_SIZE-1)) != 0 ||
337 (range.size & (HPAGE_SIZE-1)) != 0) {
338 unsigned long long start_pa = range.start;
339 unsigned long long orig_size = range.size;
340 range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
341 range.size -= (range.start - start_pa);
342 range.size &= HPAGE_MASK;
343 pr_err("Range not hugepage-aligned: %#llx..%#llx:"
344 " now %#llx-%#llx\n",
345 start_pa, start_pa + orig_size,
346 range.start, range.start + range.size);
348 highbits = __pa_to_highbits(range.start);
349 if (highbits >= NR_PA_HIGHBIT_VALUES) {
350 pr_err("PA high bits too high: %#llx..%#llx\n",
351 range.start, range.start + range.size);
352 continue;
354 if (highbits_seen[highbits]) {
355 pr_err("Range overlaps in high bits: %#llx..%#llx\n",
356 range.start, range.start + range.size);
357 continue;
359 highbits_seen[highbits] = 1;
360 if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
361 int max_size = maxnodemem_pfn[i];
362 if (max_size > 0) {
363 pr_err("Maxnodemem reduced node %d to"
364 " %d pages\n", i, max_size);
365 range.size = PFN_PHYS(max_size);
366 } else {
367 pr_err("Maxnodemem disabled node %d\n", i);
368 continue;
371 if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
372 int max_size = maxmem_pfn - num_physpages;
373 if (max_size > 0) {
374 pr_err("Maxmem reduced node %d to %d pages\n",
375 i, max_size);
376 range.size = PFN_PHYS(max_size);
377 } else {
378 pr_err("Maxmem disabled node %d\n", i);
379 continue;
382 if (i >= MAX_NUMNODES) {
383 pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
384 i, range.size, range.size + range.start);
385 continue;
388 start = range.start >> PAGE_SHIFT;
389 size = range.size >> PAGE_SHIFT;
390 end = start + size;
392 #ifndef __tilegx__
393 if (((HV_PhysAddr)end << PAGE_SHIFT) !=
394 (range.start + range.size)) {
395 pr_err("PAs too high to represent: %#llx..%#llx\n",
396 range.start, range.start + range.size);
397 continue;
399 #endif
400 #ifdef CONFIG_PCI
402 * Blocks that overlap the pci reserved region must
403 * have enough space to hold the maximum percpu data
404 * region at the top of the range. If there isn't
405 * enough space above the reserved region, just
406 * truncate the node.
408 if (start <= pci_reserve_start_pfn &&
409 end > pci_reserve_start_pfn) {
410 unsigned int per_cpu_size =
411 __per_cpu_end - __per_cpu_start;
412 unsigned int percpu_pages =
413 NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
414 if (end < pci_reserve_end_pfn + percpu_pages) {
415 end = pci_reserve_start_pfn;
416 pr_err("PCI mapping region reduced node %d to"
417 " %ld pages\n", i, end - start);
420 #endif
422 for (j = __pfn_to_highbits(start);
423 j <= __pfn_to_highbits(end - 1); j++)
424 highbits_to_node[j] = i;
426 node_start_pfn[i] = start;
427 node_end_pfn[i] = end;
428 node_controller[i] = range.controller;
429 num_physpages += size;
430 max_pfn = end;
432 /* Mark node as online */
433 node_set(i, node_online_map);
434 node_set(i, node_possible_map);
437 #ifndef __tilegx__
439 * For 4KB pages, mem_map "struct page" data is 1% of the size
440 * of the physical memory, so can be quite big (640 MB for
441 * four 16G zones). These structures must be mapped in
442 * lowmem, and since we currently cap out at about 768 MB,
443 * it's impractical to try to use this much address space.
444 * For now, arbitrarily cap the amount of physical memory
445 * we're willing to use at 8 million pages (32GB of 4KB pages).
