2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
35 static int sas_discover_expander(struct domain_device
*dev
);
36 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
37 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
38 u8
*sas_addr
, int include
);
39 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
41 /* ---------- SMP task management ---------- */
43 static void smp_task_timedout(unsigned long _task
)
45 struct sas_task
*task
= (void *) _task
;
48 spin_lock_irqsave(&task
->task_state_lock
, flags
);
49 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
))
50 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
51 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
53 complete(&task
->completion
);
56 static void smp_task_done(struct sas_task
*task
)
58 if (!del_timer(&task
->timer
))
60 complete(&task
->completion
);
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
66 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
67 void *resp
, int resp_size
)
70 struct sas_task
*task
= NULL
;
71 struct sas_internal
*i
=
72 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
74 for (retry
= 0; retry
< 3; retry
++) {
75 task
= sas_alloc_task(GFP_KERNEL
);
80 task
->task_proto
= dev
->tproto
;
81 sg_init_one(&task
->smp_task
.smp_req
, req
, req_size
);
82 sg_init_one(&task
->smp_task
.smp_resp
, resp
, resp_size
);
84 task
->task_done
= smp_task_done
;
86 task
->timer
.data
= (unsigned long) task
;
87 task
->timer
.function
= smp_task_timedout
;
88 task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
89 add_timer(&task
->timer
);
91 res
= i
->dft
->lldd_execute_task(task
, 1, GFP_KERNEL
);
94 del_timer(&task
->timer
);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
99 wait_for_completion(&task
->completion
);
101 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i
->dft
->lldd_abort_task(task
);
104 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
109 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
110 task
->task_status
.stat
== SAM_STAT_GOOD
) {
113 } if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
114 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
115 /* no error, but return the number of bytes of
117 res
= task
->task_status
.residual
;
119 } if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
120 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__
,
126 SAS_ADDR(dev
->sas_addr
),
127 task
->task_status
.resp
,
128 task
->task_status
.stat
);
134 BUG_ON(retry
== 3 && task
!= NULL
);
141 /* ---------- Allocations ---------- */
143 static inline void *alloc_smp_req(int size
)
145 u8
*p
= kzalloc(size
, GFP_KERNEL
);
151 static inline void *alloc_smp_resp(int size
)
153 return kzalloc(size
, GFP_KERNEL
);
156 /* ---------- Expander configuration ---------- */
158 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
,
161 struct expander_device
*ex
= &dev
->ex_dev
;
162 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
163 struct smp_resp
*resp
= disc_resp
;
164 struct discover_resp
*dr
= &resp
->disc
;
165 struct sas_rphy
*rphy
= dev
->rphy
;
166 int rediscover
= (phy
->phy
!= NULL
);
169 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
171 /* FIXME: error_handling */
175 switch (resp
->result
) {
176 case SMP_RESP_PHY_VACANT
:
177 phy
->phy_state
= PHY_VACANT
;
180 phy
->phy_state
= PHY_NOT_PRESENT
;
182 case SMP_RESP_FUNC_ACC
:
183 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
187 phy
->phy_id
= phy_id
;
188 phy
->attached_dev_type
= dr
->attached_dev_type
;
189 phy
->linkrate
= dr
->linkrate
;
190 phy
->attached_sata_host
= dr
->attached_sata_host
;
191 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
192 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
193 phy
->attached_iproto
= dr
->iproto
<< 1;
194 phy
->attached_tproto
= dr
->tproto
<< 1;
195 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
196 phy
->attached_phy_id
= dr
->attached_phy_id
;
197 phy
->phy_change_count
= dr
->change_count
;
198 phy
->routing_attr
= dr
->routing_attr
;
199 phy
->virtual = dr
->virtual;
200 phy
->last_da_index
= -1;
202 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
203 phy
->phy
->identify
.device_type
= phy
->attached_dev_type
;
204 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
205 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
206 phy
->phy
->identify
.phy_identifier
= phy_id
;
207 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
208 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
209 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
210 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
211 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
214 if (sas_phy_add(phy
->phy
)) {
215 sas_phy_free(phy
->phy
);
219 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
220 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
221 phy
->routing_attr
== TABLE_ROUTING
? 'T' :
222 phy
->routing_attr
== DIRECT_ROUTING
? 'D' :
223 phy
->routing_attr
== SUBTRACTIVE_ROUTING
? 'S' : '?',
224 SAS_ADDR(phy
->attached_sas_addr
));
229 #define DISCOVER_REQ_SIZE 16
230 #define DISCOVER_RESP_SIZE 56
232 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
233 u8
*disc_resp
, int single
)
237 disc_req
[9] = single
;
238 for (i
= 1 ; i
< 3; i
++) {
239 struct discover_resp
*dr
;
241 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
242 disc_resp
, DISCOVER_RESP_SIZE
);
245 /* This is detecting a failure to transmit initial
246 * dev to host FIS as described in section G.5 of
248 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
249 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
,
250 SAS_ADDR_SIZE
) == 0) {
251 sas_printk("Found loopback topology, just ignore it!\n");
254 if (!(dr
->attached_dev_type
== 0 &&
255 dr
->attached_sata_dev
))
257 /* In order to generate the dev to host FIS, we
258 * send a link reset to the expander port */
259 sas_smp_phy_control(dev
, single
, PHY_FUNC_LINK_RESET
, NULL
);
260 /* Wait for the reset to trigger the negotiation */
263 sas_set_ex_phy(dev
, single
, disc_resp
);
267 static int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
269 struct expander_device
