powerpc/cell: Use driver_data acessors, not platform_data in Axon MSI
[zen-stable.git] / mm / slub.c
blob30354bfeb43d5b093669fb0ef62b213e0c3991f2
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/kmemleak.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Set of flags that will prevent slab merging
146 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
147 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
149 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150 SLAB_CACHE_DMA)
152 #ifndef ARCH_KMALLOC_MINALIGN
153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
154 #endif
156 #ifndef ARCH_SLAB_MINALIGN
157 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
158 #endif
160 #define OO_SHIFT 16
161 #define OO_MASK ((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON 0x80000000 /* Poison object */
166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
168 static int kmem_size = sizeof(struct kmem_cache);
170 #ifdef CONFIG_SMP
171 static struct notifier_block slab_notifier;
172 #endif
174 static enum {
175 DOWN, /* No slab functionality available */
176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
177 UP, /* Everything works but does not show up in sysfs */
178 SYSFS /* Sysfs up */
179 } slab_state = DOWN;
182 * The slab allocator is initialized with interrupts disabled. Therefore, make
183 * sure early boot allocations don't accidentally enable interrupts.
185 static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
192 * Tracking user of a slab.
194 struct track {
195 unsigned long addr; /* Called from address */
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
203 #ifdef CONFIG_SLUB_DEBUG
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
214 kfree(s);
217 #endif
219 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
221 #ifdef CONFIG_SLUB_STATS
222 c->stat[si]++;
223 #endif
226 /********************************************************************
227 * Core slab cache functions
228 *******************************************************************/
230 int slab_is_available(void)
232 return slab_state >= UP;
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 #ifdef CONFIG_NUMA
238 return s->node[node];
239 #else
240 return &s->local_node;
241 #endif
244 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
246 #ifdef CONFIG_SMP
247 return s->cpu_slab[cpu];
248 #else
249 return &s->cpu_slab;
250 #endif
253 /* Verify that a pointer has an address that is valid within a slab page */
254 static inline int check_valid_pointer(struct kmem_cache *s,
255 struct page *page, const void *object)
257 void *base;
259 if (!object)
260 return 1;
262 base = page_address(page);
263 if (object < base || object >= base + page->objects * s->size ||
264 (object - base) % s->size) {
265 return 0;
268 return 1;
272 * Slow version of get and set free pointer.
274 * This version requires touching the cache lines of kmem_cache which
275 * we avoid to do in the fast alloc free paths. There we obtain the offset
276 * from the page struct.
278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
280 return *(void **)(object + s->offset);
283 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 *(void **)(object + s->offset) = fp;
288 /* Loop over all objects in a slab */
289 #define for_each_object(__p, __s, __addr, __objects) \
290 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
291 __p += (__s)->size)
293 /* Scan freelist */
294 #define for_each_free_object(__p, __s, __free) \
295 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
297 /* Determine object index from a given position */
298 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
300 return (p - addr) / s->size;
303 static inline struct kmem_cache_order_objects oo_make(int order,
304 unsigned long size)
306 struct kmem_cache_order_objects x = {
307 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
310 return x;
313 static inline int oo_order(struct kmem_cache_order_objects x)
315 return x.x >> OO_SHIFT;
318 static inline int oo_objects(struct kmem_cache_order_objects x)
320 return x.x & OO_MASK;
323 #ifdef CONFIG_SLUB_DEBUG
325 * Debug settings:
327 #ifdef CONFIG_SLUB_DEBUG_ON
328 static int slub_debug = DEBUG_DEFAULT_FLAGS;
329 #else
330 static int slub_debug;
331 #endif
333 static char *slub_debug_slabs;
336 * Object debugging
338 static void print_section(char *text, u8 *addr, unsigned int length)
340 int i, offset;
341 int newline = 1;
342 char ascii[17];
344 ascii[16] = 0;
346 for (i = 0; i < length; i++) {
347 if (newline) {
348 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
349 newline = 0;
351 printk(KERN_CONT " %02x", addr[i]);
352 offset = i % 16;
353 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
354 if (offset == 15) {
355 printk(KERN_CONT " %s\n", ascii);
356 newline = 1;
359 if (!newline) {
360 i %= 16;
361 while (i < 16) {
362 printk(KERN_CONT " ");
363 ascii[i] = ' ';
364 i++;
366 printk(KERN_CONT " %s\n", ascii);
370 static struct track *get_track(struct kmem_cache *s, void *object,
371 enum track_item alloc)
373 struct track *p;
375 if (s->offset)
376 p = object + s->offset + sizeof(void *);
377 else
378 p = object + s->inuse;
380 return p + alloc;
383 static void set_track(struct kmem_cache *s, void *object,
384 enum track_item alloc, unsigned long addr)
386 struct track *p = get_track(s, object, alloc);
388 if (addr) {
389 p->addr = addr;
390 p->cpu = smp_processor_id();
391 p->pid = current->pid;
392 p->when = jiffies;
393 } else
394 memset(p, 0, sizeof(struct track));
397 static void init_tracking(struct kmem_cache *s, void *object)
399 if (!(s->flags & SLAB_STORE_USER))
400 return;
402 set_track(s, object, TRACK_FREE, 0UL);
403 set_track(s, object, TRACK_ALLOC, 0UL);
406 static void print_track(const char *s, struct track *t)
408 if (!t->addr)
409 return;
411 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
412 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
415 static void print_tracking(struct kmem_cache *s, void *object)
417 if (!(s->flags & SLAB_STORE_USER))
418 return;
420 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
421 print_track("Freed", get_track(s, object, TRACK_FREE));
424 static void print_page_info(struct page *page)
426 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
427 page, page->objects, page->inuse, page->freelist, page->flags);
431 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
433 va_list args;
434 char buf[100];
436 va_start(args, fmt);
437 vsnprintf(buf, sizeof(buf), fmt, args);
438 va_end(args);
439 printk(KERN_ERR "========================================"
440 "=====================================\n");
441 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
442 printk(KERN_ERR "----------------------------------------"
443 "-------------------------------------\n\n");
446 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
448 va_list args;
449 char buf[100];
451 va_start(args, fmt);
452 vsnprintf(buf, sizeof(buf), fmt, args);
453 va_end(args);
454 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
457 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
459 unsigned int off; /* Offset of last byte */
460 u8 *addr = page_address(page);
462 print_tracking(s, p);
464 print_page_info(page);
466 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
467 p, p - addr, get_freepointer(s, p));
469 if (p > addr + 16)
470 print_section("Bytes b4", p - 16, 16);
472 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
474 if (s->flags & SLAB_RED_ZONE)
475 print_section("Redzone", p + s->objsize,
476 s->inuse - s->objsize);
478 if (s->offset)
479 off = s->offset + sizeof(void *);
480 else
481 off = s->inuse;
483 if (s->flags & SLAB_STORE_USER)
484 off += 2 * sizeof(struct track);
486 if (off != s->size)
487 /* Beginning of the filler is the free pointer */
488 print_section("Padding", p + off, s->size - off);
490 dump_stack();
493 static void object_err(struct kmem_cache *s, struct page *page,
494 u8 *object, char *reason)
496 slab_bug(s, "%s", reason);
497 print_trailer(s, page, object);
500 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
502 va_list args;
503 char buf[100];
505 va_start(args, fmt);
506 vsnprintf(buf, sizeof(buf), fmt, args);
507 va_end(args);
508 slab_bug(s, "%s", buf);
509 print_page_info(page);
510 dump_stack();
513 static void init_object(struct kmem_cache *s, void *object, int active)
515 u8 *p = object;
517 if (s->flags & __OBJECT_POISON) {
518 memset(p, POISON_FREE, s->objsize - 1);
519 p[s->objsize - 1] = POISON_END;
522 if (s->flags & SLAB_RED_ZONE)
523 memset(p + s->objsize,
524 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
525 s->inuse - s->objsize);
528 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
530 while (bytes) {
531 if (*start != (u8)value)
532 return start;
533 start++;
534 bytes--;
536 return NULL;
539 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
540 void *from, void *to)
542 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
543 memset(from, data, to - from);
546 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
547 u8 *object, char *what,
548 u8 *start, unsigned int value, unsigned int bytes)
550 u8 *fault;
551 u8 *end;
553 fault = check_bytes(start, value, bytes);
554 if (!fault)
555 return 1;
557 end = start + bytes;
558 while (end > fault && end[-1] == value)
559 end--;
561 slab_bug(s, "%s overwritten", what);
562 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
563 fault, end - 1, fault[0], value);
564 print_trailer(s, page, object);
566 restore_bytes(s, what, value, fault, end);
567 return 0;
571 * Object layout:
573 * object address
574 * Bytes of the object to be managed.
575 * If the freepointer may overlay the object then the free
576 * pointer is the first word of the object.
578 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
579 * 0xa5 (POISON_END)
581 * object + s->objsize
582 * Padding to reach word boundary. This is also used for Redzoning.
583 * Padding is extended by another word if Redzoning is enabled and
584 * objsize == inuse.
586 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
587 * 0xcc (RED_ACTIVE) for objects in use.
589 * object + s->inuse
590 * Meta data starts here.
592 * A. Free pointer (if we cannot overwrite object on free)
593 * B. Tracking data for SLAB_STORE_USER
594 * C. Padding to reach required alignment boundary or at mininum
595 * one word if debugging is on to be able to detect writes
596 * before the word boundary.
598 * Padding is done using 0x5a (POISON_INUSE)
600 * object + s->size
601 * Nothing is used beyond s->size.
603 * If slabcaches are merged then the objsize and inuse boundaries are mostly
604 * ignored. And therefore no slab options that rely on these boundaries
605 * may be used with merged slabcaches.
608 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
610 unsigned long off = s->inuse; /* The end of info */
612 if (s->offset)
613 /* Freepointer is placed after the object. */
614 off += sizeof(void *);
616 if (s->flags & SLAB_STORE_USER)
617 /* We also have user information there */
618 off += 2 * sizeof(struct track);
620 if (s->size == off)
621 return 1;
623 return check_bytes_and_report(s, page, p, "Object padding",
624 p + off, POISON_INUSE, s->size - off);
627 /* Check the pad bytes at the end of a slab page */
628 static int slab_pad_check(struct kmem_cache *s, struct page *page)
630 u8 *start;
631 u8 *fault;
632 u8 *end;
633 int length;
634 int remainder;
636 if (!(s->flags & SLAB_POISON))
637 return 1;
639 start = page_address(page);
640 length = (PAGE_SIZE << compound_order(page));
641 end = start + length;
642 remainder = length % s->size;
643 if (!remainder)
644 return 1;
646 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
647 if (!fault)
648 return 1;
649 while (end > fault && end[-1] == POISON_INUSE)
650 end--;
652 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
653 print_section("Padding", end - remainder, remainder);
655 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
656 return 0;
659 static int check_object(struct kmem_cache *s, struct page *page,
660 void *object, int active)
662 u8 *p = object;
663 u8 *endobject = object + s->objsize;
665 if (s->flags & SLAB_RED_ZONE) {
666 unsigned int red =
667 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
669 if (!check_bytes_and_report(s, page, object, "Redzone",
670 endobject, red, s->inuse - s->objsize))
671 return 0;
672 } else {
673 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
674 check_bytes_and_report(s, page, p, "Alignment padding",
675 endobject, POISON_INUSE, s->inuse - s->objsize);
679 if (s->flags & SLAB_POISON) {
680 if (!active && (s->flags & __OBJECT_POISON) &&
681 (!check_bytes_and_report(s, page, p, "Poison", p,
682 POISON_FREE, s->objsize - 1) ||
683 !check_bytes_and_report(s, page, p, "Poison",
684 p + s->objsize - 1, POISON_END, 1)))
685 return 0;
687 * check_pad_bytes cleans up on its own.
689 check_pad_bytes(s, page, p);
692 if (!s->offset && active)
694 * Object and freepointer overlap. Cannot check
695 * freepointer while object is allocated.
697 return 1;
699 /* Check free pointer validity */
700 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
701 object_err(s, page, p, "Freepointer corrupt");
703 * No choice but to zap it and thus lose the remainder
704 * of the free objects in this slab. May cause
705 * another error because the object count is now wrong.
707 set_freepointer(s, p, NULL);
708 return 0;
710 return 1;
713 static int check_slab(struct kmem_cache *s, struct page *page)
715 int maxobj;
717 VM_BUG_ON(!irqs_disabled());
719 if (!PageSlab(page)) {
720 slab_err(s, page, "Not a valid slab page");
721 return 0;
724 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
725 if (page->objects > maxobj) {
726 slab_err(s, page, "objects %u > max %u",
727 s->name, page->objects, maxobj);
728 return 0;
730 if (page->inuse > page->objects) {
731 slab_err(s, page, "inuse %u > max %u",
732 s->name, page->inuse, page->objects);
733 return 0;
735 /* Slab_pad_check fixes things up after itself */
736 slab_pad_check(s, page);
737 return 1;
741 * Determine if a certain object on a page is on the freelist. Must hold the
742 * slab lock to guarantee that the chains are in a consistent state.
744 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
746 int nr = 0;
747 void *fp = page->freelist;
748 void *object = NULL;
749 unsigned long max_objects;
751 while (fp && nr <= page->objects) {
752 if (fp == search)
753 return 1;
754 if (!check_valid_pointer(s, page, fp)) {
755 if (object) {
756 object_err(s, page, object,
757 "Freechain corrupt");
758 set_freepointer(s, object, NULL);
759 break;
760 } else {
761 slab_err(s, page, "Freepointer corrupt");
762 page->freelist = NULL;
763 page->inuse = page->objects;
764 slab_fix(s, "Freelist cleared");
765 return 0;
767 break;
769 object = fp;
770 fp = get_freepointer(s, object);
771 nr++;
774 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
775 if (max_objects > MAX_OBJS_PER_PAGE)
776 max_objects = MAX_OBJS_PER_PAGE;
778 if (page->objects != max_objects) {
779 slab_err(s, page, "Wrong number of objects. Found %d but "
780 "should be %d", page->objects, max_objects);
781 page->objects = max_objects;
782 slab_fix(s, "Number of objects adjusted.");
784 if (page->inuse != page->objects - nr) {
785 slab_err(s, page, "Wrong object count. Counter is %d but "
786 "counted were %d", page->inuse, page->objects - nr);
787 page->inuse = page->objects - nr;
788 slab_fix(s, "Object count adjusted.");
790 return search == NULL;
793 static void trace(struct kmem_cache *s, struct page *page, void *object,
794 int alloc)
796 if (s->flags & SLAB_TRACE) {
797 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
798 s->name,
799 alloc ? "alloc" : "free",
800 object, page->inuse,
801 page->freelist);
803 if (!alloc)
804 print_section("Object", (void *)object, s->objsize);
806 dump_stack();
811 * Tracking of fully allocated slabs for debugging purposes.