447 cap = 8 * 1024 * 1024; /* 8 million pages */
448 if (num_physpages > cap) {
449 int num_nodes = num_online_nodes();
450 int cap_each = cap / num_nodes;
451 unsigned long dropped_pages = 0;
452 for (i = 0; i < num_nodes; ++i) {
453 int size = node_end_pfn[i] - node_start_pfn[i];
454 if (size > cap_each) {
455 dropped_pages += (size - cap_each);
456 node_end_pfn[i] = node_start_pfn[i] + cap_each;
459 num_physpages -= dropped_pages;
460 pr_warning("Only using %ldMB memory;"
461 " ignoring %ldMB.\n",
462 num_physpages >> (20 - PAGE_SHIFT),
463 dropped_pages >> (20 - PAGE_SHIFT));
464 pr_warning("Consider using a larger page size.\n");
466 #endif
468 /* Heap starts just above the last loaded address. */
469 min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
471 #ifdef CONFIG_HIGHMEM
472 /* Find where we map lowmem from each controller. */
473 high_memory = setup_pa_va_mapping();
475 /* Set max_low_pfn based on what node 0 can directly address. */
476 max_low_pfn = node_lowmem_end_pfn[0];
478 lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
479 MAXMEM_PFN : mappable_physpages;
480 highmem_pages = (long) (num_physpages - lowmem_pages);
482 pr_notice("%ldMB HIGHMEM available.\n",
483 pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
484 pr_notice("%ldMB LOWMEM available.\n",
485 pages_to_mb(lowmem_pages));
486 #else
487 /* Set max_low_pfn based on what node 0 can directly address. */
488 max_low_pfn = node_end_pfn[0];
490 #ifndef __tilegx__
491 if (node_end_pfn[0] > MAXMEM_PFN) {
492 pr_warning("Only using %ldMB LOWMEM.\n",
493 MAXMEM>>20);
494 pr_warning("Use a HIGHMEM enabled kernel.\n");
495 max_low_pfn = MAXMEM_PFN;
496 max_pfn = MAXMEM_PFN;
497 num_physpages = MAXMEM_PFN;
498 node_end_pfn[0] = MAXMEM_PFN;
499 } else {
500 pr_notice("%ldMB memory available.\n",
501 pages_to_mb(node_end_pfn[0]));
503 for (i = 1; i < MAX_NUMNODES; ++i) {
504 node_start_pfn[i] = 0;
505 node_end_pfn[i] = 0;
507 high_memory = __va(node_end_pfn[0]);
508 #else
509 lowmem_pages = 0;
510 for (i = 0; i < MAX_NUMNODES; ++i) {
511 int pages = node_end_pfn[i] - node_start_pfn[i];
512 lowmem_pages += pages;
513 if (pages)
514 high_memory = pfn_to_kaddr(node_end_pfn[i]);
516 pr_notice("%ldMB memory available.\n",
517 pages_to_mb(lowmem_pages));
518 #endif
519 #endif
522 static void __init setup_bootmem_allocator(void)
524 unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
526 /* Provide a node 0 bdata. */
527 NODE_DATA(0)->bdata = &node0_bdata;
529 #ifdef CONFIG_PCI
530 /* Don't let boot memory alias the PCI region. */
531 last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
532 #else
533 last_alloc_pfn = max_low_pfn;
534 #endif
537 * Initialize the boot-time allocator (with low memory only):
538 * The first argument says where to put the bitmap, and the
539 * second says where the end of allocatable memory is.
541 bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
544 * Let the bootmem allocator use all the space we've given it
545 * except for its own bitmap.
547 first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
548 if (first_alloc_pfn >= last_alloc_pfn)
549 early_panic("Not enough memory on controller 0 for bootmem\n");
551 free_bootmem(PFN_PHYS(first_alloc_pfn),
552 PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
554 #ifdef CONFIG_KEXEC
555 if (crashk_res.start != crashk_res.end)
556 reserve_bootmem(crashk_res.start,
557 crashk_res.end - crashk_res.start + 1, 0);
558 #endif
561 void *__init alloc_remap(int nid, unsigned long size)
563 int pages = node_end_pfn[nid] - node_start_pfn[nid];
564 void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
565 BUG_ON(size != pages * sizeof(struct page));
566 memset(map, 0, size);
567 return map;
570 static int __init percpu_size(void)
572 int size = __per_cpu_end - __per_cpu_start;
573 size += PERCPU_MODULE_RESERVE;
574 size += PERCPU_DYNAMIC_EARLY_SIZE;
575 if (size < PCPU_MIN_UNIT_SIZE)
576 size = PCPU_MIN_UNIT_SIZE;
577 size = roundup(size, PAGE_SIZE);
579 /* In several places we assume the per-cpu data fits on a huge page. */
580 BUG_ON(kdata_huge && size > HPAGE_SIZE);
581 return size;
584 static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
586 void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
587 unsigned long pfn = kaddr_to_pfn(kva);
588 BUG_ON(goal && PFN_PHYS(pfn) != goal);
589 return pfn;
592 static void __init zone_sizes_init(void)
594 unsigned long zones_size[MAX_NR_ZONES] = { 0 };
595 int size = percpu_size();
596 int num_cpus = smp_height * smp_width;
597 int i;
599 for (i = 0; i < num_cpus; ++i)
600 node_percpu[cpu_to_node(i)] += size;
602 for_each_online_node(i) {
603 unsigned long start = node_start_pfn[i];
604 unsigned long end = node_end_pfn[i];
605 #ifdef CONFIG_HIGHMEM
606 unsigned long lowmem_end = node_lowmem_end_pfn[i];
607 #else
608 unsigned long lowmem_end = end;
609 #endif
610 int memmap_size = (end - start) * sizeof(struct page);
611 node_free_pfn[i] = start;
614 * Set aside pages for per-cpu data and the mem_map array.