*ex
= &dev
->ex_dev
;
274 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
278 disc_resp
= alloc_smp_req(DISCOVER_RESP_SIZE
);
284 disc_req
[1] = SMP_DISCOVER
;
286 if (0 <= single
&& single
< ex
->num_phys
) {
287 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
291 for (i
= 0; i
< ex
->num_phys
; i
++) {
292 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
304 static int sas_expander_discover(struct domain_device
*dev
)
306 struct expander_device
*ex
= &dev
->ex_dev
;
309 ex
->ex_phy
= kzalloc(sizeof(*ex
->ex_phy
)*ex
->num_phys
, GFP_KERNEL
);
313 res
= sas_ex_phy_discover(dev
, -1);
324 #define MAX_EXPANDER_PHYS 128
326 static void ex_assign_report_general(struct domain_device
*dev
,
327 struct smp_resp
*resp
)
329 struct report_general_resp
*rg
= &resp
->rg
;
331 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
332 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
333 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
334 dev
->ex_dev
.t2t_supp
= rg
->t2t_supp
;
335 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
336 dev
->ex_dev
.configuring
= rg
->configuring
;
337 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
340 #define RG_REQ_SIZE 8
341 #define RG_RESP_SIZE 32
343 static int sas_ex_general(struct domain_device
*dev
)
346 struct smp_resp
*rg_resp
;
350 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
354 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
360 rg_req
[1] = SMP_REPORT_GENERAL
;
362 for (i
= 0; i
< 5; i
++) {
363 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
367 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
368 SAS_ADDR(dev
->sas_addr
), res
);
370 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
371 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
372 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
373 res
= rg_resp
->result
;
377 ex_assign_report_general(dev
, rg_resp
);
379 if (dev
->ex_dev
.configuring
) {
380 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
381 SAS_ADDR(dev
->sas_addr
));
382 schedule_timeout_interruptible(5*HZ
);
392 static void ex_assign_manuf_info(struct domain_device
*dev
, void
395 u8
*mi_resp
= _mi_resp
;
396 struct sas_rphy
*rphy
= dev
->rphy
;
397 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
399 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
400 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
401 memcpy(edev
->product_rev
, mi_resp
+ 36,
402 SAS_EXPANDER_PRODUCT_REV_LEN
);
404 if (mi_resp
[8] & 1) {
405 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
406 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
407 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
408 edev
->component_revision_id
= mi_resp
[50];
412 #define MI_REQ_SIZE 8
413 #define MI_RESP_SIZE 64
415 static int sas_ex_manuf_info(struct domain_device
*dev
)
421 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
425 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
431 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
433 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
435 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
436 SAS_ADDR(dev
->sas_addr
), res
);
438 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
439 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
440 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
444 ex_assign_manuf_info(dev
, mi_resp
);
451 #define PC_REQ_SIZE 44
452 #define PC_RESP_SIZE 8
454 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
455 enum phy_func phy_func
,
456 struct sas_phy_linkrates
*rates
)
462 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
466 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
472 pc_req
[1] = SMP_PHY_CONTROL
;
474 pc_req
[10]= phy_func
;
476 pc_req
[32] = rates
->minimum_linkrate
<< 4;
477 pc_req
[33] = rates
->maximum_linkrate
<< 4;
480 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
487 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
489 struct expander_device
*ex
= &dev
->ex_dev
;
490 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
492 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
493 phy
->linkrate
= SAS_PHY_DISABLED
;
496 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
498 struct expander_device
*ex
= &dev
->ex_dev
;
501 for (i
= 0; i
< ex
->num_phys
; i
++) {
502 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
504 if (phy
->phy_state
== PHY_VACANT
||
505 phy
->phy_state
== PHY_NOT_PRESENT
)
508 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
509 sas_ex_disable_phy(dev
, i
);
513 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
516 struct domain_device
*dev
;
518 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
520 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
521 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
527 #define RPEL_REQ_SIZE 16
528 #define RPEL_RESP_SIZE 32
529 int sas_smp_get_phy_events(struct sas_phy
*phy
)
534 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
535 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
537 req
= alloc_smp_req(RPEL_REQ_SIZE
);
541 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
547 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
548 req
[9] = phy
->number
;
550 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
551 resp
, RPEL_RESP_SIZE
);
556 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
557 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
558 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
559 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
567 #ifdef CONFIG_SCSI_SAS_ATA
569 #define RPS_REQ_SIZE 16
570 #define RPS_RESP_SIZE 60
572 static int sas_get_report_phy_sata(struct domain_device
*dev
,
574 struct smp_resp
*rps_resp
)
577 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
578 u8
*resp
= (u8
*)rps_resp
;
583 rps_req
[1] = SMP_REPORT_PHY_SATA
;
586 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
587 rps_resp
, RPS_RESP_SIZE
);
589 /* 0x34 is the FIS type for the D2H fis. There's a potential
590 * standards cockup here. sas-2 explicitly specifies the FIS
591 * should be encoded so that FIS type is in resp[24].