813 static void add_full(struct kmem_cache_node *n, struct page *page)
815 spin_lock(&n->list_lock);
816 list_add(&page->lru, &n->full);
817 spin_unlock(&n->list_lock);
820 static void remove_full(struct kmem_cache *s, struct page *page)
822 struct kmem_cache_node *n;
824 if (!(s->flags & SLAB_STORE_USER))
825 return;
827 n = get_node(s, page_to_nid(page));
829 spin_lock(&n->list_lock);
830 list_del(&page->lru);
831 spin_unlock(&n->list_lock);
834 /* Tracking of the number of slabs for debugging purposes */
835 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
837 struct kmem_cache_node *n = get_node(s, node);
839 return atomic_long_read(&n->nr_slabs);
842 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
844 struct kmem_cache_node *n = get_node(s, node);
847 * May be called early in order to allocate a slab for the
848 * kmem_cache_node structure. Solve the chicken-egg
849 * dilemma by deferring the increment of the count during
850 * bootstrap (see early_kmem_cache_node_alloc).
852 if (!NUMA_BUILD || n) {
853 atomic_long_inc(&n->nr_slabs);
854 atomic_long_add(objects, &n->total_objects);
857 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
859 struct kmem_cache_node *n = get_node(s, node);
861 atomic_long_dec(&n->nr_slabs);
862 atomic_long_sub(objects, &n->total_objects);
865 /* Object debug checks for alloc/free paths */
866 static void setup_object_debug(struct kmem_cache *s, struct page *page,
867 void *object)
869 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
870 return;
872 init_object(s, object, 0);
873 init_tracking(s, object);
876 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
877 void *object, unsigned long addr)
879 if (!check_slab(s, page))
880 goto bad;
882 if (!on_freelist(s, page, object)) {
883 object_err(s, page, object, "Object already allocated");
884 goto bad;
887 if (!check_valid_pointer(s, page, object)) {
888 object_err(s, page, object, "Freelist Pointer check fails");
889 goto bad;
892 if (!check_object(s, page, object, 0))
893 goto bad;
895 /* Success perform special debug activities for allocs */
896 if (s->flags & SLAB_STORE_USER)
897 set_track(s, object, TRACK_ALLOC, addr);
898 trace(s, page, object, 1);
899 init_object(s, object, 1);
900 return 1;
902 bad:
903 if (PageSlab(page)) {
905 * If this is a slab page then lets do the best we can
906 * to avoid issues in the future. Marking all objects
907 * as used avoids touching the remaining objects.
909 slab_fix(s, "Marking all objects used");
910 page->inuse = page->objects;
911 page->freelist = NULL;
913 return 0;
916 static int free_debug_processing(struct kmem_cache *s, struct page *page,
917 void *object, unsigned long addr)
919 if (!check_slab(s, page))
920 goto fail;
922 if (!check_valid_pointer(s, page, object)) {
923 slab_err(s, page, "Invalid object pointer 0x%p", object);
924 goto fail;
927 if (on_freelist(s, page, object)) {
928 object_err(s, page, object, "Object already free");
929 goto fail;
932 if (!check_object(s, page, object, 1))
933 return 0;
935 if (unlikely(s != page->slab)) {
936 if (!PageSlab(page)) {
937 slab_err(s, page, "Attempt to free object(0x%p) "
938 "outside of slab", object);
939 } else if (!page->slab) {
940 printk(KERN_ERR
941 "SLUB <none>: no slab for object 0x%p.\n",
942 object);
943 dump_stack();
944 } else
945 object_err(s, page, object,
946 "page slab pointer corrupt.");
947 goto fail;
950 /* Special debug activities for freeing objects */
951 if (!PageSlubFrozen(page) && !page->freelist)
952 remove_full(s, page);
953 if (s->flags & SLAB_STORE_USER)
954 set_track(s, object, TRACK_FREE, addr);
955 trace(s, page, object, 0);
956 init_object(s, object, 0);
957 return 1;
959 fail:
960 slab_fix(s, "Object at 0x%p not freed", object);
961 return 0;
964 static int __init setup_slub_debug(char *str)
966 slub_debug = DEBUG_DEFAULT_FLAGS;
967 if (*str++ != '=' || !*str)
969 * No options specified. Switch on full debugging.
971 goto out;
973 if (*str == ',')
975 * No options but restriction on slabs. This means full
976 * debugging for slabs matching a pattern.
978 goto check_slabs;
980 slub_debug = 0;
981 if (*str == '-')
983 * Switch off all debugging measures.
985 goto out;
988 * Determine which debug features should be switched on
990 for (; *str && *str != ','; str++) {
991 switch (tolower(*str)) {
992 case 'f':
993 slub_debug |= SLAB_DEBUG_FREE;
994 break;
995 case 'z':
996 slub_debug |= SLAB_RED_ZONE;
997 break;
998 case 'p':
999 slub_debug |= SLAB_POISON;
1000 break;
1001 case 'u':
1002 slub_debug |= SLAB_STORE_USER;
1003 break;
1004 case 't':
1005 slub_debug |= SLAB_TRACE;
1006 break;
1007 default:
1008 printk(KERN_ERR "slub_debug option '%c' "
1009 "unknown. skipped\n", *str);
1013 check_slabs:
1014 if (*str == ',')
1015 slub_debug_slabs = str + 1;
1016 out:
1017 return 1;
1020 __setup("slub_debug", setup_slub_debug);
1022 static unsigned long kmem_cache_flags(unsigned long objsize,
1023 unsigned long flags, const char *name,
1024 void (*ctor)(void *))
1027 * Enable debugging if selected on the kernel commandline.
1029 if (slub_debug && (!slub_debug_slabs ||
1030 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1031 flags |= slub_debug;
1033 return flags;
1035 #else
1036 static inline void setup_object_debug(struct kmem_cache *s,
1037 struct page *page, void *object) {}
1039 static inline int alloc_debug_processing(struct kmem_cache *s,
1040 struct page *page, void *object, unsigned long addr) { return 0; }
1042 static inline int free_debug_processing(struct kmem_cache *s,
1043 struct page *page, void *object, unsigned long addr) { return 0; }
1045 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 { return 1; }
1047 static inline int check_object(struct kmem_cache *s, struct page *page,
1048 void *object, int active) { return 1; }
1049 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1050 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 unsigned long flags, const char *name,
1052 void (*ctor)(void *))
1054 return flags;
1056 #define slub_debug 0
1058 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1059 { return 0; }
1060 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
1062 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
1064 #endif
1067 * Slab allocation and freeing
1069 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 struct kmem_cache_order_objects oo)
1072 int order = oo_order(oo);
1074 if (node == -1)
1075 return alloc_pages(flags, order);
1076 else
1077 return alloc_pages_node(node, flags, order);
1080 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1082 struct page *page;
1083 struct kmem_cache_order_objects oo = s->oo;
1085 flags |= s->allocflags;
1087 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1088 oo);
1089 if (unlikely(!page)) {
1090 oo = s->min;
1092 * Allocation may have failed due to fragmentation.
1093 * Try a lower order alloc if possible
1095 page = alloc_slab_page(flags, node, oo);
1096 if (!page)
1097 return NULL;
1099 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1101 page->objects = oo_objects(oo);
1102 mod_zone_page_state(page_zone(page),
1103 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1104 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1105 1 << oo_order(oo));
1107 return page;
1110 static void setup_object(struct kmem_cache *s, struct page *page,
1111 void *object)
1113 setup_object_debug(s, page, object);
1114 if (unlikely(s->ctor))
1115 s->ctor(object);
1118 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1120 struct page *page;
1121 void *start;
1122 void *last;
1123 void *p;
1125 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1127 page = allocate_slab(s,
1128 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1129 if (!page)
1130 goto out;
1132 inc_slabs_node(s, page_to_nid(page), page->objects);
1133 page->slab = s;
1134 page->flags |= 1 << PG_slab;
1135 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1136 SLAB_STORE_USER | SLAB_TRACE))
1137 __SetPageSlubDebug(page);
1139 start = page_address(page);
1141 if (unlikely(s->flags & SLAB_POISON))
1142 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1144 last = start;
1145 for_each_object(p, s, start, page->objects) {
1146 setup_object(s, page, last);
1147 set_freepointer(s, last, p);
1148 last = p;
1150 setup_object(s, page, last);
1151 set_freepointer(s, last, NULL);
1153 page->freelist = start;
1154 page->inuse = 0;
1155 out:
1156 return page;
1159 static void __free_slab(struct kmem_cache *s, struct page *page)
1161 int order = compound_order(page);
1162 int pages = 1 << order;
1164 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1165 void *p;
1167 slab_pad_check(s, page);
1168 for_each_object(p, s, page_address(page),
1169 page->objects)
1170 check_object(s, page, p, 0);
1171 __ClearPageSlubDebug(page);
1174 mod_zone_page_state(page_zone(page),
1175 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1176 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1177 -pages);
1179 __ClearPageSlab(page);
1180 reset_page_mapcount(page);
1181 if (current->reclaim_state)
1182 current->reclaim_state->reclaimed_slab += pages;
1183 __free_pages(page, order);
1186 static void rcu_free_slab(struct rcu_head *h)
1188 struct page *page;
1190 page = container_of((struct list_head *)h, struct page, lru);
1191 __free_slab(page->slab, page);
1194 static void free_slab(struct kmem_cache *s, struct page *page)
1196 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1198 * RCU free overloads the RCU head over the LRU
1200 struct rcu_head *head = (void *)&page->lru;
1202 call_rcu(head, rcu_free_slab);
1203 } else
1204 __free_slab(s, page);
1207 static void discard_slab(struct kmem_cache *s, struct page *page)
1209 dec_slabs_node(s, page_to_nid(page), page->objects);
1210 free_slab(s, page);
1214 * Per slab locking using the pagelock
1216 static __always_inline void slab_lock(struct page *page)
1218 bit_spin_lock(PG_locked, &page->flags);
1221 static __always_inline void slab_unlock(struct page *page)
1223 __bit_spin_unlock(PG_locked, &page->flags);
1226 static __always_inline int slab_trylock(struct page *page)
1228 int rc = 1;
1230 rc = bit_spin_trylock(PG_locked, &page->flags);
1231 return rc;
1235 * Management of partially allocated slabs
1237 static void add_partial(struct kmem_cache_node *n,
1238 struct page *page, int tail)
1240 spin_lock(&n->list_lock);
1241 n->nr_partial++;
1242 if (tail)
1243 list_add_tail(&page->lru, &n->partial);
1244 else
1245 list_add(&page->lru, &n->partial);
1246 spin_unlock(&n->list_lock);
1249 static void remove_partial(struct kmem_cache *s, struct page *page)
1251 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1253 spin_lock(&n->list_lock);
1254 list_del(&page->lru);
1255 n->nr_partial--;
1256 spin_unlock(&n->list_lock);
1260 * Lock slab and remove from the partial list.
1262 * Must hold list_lock.
1264 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1265 struct page *page)
1267 if (slab_trylock(page)) {
1268 list_del(&page->lru);
1269 n->nr_partial--;
1270 __SetPageSlubFrozen(page);
1271 return 1;
1273 return 0;
1277 * Try to allocate a partial slab from a specific node.
1279 static struct page *get_partial_node(struct kmem_cache_node *n)
1281 struct page *page;
1284 * Racy check. If we mistakenly see no partial slabs then we
1285 * just allocate an empty slab. If we mistakenly try to get a
1286 * partial slab and there is none available then get_partials()
1287 * will return NULL.
1289 if (!n || !n->nr_partial)
1290 return NULL;
1292 spin_lock(&n->list_lock);
1293 list_for_each_entry(page, &n->partial, lru)
1294 if (lock_and_freeze_slab(n, page))
1295 goto out;
1296 page = NULL;
1297 out:
1298 spin_unlock(&n->list_lock);
1299 return page;
1303 * Get a page from somewhere. Search in increasing NUMA distances.
1305 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1307 #ifdef CONFIG_NUMA
1308 struct zonelist *zonelist;
1309 struct zoneref *z;
1310 struct zone *zone;
1311 enum zone_type high_zoneidx = gfp_zone(flags);
1312 struct page *page;
1315 * The defrag ratio allows a configuration of the tradeoffs between
1316 * inter node defragmentation and node local allocations. A lower
1317 * defrag_ratio increases the tendency to do local allocations
1318 * instead of attempting to obtain partial slabs from other nodes.
1320 * If the defrag_ratio is set to 0 then kmalloc() always
1321 * returns node local objects. If the ratio is higher then kmalloc()
1322 * may return off node objects because partial slabs are obtained
1323 * from other nodes and filled up.
1325 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1326 * defrag_ratio = 1000) then every (well almost) allocation will
1327 * first attempt to defrag slab caches on other nodes. This means
1328 * scanning over all nodes to look for partial slabs which may be
1329 * expensive if we do it every time we are trying to find a slab
1330 * with available objects.