616 * Since the per-cpu data requires special homecaching,
617 * if we are in kdata_huge mode, we put it at the end of
618 * the lowmem region. If we're not in kdata_huge mode,
619 * we take the per-cpu pages from the bottom of the
620 * controller, since that avoids fragmenting a huge page
621 * that users might want. We always take the memmap
622 * from the bottom of the controller, since with
623 * kdata_huge that lets it be under a huge TLB entry.
625 * If the user has requested isolnodes for a controller,
626 * though, there'll be no lowmem, so we just alloc_bootmem
627 * the memmap. There will be no percpu memory either.
629 if (__pfn_to_highbits(start) == 0) {
630 /* In low PAs, allocate via bootmem. */
631 unsigned long goal = 0;
632 node_memmap_pfn[i] =
633 alloc_bootmem_pfn(memmap_size, goal);
634 if (kdata_huge)
635 goal = PFN_PHYS(lowmem_end) - node_percpu[i];
636 if (node_percpu[i])
637 node_percpu_pfn[i] =
638 alloc_bootmem_pfn(node_percpu[i], goal);
639 } else if (cpu_isset(i, isolnodes)) {
640 node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
641 BUG_ON(node_percpu[i] != 0);
642 } else {
643 /* In high PAs, just reserve some pages. */
644 node_memmap_pfn[i] = node_free_pfn[i];
645 node_free_pfn[i] += PFN_UP(memmap_size);
646 if (!kdata_huge) {
647 node_percpu_pfn[i] = node_free_pfn[i];
648 node_free_pfn[i] += PFN_UP(node_percpu[i]);
649 } else {
650 node_percpu_pfn[i] =
651 lowmem_end - PFN_UP(node_percpu[i]);
655 #ifdef CONFIG_HIGHMEM
656 if (start > lowmem_end) {
657 zones_size[ZONE_NORMAL] = 0;
658 zones_size[ZONE_HIGHMEM] = end - start;
659 } else {
660 zones_size[ZONE_NORMAL] = lowmem_end - start;
661 zones_size[ZONE_HIGHMEM] = end - lowmem_end;
663 #else
664 zones_size[ZONE_NORMAL] = end - start;
665 #endif
668 * Everyone shares node 0's bootmem allocator, but
669 * we use alloc_remap(), above, to put the actual
670 * struct page array on the individual controllers,
671 * which is most of the data that we actually care about.
672 * We can't place bootmem allocators on the other
673 * controllers since the bootmem allocator can only
674 * operate on 32-bit physical addresses.
676 NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
678 free_area_init_node(i, zones_size, start, NULL);
679 printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n",
680 PFN_UP(node_percpu[i]));
682 /* Track the type of memory on each node */
683 if (zones_size[ZONE_NORMAL])
684 node_set_state(i, N_NORMAL_MEMORY);
685 #ifdef CONFIG_HIGHMEM
686 if (end != start)
687 node_set_state(i, N_HIGH_MEMORY);
688 #endif
690 node_set_online(i);
694 #ifdef CONFIG_NUMA
696 /* which logical CPUs are on which nodes */
697 struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
698 EXPORT_SYMBOL(node_2_cpu_mask);
700 /* which node each logical CPU is on */
701 char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
702 EXPORT_SYMBOL(cpu_2_node);
704 /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
705 static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
707 if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
708 return -1;
709 else
710 return cpu_to_node(cpu);
713 /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
714 static int __init node_neighbors(int node, int cpu,
715 struct cpumask *unbound_cpus)
717 int neighbors = 0;
718 int w = smp_width;
719 int h = smp_height;
720 int x = cpu % w;
721 int y = cpu / w;
722 if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
723 ++neighbors;
724 if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
725 ++neighbors;
726 if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
727 ++neighbors;
728 if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
729 ++neighbors;
730 return neighbors;
733 static void __init setup_numa_mapping(void)
735 int distance[MAX_NUMNODES][NR_CPUS];
736 HV_Coord coord;
737 int cpu, node, cpus, i, x, y;
738 int num_nodes = num_online_nodes();
739 struct cpumask unbound_cpus;
740 nodemask_t default_nodes;
742 cpumask_clear(&unbound_cpus);
744 /* Get set of nodes we will use for defaults */
745 nodes_andnot(default_nodes, node_online_map, isolnodes);
746 if (nodes_empty(default_nodes)) {
747 BUG_ON(!node_isset(0, node_online_map));
748 pr_err("Forcing NUMA node zero available as a default node\n");
749 node_set(0, default_nodes);
752 /* Populate the distance[] array */
753 memset(distance, -1, sizeof(distance));
754 cpu = 0;
755 for (coord.y = 0; coord.y < smp_height; ++coord.y) {
756 for (coord.x = 0; coord.x < smp_width;
757 ++coord.x, ++cpu) {
758 BUG_ON(cpu >= nr_cpu_ids);
759 if (!cpu_possible(cpu)) {
760 cpu_2_node[cpu] = -1;
761 continue;
763 for_each_node_mask(node, default_nodes) {
764 HV_MemoryControllerInfo info =
765 hv_inquire_memory_controller(
766 coord, node_controller[node]);
767 distance[node][cpu] =
768 ABS(info.coord.x) + ABS(info.coord.y);
770 cpumask_set_cpu(cpu, &unbound_cpus);
773 cpus = cpu;
776 * Round-robin through the NUMA nodes until all the cpus are
777 * assigned. We could be more clever here (e.g. create four
778 * sorted linked lists on the same set of cpu nodes, and pull
779 * off them in round-robin sequence, removing from all four
780 * lists each time) but given the relatively small numbers
781 * involved, O(n^2) seem OK for a one-time cost.