592 * However, some expanders endian reverse this. Undo the
594 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
597 for (i
= 0; i
< 5; i
++) {
602 resp
[j
+ 0] = resp
[j
+ 3];
603 resp
[j
+ 1] = resp
[j
+ 2];
614 static void sas_ex_get_linkrate(struct domain_device
*parent
,
615 struct domain_device
*child
,
616 struct ex_phy
*parent_phy
)
618 struct expander_device
*parent_ex
= &parent
->ex_dev
;
619 struct sas_port
*port
;
624 port
= parent_phy
->port
;
626 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
627 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
629 if (phy
->phy_state
== PHY_VACANT
||
630 phy
->phy_state
== PHY_NOT_PRESENT
)
633 if (SAS_ADDR(phy
->attached_sas_addr
) ==
634 SAS_ADDR(child
->sas_addr
)) {
636 child
->min_linkrate
= min(parent
->min_linkrate
,
638 child
->max_linkrate
= max(parent
->max_linkrate
,
641 sas_port_add_phy(port
, phy
->phy
);
644 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
645 child
->pathways
= min(child
->pathways
, parent
->pathways
);
648 static struct domain_device
*sas_ex_discover_end_dev(
649 struct domain_device
*parent
, int phy_id
)
651 struct expander_device
*parent_ex
= &parent
->ex_dev
;
652 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
653 struct domain_device
*child
= NULL
;
654 struct sas_rphy
*rphy
;
657 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
660 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
664 child
->parent
= parent
;
665 child
->port
= parent
->port
;
666 child
->iproto
= phy
->attached_iproto
;
667 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
668 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
670 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
671 if (unlikely(!phy
->port
))
673 if (unlikely(sas_port_add(phy
->port
) != 0)) {
674 sas_port_free(phy
->port
);
678 sas_ex_get_linkrate(parent
, child
, phy
);
680 #ifdef CONFIG_SCSI_SAS_ATA
681 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
682 child
->dev_type
= SATA_DEV
;
683 if (phy
->attached_tproto
& SAS_PROTOCOL_STP
)
684 child
->tproto
= phy
->attached_tproto
;
685 if (phy
->attached_sata_dev
)
686 child
->tproto
|= SATA_DEV
;
687 res
= sas_get_report_phy_sata(parent
, phy_id
,
688 &child
->sata_dev
.rps_resp
);
690 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
691 "0x%x\n", SAS_ADDR(parent
->sas_addr
),
695 memcpy(child
->frame_rcvd
, &child
->sata_dev
.rps_resp
.rps
.fis
,
696 sizeof(struct dev_to_host_fis
));
698 rphy
= sas_end_device_alloc(phy
->port
);
706 spin_lock_irq(&parent
->port
->dev_list_lock
);
707 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
708 spin_unlock_irq(&parent
->port
->dev_list_lock
);
710 res
= sas_discover_sata(child
);
712 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
713 "%016llx:0x%x returned 0x%x\n",
714 SAS_ADDR(child
->sas_addr
),
715 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
720 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
721 child
->dev_type
= SAS_END_DEV
;
722 rphy
= sas_end_device_alloc(phy
->port
);
723 /* FIXME: error handling */
726 child
->tproto
= phy
->attached_tproto
;
730 sas_fill_in_rphy(child
, rphy
);
732 spin_lock_irq(&parent
->port
->dev_list_lock
);
733 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
734 spin_unlock_irq(&parent
->port
->dev_list_lock
);
736 res
= sas_discover_end_dev(child
);
738 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
739 "at %016llx:0x%x returned 0x%x\n",
740 SAS_ADDR(child
->sas_addr
),
741 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
745 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
746 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
751 list_add_tail(&child
->siblings
, &parent_ex
->children
);
755 sas_rphy_free(child
->rphy
);
758 spin_lock_irq(&parent
->port
->dev_list_lock
);
759 list_del(&child
->dev_list_node
);
760 spin_unlock_irq(&parent
->port
->dev_list_lock
);
762 sas_port_delete(phy
->port
);
769 /* See if this phy is part of a wide port */
770 static int sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
772 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
775 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
776 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
781 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
782 SAS_ADDR_SIZE
) && ephy
->port
) {
783 sas_port_add_phy(ephy
->port
, phy
->phy
);
784 phy
->port
= ephy
->port
;
785 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
793 static struct domain_device
*sas_ex_discover_expander(
794 struct domain_device
*parent
, int phy_id
)
796 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
797 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
798 struct domain_device
*child
= NULL
;
799 struct sas_rphy
*rphy
;
800 struct sas_expander_device
*edev
;
801 struct asd_sas_port
*port
;
804 if (phy
->routing_attr
== DIRECT_ROUTING
) {
805 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
807 SAS_ADDR(parent
->sas_addr
), phy_id
,
808 SAS_ADDR(phy
->attached_sas_addr
),
809 phy
->attached_phy_id
);
812 child
= kzalloc(sizeof(*child
), GFP_KERNEL
);
816 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
817 /* FIXME: better error handling */
818 BUG_ON(sas_port_add(phy
->port
) != 0);
821 switch (phy
->attached_dev_type
) {
823 rphy
= sas_expander_alloc(phy
->port
,
824 SAS_EDGE_EXPANDER_DEVICE
);
827 rphy
= sas_expander_alloc(phy
->port
,
828 SAS_FANOUT_EXPANDER_DEVICE
);
831 rphy
= NULL
; /* shut gcc up */
836 edev
