ARM: mach-shmobile: g3evm: Add IrDA support
[zen-stable.git] / drivers / rtc / interface.c
bloba0c816238aa9bd0966c78a67262141fa25c2ab02
1 /*
2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/log2.h>
18 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
20 int err;
22 err = mutex_lock_interruptible(&rtc->ops_lock);
23 if (err)
24 return err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
35 mutex_unlock(&rtc->ops_lock);
36 return err;
38 EXPORT_SYMBOL_GPL(rtc_read_time);
40 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
42 int err;
44 err = rtc_valid_tm(tm);
45 if (err != 0)
46 return err;
48 err = mutex_lock_interruptible(&rtc->ops_lock);
49 if (err)
50 return err;
52 if (!rtc->ops)
53 err = -ENODEV;
54 else if (rtc->ops->set_time)
55 err = rtc->ops->set_time(rtc->dev.parent, tm);
56 else if (rtc->ops->set_mmss) {
57 unsigned long secs;
58 err = rtc_tm_to_time(tm, &secs);
59 if (err == 0)
60 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
61 } else
62 err = -EINVAL;
64 mutex_unlock(&rtc->ops_lock);
65 return err;
67 EXPORT_SYMBOL_GPL(rtc_set_time);
69 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
71 int err;
73 err = mutex_lock_interruptible(&rtc->ops_lock);
74 if (err)
75 return err;
77 if (!rtc->ops)
78 err = -ENODEV;
79 else if (rtc->ops->set_mmss)
80 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
81 else if (rtc->ops->read_time && rtc->ops->set_time) {
82 struct rtc_time new, old;
84 err = rtc->ops->read_time(rtc->dev.parent, &old);
85 if (err == 0) {
86 rtc_time_to_tm(secs, &new);
89 * avoid writing when we're going to change the day of
90 * the month. We will retry in the next minute. This
91 * basically means that if the RTC must not drift
92 * by more than 1 minute in 11 minutes.
94 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
95 (new.tm_hour == 23 && new.tm_min == 59)))
96 err = rtc->ops->set_time(rtc->dev.parent,
97 &new);
100 else
101 err = -EINVAL;
103 mutex_unlock(&rtc->ops_lock);
105 return err;
107 EXPORT_SYMBOL_GPL(rtc_set_mmss);
109 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
111 int err;
113 err = mutex_lock_interruptible(&rtc->ops_lock);
114 if (err)
115 return err;
117 if (rtc->ops == NULL)
118 err = -ENODEV;
119 else if (!rtc->ops->read_alarm)
120 err = -EINVAL;
121 else {
122 memset(alarm, 0, sizeof(struct rtc_wkalrm));
123 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
126 mutex_unlock(&rtc->ops_lock);
127 return err;
130 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
132 int err;
133 struct rtc_time before, now;
134 int first_time = 1;
135 unsigned long t_now, t_alm;
136 enum { none, day, month, year } missing = none;
137 unsigned days;
139 /* The lower level RTC driver may return -1 in some fields,
140 * creating invalid alarm->time values, for reasons like:
142 * - The hardware may not be capable of filling them in;
143 * many alarms match only on time-of-day fields, not
144 * day/month/year calendar data.
146 * - Some hardware uses illegal values as "wildcard" match
147 * values, which non-Linux firmware (like a BIOS) may try
148 * to set up as e.g. "alarm 15 minutes after each hour".
149 * Linux uses only oneshot alarms.
151 * When we see that here, we deal with it by using values from
152 * a current RTC timestamp for any missing (-1) values. The
153 * RTC driver prevents "periodic alarm" modes.
155 * But this can be racey, because some fields of the RTC timestamp
156 * may have wrapped in the interval since we read the RTC alarm,
157 * which would lead to us inserting inconsistent values in place
158 * of the -1 fields.
160 * Reading the alarm and timestamp in the reverse sequence
161 * would have the same race condition, and not solve the issue.
163 * So, we must first read the RTC timestamp,
164 * then read the RTC alarm value,
165 * and then read a second RTC timestamp.
167 * If any fields of the second timestamp have changed
168 * when compared with the first timestamp, then we know
169 * our timestamp may be inconsistent with that used by
170 * the low-level rtc_read_alarm_internal() function.
172 * So, when the two timestamps disagree, we just loop and do
173 * the process again to get a fully consistent set of values.
175 * This could all instead be done in the lower level driver,
176 * but since more than one lower level RTC implementation needs it,
177 * then it's probably best best to do it here instead of there..