783 node = first_node(default_nodes);
784 while (!cpumask_empty(&unbound_cpus)) {
785 int best_cpu = -1;
786 int best_distance = INT_MAX;
787 for (cpu = 0; cpu < cpus; ++cpu) {
788 if (cpumask_test_cpu(cpu, &unbound_cpus)) {
790 * Compute metric, which is how much
791 * closer the cpu is to this memory
792 * controller than the others, shifted
793 * up, and then the number of
794 * neighbors already in the node as an
795 * epsilon adjustment to try to keep
796 * the nodes compact.
798 int d = distance[node][cpu] * num_nodes;
799 for_each_node_mask(i, default_nodes) {
800 if (i != node)
801 d -= distance[i][cpu];
803 d *= 8; /* allow space for epsilon */
804 d -= node_neighbors(node, cpu, &unbound_cpus);
805 if (d < best_distance) {
806 best_cpu = cpu;
807 best_distance = d;
811 BUG_ON(best_cpu < 0);
812 cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
813 cpu_2_node[best_cpu] = node;
814 cpumask_clear_cpu(best_cpu, &unbound_cpus);
815 node = next_node(node, default_nodes);
816 if (node == MAX_NUMNODES)
817 node = first_node(default_nodes);
820 /* Print out node assignments and set defaults for disabled cpus */
821 cpu = 0;
822 for (y = 0; y < smp_height; ++y) {
823 printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
824 for (x = 0; x < smp_width; ++x, ++cpu) {
825 if (cpu_to_node(cpu) < 0) {
826 pr_cont(" -");
827 cpu_2_node[cpu] = first_node(default_nodes);
828 } else {
829 pr_cont(" %d", cpu_to_node(cpu));
832 pr_cont("\n");
836 static struct cpu cpu_devices[NR_CPUS];
838 static int __init topology_init(void)
840 int i;
842 for_each_online_node(i)
843 register_one_node(i);
845 for (i = 0; i < smp_height * smp_width; ++i)
846 register_cpu(&cpu_devices[i], i);
848 return 0;
851 subsys_initcall(topology_init);
853 #else /* !CONFIG_NUMA */
855 #define setup_numa_mapping() do { } while (0)
857 #endif /* CONFIG_NUMA */
860 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
861 * @boot: Is this the boot cpu?
863 * Called from setup_arch() on the boot cpu, or online_secondary().
865 void __cpuinit setup_cpu(int boot)
867 /* The boot cpu sets up its permanent mappings much earlier. */
868 if (!boot)
869 store_permanent_mappings();
871 /* Allow asynchronous TLB interrupts. */
872 #if CHIP_HAS_TILE_DMA()
873 arch_local_irq_unmask(INT_DMATLB_MISS);
874 arch_local_irq_unmask(INT_DMATLB_ACCESS);
875 #endif
876 #if CHIP_HAS_SN_PROC()
877 arch_local_irq_unmask(INT_SNITLB_MISS);
878 #endif
879 #ifdef __tilegx__
880 arch_local_irq_unmask(INT_SINGLE_STEP_K);
881 #endif
884 * Allow user access to many generic SPRs, like the cycle
885 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
887 __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
889 #if CHIP_HAS_SN()
890 /* Static network is not restricted. */
891 __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
892 #endif
893 #if CHIP_HAS_SN_PROC()
894 __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
895 __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
896 #endif
899 * Set the MPL for interrupt control 0 & 1 to the corresponding
900 * values. This includes access to the SYSTEM_SAVE and EX_CONTEXT
901 * SPRs, as well as the interrupt mask.