= rphy_to_expander_device(rphy
);
837 child
->dev_type
= phy
->attached_dev_type
;
838 child
->parent
= parent
;
840 child
->iproto
= phy
->attached_iproto
;
841 child
->tproto
= phy
->attached_tproto
;
842 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
843 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
844 sas_ex_get_linkrate(parent
, child
, phy
);
845 edev
->level
= parent_ex
->level
+ 1;
846 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
849 sas_fill_in_rphy(child
, rphy
);
852 spin_lock_irq(&parent
->port
->dev_list_lock
);
853 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
854 spin_unlock_irq(&parent
->port
->dev_list_lock
);
856 res
= sas_discover_expander(child
);
858 spin_lock_irq(&parent
->port
->dev_list_lock
);
859 list_del(&child
->dev_list_node
);
860 spin_unlock_irq(&parent
->port
->dev_list_lock
);
864 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
868 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
870 struct expander_device
*ex
= &dev
->ex_dev
;
871 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
872 struct domain_device
*child
= NULL
;
876 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
877 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
878 res
= sas_ex_phy_discover(dev
, phy_id
);
883 /* Parent and domain coherency */
884 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
885 SAS_ADDR(dev
->port
->sas_addr
))) {
886 sas_add_parent_port(dev
, phy_id
);
889 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
890 SAS_ADDR(dev
->parent
->sas_addr
))) {
891 sas_add_parent_port(dev
, phy_id
);
892 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
893 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
897 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
898 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
900 if (ex_phy
->attached_dev_type
== NO_DEVICE
) {
901 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
902 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
903 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
906 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
909 if (ex_phy
->attached_dev_type
!= SAS_END_DEV
&&
910 ex_phy
->attached_dev_type
!= FANOUT_DEV
&&
911 ex_phy
->attached_dev_type
!= EDGE_DEV
) {
912 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
913 "phy 0x%x\n", ex_phy
->attached_dev_type
,
914 SAS_ADDR(dev
->sas_addr
),
919 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
921 SAS_DPRINTK("configure routing for dev %016llx "
922 "reported 0x%x. Forgotten\n",
923 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
924 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
928 res
= sas_ex_join_wide_port(dev
, phy_id
);
930 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
931 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
935 switch (ex_phy
->attached_dev_type
) {
937 child
= sas_ex_discover_end_dev(dev
, phy_id
);
940 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
941 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
942 "attached to ex %016llx phy 0x%x\n",
943 SAS_ADDR(ex_phy
->attached_sas_addr
),
944 ex_phy
->attached_phy_id
,
945 SAS_ADDR(dev
->sas_addr
),
947 sas_ex_disable_phy(dev
, phy_id
);
950 memcpy(dev
->port
->disc
.fanout_sas_addr
,
951 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
954 child
= sas_ex_discover_expander(dev
, phy_id
);
963 for (i
= 0; i
< ex
->num_phys
; i
++) {
964 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
965 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
968 * Due to races, the phy might not get added to the
969 * wide port, so we add the phy to the wide port here.
971 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
972 SAS_ADDR(child
->sas_addr
)) {
973 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
974 res
= sas_ex_join_wide_port(dev
, i
);
976 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
977 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
986 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
988 struct expander_device
*ex
= &dev
->ex_dev
;
991 for (i
= 0; i
< ex
->num_phys
; i
++) {
992 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
994 if (phy
->phy_state
== PHY_VACANT
||
995 phy
->phy_state
== PHY_NOT_PRESENT
)
998 if ((phy
->attached_dev_type
== EDGE_DEV
||
999 phy
->attached_dev_type
== FANOUT_DEV
) &&
1000 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1002 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
1010 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1012 struct expander_device
*ex
= &dev
->ex_dev
;
1013 struct domain_device
*child
;
1014 u8 sub_addr
[8] = {0, };
1016 list_for_each_entry(child
, &ex
->children
, siblings
) {
1017 if (child
->dev_type
!= EDGE_DEV
&&
1018 child
->dev_type
!= FANOUT_DEV
)
1020 if (sub_addr
[0] == 0) {
1021 sas_find_sub_addr(child
, sub_addr
);
1026 if (sas_find_sub_addr(child
, s2
) &&
1027 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1029 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1030 "diverges from subtractive "
1031 "boundary %016llx\n",
1032 SAS_ADDR(dev
->sas_addr
),
1033 SAS_ADDR(child
->sas_addr
),
1035 SAS_ADDR(sub_addr
));
1037 sas_ex_disable_port(child
, s2
);
1044 * sas_ex_discover_devices -- discover devices attached to this expander
1045 * dev: pointer to the expander domain device
1046 * single: if you want to do a single phy, else set to -1;
1048 * Configure this expander for use with its devices and register the
1049 * devices of this expander.