1332 if (!s->remote_node_defrag_ratio ||
1333 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1334 return NULL;
1336 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1337 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1338 struct kmem_cache_node *n;
1340 n = get_node(s, zone_to_nid(zone));
1342 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1343 n->nr_partial > s->min_partial) {
1344 page = get_partial_node(n);
1345 if (page)
1346 return page;
1349 #endif
1350 return NULL;
1354 * Get a partial page, lock it and return it.
1356 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1358 struct page *page;
1359 int searchnode = (node == -1) ? numa_node_id() : node;
1361 page = get_partial_node(get_node(s, searchnode));
1362 if (page || (flags & __GFP_THISNODE))
1363 return page;
1365 return get_any_partial(s, flags);
1369 * Move a page back to the lists.
1371 * Must be called with the slab lock held.
1373 * On exit the slab lock will have been dropped.
1375 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1377 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1378 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1380 __ClearPageSlubFrozen(page);
1381 if (page->inuse) {
1383 if (page->freelist) {
1384 add_partial(n, page, tail);
1385 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1386 } else {
1387 stat(c, DEACTIVATE_FULL);
1388 if (SLABDEBUG && PageSlubDebug(page) &&
1389 (s->flags & SLAB_STORE_USER))
1390 add_full(n, page);
1392 slab_unlock(page);
1393 } else {
1394 stat(c, DEACTIVATE_EMPTY);
1395 if (n->nr_partial < s->min_partial) {
1397 * Adding an empty slab to the partial slabs in order
1398 * to avoid page allocator overhead. This slab needs
1399 * to come after the other slabs with objects in
1400 * so that the others get filled first. That way the
1401 * size of the partial list stays small.
1403 * kmem_cache_shrink can reclaim any empty slabs from
1404 * the partial list.
1406 add_partial(n, page, 1);
1407 slab_unlock(page);
1408 } else {
1409 slab_unlock(page);
1410 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1411 discard_slab(s, page);
1417 * Remove the cpu slab
1419 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1421 struct page *page = c->page;
1422 int tail = 1;
1424 if (page->freelist)
1425 stat(c, DEACTIVATE_REMOTE_FREES);
1427 * Merge cpu freelist into slab freelist. Typically we get here
1428 * because both freelists are empty. So this is unlikely
1429 * to occur.
1431 while (unlikely(c->freelist)) {
1432 void **object;
1434 tail = 0; /* Hot objects. Put the slab first */
1436 /* Retrieve object from cpu_freelist */
1437 object = c->freelist;
1438 c->freelist = c->freelist[c->offset];
1440 /* And put onto the regular freelist */
1441 object[c->offset] = page->freelist;
1442 page->freelist = object;
1443 page->inuse--;
1445 c->page = NULL;
1446 unfreeze_slab(s, page, tail);
1449 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1451 stat(c, CPUSLAB_FLUSH);
1452 slab_lock(c->page);
1453 deactivate_slab(s, c);
1457 * Flush cpu slab.
1459 * Called from IPI handler with interrupts disabled.
1461 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1463 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1465 if (likely(c && c->page))
1466 flush_slab(s, c);
1469 static void flush_cpu_slab(void *d)
1471 struct kmem_cache *s = d;
1473 __flush_cpu_slab(s, smp_processor_id());
1476 static void flush_all(struct kmem_cache *s)
1478 on_each_cpu(flush_cpu_slab, s, 1);
1482 * Check if the objects in a per cpu structure fit numa
1483 * locality expectations.
1485 static inline int node_match(struct kmem_cache_cpu *c, int node)
1487 #ifdef CONFIG_NUMA
1488 if (node != -1 && c->node != node)
1489 return 0;
1490 #endif
1491 return 1;
1495 * Slow path. The lockless freelist is empty or we need to perform
1496 * debugging duties.
1498 * Interrupts are disabled.
1500 * Processing is still very fast if new objects have been freed to the
1501 * regular freelist. In that case we simply take over the regular freelist
1502 * as the lockless freelist and zap the regular freelist.
1504 * If that is not working then we fall back to the partial lists. We take the
1505 * first element of the freelist as the object to allocate now and move the
1506 * rest of the freelist to the lockless freelist.
1508 * And if we were unable to get a new slab from the partial slab lists then
1509 * we need to allocate a new slab. This is the slowest path since it involves
1510 * a call to the page allocator and the setup of a new slab.
1512 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1513 unsigned long addr, struct kmem_cache_cpu *c)
1515 void **object;
1516 struct page *new;
1518 /* We handle __GFP_ZERO in the caller */
1519 gfpflags &= ~__GFP_ZERO;
1521 if (!c->page)
1522 goto new_slab;
1524 slab_lock(c->page);
1525 if (unlikely(!node_match(c, node)))
1526 goto another_slab;
1528 stat(c, ALLOC_REFILL);
1530 load_freelist:
1531 object = c->page->freelist;
1532 if (unlikely(!object))
1533 goto another_slab;
1534 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1535 goto debug;
1537 c->freelist = object[c->offset];
1538 c->page->inuse = c->page->objects;
1539 c->page->freelist = NULL;
1540 c->node = page_to_nid(c->page);
1541 unlock_out:
1542 slab_unlock(c->page);
1543 stat(c, ALLOC_SLOWPATH);
1544 return object;
1546 another_slab:
1547 deactivate_slab(s, c);
1549 new_slab:
1550 new = get_partial(s, gfpflags, node);
1551 if (new) {
1552 c->page = new;
1553 stat(c, ALLOC_FROM_PARTIAL);
1554 goto load_freelist;
1557 if (gfpflags & __GFP_WAIT)
1558 local_irq_enable();
1560 new = new_slab(s, gfpflags, node);
1562 if (gfpflags & __GFP_WAIT)
1563 local_irq_disable();
1565 if (new) {
1566 c = get_cpu_slab(s, smp_processor_id());
1567 stat(c, ALLOC_SLAB);
1568 if (c->page)
1569 flush_slab(s, c);
1570 slab_lock(new);
1571 __SetPageSlubFrozen(new);
1572 c->page = new;
1573 goto load_freelist;
1575 return NULL;
1576 debug:
1577 if (!alloc_debug_processing(s, c->page, object, addr))
1578 goto another_slab;
1580 c->page->inuse++;
1581 c->page->freelist = object[c->offset];
1582 c->node = -1;
1583 goto unlock_out;
1587 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1588 * have the fastpath folded into their functions. So no function call
1589 * overhead for requests that can be satisfied on the fastpath.
1591 * The fastpath works by first checking if the lockless freelist can be used.
1592 * If not then __slab_alloc is called for slow processing.
1594 * Otherwise we can simply pick the next object from the lockless free list.
1596 static __always_inline void *slab_alloc(struct kmem_cache *s,
1597 gfp_t gfpflags, int node, unsigned long addr)
1599 void **object;
1600 struct kmem_cache_cpu *c;
1601 unsigned long flags;
1602 unsigned int objsize;
1604 gfpflags &= slab_gfp_mask;
1606 lockdep_trace_alloc(gfpflags);
1607 might_sleep_if(gfpflags & __GFP_WAIT);
1609 if (should_failslab(s->objsize, gfpflags))
1610 return NULL;
1612 local_irq_save(flags);
1613 c = get_cpu_slab(s, smp_processor_id());
1614 objsize = c->objsize;
1615 if (unlikely(!c->freelist || !node_match(c, node)))
1617 object = __slab_alloc(s, gfpflags, node, addr, c);
1619 else {
1620 object = c->freelist;
1621 c->freelist = object[c->offset];
1622 stat(c, ALLOC_FASTPATH);
1624 local_irq_restore(flags);
1626 if (unlikely((gfpflags & __GFP_ZERO) && object))
1627 memset(object, 0, objsize);
1629 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1630 return object;
1633 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1635 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1637 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1639 return ret;
1641 EXPORT_SYMBOL(kmem_cache_alloc);
1643 #ifdef CONFIG_KMEMTRACE
1644 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1646 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1648 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1649 #endif
1651 #ifdef CONFIG_NUMA
1652 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1654 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1656 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1657 s->objsize, s->size, gfpflags, node);
1659 return ret;
1661 EXPORT_SYMBOL(kmem_cache_alloc_node);
1662 #endif
1664 #ifdef CONFIG_KMEMTRACE
1665 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1666 gfp_t gfpflags,
1667 int node)
1669 return slab_alloc(s, gfpflags, node, _RET_IP_);
1671 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1672 #endif
1675 * Slow patch handling. This may still be called frequently since objects
1676 * have a longer lifetime than the cpu slabs in most processing loads.
1678 * So we still attempt to reduce cache line usage. Just take the slab
1679 * lock and free the item. If there is no additional partial page
1680 * handling required then we can return immediately.
1682 static void __slab_free(struct kmem_cache *s, struct page *page,
1683 void *x, unsigned long addr, unsigned int offset)
1685 void *prior;
1686 void **object = (void *)x;
1687 struct kmem_cache_cpu *c;
1689 c = get_cpu_slab(s, raw_smp_processor_id());
1690 stat(c, FREE_SLOWPATH);
1691 slab_lock(page);
1693 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1694 goto debug;
1696 checks_ok:
1697 prior = object[offset] = page->freelist;
1698 page->freelist = object;
1699 page->inuse--;
1701 if (unlikely(PageSlubFrozen(page))) {
1702 stat(c, FREE_FROZEN);
1703 goto out_unlock;
1706 if (unlikely(!page->inuse))
1707 goto slab_empty;
1710 * Objects left in the slab. If it was not on the partial list before
1711 * then add it.
1713 if (unlikely(!prior)) {
1714 add_partial(get_node(s, page_to_nid(page)), page, 1);
1715 stat(c, FREE_ADD_PARTIAL);
1718 out_unlock:
1719 slab_unlock(page);
1720 return;
1722 slab_empty:
1723 if (prior) {
1725 * Slab still on the partial list.
1727 remove_partial(s, page);
1728 stat(c, FREE_REMOVE_PARTIAL);
1730 slab_unlock(page);
1731 stat(c, FREE_SLAB);
1732 discard_slab(s, page);
1733 return;
1735 debug:
1736 if (!free_debug_processing(s, page, x, addr))
1737 goto out_unlock;
1738 goto checks_ok;
1742 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1743 * can perform fastpath freeing without additional function calls.
1745 * The fastpath is only possible if we are freeing to the current cpu slab
1746 * of this processor. This typically the case if we have just allocated
1747 * the item before.
1749 * If fastpath is not possible then fall back to __slab_free where we deal
1750 * with all sorts of special processing.
1752 static __always_inline void slab_free(struct kmem_cache *s,
1753 struct page *page, void *x, unsigned long addr)
1755 void **object = (void *)x;
1756 struct kmem_cache_cpu *c;
1757 unsigned long flags;
1759 kmemleak_free_recursive(x, s->flags);
1760 local_irq_save(flags);
1761 c = get_cpu_slab(s, smp_processor_id());
1762 debug_check_no_locks_freed(object, c->objsize);
1763 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1764 debug_check_no_obj_freed(object, c->objsize);
1765 if (likely(page == c->page && c->node >= 0)) {
1766 object[c->offset] = c->freelist;
1767 c->freelist = object;
1768 stat(c, FREE_FASTPATH);
1769 } else
1770 __slab_free(s, page, x, addr, c->offset);
1772 local_irq_restore(flags);
1775 void kmem_cache_free(struct kmem_cache *s, void *x)
1777 struct page *page;
1779 page = virt_to_head_page(x);
1781 slab_free(s, page, x, _RET_IP_);
1783 trace_kmem_cache_free(_RET_IP_, x);
1785 EXPORT_SYMBOL(kmem_cache_free);
1787 /* Figure out on which slab page the object resides */
1788 static struct page *get_object_page(const void *x)
1790 struct page *page = virt_to_head_page(x);
1792 if (!PageSlab(page))
1793 return NULL;
1795 return page;
1799 * Object placement in a slab is made very easy because we always start at
1800 * offset 0. If we tune the size of the object to the alignment then we can
1801 * get the required alignment by putting one properly sized object after
1802 * another.
1804 * Notice that the allocation order determines the sizes of the per cpu
1805 * caches. Each processor has always one slab available for allocations.
1806 * Increasing the allocation order reduces the number of times that slabs
1807 * must be moved on and off the partial lists and is therefore a factor in
1808 * locking overhead.
1812 * Mininum / Maximum order of slab pages. This influences locking overhead
1813 * and slab fragmentation. A higher order reduces the number of partial slabs
1814 * and increases the number of allocations possible without having to
1815 * take the list_lock.
1817 static int slub_min_order;
1818 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1819 static int slub_min_objects;
1822 * Merge control. If this is set then no merging of slab caches will occur.
1823 * (Could be removed. This was introduced to pacify the merge skeptics.)
1825 static int slub_nomerge;
1828 * Calculate the order of allocation given an slab object size.
1830 * The order of allocation has significant impact on performance and other
1831 * system components. Generally order 0 allocations should be preferred since
1832 * order 0 does not cause fragmentation in the page allocator. Larger objects
1833 * be problematic to put into order 0 slabs because there may be too much
1834 * unused space left. We go to a higher order if more than 1/16th of the slab
1835 * would be wasted.
1837 * In order to reach satisfactory performance we must ensure that a minimum
1838 * number of objects is in one slab. Otherwise we may generate too much
1839 * activity on the partial lists which requires taking the list_lock. This is
1840 * less a concern for large slabs though which are rarely used.
1842 * slub_max_order specifies the order where we begin to stop considering the
1843 * number of objects in a slab as critical. If we reach slub_max_order then
1844 * we try to keep the page order as low as possible. So we accept more waste
1845 * of space in favor of a small page order.
1847 * Higher order allocations also allow the placement of more objects in a
1848 * slab and thereby reduce object handling overhead. If the user has
1849 * requested a higher mininum order then we start with that one instead of
1850 * the smallest order which will fit the object.