903 __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
904 __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
906 /* Initialize IRQ support for this cpu. */
907 setup_irq_regs();
909 #ifdef CONFIG_HARDWALL
910 /* Reset the network state on this cpu. */
911 reset_network_state();
912 #endif
915 #ifdef CONFIG_BLK_DEV_INITRD
917 static int __initdata set_initramfs_file;
918 static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
920 static int __init setup_initramfs_file(char *str)
922 if (str == NULL)
923 return -EINVAL;
924 strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
925 set_initramfs_file = 1;
927 return 0;
929 early_param("initramfs_file", setup_initramfs_file);
932 * We look for an additional "initramfs.cpio.gz" file in the hvfs.
933 * If there is one, we allocate some memory for it and it will be
934 * unpacked to the initramfs after any built-in initramfs_data.
936 static void __init load_hv_initrd(void)
938 HV_FS_StatInfo stat;
939 int fd, rc;
940 void *initrd;
942 fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
943 if (fd == HV_ENOENT) {
944 if (set_initramfs_file)
945 pr_warning("No such hvfs initramfs file '%s'\n",
946 initramfs_file);
947 return;
949 BUG_ON(fd < 0);
950 stat = hv_fs_fstat(fd);
951 BUG_ON(stat.size < 0);
952 if (stat.flags & HV_FS_ISDIR) {
953 pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
954 initramfs_file);
955 return;
957 initrd = alloc_bootmem_pages(stat.size);
958 rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
959 if (rc != stat.size) {
960 pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
961 stat.size, initramfs_file, rc);
962 free_initrd_mem((unsigned long) initrd, stat.size);
963 return;
965 initrd_start = (unsigned long) initrd;
966 initrd_end = initrd_start + stat.size;
969 void __init free_initrd_mem(unsigned long begin, unsigned long end)
971 free_bootmem(__pa(begin), end - begin);
974 #else
975 static inline void load_hv_initrd(void) {}
976 #endif /* CONFIG_BLK_DEV_INITRD */
978 static void __init validate_hv(void)
981 * It may already be too late, but let's check our built-in
982 * configuration against what the hypervisor is providing.
984 unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
985 int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
986 int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
987 HV_ASIDRange asid_range;
989 #ifndef CONFIG_SMP
990 HV_Topology topology = hv_inquire_topology();
991 BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
992 if (topology.width != 1 || topology.height != 1) {
993 pr_warning("Warning: booting UP kernel on %dx%d grid;"
994 " will ignore all but first tile.\n",
995 topology.width, topology.height);
997 #endif
999 if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1000 early_panic("Hypervisor glue size %ld is too big!\n",
1001 glue_size);
1002 if (hv_page_size != PAGE_SIZE)
1003 early_panic("Hypervisor page size %#x != our %#lx\n",
1004 hv_page_size, PAGE_SIZE);
1005 if (hv_hpage_size != HPAGE_SIZE)
1006 early_panic("Hypervisor huge page size %#x != our %#lx\n",
1007 hv_hpage_size, HPAGE_SIZE);
1009 #ifdef CONFIG_SMP
1011 * Some hypervisor APIs take a pointer to a bitmap array
1012 * whose size is at least the number of cpus on the chip.
1013 * We use a struct cpumask for this, so it must be big enough.
1015 if ((smp_height * smp_width) > nr_cpu_ids)
1016 early_panic("Hypervisor %d x %d grid too big for Linux"
1017 " NR_CPUS %d\n", smp_height, smp_width,
1018 nr_cpu_ids);
1019 #endif
1022 * Check that we're using allowed ASIDs, and initialize the
1023 * various asid variables to their appropriate initial states.
1025 asid_range = hv_inquire_asid(0);
1026 __get_cpu_var(current_asid) = min_asid = asid_range.start;
1027 max_asid = asid_range.start + asid_range.size - 1;
1029 if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1030 sizeof(chip_model)) < 0) {
1031 pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1032 strlcpy(chip_model, "unknown", sizeof(chip_model));
1036 static void __init validate_va(void)
1038 #ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
1040 * Similarly, make sure we're only using allowed VAs.
1041 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1042 * and 0 .. KERNEL_HIGH_VADDR.
1043 * In addition, make sure we CAN'T use the end of memory, since
1044 * we use the last chunk of each pgd for the pgd_list.