180 /* Get the "before" timestamp */
181 err = rtc_read_time(rtc, &before);
182 if (err < 0)
183 return err;
184 do {
185 if (!first_time)
186 memcpy(&before, &now, sizeof(struct rtc_time));
187 first_time = 0;
189 /* get the RTC alarm values, which may be incomplete */
190 err = rtc_read_alarm_internal(rtc, alarm);
191 if (err)
192 return err;
193 if (!alarm->enabled)
194 return 0;
196 /* full-function RTCs won't have such missing fields */
197 if (rtc_valid_tm(&alarm->time) == 0)
198 return 0;
200 /* get the "after" timestamp, to detect wrapped fields */
201 err = rtc_read_time(rtc, &now);
202 if (err < 0)
203 return err;
205 /* note that tm_sec is a "don't care" value here: */
206 } while ( before.tm_min != now.tm_min
207 || before.tm_hour != now.tm_hour
208 || before.tm_mon != now.tm_mon
209 || before.tm_year != now.tm_year);
211 /* Fill in the missing alarm fields using the timestamp; we
212 * know there's at least one since alarm->time is invalid.
214 if (alarm->time.tm_sec == -1)
215 alarm->time.tm_sec = now.tm_sec;
216 if (alarm->time.tm_min == -1)
217 alarm->time.tm_min = now.tm_min;
218 if (alarm->time.tm_hour == -1)
219 alarm->time.tm_hour = now.tm_hour;
221 /* For simplicity, only support date rollover for now */
222 if (alarm->time.tm_mday == -1) {
223 alarm->time.tm_mday = now.tm_mday;
224 missing = day;
226 if (alarm->time.tm_mon == -1) {
227 alarm->time.tm_mon = now.tm_mon;
228 if (missing == none)
229 missing = month;
231 if (alarm->time.tm_year == -1) {
232 alarm->time.tm_year = now.tm_year;
233 if (missing == none)
234 missing = year;
237 /* with luck, no rollover is needed */
238 rtc_tm_to_time(&now, &t_now);
239 rtc_tm_to_time(&alarm->time, &t_alm);
240 if (t_now < t_alm)
241 goto done;
243 switch (missing) {
245 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
246 * that will trigger at 5am will do so at 5am Tuesday, which
247 * could also be in the next month or year. This is a common
248 * case, especially for PCs.
250 case day:
251 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
252 t_alm += 24 * 60 * 60;
253 rtc_time_to_tm(t_alm, &alarm->time);
254 break;
256 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
257 * be next month. An alarm matching on the 30th, 29th, or 28th
258 * may end up in the month after that! Many newer PCs support
259 * this type of alarm.
261 case month:
262 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
263 do {
264 if (alarm->time.tm_mon < 11)
265 alarm->time.tm_mon++;
266 else {
267 alarm->time.tm_mon = 0;
268 alarm->time.tm_year++;
270 days = rtc_month_days(alarm->time.tm_mon,
271 alarm->time.tm_year);
272 } while (days < alarm->time.tm_mday);
273 break;
275 /* Year rollover ... easy except for leap years! */
276 case year:
277 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
278 do {
279 alarm->time.tm_year++;
280 } while (rtc_valid_tm(&alarm->time) != 0);
281 break;
283 default:
284 dev_warn(&rtc->dev, "alarm rollover not handled\n");
287 done:
288 return 0;
290 EXPORT_SYMBOL_GPL(rtc_read_alarm);
292 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
294 int err;
296 err = rtc_valid_tm(&alarm->time);
297 if (err != 0)
298 return err;
300 err = mutex_lock_interruptible(&rtc->ops_lock);
301 if (err)
302 return err;
304 if (!rtc->ops)
305 err = -ENODEV;
306 else if (!rtc->ops->set_alarm)
307 err = -EINVAL;
308 else
309 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
311 mutex_unlock(&rtc->ops_lock);
312 return err;
314 EXPORT_SYMBOL_GPL(rtc_set_alarm);
316 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
318 int err = mutex_lock_interruptible(&rtc->ops_lock);
319 if (err)
320 return err;
322 if (!rtc->ops)
323 err = -ENODEV;
324 else if (!rtc->ops->alarm_irq_enable)
325 err = -EINVAL;
326 else
327 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
329 mutex_unlock(&rtc->ops_lock);
330 return err;
332 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
334 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
336 int err = mutex_lock_interruptible(&rtc->ops_lock);
337 if (err)
338 return err;
340 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
341 if (enabled == 0 && rtc->uie_irq_active) {
342 mutex_unlock(&rtc->ops_lock);
343 return rtc_dev_update_irq_enable_emul(rtc, enabled);
345 #endif
347 if (!rtc->ops)
348 err = -ENODEV;
349 else if (!rtc->ops->update_irq_enable)
350 err = -EINVAL;
351 else
352 err = rtc->ops->update_irq_enable(rtc->dev.parent, enabled);
354 mutex_unlock(&rtc->ops_lock);
356 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
358 * Enable emulation if the driver did not provide
359 * the update_irq_enable function pointer or if returned
360 * -EINVAL to signal that it has been configured without
361 * interrupts or that are not available at the moment.