1852 static inline int slab_order(int size, int min_objects,
1853 int max_order, int fract_leftover)
1855 int order;
1856 int rem;
1857 int min_order = slub_min_order;
1859 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1860 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1862 for (order = max(min_order,
1863 fls(min_objects * size - 1) - PAGE_SHIFT);
1864 order <= max_order; order++) {
1866 unsigned long slab_size = PAGE_SIZE << order;
1868 if (slab_size < min_objects * size)
1869 continue;
1871 rem = slab_size % size;
1873 if (rem <= slab_size / fract_leftover)
1874 break;
1878 return order;
1881 static inline int calculate_order(int size)
1883 int order;
1884 int min_objects;
1885 int fraction;
1886 int max_objects;
1889 * Attempt to find best configuration for a slab. This
1890 * works by first attempting to generate a layout with
1891 * the best configuration and backing off gradually.
1893 * First we reduce the acceptable waste in a slab. Then
1894 * we reduce the minimum objects required in a slab.
1896 min_objects = slub_min_objects;
1897 if (!min_objects)
1898 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1899 max_objects = (PAGE_SIZE << slub_max_order)/size;
1900 min_objects = min(min_objects, max_objects);
1902 while (min_objects > 1) {
1903 fraction = 16;
1904 while (fraction >= 4) {
1905 order = slab_order(size, min_objects,
1906 slub_max_order, fraction);
1907 if (order <= slub_max_order)
1908 return order;
1909 fraction /= 2;
1911 min_objects --;
1915 * We were unable to place multiple objects in a slab. Now
1916 * lets see if we can place a single object there.
1918 order = slab_order(size, 1, slub_max_order, 1);
1919 if (order <= slub_max_order)
1920 return order;
1923 * Doh this slab cannot be placed using slub_max_order.
1925 order = slab_order(size, 1, MAX_ORDER, 1);
1926 if (order < MAX_ORDER)
1927 return order;
1928 return -ENOSYS;
1932 * Figure out what the alignment of the objects will be.
1934 static unsigned long calculate_alignment(unsigned long flags,
1935 unsigned long align, unsigned long size)
1938 * If the user wants hardware cache aligned objects then follow that
1939 * suggestion if the object is sufficiently large.
1941 * The hardware cache alignment cannot override the specified
1942 * alignment though. If that is greater then use it.
1944 if (flags & SLAB_HWCACHE_ALIGN) {
1945 unsigned long ralign = cache_line_size();
1946 while (size <= ralign / 2)
1947 ralign /= 2;
1948 align = max(align, ralign);
1951 if (align < ARCH_SLAB_MINALIGN)
1952 align = ARCH_SLAB_MINALIGN;
1954 return ALIGN(align, sizeof(void *));
1957 static void init_kmem_cache_cpu(struct kmem_cache *s,
1958 struct kmem_cache_cpu *c)
1960 c->page = NULL;
1961 c->freelist = NULL;
1962 c->node = 0;
1963 c->offset = s->offset / sizeof(void *);
1964 c->objsize = s->objsize;
1965 #ifdef CONFIG_SLUB_STATS
1966 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1967 #endif
1970 static void
1971 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1973 n->nr_partial = 0;
1974 spin_lock_init(&n->list_lock);
1975 INIT_LIST_HEAD(&n->partial);
1976 #ifdef CONFIG_SLUB_DEBUG
1977 atomic_long_set(&n->nr_slabs, 0);
1978 atomic_long_set(&n->total_objects, 0);
1979 INIT_LIST_HEAD(&n->full);
1980 #endif
1983 #ifdef CONFIG_SMP
1985 * Per cpu array for per cpu structures.
1987 * The per cpu array places all kmem_cache_cpu structures from one processor
1988 * close together meaning that it becomes possible that multiple per cpu
1989 * structures are contained in one cacheline. This may be particularly
1990 * beneficial for the kmalloc caches.
1992 * A desktop system typically has around 60-80 slabs. With 100 here we are
1993 * likely able to get per cpu structures for all caches from the array defined
1994 * here. We must be able to cover all kmalloc caches during bootstrap.
1996 * If the per cpu array is exhausted then fall back to kmalloc
1997 * of individual cachelines. No sharing is possible then.
1999 #define NR_KMEM_CACHE_CPU 100
2001 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2002 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2004 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2005 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2007 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2008 int cpu, gfp_t flags)
2010 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2012 if (c)
2013 per_cpu(kmem_cache_cpu_free, cpu) =
2014 (void *)c->freelist;
2015 else {
2016 /* Table overflow: So allocate ourselves */
2017 c = kmalloc_node(
2018 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2019 flags, cpu_to_node(cpu));
2020 if (!c)
2021 return NULL;
2024 init_kmem_cache_cpu(s, c);
2025 return c;
2028 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2030 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2031 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2032 kfree(c);
2033 return;
2035 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2036 per_cpu(kmem_cache_cpu_free, cpu) = c;
2039 static void free_kmem_cache_cpus(struct kmem_cache *s)
2041 int cpu;
2043 for_each_online_cpu(cpu) {
2044 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2046 if (c) {
2047 s->cpu_slab[cpu] = NULL;
2048 free_kmem_cache_cpu(c, cpu);
2053 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2055 int cpu;
2057 for_each_online_cpu(cpu) {
2058 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2060 if (c)
2061 continue;
2063 c = alloc_kmem_cache_cpu(s, cpu, flags);
2064 if (!c) {
2065 free_kmem_cache_cpus(s);
2066 return 0;
2068 s->cpu_slab[cpu] = c;
2070 return 1;
2074 * Initialize the per cpu array.
2076 static void init_alloc_cpu_cpu(int cpu)
2078 int i;
2080 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2081 return;
2083 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2084 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2086 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2089 static void __init init_alloc_cpu(void)
2091 int cpu;
2093 for_each_online_cpu(cpu)
2094 init_alloc_cpu_cpu(cpu);
2097 #else
2098 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2099 static inline void init_alloc_cpu(void) {}
2101 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2103 init_kmem_cache_cpu(s, &s->cpu_slab);
2104 return 1;
2106 #endif
2108 #ifdef CONFIG_NUMA
2110 * No kmalloc_node yet so do it by hand. We know that this is the first
2111 * slab on the node for this slabcache. There are no concurrent accesses
2112 * possible.
2114 * Note that this function only works on the kmalloc_node_cache
2115 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2116 * memory on a fresh node that has no slab structures yet.
2118 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2120 struct page *page;
2121 struct kmem_cache_node *n;
2122 unsigned long flags;
2124 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2126 page = new_slab(kmalloc_caches, gfpflags, node);
2128 BUG_ON(!page);
2129 if (page_to_nid(page) != node) {
2130 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2131 "node %d\n", node);
2132 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2133 "in order to be able to continue\n");
2136 n = page->freelist;
2137 BUG_ON(!n);
2138 page->freelist = get_freepointer(kmalloc_caches, n);
2139 page->inuse++;
2140 kmalloc_caches->node[node] = n;
2141 #ifdef CONFIG_SLUB_DEBUG
2142 init_object(kmalloc_caches, n, 1);
2143 init_tracking(kmalloc_caches, n);
2144 #endif
2145 init_kmem_cache_node(n, kmalloc_caches);
2146 inc_slabs_node(kmalloc_caches, node, page->objects);
2149 * lockdep requires consistent irq usage for each lock
2150 * so even though there cannot be a race this early in
2151 * the boot sequence, we still disable irqs.
2153 local_irq_save(flags);
2154 add_partial(n, page, 0);
2155 local_irq_restore(flags);
2158 static void free_kmem_cache_nodes(struct kmem_cache *s)
2160 int node;
2162 for_each_node_state(node, N_NORMAL_MEMORY) {
2163 struct kmem_cache_node *n = s->node[node];
2164 if (n && n != &s->local_node)
2165 kmem_cache_free(kmalloc_caches, n);
2166 s->node[node] = NULL;
2170 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2172 int node;
2173 int local_node;
2175 if (slab_state >= UP)
2176 local_node = page_to_nid(virt_to_page(s));
2177 else
2178 local_node = 0;
2180 for_each_node_state(node, N_NORMAL_MEMORY) {
2181 struct kmem_cache_node *n;
2183 if (local_node == node)
2184 n = &s->local_node;
2185 else {
2186 if (slab_state == DOWN) {
2187 early_kmem_cache_node_alloc(gfpflags, node);
2188 continue;
2190 n = kmem_cache_alloc_node(kmalloc_caches,
2191 gfpflags, node);
2193 if (!n) {
2194 free_kmem_cache_nodes(s);
2195 return 0;
2199 s->node[node] = n;
2200 init_kmem_cache_node(n, s);
2202 return 1;
2204 #else
2205 static void free_kmem_cache_nodes(struct kmem_cache *s)
2209 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2211 init_kmem_cache_node(&s->local_node, s);
2212 return 1;
2214 #endif
2216 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2218 if (min < MIN_PARTIAL)
2219 min = MIN_PARTIAL;
2220 else if (min > MAX_PARTIAL)
2221 min = MAX_PARTIAL;
2222 s->min_partial = min;
2226 * calculate_sizes() determines the order and the distribution of data within
2227 * a slab object.
2229 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2231 unsigned long flags = s->flags;
2232 unsigned long size = s->objsize;
2233 unsigned long align = s->align;
2234 int order;
2237 * Round up object size to the next word boundary. We can only
2238 * place the free pointer at word boundaries and this determines
2239 * the possible location of the free pointer.
2241 size = ALIGN(size, sizeof(void *));
2243 #ifdef CONFIG_SLUB_DEBUG
2245 * Determine if we can poison the object itself. If the user of
2246 * the slab may touch the object after free or before allocation
2247 * then we should never poison the object itself.
2249 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2250 !s->ctor)
2251 s->flags |= __OBJECT_POISON;
2252 else
2253 s->flags &= ~__OBJECT_POISON;
2257 * If we are Redzoning then check if there is some space between the
2258 * end of the object and the free pointer. If not then add an
2259 * additional word to have some bytes to store Redzone information.
2261 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2262 size += sizeof(void *);
2263 #endif
2266 * With that we have determined the number of bytes in actual use
2267 * by the object. This is the potential offset to the free pointer.
2269 s->inuse = size;
2271 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2272 s->ctor)) {
2274 * Relocate free pointer after the object if it is not
2275 * permitted to overwrite the first word of the object on
2276 * kmem_cache_free.
2278 * This is the case if we do RCU, have a constructor or
2279 * destructor or are poisoning the objects.
2281 s->offset = size;
2282 size += sizeof(void *);
2285 #ifdef CONFIG_SLUB_DEBUG
2286 if (flags & SLAB_STORE_USER)
2288 * Need to store information about allocs and frees after
2289 * the object.
2291 size += 2 * sizeof(struct track);
2293 if (flags & SLAB_RED_ZONE)
2295 * Add some empty padding so that we can catch
2296 * overwrites from earlier objects rather than let
2297 * tracking information or the free pointer be
2298 * corrupted if a user writes before the start
2299 * of the object.
2301 size += sizeof(void *);
2302 #endif
2305 * Determine the alignment based on various parameters that the
2306 * user specified and the dynamic determination of cache line size
2307 * on bootup.
2309 align = calculate_alignment(flags, align, s->objsize);
2312 * SLUB stores one object immediately after another beginning from
2313 * offset 0. In order to align the objects we have to simply size
2314 * each object to conform to the alignment.
2316 size = ALIGN(size, align);
2317 s->size = size;
2318 if (forced_order >= 0)
2319 order = forced_order;
2320 else
2321 order = calculate_order(size);
2323 if (order < 0)
2324 return 0;
2326 s->allocflags = 0;
2327 if (order)
2328 s->allocflags |= __GFP_COMP;
2330 if (s->flags & SLAB_CACHE_DMA)
2331 s->allocflags |= SLUB_DMA;
2333 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2334 s->allocflags |= __GFP_RECLAIMABLE;
2337 * Determine the number of objects per slab
2339 s->oo = oo_make(order, size);
2340 s->min = oo_make(get_order(size), size);
2341 if (oo_objects(s->oo) > oo_objects(s->max))
2342 s->max = s->oo;
2344 return !!oo_objects(s->oo);
2348 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2349 const char *name, size_t size,
2350 size_t align, unsigned long flags,
2351 void (*ctor)(void *))
2353 memset(s, 0, kmem_size);
2354 s->name = name;
2355 s->ctor = ctor;
2356 s->objsize = size;
2357 s->align = align;
2358 s->flags = kmem_cache_flags(size, flags, name, ctor);
2360 if (!calculate_sizes(s, -1))
2361 goto error;
2364 * The larger the object size is, the more pages we want on the partial
2365 * list to avoid pounding the page allocator excessively.
2367 set_min_partial(s, ilog2(s->size));
2368 s->refcount = 1;
2369 #ifdef CONFIG_NUMA
2370 s->remote_node_defrag_ratio = 1000;
2371 #endif
2372 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2373 goto error;
2375 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2376 return 1;
2377 free_kmem_cache_nodes(s);
2378 error:
2379 if (flags & SLAB_PANIC)
2380 panic("Cannot create slab %s size=%lu realsize=%u "
2381 "order=%u offset=%u flags=%lx\n",
2382 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2383 s->offset, flags);
2384 return 0;
2388 * Check if a given pointer is valid
2390 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2392 struct page *page;
2394 page = get_object_page(object);
2396 if (!page || s != page->slab)
2397 /* No slab or wrong slab */
2398 return 0;
2400 if (!check_valid_pointer(s, page, object))
2401 return 0;
2404 * We could also check if the object is on the slabs freelist.
2405 * But this would be too expensive and it seems that the main
2406 * purpose of kmem_ptr_valid() is to check if the object belongs
2407 * to a certain slab.