1046 int i, user_kernel_ok = 0;
1047 unsigned long max_va = 0;
1048 unsigned long list_va =
1049 ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1051 for (i = 0; ; ++i) {
1052 HV_VirtAddrRange range = hv_inquire_virtual(i);
1053 if (range.size == 0)
1054 break;
1055 if (range.start <= MEM_USER_INTRPT &&
1056 range.start + range.size >= MEM_HV_INTRPT)
1057 user_kernel_ok = 1;
1058 if (range.start == 0)
1059 max_va = range.size;
1060 BUG_ON(range.start + range.size > list_va);
1062 if (!user_kernel_ok)
1063 early_panic("Hypervisor not configured for user/kernel VAs\n");
1064 if (max_va == 0)
1065 early_panic("Hypervisor not configured for low VAs\n");
1066 if (max_va < KERNEL_HIGH_VADDR)
1067 early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1068 max_va, KERNEL_HIGH_VADDR);
1070 /* Kernel PCs must have their high bit set; see intvec.S. */
1071 if ((long)VMALLOC_START >= 0)
1072 early_panic(
1073 "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1074 "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1075 "or smaller VMALLOC_RESERVE.\n",
1076 VMALLOC_START);
1077 #endif
1081 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1082 * to cache data on at a page level, i.e. what cpus can be placed in
1083 * the LOTAR field of a PTE. It is equivalent to the set of possible
1084 * cpus plus any other cpus that are willing to share their cache.
1085 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1087 struct cpumask __write_once cpu_lotar_map;
1088 EXPORT_SYMBOL(cpu_lotar_map);
1090 #if CHIP_HAS_CBOX_HOME_MAP()
1092 * hash_for_home_map lists all the tiles that hash-for-home data
1093 * will be cached on. Note that this may includes tiles that are not
1094 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1095 * device is being shared between multiple supervisors).
1096 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1098 struct cpumask hash_for_home_map;
1099 EXPORT_SYMBOL(hash_for_home_map);
1100 #endif
1103 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1104 * flush on our behalf. It is set to cpu_possible_map OR'ed with
1105 * hash_for_home_map, and it is what should be passed to
1106 * hv_flush_remote() to flush all caches. Note that if there are
1107 * dedicated hypervisor driver tiles that have authorized use of their
1108 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1109 * cpu_cacheable_map, as they are a special case.
1111 struct cpumask __write_once cpu_cacheable_map;
1112 EXPORT_SYMBOL(cpu_cacheable_map);
1114 static __initdata struct cpumask disabled_map;
1116 static int __init disabled_cpus(char *str)
1118 int boot_cpu = smp_processor_id();
1120 if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1121 return -EINVAL;
1122 if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1123 pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1124 cpumask_clear_cpu(boot_cpu, &disabled_map);
1126 return 0;
1129 early_param("disabled_cpus", disabled_cpus);
1131 void __init print_disabled_cpus(void)
1133 if (!cpumask_empty(&disabled_map)) {
1134 char buf[100];
1135 cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1136 pr_info("CPUs not available for Linux: %s\n", buf);
1140 static void __init setup_cpu_maps(void)
1142 struct cpumask hv_disabled_map, cpu_possible_init;
1143 int boot_cpu = smp_processor_id();
1144 int cpus, i, rc;
1146 /* Learn which cpus are allowed by the hypervisor. */
1147 rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1148 (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1149 sizeof(cpu_cacheable_map));
1150 if (rc < 0)
1151 early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1152 if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1153 early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1155 /* Compute the cpus disabled by the hvconfig file. */
1156 cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1158 /* Include them with the cpus disabled by "disabled_cpus". */
1159 cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1162 * Disable every cpu after "setup_max_cpus". But don't mark
1163 * as disabled the cpus that are outside of our initial rectangle,
1164 * since that turns out to be confusing.
1166 cpus = 1; /* this cpu */
1167 cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
1168 for (i = 0; cpus < setup_max_cpus; ++i)
1169 if (!cpumask_test_cpu(i, &disabled_map))
1170 ++cpus;
1171 for (; i < smp_height * smp_width; ++i)
1172 cpumask_set_cpu(i, &disabled_map);
1173 cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1174 for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1175 cpumask_clear_cpu(i, &disabled_map);
1178 * Setup cpu_possible map as every cpu allocated to us, minus
1179 * the results of any "disabled_cpus" settings.