1051 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1053 struct expander_device
*ex
= &dev
->ex_dev
;
1054 int i
= 0, end
= ex
->num_phys
;
1057 if (0 <= single
&& single
< end
) {
1062 for ( ; i
< end
; i
++) {
1063 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1065 if (ex_phy
->phy_state
== PHY_VACANT
||
1066 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1067 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1070 switch (ex_phy
->linkrate
) {
1071 case SAS_PHY_DISABLED
:
1072 case SAS_PHY_RESET_PROBLEM
:
1073 case SAS_SATA_PORT_SELECTOR
:
1076 res
= sas_ex_discover_dev(dev
, i
);
1084 sas_check_level_subtractive_boundary(dev
);
1089 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1091 struct expander_device
*ex
= &dev
->ex_dev
;
1093 u8
*sub_sas_addr
= NULL
;
1095 if (dev
->dev_type
!= EDGE_DEV
)
1098 for (i
= 0; i
< ex
->num_phys
; i
++) {
1099 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1101 if (phy
->phy_state
== PHY_VACANT
||
1102 phy
->phy_state
== PHY_NOT_PRESENT
)
1105 if ((phy
->attached_dev_type
== FANOUT_DEV
||
1106 phy
->attached_dev_type
== EDGE_DEV
) &&
1107 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1110 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1111 else if (SAS_ADDR(sub_sas_addr
) !=
1112 SAS_ADDR(phy
->attached_sas_addr
)) {
1114 SAS_DPRINTK("ex %016llx phy 0x%x "
1115 "diverges(%016llx) on subtractive "
1116 "boundary(%016llx). Disabled\n",
1117 SAS_ADDR(dev
->sas_addr
), i
,
1118 SAS_ADDR(phy
->attached_sas_addr
),
1119 SAS_ADDR(sub_sas_addr
));
1120 sas_ex_disable_phy(dev
, i
);
1127 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1128 struct ex_phy
*parent_phy
,
1129 struct ex_phy
*child_phy
)
1131 static const char ra_char
[] = {
1132 [DIRECT_ROUTING
] = 'D',
1133 [SUBTRACTIVE_ROUTING
] = 'S',
1134 [TABLE_ROUTING
] = 'T',
1136 static const char *ex_type
[] = {
1137 [EDGE_DEV
] = "edge",
1138 [FANOUT_DEV
] = "fanout",
1140 struct domain_device
*parent
= child
->parent
;
1142 sas_printk("%s ex %016llx (T2T supp:%d) phy 0x%x <--> %s ex %016llx "
1143 "(T2T supp:%d) phy 0x%x has %c:%c routing link!\n",
1145 ex_type
[parent
->dev_type
],
1146 SAS_ADDR(parent
->sas_addr
),
1147 parent
->ex_dev
.t2t_supp
,
1150 ex_type
[child
->dev_type
],
1151 SAS_ADDR(child
->sas_addr
),
1152 child
->ex_dev
.t2t_supp
,
1155 ra_char
[parent_phy
->routing_attr
],
1156 ra_char
[child_phy
->routing_attr
]);
1159 static int sas_check_eeds(struct domain_device
*child
,
1160 struct ex_phy
*parent_phy
,
1161 struct ex_phy
*child_phy
)
1164 struct domain_device
*parent
= child
->parent
;
1166 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1168 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1169 "phy S:0x%x, while there is a fanout ex %016llx\n",
1170 SAS_ADDR(parent
->sas_addr
),
1172 SAS_ADDR(child
->sas_addr
),
1174 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1175 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1176 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1178 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1180 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1181 SAS_ADDR(parent
->sas_addr
)) ||
1182 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1183 SAS_ADDR(child
->sas_addr
)))
1185 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1186 SAS_ADDR(parent
->sas_addr
)) ||
1187 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1188 SAS_ADDR(child
->sas_addr
))))
1192 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1193 "phy 0x%x link forms a third EEDS!\n",
1194 SAS_ADDR(parent
->sas_addr
),
1196 SAS_ADDR(child
->sas_addr
),
1203 /* Here we spill over 80 columns. It is intentional.