2409 return 1;
2411 EXPORT_SYMBOL(kmem_ptr_validate);
2414 * Determine the size of a slab object
2416 unsigned int kmem_cache_size(struct kmem_cache *s)
2418 return s->objsize;
2420 EXPORT_SYMBOL(kmem_cache_size);
2422 const char *kmem_cache_name(struct kmem_cache *s)
2424 return s->name;
2426 EXPORT_SYMBOL(kmem_cache_name);
2428 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2429 const char *text)
2431 #ifdef CONFIG_SLUB_DEBUG
2432 void *addr = page_address(page);
2433 void *p;
2434 DECLARE_BITMAP(map, page->objects);
2436 bitmap_zero(map, page->objects);
2437 slab_err(s, page, "%s", text);
2438 slab_lock(page);
2439 for_each_free_object(p, s, page->freelist)
2440 set_bit(slab_index(p, s, addr), map);
2442 for_each_object(p, s, addr, page->objects) {
2444 if (!test_bit(slab_index(p, s, addr), map)) {
2445 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2446 p, p - addr);
2447 print_tracking(s, p);
2450 slab_unlock(page);
2451 #endif
2455 * Attempt to free all partial slabs on a node.
2457 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2459 unsigned long flags;
2460 struct page *page, *h;
2462 spin_lock_irqsave(&n->list_lock, flags);
2463 list_for_each_entry_safe(page, h, &n->partial, lru) {
2464 if (!page->inuse) {
2465 list_del(&page->lru);
2466 discard_slab(s, page);
2467 n->nr_partial--;
2468 } else {
2469 list_slab_objects(s, page,
2470 "Objects remaining on kmem_cache_close()");
2473 spin_unlock_irqrestore(&n->list_lock, flags);
2477 * Release all resources used by a slab cache.
2479 static inline int kmem_cache_close(struct kmem_cache *s)
2481 int node;
2483 flush_all(s);
2485 /* Attempt to free all objects */
2486 free_kmem_cache_cpus(s);
2487 for_each_node_state(node, N_NORMAL_MEMORY) {
2488 struct kmem_cache_node *n = get_node(s, node);
2490 free_partial(s, n);
2491 if (n->nr_partial || slabs_node(s, node))
2492 return 1;
2494 free_kmem_cache_nodes(s);
2495 return 0;
2499 * Close a cache and release the kmem_cache structure
2500 * (must be used for caches created using kmem_cache_create)
2502 void kmem_cache_destroy(struct kmem_cache *s)
2504 down_write(&slub_lock);
2505 s->refcount--;
2506 if (!s->refcount) {
2507 list_del(&s->list);
2508 up_write(&slub_lock);
2509 if (kmem_cache_close(s)) {
2510 printk(KERN_ERR "SLUB %s: %s called for cache that "
2511 "still has objects.\n", s->name, __func__);
2512 dump_stack();
2514 sysfs_slab_remove(s);
2515 } else
2516 up_write(&slub_lock);
2518 EXPORT_SYMBOL(kmem_cache_destroy);
2520 /********************************************************************
2521 * Kmalloc subsystem
2522 *******************************************************************/
2524 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2525 EXPORT_SYMBOL(kmalloc_caches);
2527 static int __init setup_slub_min_order(char *str)
2529 get_option(&str, &slub_min_order);
2531 return 1;
2534 __setup("slub_min_order=", setup_slub_min_order);
2536 static int __init setup_slub_max_order(char *str)
2538 get_option(&str, &slub_max_order);
2539 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2541 return 1;
2544 __setup("slub_max_order=", setup_slub_max_order);
2546 static int __init setup_slub_min_objects(char *str)
2548 get_option(&str, &slub_min_objects);
2550 return 1;
2553 __setup("slub_min_objects=", setup_slub_min_objects);
2555 static int __init setup_slub_nomerge(char *str)
2557 slub_nomerge = 1;
2558 return 1;
2561 __setup("slub_nomerge", setup_slub_nomerge);
2563 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2564 const char *name, int size, gfp_t gfp_flags)
2566 unsigned int flags = 0;
2568 if (gfp_flags & SLUB_DMA)
2569 flags = SLAB_CACHE_DMA;
2572 * This function is called with IRQs disabled during early-boot on
2573 * single CPU so there's no need to take slub_lock here.
2575 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2576 flags, NULL))
2577 goto panic;
2579 list_add(&s->list, &slab_caches);
2581 if (sysfs_slab_add(s))
2582 goto panic;
2583 return s;
2585 panic:
2586 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2589 #ifdef CONFIG_ZONE_DMA
2590 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2592 static void sysfs_add_func(struct work_struct *w)
2594 struct kmem_cache *s;
2596 down_write(&slub_lock);
2597 list_for_each_entry(s, &slab_caches, list) {
2598 if (s->flags & __SYSFS_ADD_DEFERRED) {
2599 s->flags &= ~__SYSFS_ADD_DEFERRED;
2600 sysfs_slab_add(s);
2603 up_write(&slub_lock);
2606 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2608 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2610 struct kmem_cache *s;
2611 char *text;
2612 size_t realsize;
2614 s = kmalloc_caches_dma[index];
2615 if (s)
2616 return s;
2618 /* Dynamically create dma cache */
2619 if (flags & __GFP_WAIT)
2620 down_write(&slub_lock);
2621 else {
2622 if (!down_write_trylock(&slub_lock))
2623 goto out;
2626 if (kmalloc_caches_dma[index])
2627 goto unlock_out;
2629 realsize = kmalloc_caches[index].objsize;
2630 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2631 (unsigned int)realsize);
2632 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2634 if (!s || !text || !kmem_cache_open(s, flags, text,
2635 realsize, ARCH_KMALLOC_MINALIGN,
2636 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2637 kfree(s);
2638 kfree(text);
2639 goto unlock_out;
2642 list_add(&s->list, &slab_caches);
2643 kmalloc_caches_dma[index] = s;
2645 schedule_work(&sysfs_add_work);
2647 unlock_out:
2648 up_write(&slub_lock);
2649 out:
2650 return kmalloc_caches_dma[index];
2652 #endif
2655 * Conversion table for small slabs sizes / 8 to the index in the
2656 * kmalloc array. This is necessary for slabs < 192 since we have non power
2657 * of two cache sizes there. The size of larger slabs can be determined using
2658 * fls.
2660 static s8 size_index[24] = {
2661 3, /* 8 */
2662 4, /* 16 */
2663 5, /* 24 */
2664 5, /* 32 */
2665 6, /* 40 */
2666 6, /* 48 */
2667 6, /* 56 */
2668 6, /* 64 */
2669 1, /* 72 */
2670 1, /* 80 */
2671 1, /* 88 */
2672 1, /* 96 */
2673 7, /* 104 */
2674 7, /* 112 */
2675 7, /* 120 */
2676 7, /* 128 */
2677 2, /* 136 */
2678 2, /* 144 */
2679 2, /* 152 */
2680 2, /* 160 */
2681 2, /* 168 */
2682 2, /* 176 */
2683 2, /* 184 */
2684 2 /* 192 */
2687 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2689 int index;
2691 if (size <= 192) {
2692 if (!size)
2693 return ZERO_SIZE_PTR;
2695 index = size_index[(size - 1) / 8];
2696 } else
2697 index = fls(size - 1);
2699 #ifdef CONFIG_ZONE_DMA
2700 if (unlikely((flags & SLUB_DMA)))
2701 return dma_kmalloc_cache(index, flags);
2703 #endif
2704 return &kmalloc_caches[index];
2707 void *__kmalloc(size_t size, gfp_t flags)
2709 struct kmem_cache *s;
2710 void *ret;
2712 if (unlikely(size > SLUB_MAX_SIZE))
2713 return kmalloc_large(size, flags);
2715 s = get_slab(size, flags);
2717 if (unlikely(ZERO_OR_NULL_PTR(s)))
2718 return s;
2720 ret = slab_alloc(s, flags, -1, _RET_IP_);
2722 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2724 return ret;
2726 EXPORT_SYMBOL(__kmalloc);
2728 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2730 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2731 get_order(size));
2733 if (page)
2734 return page_address(page);
2735 else
2736 return NULL;
2739 #ifdef CONFIG_NUMA
2740 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2742 struct kmem_cache *s;
2743 void *ret;
2745 if (unlikely(size > SLUB_MAX_SIZE)) {
2746 ret = kmalloc_large_node(size, flags, node);
2748 trace_kmalloc_node(_RET_IP_, ret,
2749 size, PAGE_SIZE << get_order(size),
2750 flags, node);
2752 return ret;
2755 s = get_slab(size, flags);
2757 if (unlikely(ZERO_OR_NULL_PTR(s)))
2758 return s;
2760 ret = slab_alloc(s, flags, node, _RET_IP_);
2762 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2764 return ret;
2766 EXPORT_SYMBOL(__kmalloc_node);
2767 #endif
2769 size_t ksize(const void *object)
2771 struct page *page;
2772 struct kmem_cache *s;
2774 if (unlikely(object == ZERO_SIZE_PTR))
2775 return 0;
2777 page = virt_to_head_page(object);
2779 if (unlikely(!PageSlab(page))) {
2780 WARN_ON(!PageCompound(page));
2781 return PAGE_SIZE << compound_order(page);
2783 s = page->slab;
2785 #ifdef CONFIG_SLUB_DEBUG
2787 * Debugging requires use of the padding between object
2788 * and whatever may come after it.
2790 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2791 return s->objsize;
2793 #endif
2795 * If we have the need to store the freelist pointer
2796 * back there or track user information then we can
2797 * only use the space before that information.
2799 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2800 return s->inuse;
2802 * Else we can use all the padding etc for the allocation
2804 return s->size;
2806 EXPORT_SYMBOL(ksize);
2808 void kfree(const void *x)
2810 struct page *page;
2811 void *object = (void *)x;
2813 trace_kfree(_RET_IP_, x);
2815 if (unlikely(ZERO_OR_NULL_PTR(x)))
2816 return;
2818 page = virt_to_head_page(x);
2819 if (unlikely(!PageSlab(page))) {
2820 BUG_ON(!PageCompound(page));
2821 put_page(page);
2822 return;
2824 slab_free(page->slab, page, object, _RET_IP_);
2826 EXPORT_SYMBOL(kfree);
2829 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2830 * the remaining slabs by the number of items in use. The slabs with the
2831 * most items in use come first. New allocations will then fill those up
2832 * and thus they can be removed from the partial lists.
2834 * The slabs with the least items are placed last. This results in them
2835 * being allocated from last increasing the chance that the last objects
2836 * are freed in them.
2838 int kmem_cache_shrink(struct kmem_cache *s)
2840 int node;
2841 int i;
2842 struct kmem_cache_node *n;
2843 struct page *page;
2844 struct page *t;
2845 int objects = oo_objects(s->max);
2846 struct list_head *slabs_by_inuse =
2847 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2848 unsigned long flags;
2850 if (!slabs_by_inuse)
2851 return -ENOMEM;
2853 flush_all(s);
2854 for_each_node_state(node, N_NORMAL_MEMORY) {
2855 n = get_node(s, node);
2857 if (!n->nr_partial)
2858 continue;
2860 for (i = 0; i < objects; i++)
2861 INIT_LIST_HEAD(slabs_by_inuse + i);
2863 spin_lock_irqsave(&n->list_lock, flags);
2866 * Build lists indexed by the items in use in each slab.
2868 * Note that concurrent frees may occur while we hold the
2869 * list_lock. page->inuse here is the upper limit.
2871 list_for_each_entry_safe(page, t, &n->partial, lru) {
2872 if (!page->inuse && slab_trylock(page)) {
2874 * Must hold slab lock here because slab_free
2875 * may have freed the last object and be
2876 * waiting to release the slab.
2878 list_del(&page->lru);
2879 n->nr_partial--;
2880 slab_unlock(page);
2881 discard_slab(s, page);
2882 } else {
2883 list_move(&page->lru,
2884 slabs_by_inuse + page->inuse);
2889 * Rebuild the partial list with the slabs filled up most
2890 * first and the least used slabs at the end.
2892 for (i = objects - 1; i >= 0; i--)
2893 list_splice(slabs_by_inuse + i, n->partial.prev);
2895 spin_unlock_irqrestore(&n->list_lock, flags);
2898 kfree(slabs_by_inuse);
2899 return 0;
2901 EXPORT_SYMBOL(kmem_cache_shrink);
2903 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2904 static int slab_mem_going_offline_callback(void *arg)
2906 struct kmem_cache *s;
2908 down_read(&slub_lock);
2909 list_for_each_entry(s, &slab_caches, list)
2910 kmem_cache_shrink(s);
2911 up_read(&slub_lock);
2913 return 0;
2916 static void slab_mem_offline_callback(void *arg)
2918 struct kmem_cache_node *n;
2919 struct kmem_cache *s;
2920 struct memory_notify *marg = arg;
2921 int offline_node;
2923 offline_node = marg->status_change_nid;
2926 * If the node still has available memory. we need kmem_cache_node
2927 * for it yet.
2929 if (offline_node < 0)
2930 return;
2932 down_read(&slub_lock);
2933 list_for_each_entry(s, &slab_caches, list) {
2934 n = get_node(s, offline_node);
2935 if (n) {
2937 * if n->nr_slabs > 0, slabs still exist on the node
2938 * that is going down. We were unable to free them,
2939 * and offline_pages() function shoudn't call this
2940 * callback. So, we must fail.
2942 BUG_ON(slabs_node(s, offline_node));
2944 s->node[offline_node] = NULL;
2945 kmem_cache_free(kmalloc_caches, n);
2948 up_read(&slub_lock);
2951 static int slab_mem_going_online_callback(void *arg)
2953 struct kmem_cache_node *n;
2954 struct kmem_cache *s;
2955 struct memory_notify *marg = arg;
2956 int nid = marg->status_change_nid;
2957 int ret = 0;
2960 * If the node's memory is already available, then kmem_cache_node is
2961 * already created. Nothing to do.
2963 if (nid < 0)
2964 return 0;
2967 * We are bringing a node online. No memory is available yet. We must
2968 * allocate a kmem_cache_node structure in order to bring the node
2969 * online.
2971 down_read(&slub_lock);
2972 list_for_each_entry(s, &slab_caches, list) {
2974 * XXX: kmem_cache_alloc_node will fallback to other nodes
2975 * since memory is not yet available from the node that
2976 * is brought up.