1181 cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1182 init_cpu_possible(&cpu_possible_init);
1184 /* Learn which cpus are valid for LOTAR caching. */
1185 rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1186 (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1187 sizeof(cpu_lotar_map));
1188 if (rc < 0) {
1189 pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1190 cpu_lotar_map = cpu_possible_map;
1193 #if CHIP_HAS_CBOX_HOME_MAP()
1194 /* Retrieve set of CPUs used for hash-for-home caching */
1195 rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1196 (HV_VirtAddr) hash_for_home_map.bits,
1197 sizeof(hash_for_home_map));
1198 if (rc < 0)
1199 early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1200 cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
1201 #else
1202 cpu_cacheable_map = cpu_possible_map;
1203 #endif
1207 static int __init dataplane(char *str)
1209 pr_warning("WARNING: dataplane support disabled in this kernel\n");
1210 return 0;
1213 early_param("dataplane", dataplane);
1215 #ifdef CONFIG_CMDLINE_BOOL
1216 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1217 #endif
1219 void __init setup_arch(char **cmdline_p)
1221 int len;
1223 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1224 len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1225 COMMAND_LINE_SIZE);
1226 if (boot_command_line[0])
1227 pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1228 boot_command_line);
1229 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1230 #else
1231 char *hv_cmdline;
1232 #if defined(CONFIG_CMDLINE_BOOL)
1233 if (builtin_cmdline[0]) {
1234 int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1235 COMMAND_LINE_SIZE);
1236 if (builtin_len < COMMAND_LINE_SIZE-1)
1237 boot_command_line[builtin_len++] = ' ';
1238 hv_cmdline = &boot_command_line[builtin_len];
1239 len = COMMAND_LINE_SIZE - builtin_len;
1240 } else
1241 #endif
1243 hv_cmdline = boot_command_line;
1244 len = COMMAND_LINE_SIZE;
1246 len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1247 if (len < 0 || len > COMMAND_LINE_SIZE)
1248 early_panic("hv_get_command_line failed: %d\n", len);
1249 #endif
1251 *cmdline_p = boot_command_line;
1253 /* Set disabled_map and setup_max_cpus very early */
1254 parse_early_param();
1256 /* Make sure the kernel is compatible with the hypervisor. */
1257 validate_hv();
1258 validate_va();
1260 setup_cpu_maps();
1263 #ifdef CONFIG_PCI
1265 * Initialize the PCI structures. This is done before memory
1266 * setup so that we know whether or not a pci_reserve region
1267 * is necessary.
1269 if (tile_pci_init() == 0)
1270 pci_reserve_mb = 0;
1272 /* PCI systems reserve a region just below 4GB for mapping iomem. */
1273 pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
1274 pci_reserve_start_pfn = pci_reserve_end_pfn -
1275 (pci_reserve_mb << (20 - PAGE_SHIFT));
1276 #endif
1278 init_mm.start_code = (unsigned long) _text;
1279 init_mm.end_code = (unsigned long) _etext;
1280 init_mm.end_data = (unsigned long) _edata;
1281 init_mm.brk = (unsigned long) _end;
1283 setup_memory();
1284 store_permanent_mappings();
1285 setup_bootmem_allocator();
1288 * NOTE: before this point _nobody_ is allowed to allocate
1289 * any memory using the bootmem allocator.
1292 paging_init();
1293 setup_numa_mapping();
1294 zone_sizes_init();
1295 set_page_homes();
1296 setup_cpu(1);
1297 setup_clock();
1298 load_hv_initrd();
1303 * Set up per-cpu memory.
1306 unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1307 EXPORT_SYMBOL(__per_cpu_offset);
1309 static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1310 static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1313 * As the percpu code allocates pages, we return the pages from the
1314 * end of the node for the specified cpu.
1316 static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1318 int nid = cpu_to_node(cpu);
1319 unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1321 BUG_ON(size % PAGE_SIZE != 0);
1322 pfn_offset[nid] += size / PAGE_SIZE;
1323 BUG_ON(node_percpu[nid] < size);
1324 node_percpu[nid] -= size;
1325 if (percpu_pfn[cpu] == 0)
1326 percpu_pfn[cpu] = pfn;
1327 return pfn_to_kaddr(pfn);
1331 * Pages reserved for percpu memory are not freeable, and in any case we are
1332 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1334 static void __init pcpu_fc_free(void *ptr, size_t size)
1339 * Set up vmalloc page tables using bootmem for the percpu code.