1205 static int sas_check_parent_topology(struct domain_device
*child
)
1207 struct expander_device
*child_ex
= &child
->ex_dev
;
1208 struct expander_device
*parent_ex
;
1215 if (child
->parent
->dev_type
!= EDGE_DEV
&&
1216 child
->parent
->dev_type
!= FANOUT_DEV
)
1219 parent_ex
= &child
->parent
->ex_dev
;
1221 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1222 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1223 struct ex_phy
*child_phy
;
1225 if (parent_phy
->phy_state
== PHY_VACANT
||
1226 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1229 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1232 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1234 switch (child
->parent
->dev_type
) {
1236 if (child
->dev_type
== FANOUT_DEV
) {
1237 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1238 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1239 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1242 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1243 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1244 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1245 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1246 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1249 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
) {
1250 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
||
1251 (child_phy
->routing_attr
== TABLE_ROUTING
&&
1252 child_ex
->t2t_supp
&& parent_ex
->t2t_supp
)) {
1255 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1261 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1262 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1263 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1275 #define RRI_REQ_SIZE 16
1276 #define RRI_RESP_SIZE 44
1278 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1279 u8
*sas_addr
, int *index
, int *present
)
1282 struct expander_device
*ex
= &dev
->ex_dev
;
1283 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1290 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1294 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1300 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1301 rri_req
[9] = phy_id
;
1303 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1304 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1305 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1310 if (res
== SMP_RESP_NO_INDEX
) {
1311 SAS_DPRINTK("overflow of indexes: dev %016llx "
1312 "phy 0x%x index 0x%x\n",
1313 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1315 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1316 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1317 "result 0x%x\n", __func__
,
1318 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1321 if (SAS_ADDR(sas_addr
) != 0) {
1322 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1324 if ((rri_resp
[12] & 0x80) == 0x80)
1329 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1334 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1335 phy
->last_da_index
< i
) {
1336 phy
->last_da_index
= i
;
1349 #define CRI_REQ_SIZE 44
1350 #define CRI_RESP_SIZE 8
1352 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1353 u8
*sas_addr
, int index
, int include
)
1359 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1363 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1369 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1370 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1371 cri_req
[9] = phy_id
;
1372 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1373 cri_req
[12] |= 0x80;
1374 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1376 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1381 if (res
== SMP_RESP_NO_INDEX
) {
1382 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1384 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1392 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1393 u8
*sas_addr
, int include
)
1399 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1402 if (include
^ present
)
1403 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1409 * sas_configure_parent -- configure routing table of parent
1410 * parent: parent expander
1411 * child: child expander
1412 * sas_addr: SAS port identifier of device directly attached to child
1414 static int sas_configure_parent(struct domain_device
*parent
,
1415 struct domain_device
*child
,
1416 u8
*sas_addr
, int include
)
1418 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1422 if (parent
->parent
) {
1423 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1429 if (ex_parent
->conf_route_table
== 0) {
1430 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1431 SAS_ADDR(parent
->sas_addr
));
1435 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1436 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1438 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1439 (SAS_ADDR(phy
->attached_sas_addr
) ==
1440 SAS_ADDR(child
->sas_addr
))) {
1441 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1451 * sas_configure_routing -- configure routing
1452 * dev: expander device
1453 * sas_addr: port identifier of device directly attached to the expander device
1455 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1458 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1462 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1465 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1470 * sas_discover_expander -- expander discovery
1471 * @ex: pointer to expander domain device
1473 * See comment in sas_discover_sata().
1475 static int sas_discover_expander(struct domain_device
*dev
)
1479 res
= sas_notify_lldd_dev_found(dev
);
1483 res
= sas_ex_general(dev
);
1486 res
= sas_ex_manuf_info(dev
);
1490 res
= sas_expander_discover(dev
);
1492 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1493 SAS_ADDR(dev
->sas_addr
), res
);
1497 sas_check_ex_subtractive_boundary(dev
);
1498 res
= sas_check_parent_topology(dev
);
1503 sas_notify_lldd_dev_gone(dev
);
1507 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1510 struct domain_device
*dev
;
1512 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1513 if (dev
->dev_type
== EDGE_DEV
||
1514 dev
->dev_type
== FANOUT_DEV
) {
1515 struct sas_expander_device
*ex
=
1516 rphy_to_expander_device(dev
->rphy
);
1518 if (level
== ex
->level
)
1519 res
= sas_ex_discover_devices(dev
, -1);
1521 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1529 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1535 level
= port
->disc
.max_level
;
1536 res
= sas_ex_level_discovery(port
, level
);
1538 } while (level
< port
->disc
.max_level
);
1543 int sas_discover_root_expander(struct domain_device
*dev
)
1546 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1548 res
= sas_rphy_add(dev
->rphy
);
1552 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1553 res
= sas_discover_expander(dev
);
1557 sas_ex_bfs_disc(dev
->port
);
1562 sas_rphy_remove(dev
->rphy
);
1567 /* ---------- Domain revalidation ---------- */
1569 static int sas_get_phy_discover(struct domain_device
*dev
,
1570 int phy_id
, struct smp_resp
*disc_resp
)
1575 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1579 disc_req
[1] = SMP_DISCOVER
;
1580 disc_req
[9] = phy_id
;
1582 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1583 disc_resp
, DISCOVER_RESP_SIZE
);
1586 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1587 res
= disc_resp
->result
;
1595 static int sas_get_phy_change_count(struct domain_device
*dev
,
1596 int phy_id
, int *pcc
)
1599 struct smp_resp
*disc_resp
;
1601 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1605 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1607 *pcc
= disc_resp
->disc
.change_count
;
1613 static int sas_get_phy_attached_sas_addr(struct domain_device
*dev
,
1614 int phy_id
, u8
*attached_sas_addr
)
1617 struct smp_resp
*disc_resp
;
1618 struct discover_resp
*dr
;
1620 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1623 dr
= &disc_resp
->disc
;
1625 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1627 memcpy(attached_sas_addr
,disc_resp
->disc
.attached_sas_addr
,8);
1628 if (dr
->attached_dev_type
== 0)
1629 memset(attached_sas_addr
, 0, 8);
1635 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1636 int from_phy
, bool update
)
1638 struct expander_device
*ex
= &dev
->ex_dev
;
1642 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1643 int phy_change_count
= 0;
1645 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1648 else if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1650 ex
->ex_phy
[i
].phy_change_count
=
1660 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1664 struct smp_resp
*rg_resp
;
1666 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1670 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1676 rg_req
[1] = SMP_REPORT_GENERAL
;
1678 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1682 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1683 res
= rg_resp
->result
;
1687 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1694 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1695 * @dev:domain device to be detect.