2978 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2979 if (!n) {
2980 ret = -ENOMEM;
2981 goto out;
2983 init_kmem_cache_node(n, s);
2984 s->node[nid] = n;
2986 out:
2987 up_read(&slub_lock);
2988 return ret;
2991 static int slab_memory_callback(struct notifier_block *self,
2992 unsigned long action, void *arg)
2994 int ret = 0;
2996 switch (action) {
2997 case MEM_GOING_ONLINE:
2998 ret = slab_mem_going_online_callback(arg);
2999 break;
3000 case MEM_GOING_OFFLINE:
3001 ret = slab_mem_going_offline_callback(arg);
3002 break;
3003 case MEM_OFFLINE:
3004 case MEM_CANCEL_ONLINE:
3005 slab_mem_offline_callback(arg);
3006 break;
3007 case MEM_ONLINE:
3008 case MEM_CANCEL_OFFLINE:
3009 break;
3011 if (ret)
3012 ret = notifier_from_errno(ret);
3013 else
3014 ret = NOTIFY_OK;
3015 return ret;
3018 #endif /* CONFIG_MEMORY_HOTPLUG */
3020 /********************************************************************
3021 * Basic setup of slabs
3022 *******************************************************************/
3024 void __init kmem_cache_init(void)
3026 int i;
3027 int caches = 0;
3029 init_alloc_cpu();
3031 #ifdef CONFIG_NUMA
3033 * Must first have the slab cache available for the allocations of the
3034 * struct kmem_cache_node's. There is special bootstrap code in
3035 * kmem_cache_open for slab_state == DOWN.
3037 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3038 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3039 kmalloc_caches[0].refcount = -1;
3040 caches++;
3042 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3043 #endif
3045 /* Able to allocate the per node structures */
3046 slab_state = PARTIAL;
3048 /* Caches that are not of the two-to-the-power-of size */
3049 if (KMALLOC_MIN_SIZE <= 64) {
3050 create_kmalloc_cache(&kmalloc_caches[1],
3051 "kmalloc-96", 96, GFP_NOWAIT);
3052 caches++;
3053 create_kmalloc_cache(&kmalloc_caches[2],
3054 "kmalloc-192", 192, GFP_NOWAIT);
3055 caches++;
3058 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3059 create_kmalloc_cache(&kmalloc_caches[i],
3060 "kmalloc", 1 << i, GFP_NOWAIT);
3061 caches++;
3066 * Patch up the size_index table if we have strange large alignment
3067 * requirements for the kmalloc array. This is only the case for
3068 * MIPS it seems. The standard arches will not generate any code here.
3070 * Largest permitted alignment is 256 bytes due to the way we
3071 * handle the index determination for the smaller caches.
3073 * Make sure that nothing crazy happens if someone starts tinkering
3074 * around with ARCH_KMALLOC_MINALIGN
3076 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3077 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3079 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3080 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3082 if (KMALLOC_MIN_SIZE == 128) {
3084 * The 192 byte sized cache is not used if the alignment
3085 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3086 * instead.
3088 for (i = 128 + 8; i <= 192; i += 8)
3089 size_index[(i - 1) / 8] = 8;
3092 slab_state = UP;
3094 /* Provide the correct kmalloc names now that the caches are up */
3095 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3096 kmalloc_caches[i]. name =
3097 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3099 #ifdef CONFIG_SMP
3100 register_cpu_notifier(&slab_notifier);
3101 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3102 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3103 #else
3104 kmem_size = sizeof(struct kmem_cache);
3105 #endif
3107 printk(KERN_INFO
3108 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3109 " CPUs=%d, Nodes=%d\n",
3110 caches, cache_line_size(),
3111 slub_min_order, slub_max_order, slub_min_objects,
3112 nr_cpu_ids, nr_node_ids);
3115 void __init kmem_cache_init_late(void)
3118 * Interrupts are enabled now so all GFP allocations are safe.
3120 slab_gfp_mask = __GFP_BITS_MASK;
3124 * Find a mergeable slab cache
3126 static int slab_unmergeable(struct kmem_cache *s)
3128 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3129 return 1;
3131 if (s->ctor)
3132 return 1;
3135 * We may have set a slab to be unmergeable during bootstrap.
3137 if (s->refcount < 0)
3138 return 1;
3140 return 0;
3143 static struct kmem_cache *find_mergeable(size_t size,
3144 size_t align, unsigned long flags, const char *name,
3145 void (*ctor)(void *))
3147 struct kmem_cache *s;
3149 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3150 return NULL;
3152 if (ctor)
3153 return NULL;
3155 size = ALIGN(size, sizeof(void *));
3156 align = calculate_alignment(flags, align, size);
3157 size = ALIGN(size, align);
3158 flags = kmem_cache_flags(size, flags, name, NULL);
3160 list_for_each_entry(s, &slab_caches, list) {
3161 if (slab_unmergeable(s))
3162 continue;
3164 if (size > s->size)
3165 continue;
3167 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3168 continue;
3170 * Check if alignment is compatible.
3171 * Courtesy of Adrian Drzewiecki
3173 if ((s->size & ~(align - 1)) != s->size)
3174 continue;
3176 if (s->size - size >= sizeof(void *))
3177 continue;
3179 return s;
3181 return NULL;
3184 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3185 size_t align, unsigned long flags, void (*ctor)(void *))
3187 struct kmem_cache *s;
3189 down_write(&slub_lock);
3190 s = find_mergeable(size, align, flags, name, ctor);
3191 if (s) {
3192 int cpu;
3194 s->refcount++;
3196 * Adjust the object sizes so that we clear
3197 * the complete object on kzalloc.
3199 s->objsize = max(s->objsize, (int)size);
3202 * And then we need to update the object size in the
3203 * per cpu structures
3205 for_each_online_cpu(cpu)
3206 get_cpu_slab(s, cpu)->objsize = s->objsize;
3208 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3209 up_write(&slub_lock);
3211 if (sysfs_slab_alias(s, name)) {
3212 down_write(&slub_lock);
3213 s->refcount--;
3214 up_write(&slub_lock);
3215 goto err;
3217 return s;
3220 s = kmalloc(kmem_size, GFP_KERNEL);
3221 if (s) {
3222 if (kmem_cache_open(s, GFP_KERNEL, name,
3223 size, align, flags, ctor)) {
3224 list_add(&s->list, &slab_caches);
3225 up_write(&slub_lock);
3226 if (sysfs_slab_add(s)) {
3227 down_write(&slub_lock);
3228 list_del(&s->list);
3229 up_write(&slub_lock);
3230 kfree(s);
3231 goto err;
3233 return s;
3235 kfree(s);
3237 up_write(&slub_lock);
3239 err:
3240 if (flags & SLAB_PANIC)
3241 panic("Cannot create slabcache %s\n", name);
3242 else
3243 s = NULL;
3244 return s;
3246 EXPORT_SYMBOL(kmem_cache_create);
3248 #ifdef CONFIG_SMP
3250 * Use the cpu notifier to insure that the cpu slabs are flushed when
3251 * necessary.
3253 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3254 unsigned long action, void *hcpu)
3256 long cpu = (long)hcpu;
3257 struct kmem_cache *s;
3258 unsigned long flags;
3260 switch (action) {
3261 case CPU_UP_PREPARE:
3262 case CPU_UP_PREPARE_FROZEN:
3263 init_alloc_cpu_cpu(cpu);
3264 down_read(&slub_lock);
3265 list_for_each_entry(s, &slab_caches, list)
3266 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3267 GFP_KERNEL);
3268 up_read(&slub_lock);
3269 break;
3271 case CPU_UP_CANCELED:
3272 case CPU_UP_CANCELED_FROZEN:
3273 case CPU_DEAD:
3274 case CPU_DEAD_FROZEN:
3275 down_read(&slub_lock);
3276 list_for_each_entry(s, &slab_caches, list) {
3277 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3279 local_irq_save(flags);
3280 __flush_cpu_slab(s, cpu);
3281 local_irq_restore(flags);
3282 free_kmem_cache_cpu(c, cpu);
3283 s->cpu_slab[cpu] = NULL;
3285 up_read(&slub_lock);
3286 break;
3287 default:
3288 break;
3290 return NOTIFY_OK;
3293 static struct notifier_block __cpuinitdata slab_notifier = {
3294 .notifier_call = slab_cpuup_callback
3297 #endif
3299 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3301 struct kmem_cache *s;
3302 void *ret;
3304 if (unlikely(size > SLUB_MAX_SIZE))
3305 return kmalloc_large(size, gfpflags);
3307 s = get_slab(size, gfpflags);
3309 if (unlikely(ZERO_OR_NULL_PTR(s)))
3310 return s;
3312 ret = slab_alloc(s, gfpflags, -1, caller);
3314 /* Honor the call site pointer we recieved. */
3315 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3317 return ret;
3320 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3321 int node, unsigned long caller)
3323 struct kmem_cache *s;
3324 void *ret;
3326 if (unlikely(size > SLUB_MAX_SIZE))
3327 return kmalloc_large_node(size, gfpflags, node);
3329 s = get_slab(size, gfpflags);
3331 if (unlikely(ZERO_OR_NULL_PTR(s)))
3332 return s;
3334 ret = slab_alloc(s, gfpflags, node, caller);
3336 /* Honor the call site pointer we recieved. */
3337 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3339 return ret;
3342 #ifdef CONFIG_SLUB_DEBUG
3343 static unsigned long count_partial(struct kmem_cache_node *n,
3344 int (*get_count)(struct page *))
3346 unsigned long flags;
3347 unsigned long x = 0;
3348 struct page *page;
3350 spin_lock_irqsave(&n->list_lock, flags);
3351 list_for_each_entry(page, &n->partial, lru)
3352 x += get_count(page);
3353 spin_unlock_irqrestore(&n->list_lock, flags);
3354 return x;
3357 static int count_inuse(struct page *page)
3359 return page->inuse;
3362 static int count_total(struct page *page)
3364 return page->objects;
3367 static int count_free(struct page *page)
3369 return page->objects - page->inuse;
3372 static int validate_slab(struct kmem_cache *s, struct page *page,
3373 unsigned long *map)
3375 void *p;
3376 void *addr = page_address(page);
3378 if (!check_slab(s, page) ||
3379 !on_freelist(s, page, NULL))
3380 return 0;
3382 /* Now we know that a valid freelist exists */
3383 bitmap_zero(map, page->objects);
3385 for_each_free_object(p, s, page->freelist) {
3386 set_bit(slab_index(p, s, addr), map);
3387 if (!check_object(s, page, p, 0))
3388 return 0;
3391 for_each_object(p, s, addr, page->objects)
3392 if (!test_bit(slab_index(p, s, addr), map))
3393 if (!check_object(s, page, p, 1))
3394 return 0;
3395 return 1;
3398 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3399 unsigned long *map)
3401 if (slab_trylock(page)) {
3402 validate_slab(s, page, map);
3403 slab_unlock(page);
3404 } else
3405 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3406 s->name, page);
3408 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3409 if (!PageSlubDebug(page))
3410 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3411 "on slab 0x%p\n", s->name, page);
3412 } else {
3413 if (PageSlubDebug(page))
3414 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3415 "slab 0x%p\n", s->name, page);
3419 static int validate_slab_node(struct kmem_cache *s,
3420 struct kmem_cache_node *n, unsigned long *map)
3422 unsigned long count = 0;
3423 struct page *page;
3424 unsigned long flags;
3426 spin_lock_irqsave(&n->list_lock, flags);
3428 list_for_each_entry(page, &n->partial, lru) {
3429 validate_slab_slab(s, page, map);
3430 count++;
3432 if (count != n->nr_partial)
3433 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3434 "counter=%ld\n", s->name, count, n->nr_partial);
3436 if (!(s->flags & SLAB_STORE_USER))
3437 goto out;
3439 list_for_each_entry(page, &n->full, lru) {
3440 validate_slab_slab(s, page, map);
3441 count++;
3443 if (count != atomic_long_read(&n->nr_slabs))
3444 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3445 "counter=%ld\n", s->name, count,
3446 atomic_long_read(&n->nr_slabs));
3448 out:
3449 spin_unlock_irqrestore(&n->list_lock, flags);
3450 return count;
3453 static long validate_slab_cache(struct kmem_cache *s)
3455 int node;
3456 unsigned long count = 0;
3457 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3458 sizeof(unsigned long), GFP_KERNEL);
3460 if (!map)
3461 return -ENOMEM;
3463 flush_all(s);
3464 for_each_node_state(node, N_NORMAL_MEMORY) {
3465 struct kmem_cache_node *n = get_node(s, node);
3467 count += validate_slab_node(s, n, map);
3469 kfree(map);
3470 return count;
3473 #ifdef SLUB_RESILIENCY_TEST
3474 static void resiliency_test(void)
3476 u8 *p;
3478 printk(KERN_ERR "SLUB resiliency testing\n");
3479 printk(KERN_ERR "-----------------------\n");
3480 printk(KERN_ERR "A. Corruption after allocation\n");
3482 p = kzalloc(16, GFP_KERNEL);
3483 p[16] = 0x12;
3484 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3485 " 0x12->0x%p\n\n", p + 16);
3487 validate_slab_cache(kmalloc_caches + 4);
3489 /* Hmmm... The next two are dangerous */
3490 p = kzalloc(32, GFP_KERNEL);
3491 p[32 + sizeof(void *)] = 0x34;
3492 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3493 " 0x34 -> -0x%p\n", p);
3494 printk(KERN_ERR
3495 "If allocated object is overwritten then not detectable\n\n");
3497 validate_slab_cache(kmalloc_caches + 5);
3498 p = kzalloc(64, GFP_KERNEL);
3499 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3500 *p = 0x56;
3501 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3503 printk(KERN_ERR
3504 "If allocated object is overwritten then not detectable\n\n");
3505 validate_slab_cache(kmalloc_caches + 6);
3507 printk(KERN_ERR "\nB. Corruption after free\n");
3508 p = kzalloc(128, GFP_KERNEL);
3509 kfree(p);
3510 *p = 0x78;
3511 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3512 validate_slab_cache(kmalloc_caches + 7);
3514 p = kzalloc(256, GFP_KERNEL);
3515 kfree(p);
3516 p[50] = 0x9a;
3517 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3519 validate_slab_cache(kmalloc_caches + 8);
3521 p = kzalloc(512, GFP_KERNEL);
3522 kfree(p);
3523 p[512] = 0xab;
3524 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3525 validate_slab_cache(kmalloc_caches + 9);
3527 #else
3528 static void resiliency_test(void) {};
3529 #endif
3532 * Generate lists of code addresses where slabcache objects are allocated
3533 * and freed.