1341 static void __init pcpu_fc_populate_pte(unsigned long addr)
1343 pgd_t *pgd;
1344 pud_t *pud;
1345 pmd_t *pmd;
1346 pte_t *pte;
1348 BUG_ON(pgd_addr_invalid(addr));
1349 if (addr < VMALLOC_START || addr >= VMALLOC_END)
1350 panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1351 " try increasing CONFIG_VMALLOC_RESERVE\n",
1352 addr, VMALLOC_START, VMALLOC_END);
1354 pgd = swapper_pg_dir + pgd_index(addr);
1355 pud = pud_offset(pgd, addr);
1356 BUG_ON(!pud_present(*pud));
1357 pmd = pmd_offset(pud, addr);
1358 if (pmd_present(*pmd)) {
1359 BUG_ON(pmd_huge_page(*pmd));
1360 } else {
1361 pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1362 HV_PAGE_TABLE_ALIGN, 0);
1363 pmd_populate_kernel(&init_mm, pmd, pte);
1367 void __init setup_per_cpu_areas(void)
1369 struct page *pg;
1370 unsigned long delta, pfn, lowmem_va;
1371 unsigned long size = percpu_size();
1372 char *ptr;
1373 int rc, cpu, i;
1375 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1376 pcpu_fc_free, pcpu_fc_populate_pte);
1377 if (rc < 0)
1378 panic("Cannot initialize percpu area (err=%d)", rc);
1380 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1381 for_each_possible_cpu(cpu) {
1382 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1384 /* finv the copy out of cache so we can change homecache */
1385 ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1386 __finv_buffer(ptr, size);
1387 pfn = percpu_pfn[cpu];
1389 /* Rewrite the page tables to cache on that cpu */
1390 pg = pfn_to_page(pfn);
1391 for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1393 /* Update the vmalloc mapping and page home. */
1394 pte_t *ptep =
1395 virt_to_pte(NULL, (unsigned long)ptr + i);
1396 pte_t pte = *ptep;
1397 BUG_ON(pfn != pte_pfn(pte));
1398 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1399 pte = set_remote_cache_cpu(pte, cpu);
1400 set_pte(ptep, pte);
1402 /* Update the lowmem mapping for consistency. */
1403 lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1404 ptep = virt_to_pte(NULL, lowmem_va);
1405 if (pte_huge(*ptep)) {
1406 printk(KERN_DEBUG "early shatter of huge page"
1407 " at %#lx\n", lowmem_va);
1408 shatter_pmd((pmd_t *)ptep);
1409 ptep = virt_to_pte(NULL, lowmem_va);
1410 BUG_ON(pte_huge(*ptep));
1412 BUG_ON(pfn != pte_pfn(*ptep));
1413 set_pte(ptep, pte);
1417 /* Set our thread pointer appropriately. */
1418 set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1420 /* Make sure the finv's have completed. */
1421 mb_incoherent();
1423 /* Flush the TLB so we reference it properly from here on out. */
1424 local_flush_tlb_all();
1427 static struct resource data_resource = {
1428 .name = "Kernel data",
1429 .start = 0,
1430 .end = 0,
1431 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1434 static struct resource code_resource = {
1435 .name = "Kernel code",
1436 .start = 0,
1437 .end = 0,
1438 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1442 * We reserve all resources above 4GB so that PCI won't try to put
1443 * mappings above 4GB; the standard allows that for some devices but
1444 * the probing code trunates values to 32 bits.
1446 #ifdef CONFIG_PCI
1447 static struct resource* __init
1448 insert_non_bus_resource(void)
1450 struct resource *res =
1451 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1452 res->name = "Non-Bus Physical Address Space";
1453 res->start = (1ULL << 32);
1454 res->end = -1LL;
1455 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1456 if (insert_resource(&iomem_resource, res)) {
1457 kfree(res);
1458 return NULL;
1460 return res;
1462 #endif
1464 static struct resource* __init
1465 insert_ram_resource(u64 start_pfn, u64 end_pfn)
1467 struct resource *res =
1468 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1469 res->name = "System RAM";
1470 res->start = start_pfn << PAGE_SHIFT;
1471 res->end = (end_pfn << PAGE_SHIFT) - 1;
1472 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1473 if (insert_resource(&iomem_resource, res)) {
1474 kfree(res);
1475 return NULL;
1477 return res;
1481 * Request address space for all standard resources
1483 * If the system includes PCI root complex drivers, we need to create
1484 * a window just below 4GB where PCI BARs can be mapped.
1486 static int __init request_standard_resources(void)
1488 int i;
1489 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1491 iomem_resource.end = -1LL;
1492 #ifdef CONFIG_PCI
1493 insert_non_bus_resource();
1494 #endif
1496 for_each_online_node(i) {
1497 u64 start_pfn = node_start_pfn[i];
1498 u64 end_pfn = node_end_pfn[i];
1500 #ifdef CONFIG_PCI
1501 if (start_pfn <= pci_reserve_start_pfn &&
1502 end_pfn > pci_reserve_start_pfn) {
1503 if (end_pfn > pci_reserve_end_pfn)
1504 insert_ram_resource(pci_reserve_end_pfn,
1505 end_pfn);
1506 end_pfn = pci_reserve_start_pfn;
1508 #endif
1509 insert_ram_resource(start_pfn, end_pfn);
1512 code_resource.start = __pa(_text - CODE_DELTA);
1513 code_resource.end = __pa(_etext - CODE_DELTA)-1;
1514 data_resource.start = __pa(_sdata);
1515 data_resource.end = __pa(_end)-1;
1517 insert_resource(&iomem_resource, &code_resource);
1518 insert_resource(&iomem_resource, &data_resource);
1520 #ifdef CONFIG_KEXEC
1521 insert_resource(&iomem_resource, &crashk_res);
1522 #endif
1524 return 0;
1527 subsys_initcall(request_standard_resources);