1696 * @src_dev: the device which originated BROADCAST(CHANGE).
1698 * Add self-configuration expander suport. Suppose two expander cascading,
1699 * when the first level expander is self-configuring, hotplug the disks in
1700 * second level expander, BROADCAST(CHANGE) will not only be originated
1701 * in the second level expander, but also be originated in the first level
1702 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1703 * expander changed count in two level expanders will all increment at least
1704 * once, but the phy which chang count has changed is the source device which
1708 static int sas_find_bcast_dev(struct domain_device
*dev
,
1709 struct domain_device
**src_dev
)
1711 struct expander_device
*ex
= &dev
->ex_dev
;
1712 int ex_change_count
= -1;
1715 struct domain_device
*ch
;
1717 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1720 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1721 /* Just detect if this expander phys phy change count changed,
1722 * in order to determine if this expander originate BROADCAST,
1723 * and do not update phy change count field in our structure.
1725 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1728 ex
->ex_change_count
= ex_change_count
;
1729 SAS_DPRINTK("Expander phy change count has changed\n");
1732 SAS_DPRINTK("Expander phys DID NOT change\n");
1734 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1735 if (ch
->dev_type
== EDGE_DEV
|| ch
->dev_type
== FANOUT_DEV
) {
1736 res
= sas_find_bcast_dev(ch
, src_dev
);
1745 static void sas_unregister_ex_tree(struct asd_sas_port
*port
, struct domain_device
*dev
)
1747 struct expander_device
*ex
= &dev
->ex_dev
;
1748 struct domain_device
*child
, *n
;
1750 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1752 if (child
->dev_type
== EDGE_DEV
||
1753 child
->dev_type
== FANOUT_DEV
)
1754 sas_unregister_ex_tree(port
, child
);
1756 sas_unregister_dev(port
, child
);
1758 sas_unregister_dev(port
, dev
);
1761 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1762 int phy_id
, bool last
)
1764 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1765 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1766 struct domain_device
*child
, *n
;
1768 list_for_each_entry_safe(child
, n
,
1769 &ex_dev
->children
, siblings
) {
1770 if (SAS_ADDR(child
->sas_addr
) ==
1771 SAS_ADDR(phy
->attached_sas_addr
)) {
1773 if (child
->dev_type
== EDGE_DEV
||
1774 child
->dev_type
== FANOUT_DEV
)
1775 sas_unregister_ex_tree(parent
->port
, child
);
1777 sas_unregister_dev(parent
->port
, child
);
1782 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1784 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1786 sas_port_delete_phy(phy
->port
, phy
->phy
);
1787 if (phy
->port
->num_phys
== 0)
1788 sas_port_delete(phy
->port
);
1793 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1796 struct expander_device
*ex_root
= &root
->ex_dev
;
1797 struct domain_device
*child
;
1800 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1801 if (child
->dev_type
== EDGE_DEV
||
1802 child
->dev_type
== FANOUT_DEV
) {
1803 struct sas_expander_device
*ex
=
1804 rphy_to_expander_device(child
->rphy
);
1806 if (level
> ex
->level
)
1807 res
= sas_discover_bfs_by_root_level(child
,
1809 else if (level
== ex
->level
)
1810 res
= sas_ex_discover_devices(child
, -1);
1816 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1819 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1820 int level
= ex
->level
+1;
1822 res
= sas_ex_discover_devices(dev
, -1);
1826 res
= sas_discover_bfs_by_root_level(dev
, level
);
1829 } while (level
<= dev
->port
->disc
.max_level
);
1834 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1836 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1837 struct domain_device
*child
;
1841 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1842 SAS_ADDR(dev
->sas_addr
), phy_id
);
1843 res
= sas_ex_phy_discover(dev
, phy_id
);
1846 /* to support the wide port inserted */
1847 for (i
= 0; i
< dev
->ex_dev
.num_phys
; i
++) {
1848 struct ex_phy
*ex_phy_temp
= &dev
->ex_dev
.ex_phy
[i
];
1851 if (SAS_ADDR(ex_phy_temp
->attached_sas_addr
) ==
1852 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1858 sas_ex_join_wide_port(dev
, phy_id
);
1861 res
= sas_ex_discover_devices(dev
, phy_id
);
1864 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1865 if (SAS_ADDR(child
->sas_addr
) ==