3536 struct location {
3537 unsigned long count;
3538 unsigned long addr;
3539 long long sum_time;
3540 long min_time;
3541 long max_time;
3542 long min_pid;
3543 long max_pid;
3544 DECLARE_BITMAP(cpus, NR_CPUS);
3545 nodemask_t nodes;
3548 struct loc_track {
3549 unsigned long max;
3550 unsigned long count;
3551 struct location *loc;
3554 static void free_loc_track(struct loc_track *t)
3556 if (t->max)
3557 free_pages((unsigned long)t->loc,
3558 get_order(sizeof(struct location) * t->max));
3561 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3563 struct location *l;
3564 int order;
3566 order = get_order(sizeof(struct location) * max);
3568 l = (void *)__get_free_pages(flags, order);
3569 if (!l)
3570 return 0;
3572 if (t->count) {
3573 memcpy(l, t->loc, sizeof(struct location) * t->count);
3574 free_loc_track(t);
3576 t->max = max;
3577 t->loc = l;
3578 return 1;
3581 static int add_location(struct loc_track *t, struct kmem_cache *s,
3582 const struct track *track)
3584 long start, end, pos;
3585 struct location *l;
3586 unsigned long caddr;
3587 unsigned long age = jiffies - track->when;
3589 start = -1;
3590 end = t->count;
3592 for ( ; ; ) {
3593 pos = start + (end - start + 1) / 2;
3596 * There is nothing at "end". If we end up there
3597 * we need to add something to before end.
3599 if (pos == end)
3600 break;
3602 caddr = t->loc[pos].addr;
3603 if (track->addr == caddr) {
3605 l = &t->loc[pos];
3606 l->count++;
3607 if (track->when) {
3608 l->sum_time += age;
3609 if (age < l->min_time)
3610 l->min_time = age;
3611 if (age > l->max_time)
3612 l->max_time = age;
3614 if (track->pid < l->min_pid)
3615 l->min_pid = track->pid;
3616 if (track->pid > l->max_pid)
3617 l->max_pid = track->pid;
3619 cpumask_set_cpu(track->cpu,
3620 to_cpumask(l->cpus));
3622 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3623 return 1;
3626 if (track->addr < caddr)
3627 end = pos;
3628 else
3629 start = pos;
3633 * Not found. Insert new tracking element.
3635 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3636 return 0;
3638 l = t->loc + pos;
3639 if (pos < t->count)
3640 memmove(l + 1, l,
3641 (t->count - pos) * sizeof(struct location));
3642 t->count++;
3643 l->count = 1;
3644 l->addr = track->addr;
3645 l->sum_time = age;
3646 l->min_time = age;
3647 l->max_time = age;
3648 l->min_pid = track->pid;
3649 l->max_pid = track->pid;
3650 cpumask_clear(to_cpumask(l->cpus));
3651 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3652 nodes_clear(l->nodes);
3653 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3654 return 1;
3657 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3658 struct page *page, enum track_item alloc)
3660 void *addr = page_address(page);
3661 DECLARE_BITMAP(map, page->objects);
3662 void *p;
3664 bitmap_zero(map, page->objects);
3665 for_each_free_object(p, s, page->freelist)
3666 set_bit(slab_index(p, s, addr), map);
3668 for_each_object(p, s, addr, page->objects)
3669 if (!test_bit(slab_index(p, s, addr), map))
3670 add_location(t, s, get_track(s, p, alloc));
3673 static int list_locations(struct kmem_cache *s, char *buf,
3674 enum track_item alloc)
3676 int len = 0;
3677 unsigned long i;
3678 struct loc_track t = { 0, 0, NULL };
3679 int node;
3681 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3682 GFP_TEMPORARY))
3683 return sprintf(buf, "Out of memory\n");
3685 /* Push back cpu slabs */
3686 flush_all(s);
3688 for_each_node_state(node, N_NORMAL_MEMORY) {
3689 struct kmem_cache_node *n = get_node(s, node);
3690 unsigned long flags;
3691 struct page *page;
3693 if (!atomic_long_read(&n->nr_slabs))
3694 continue;
3696 spin_lock_irqsave(&n->list_lock, flags);
3697 list_for_each_entry(page, &n->partial, lru)
3698 process_slab(&t, s, page, alloc);
3699 list_for_each_entry(page, &n->full, lru)
3700 process_slab(&t, s, page, alloc);
3701 spin_unlock_irqrestore(&n->list_lock, flags);
3704 for (i = 0; i < t.count; i++) {
3705 struct location *l = &t.loc[i];
3707 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3708 break;
3709 len += sprintf(buf + len, "%7ld ", l->count);
3711 if (l->addr)
3712 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3713 else
3714 len += sprintf(buf + len, "<not-available>");
3716 if (l->sum_time != l->min_time) {
3717 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3718 l->min_time,
3719 (long)div_u64(l->sum_time, l->count),
3720 l->max_time);
3721 } else
3722 len += sprintf(buf + len, " age=%ld",
3723 l->min_time);
3725 if (l->min_pid != l->max_pid)
3726 len += sprintf(buf + len, " pid=%ld-%ld",
3727 l->min_pid, l->max_pid);
3728 else
3729 len += sprintf(buf + len, " pid=%ld",
3730 l->min_pid);
3732 if (num_online_cpus() > 1 &&
3733 !cpumask_empty(to_cpumask(l->cpus)) &&
3734 len < PAGE_SIZE - 60) {
3735 len += sprintf(buf + len, " cpus=");
3736 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3737 to_cpumask(l->cpus));
3740 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3741 len < PAGE_SIZE - 60) {
3742 len += sprintf(buf + len, " nodes=");
3743 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3744 l->nodes);
3747 len += sprintf(buf + len, "\n");
3750 free_loc_track(&t);
3751 if (!t.count)
3752 len += sprintf(buf, "No data\n");
3753 return len;
3756 enum slab_stat_type {
3757 SL_ALL, /* All slabs */
3758 SL_PARTIAL, /* Only partially allocated slabs */
3759 SL_CPU, /* Only slabs used for cpu caches */
3760 SL_OBJECTS, /* Determine allocated objects not slabs */
3761 SL_TOTAL /* Determine object capacity not slabs */
3764 #define SO_ALL (1 << SL_ALL)
3765 #define SO_PARTIAL (1 << SL_PARTIAL)
3766 #define SO_CPU (1 << SL_CPU)
3767 #define SO_OBJECTS (1 << SL_OBJECTS)
3768 #define SO_TOTAL (1 << SL_TOTAL)
3770 static ssize_t show_slab_objects(struct kmem_cache *s,
3771 char *buf, unsigned long flags)
3773 unsigned long total = 0;
3774 int node;
3775 int x;
3776 unsigned long *nodes;
3777 unsigned long *per_cpu;
3779 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3780 if (!nodes)
3781 return -ENOMEM;
3782 per_cpu = nodes + nr_node_ids;
3784 if (flags & SO_CPU) {
3785 int cpu;
3787 for_each_possible_cpu(cpu) {
3788 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3790 if (!c || c->node < 0)
3791 continue;
3793 if (c->page) {
3794 if (flags & SO_TOTAL)
3795 x = c->page->objects;
3796 else if (flags & SO_OBJECTS)
3797 x = c->page->inuse;
3798 else
3799 x = 1;
3801 total += x;
3802 nodes[c->node] += x;
3804 per_cpu[c->node]++;
3808 if (flags & SO_ALL) {
3809 for_each_node_state(node, N_NORMAL_MEMORY) {
3810 struct kmem_cache_node *n = get_node(s, node);
3812 if (flags & SO_TOTAL)
3813 x = atomic_long_read(&n->total_objects);
3814 else if (flags & SO_OBJECTS)
3815 x = atomic_long_read(&n->total_objects) -
3816 count_partial(n, count_free);
3818 else
3819 x = atomic_long_read(&n->nr_slabs);
3820 total += x;
3821 nodes[node] += x;
3824 } else if (flags & SO_PARTIAL) {
3825 for_each_node_state(node, N_NORMAL_MEMORY) {
3826 struct kmem_cache_node *n = get_node(s, node);
3828 if (flags & SO_TOTAL)
3829 x = count_partial(n, count_total);
3830 else if (flags & SO_OBJECTS)
3831 x = count_partial(n, count_inuse);
3832 else
3833 x = n->nr_partial;
3834 total += x;
3835 nodes[node] += x;
3838 x = sprintf(buf, "%lu", total);
3839 #ifdef CONFIG_NUMA
3840 for_each_node_state(node, N_NORMAL_MEMORY)
3841 if (nodes[node])
3842 x += sprintf(buf + x, " N%d=%lu",
3843 node, nodes[node]);
3844 #endif
3845 kfree(nodes);
3846 return x + sprintf(buf + x, "\n");
3849 static int any_slab_objects(struct kmem_cache *s)
3851 int node;
3853 for_each_online_node(node) {
3854 struct kmem_cache_node *n = get_node(s, node);
3856 if (!n)
3857 continue;
3859 if (atomic_long_read(&n->total_objects))
3860 return 1;
3862 return 0;
3865 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3866 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3868 struct slab_attribute {
3869 struct attribute attr;
3870 ssize_t (*show)(struct kmem_cache *s, char *buf);
3871 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3874 #define SLAB_ATTR_RO(_name) \
3875 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3877 #define SLAB_ATTR(_name) \
3878 static struct slab_attribute _name##_attr = \
3879 __ATTR(_name, 0644, _name##_show, _name##_store)
3881 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3883 return sprintf(buf, "%d\n", s->size);
3885 SLAB_ATTR_RO(slab_size);
3887 static ssize_t align_show(struct kmem_cache *s, char *buf)
3889 return sprintf(buf, "%d\n", s->align);
3891 SLAB_ATTR_RO(align);
3893 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3895 return sprintf(buf, "%d\n", s->objsize);
3897 SLAB_ATTR_RO(object_size);
3899 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3901 return sprintf(buf, "%d\n", oo_objects(s->oo));
3903 SLAB_ATTR_RO(objs_per_slab);
3905 static ssize_t order_store(struct kmem_cache *s,
3906 const char *buf, size_t length)
3908 unsigned long order;
3909 int err;
3911 err = strict_strtoul(buf, 10, &order);
3912 if (err)
3913 return err;
3915 if (order > slub_max_order || order < slub_min_order)
3916 return -EINVAL;
3918 calculate_sizes(s, order);
3919 return length;
3922 static ssize_t order_show(struct kmem_cache *s, char *buf)
3924 return sprintf(buf, "%d\n", oo_order(s->oo));
3926 SLAB_ATTR(order);
3928 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3930 return sprintf(buf, "%lu\n", s->min_partial);
3933 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3934 size_t length)
3936 unsigned long min;
3937 int err;
3939 err = strict_strtoul(buf, 10, &min);
3940 if (err)
3941 return err;
3943 set_min_partial(s, min);
3944 return length;
3946 SLAB_ATTR(min_partial);
3948 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3950 if (s->ctor) {
3951 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3953 return n + sprintf(buf + n, "\n");
3955 return 0;
3957 SLAB_ATTR_RO(ctor);
3959 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3961 return sprintf(buf, "%d\n", s->refcount - 1);
3963 SLAB_ATTR_RO(aliases);
3965 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3967 return show_slab_objects(s, buf, SO_ALL);
3969 SLAB_ATTR_RO(slabs);
3971 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3973 return show_slab_objects(s, buf, SO_PARTIAL);
3975 SLAB_ATTR_RO(partial);
3977 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3979 return show_slab_objects(s, buf, SO_CPU);
3981 SLAB_ATTR_RO(cpu_slabs);
3983 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3985 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3987 SLAB_ATTR_RO(objects);
3989 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3991 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3993 SLAB_ATTR_RO(objects_partial);
3995 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3997 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3999 SLAB_ATTR_RO(total_objects);
4001 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4003 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4006 static ssize_t sanity_checks_store(struct kmem_cache *s,
4007 const char *buf, size_t length)
4009 s->flags &= ~SLAB_DEBUG_FREE;
4010 if (buf[0] == '1')
4011 s->flags |= SLAB_DEBUG_FREE;
4012 return length;
4014 SLAB_ATTR(sanity_checks);
4016 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4018 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4021 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4022 size_t length)
4024 s->flags &= ~SLAB_TRACE;
4025 if (buf[0] == '1')
4026 s->flags |= SLAB_TRACE;
4027 return length;
4029 SLAB_ATTR(trace);
4031 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4033 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4036 static ssize_t reclaim_account_store(struct kmem_cache *s,
4037 const char *buf, size_t length)
4039 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4040 if (buf[0] == '1')
4041 s->flags |= SLAB_RECLAIM_ACCOUNT;
4042 return length;
4044 SLAB_ATTR(reclaim_account);
4046 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4048 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4050 SLAB_ATTR_RO(hwcache_align);
4052 #ifdef CONFIG_ZONE_DMA
4053 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4057 SLAB_ATTR_RO(cache_dma);
4058 #endif
4060 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4062 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4064 SLAB_ATTR_RO(destroy_by_rcu);
4066 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4071 static ssize_t red_zone_store(struct kmem_cache *s,
4072 const char *buf, size_t length)
4074 if (any_slab_objects(s))
4075 return -EBUSY;
4077 s->flags &= ~SLAB_RED_ZONE;
4078 if (buf[0] == '1')
4079 s->flags |= SLAB_RED_ZONE;
4080 calculate_sizes(s, -1);
4081 return length;
4083 SLAB_ATTR(red_zone);
4085 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4090 static ssize_t poison_store(struct kmem_cache *s,
4091 const char *buf, size_t length)