363 if (err == -EINVAL)
364 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
365 #endif
366 return err;
368 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
371 * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
372 * @rtc: the rtc device
373 * @num: how many irqs are being reported (usually one)
374 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
375 * Context: any
377 void rtc_update_irq(struct rtc_device *rtc,
378 unsigned long num, unsigned long events)
380 unsigned long flags;
382 spin_lock_irqsave(&rtc->irq_lock, flags);
383 rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
384 spin_unlock_irqrestore(&rtc->irq_lock, flags);
386 spin_lock_irqsave(&rtc->irq_task_lock, flags);
387 if (rtc->irq_task)
388 rtc->irq_task->func(rtc->irq_task->private_data);
389 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
391 wake_up_interruptible(&rtc->irq_queue);
392 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
394 EXPORT_SYMBOL_GPL(rtc_update_irq);
396 static int __rtc_match(struct device *dev, void *data)
398 char *name = (char *)data;
400 if (strcmp(dev_name(dev), name) == 0)
401 return 1;
402 return 0;
405 struct rtc_device *rtc_class_open(char *name)
407 struct device *dev;
408 struct rtc_device *rtc = NULL;
410 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
411 if (dev)
412 rtc = to_rtc_device(dev);
414 if (rtc) {
415 if (!try_module_get(rtc->owner)) {
416 put_device(dev);
417 rtc = NULL;
421 return rtc;
423 EXPORT_SYMBOL_GPL(rtc_class_open);
425 void rtc_class_close(struct rtc_device *rtc)
427 module_put(rtc->owner);
428 put_device(&rtc->dev);
430 EXPORT_SYMBOL_GPL(rtc_class_close);
432 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
434 int retval = -EBUSY;
436 if (task == NULL || task->func == NULL)
437 return -EINVAL;
439 /* Cannot register while the char dev is in use */
440 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
441 return -EBUSY;
443 spin_lock_irq(&rtc->irq_task_lock);
444 if (rtc->irq_task == NULL) {
445 rtc->irq_task = task;
446 retval = 0;
448 spin_unlock_irq(&rtc->irq_task_lock);
450 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
452 return retval;
454 EXPORT_SYMBOL_GPL(rtc_irq_register);
456 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
458 spin_lock_irq(&rtc->irq_task_lock);
459 if (rtc->irq_task == task)
460 rtc->irq_task = NULL;
461 spin_unlock_irq(&rtc->irq_task_lock);
463 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
466 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
467 * @rtc: the rtc device
468 * @task: currently registered with rtc_irq_register()
469 * @enabled: true to enable periodic IRQs
470 * Context: any
472 * Note that rtc_irq_set_freq() should previously have been used to
473 * specify the desired frequency of periodic IRQ task->func() callbacks.
475 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
477 int err = 0;
478 unsigned long flags;
480 if (rtc->ops->irq_set_state == NULL)
481 return -ENXIO;
483 spin_lock_irqsave(&rtc->irq_task_lock, flags);
484 if (rtc->irq_task != NULL && task == NULL)
485 err = -EBUSY;
486 if (rtc->irq_task != task)
487 err = -EACCES;
488 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
490 if (err == 0)
491 err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
493 return err;
495 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
498 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
499 * @rtc: the rtc device
500 * @task: currently registered with rtc_irq_register()
501 * @freq: positive frequency with which task->func() will be called
502 * Context: any
504 * Note that rtc_irq_set_state() is used to enable or disable the
505 * periodic IRQs.
507 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
509 int err = 0;
510 unsigned long flags;
512 if (rtc->ops->irq_set_freq == NULL)
513 return -ENXIO;
515 spin_lock_irqsave(&rtc->irq_task_lock, flags);
516 if (rtc->irq_task != NULL && task == NULL)
517 err = -EBUSY;
518 if (rtc->irq_task != task)
519 err = -EACCES;
520 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
522 if (err == 0) {
523 err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
524 if (err == 0)
525 rtc->irq_freq = freq;
527 return err;
529 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);