1866 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1867 if (child
->dev_type
== EDGE_DEV
||
1868 child
->dev_type
== FANOUT_DEV
)
1869 res
= sas_discover_bfs_by_root(child
);
1877 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
1879 struct expander_device
*ex
= &dev
->ex_dev
;
1880 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1881 u8 attached_sas_addr
[8];
1884 res
= sas_get_phy_attached_sas_addr(dev
, phy_id
, attached_sas_addr
);
1886 case SMP_RESP_NO_PHY
:
1887 phy
->phy_state
= PHY_NOT_PRESENT
;
1888 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1890 case SMP_RESP_PHY_VACANT
:
1891 phy
->phy_state
= PHY_VACANT
;
1892 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1894 case SMP_RESP_FUNC_ACC
:
1898 if (SAS_ADDR(attached_sas_addr
) == 0) {
1899 phy
->phy_state
= PHY_EMPTY
;
1900 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
1901 } else if (SAS_ADDR(attached_sas_addr
) ==
1902 SAS_ADDR(phy
->attached_sas_addr
)) {
1903 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1904 SAS_ADDR(dev
->sas_addr
), phy_id
);
1905 sas_ex_phy_discover(dev
, phy_id
);
1907 res
= sas_discover_new(dev
, phy_id
);
1913 * sas_rediscover - revalidate the domain.
1914 * @dev:domain device to be detect.
1915 * @phy_id: the phy id will be detected.
1917 * NOTE: this process _must_ quit (return) as soon as any connection
1918 * errors are encountered. Connection recovery is done elsewhere.
1919 * Discover process only interrogates devices in order to discover the
1920 * domain.For plugging out, we un-register the device only when it is
1921 * the last phy in the port, for other phys in this port, we just delete it
1922 * from the port.For inserting, we do discovery when it is the
1923 * first phy,for other phys in this port, we add it to the port to
1924 * forming the wide-port.
1926 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
1928 struct expander_device
*ex
= &dev
->ex_dev
;
1929 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
1932 bool last
= true; /* is this the last phy of the port */
1934 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1935 SAS_ADDR(dev
->sas_addr
), phy_id
);
1937 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
1938 for (i
= 0; i
< ex
->num_phys
; i
++) {
1939 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1943 if (SAS_ADDR(phy
->attached_sas_addr
) ==
1944 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
1945 SAS_DPRINTK("phy%d part of wide port with "
1946 "phy%d\n", phy_id
, i
);
1951 res
= sas_rediscover_dev(dev
, phy_id
, last
);
1953 res
= sas_discover_new(dev
, phy_id
);
1958 * sas_revalidate_domain -- revalidate the domain
1959 * @port: port to the domain of interest
1961 * NOTE: this process _must_ quit (return) as soon as any connection
1962 * errors are encountered. Connection recovery is done elsewhere.
1963 * Discover process only interrogates devices in order to discover the
1966 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
1969 struct domain_device
*dev
= NULL
;
1971 res
= sas_find_bcast_dev(port_dev
, &dev
);
1975 struct expander_device
*ex
= &dev
->ex_dev
;
1980 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
1983 res
= sas_rediscover(dev
, phy_id
);
1985 } while (i
< ex
->num_phys
);
1991 int sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
1992 struct request
*req
)
1994 struct domain_device
*dev
;
1996 struct request
*rsp
= req
->next_rq
;
1999 printk("%s: space for a smp response is missing\n",
2004 /* no rphy means no smp target support (ie aic94xx host) */
2006 return sas_smp_host_handler(shost
, req
, rsp
);
2008 type
= rphy
->identify
.device_type
;
2010 if (type
!= SAS_EDGE_EXPANDER_DEVICE
&&
2011 type
!= SAS_FANOUT_EXPANDER_DEVICE
) {
2012 printk("%s: can we send a smp request to a device?\n",
2017 dev
= sas_find_dev_by_rphy(rphy
);
2019 printk("%s: fail to find a domain_device?\n", __func__
);
2023 /* do we need to support multiple segments? */
2024 if (req
->bio
->bi_vcnt
> 1 || rsp
->bio
->bi_vcnt
> 1) {
2025 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2026 __func__
, req
->bio
->bi_vcnt
, blk_rq_bytes(req
),
2027 rsp
->bio
->bi_vcnt
, blk_rq_bytes(rsp
));
2031 ret
= smp_execute_task(dev
, bio_data(req
->bio
), blk_rq_bytes(req
),
2032 bio_data(rsp
->bio
), blk_rq_bytes(rsp
));
2034 /* positive number is the untransferred residual */
2035 rsp
->resid_len
= ret
;
2038 } else if (ret
== 0) {