4093 if (any_slab_objects(s))
4094 return -EBUSY;
4096 s->flags &= ~SLAB_POISON;
4097 if (buf[0] == '1')
4098 s->flags |= SLAB_POISON;
4099 calculate_sizes(s, -1);
4100 return length;
4102 SLAB_ATTR(poison);
4104 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4109 static ssize_t store_user_store(struct kmem_cache *s,
4110 const char *buf, size_t length)
4112 if (any_slab_objects(s))
4113 return -EBUSY;
4115 s->flags &= ~SLAB_STORE_USER;
4116 if (buf[0] == '1')
4117 s->flags |= SLAB_STORE_USER;
4118 calculate_sizes(s, -1);
4119 return length;
4121 SLAB_ATTR(store_user);
4123 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4125 return 0;
4128 static ssize_t validate_store(struct kmem_cache *s,
4129 const char *buf, size_t length)
4131 int ret = -EINVAL;
4133 if (buf[0] == '1') {
4134 ret = validate_slab_cache(s);
4135 if (ret >= 0)
4136 ret = length;
4138 return ret;
4140 SLAB_ATTR(validate);
4142 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4144 return 0;
4147 static ssize_t shrink_store(struct kmem_cache *s,
4148 const char *buf, size_t length)
4150 if (buf[0] == '1') {
4151 int rc = kmem_cache_shrink(s);
4153 if (rc)
4154 return rc;
4155 } else
4156 return -EINVAL;
4157 return length;
4159 SLAB_ATTR(shrink);
4161 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4163 if (!(s->flags & SLAB_STORE_USER))
4164 return -ENOSYS;
4165 return list_locations(s, buf, TRACK_ALLOC);
4167 SLAB_ATTR_RO(alloc_calls);
4169 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4171 if (!(s->flags & SLAB_STORE_USER))
4172 return -ENOSYS;
4173 return list_locations(s, buf, TRACK_FREE);
4175 SLAB_ATTR_RO(free_calls);
4177 #ifdef CONFIG_NUMA
4178 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4180 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4183 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4184 const char *buf, size_t length)
4186 unsigned long ratio;
4187 int err;
4189 err = strict_strtoul(buf, 10, &ratio);
4190 if (err)
4191 return err;
4193 if (ratio <= 100)
4194 s->remote_node_defrag_ratio = ratio * 10;
4196 return length;
4198 SLAB_ATTR(remote_node_defrag_ratio);
4199 #endif
4201 #ifdef CONFIG_SLUB_STATS
4202 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4204 unsigned long sum = 0;
4205 int cpu;
4206 int len;
4207 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4209 if (!data)
4210 return -ENOMEM;
4212 for_each_online_cpu(cpu) {
4213 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4215 data[cpu] = x;
4216 sum += x;
4219 len = sprintf(buf, "%lu", sum);
4221 #ifdef CONFIG_SMP
4222 for_each_online_cpu(cpu) {
4223 if (data[cpu] && len < PAGE_SIZE - 20)
4224 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4226 #endif
4227 kfree(data);
4228 return len + sprintf(buf + len, "\n");
4231 #define STAT_ATTR(si, text) \
4232 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4234 return show_stat(s, buf, si); \
4236 SLAB_ATTR_RO(text); \
4238 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4239 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4240 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4241 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4242 STAT_ATTR(FREE_FROZEN, free_frozen);
4243 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4244 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4245 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4246 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4247 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4248 STAT_ATTR(FREE_SLAB, free_slab);
4249 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4250 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4251 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4252 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4253 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4254 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4255 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4256 #endif
4258 static struct attribute *slab_attrs[] = {
4259 &slab_size_attr.attr,
4260 &object_size_attr.attr,
4261 &objs_per_slab_attr.attr,
4262 &order_attr.attr,
4263 &min_partial_attr.attr,
4264 &objects_attr.attr,
4265 &objects_partial_attr.attr,
4266 &total_objects_attr.attr,
4267 &slabs_attr.attr,
4268 &partial_attr.attr,
4269 &cpu_slabs_attr.attr,
4270 &ctor_attr.attr,
4271 &aliases_attr.attr,
4272 &align_attr.attr,
4273 &sanity_checks_attr.attr,
4274 &trace_attr.attr,
4275 &hwcache_align_attr.attr,
4276 &reclaim_account_attr.attr,
4277 &destroy_by_rcu_attr.attr,
4278 &red_zone_attr.attr,
4279 &poison_attr.attr,
4280 &store_user_attr.attr,
4281 &validate_attr.attr,
4282 &shrink_attr.attr,
4283 &alloc_calls_attr.attr,
4284 &free_calls_attr.attr,
4285 #ifdef CONFIG_ZONE_DMA
4286 &cache_dma_attr.attr,
4287 #endif
4288 #ifdef CONFIG_NUMA
4289 &remote_node_defrag_ratio_attr.attr,
4290 #endif
4291 #ifdef CONFIG_SLUB_STATS
4292 &alloc_fastpath_attr.attr,
4293 &alloc_slowpath_attr.attr,
4294 &free_fastpath_attr.attr,
4295 &free_slowpath_attr.attr,
4296 &free_frozen_attr.attr,
4297 &free_add_partial_attr.attr,
4298 &free_remove_partial_attr.attr,
4299 &alloc_from_partial_attr.attr,
4300 &alloc_slab_attr.attr,
4301 &alloc_refill_attr.attr,
4302 &free_slab_attr.attr,
4303 &cpuslab_flush_attr.attr,
4304 &deactivate_full_attr.attr,
4305 &deactivate_empty_attr.attr,
4306 &deactivate_to_head_attr.attr,
4307 &deactivate_to_tail_attr.attr,
4308 &deactivate_remote_frees_attr.attr,
4309 &order_fallback_attr.attr,
4310 #endif
4311 NULL
4314 static struct attribute_group slab_attr_group = {
4315 .attrs = slab_attrs,
4318 static ssize_t slab_attr_show(struct kobject *kobj,
4319 struct attribute *attr,
4320 char *buf)
4322 struct slab_attribute *attribute;
4323 struct kmem_cache *s;
4324 int err;
4326 attribute = to_slab_attr(attr);
4327 s = to_slab(kobj);
4329 if (!attribute->show)
4330 return -EIO;
4332 err = attribute->show(s, buf);
4334 return err;
4337 static ssize_t slab_attr_store(struct kobject *kobj,
4338 struct attribute *attr,
4339 const char *buf, size_t len)
4341 struct slab_attribute *attribute;
4342 struct kmem_cache *s;
4343 int err;
4345 attribute = to_slab_attr(attr);
4346 s = to_slab(kobj);
4348 if (!attribute->store)
4349 return -EIO;
4351 err = attribute->store(s, buf, len);
4353 return err;
4356 static void kmem_cache_release(struct kobject *kobj)
4358 struct kmem_cache *s = to_slab(kobj);
4360 kfree(s);
4363 static struct sysfs_ops slab_sysfs_ops = {
4364 .show = slab_attr_show,
4365 .store = slab_attr_store,
4368 static struct kobj_type slab_ktype = {
4369 .sysfs_ops = &slab_sysfs_ops,
4370 .release = kmem_cache_release
4373 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4375 struct kobj_type *ktype = get_ktype(kobj);
4377 if (ktype == &slab_ktype)
4378 return 1;
4379 return 0;
4382 static struct kset_uevent_ops slab_uevent_ops = {
4383 .filter = uevent_filter,
4386 static struct kset *slab_kset;
4388 #define ID_STR_LENGTH 64
4390 /* Create a unique string id for a slab cache:
4392 * Format :[flags-]size
4394 static char *create_unique_id(struct kmem_cache *s)
4396 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4397 char *p = name;
4399 BUG_ON(!name);
4401 *p++ = ':';
4403 * First flags affecting slabcache operations. We will only
4404 * get here for aliasable slabs so we do not need to support
4405 * too many flags. The flags here must cover all flags that
4406 * are matched during merging to guarantee that the id is
4407 * unique.
4409 if (s->flags & SLAB_CACHE_DMA)
4410 *p++ = 'd';
4411 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4412 *p++ = 'a';
4413 if (s->flags & SLAB_DEBUG_FREE)
4414 *p++ = 'F';
4415 if (p != name + 1)
4416 *p++ = '-';
4417 p += sprintf(p, "%07d", s->size);
4418 BUG_ON(p > name + ID_STR_LENGTH - 1);
4419 return name;
4422 static int sysfs_slab_add(struct kmem_cache *s)
4424 int err;
4425 const char *name;
4426 int unmergeable;
4428 if (slab_state < SYSFS)
4429 /* Defer until later */
4430 return 0;
4432 unmergeable = slab_unmergeable(s);
4433 if (unmergeable) {
4435 * Slabcache can never be merged so we can use the name proper.
4436 * This is typically the case for debug situations. In that
4437 * case we can catch duplicate names easily.
4439 sysfs_remove_link(&slab_kset->kobj, s->name);
4440 name = s->name;
4441 } else {
4443 * Create a unique name for the slab as a target
4444 * for the symlinks.
4446 name = create_unique_id(s);
4449 s->kobj.kset = slab_kset;
4450 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4451 if (err) {
4452 kobject_put(&s->kobj);
4453 return err;
4456 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4457 if (err)
4458 return err;
4459 kobject_uevent(&s->kobj, KOBJ_ADD);
4460 if (!unmergeable) {
4461 /* Setup first alias */
4462 sysfs_slab_alias(s, s->name);
4463 kfree(name);
4465 return 0;
4468 static void sysfs_slab_remove(struct kmem_cache *s)
4470 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4471 kobject_del(&s->kobj);
4472 kobject_put(&s->kobj);
4476 * Need to buffer aliases during bootup until sysfs becomes
4477 * available lest we lose that information.
4479 struct saved_alias {
4480 struct kmem_cache *s;
4481 const char *name;
4482 struct saved_alias *next;
4485 static struct saved_alias *alias_list;
4487 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4489 struct saved_alias *al;
4491 if (slab_state == SYSFS) {
4493 * If we have a leftover link then remove it.
4495 sysfs_remove_link(&slab_kset->kobj, name);
4496 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4499 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4500 if (!al)
4501 return -ENOMEM;
4503 al->s = s;
4504 al->name = name;
4505 al->next = alias_list;
4506 alias_list = al;
4507 return 0;
4510 static int __init slab_sysfs_init(void)
4512 struct kmem_cache *s;
4513 int err;
4515 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4516 if (!slab_kset) {
4517 printk(KERN_ERR "Cannot register slab subsystem.\n");
4518 return -ENOSYS;
4521 slab_state = SYSFS;
4523 list_for_each_entry(s, &slab_caches, list) {
4524 err = sysfs_slab_add(s);
4525 if (err)
4526 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4527 " to sysfs\n", s->name);
4530 while (alias_list) {
4531 struct saved_alias *al = alias_list;
4533 alias_list = alias_list->next;
4534 err = sysfs_slab_alias(al->s, al->name);
4535 if (err)
4536 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4537 " %s to sysfs\n", s->name);
4538 kfree(al);
4541 resiliency_test();
4542 return 0;
4545 __initcall(slab_sysfs_init);
4546 #endif
4549 * The /proc/slabinfo ABI
4551 #ifdef CONFIG_SLABINFO
4552 static void print_slabinfo_header(struct seq_file *m)
4554 seq_puts(m, "slabinfo - version: 2.1\n");
4555 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4556 "<objperslab> <pagesperslab>");
4557 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4558 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4559 seq_putc(m, '\n');
4562 static void *s_start(struct seq_file *m, loff_t *pos)
4564 loff_t n = *pos;
4566 down_read(&slub_lock);
4567 if (!n)
4568 print_slabinfo_header(m);
4570 return seq_list_start(&slab_caches, *pos);
4573 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4575 return seq_list_next(p, &slab_caches, pos);
4578 static void s_stop(struct seq_file *m, void *p)
4580 up_read(&slub_lock);
4583 static int s_show(struct seq_file *m, void *p)
4585 unsigned long nr_partials = 0;
4586 unsigned long nr_slabs = 0;
4587 unsigned long nr_inuse = 0;
4588 unsigned long nr_objs = 0;
4589 unsigned long nr_free = 0;
4590 struct kmem_cache *s;
4591 int node;
4593 s = list_entry(p, struct kmem_cache, list);
4595 for_each_online_node(node) {
4596 struct kmem_cache_node *n = get_node(s, node);
4598 if (!n)
4599 continue;
4601 nr_partials += n->nr_partial;
4602 nr_slabs += atomic_long_read(&n->nr_slabs);
4603 nr_objs += atomic_long_read(&n->total_objects);
4604 nr_free += count_partial(n, count_free);
4607 nr_inuse = nr_objs - nr_free;
4609 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4610 nr_objs, s->size, oo_objects(s->oo),
4611 (1 << oo_order(s->oo)));
4612 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4613 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4614 0UL);
4615 seq_putc(m, '\n');
4616 return 0;
4619 static const struct seq_operations slabinfo_op = {
4620 .start = s_start,
4621 .next = s_next,
4622 .stop = s_stop,
4623 .show = s_show,
4626 static int slabinfo_open(struct inode *inode, struct file *file)
4628 return seq_open(file, &slabinfo_op);
4631 static const struct file_operations proc_slabinfo_operations = {
4632 .open = slabinfo_open,
4633 .read = seq_read,
4634 .llseek = seq_lseek,
4635 .release = seq_release,
4638 static int __init slab_proc_init(void)
4640 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4641 return 0;
4643 module_init(slab_proc_init);
4644 #endif /* CONFIG_SLABINFO */