V4L/DVB (8949): xc5000: allow multiple driver instances for the same hardware to...
[zen-stable.git] / net / ipv4 / tcp_input.c
blobd77c0d29e2396bb6c2e4ea4cc159019a106be325
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 /* Adapt the MSS value used to make delayed ack decision to the
119 * real world.
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 struct inet_connection_sock *icsk = inet_csk(sk);
124 const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 unsigned int len;
127 icsk->icsk_ack.last_seg_size = 0;
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
132 len = skb_shinfo(skb)->gso_size ? : skb->len;
133 if (len >= icsk->icsk_ack.rcv_mss) {
134 icsk->icsk_ack.rcv_mss = len;
135 } else {
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
139 * "len" is invariant segment length, including TCP header.
141 len += skb->data - skb_transport_header(skb);
142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
154 len -= tcp_sk(sk)->tcp_header_len;
155 icsk->icsk_ack.last_seg_size = len;
156 if (len == lss) {
157 icsk->icsk_ack.rcv_mss = len;
158 return;
161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 static void tcp_incr_quickack(struct sock *sk)
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172 if (quickacks == 0)
173 quickacks = 2;
174 if (quickacks > icsk->icsk_ack.quick)
175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 void tcp_enter_quickack_mode(struct sock *sk)
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 tcp_incr_quickack(sk);
182 icsk->icsk_ack.pingpong = 0;
183 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 const struct inet_connection_sock *icsk = inet_csk(sk);
193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 if (tp->ecn_flags & TCP_ECN_OK)
199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 if (tcp_hdr(skb)->cwr)
205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 if (tp->ecn_flags & TCP_ECN_OK) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 tcp_enter_quickack_mode((struct sock *)tp);
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 tp->ecn_flags &= ~TCP_ECN_OK;
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 return 1;
242 return 0;
245 /* Buffer size and advertised window tuning.
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 static void tcp_fixup_sndbuf(struct sock *sk)
252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 sizeof(struct sk_buff);
255 if (sk->sk_sndbuf < 3 * sndmem)
256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 struct tcp_sock *tp = tcp_sk(sk);
288 /* Optimize this! */
289 int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 while (tp->rcv_ssthresh <= window) {
293 if (truesize <= skb->len)
294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296 truesize >>= 1;
297 window >>= 1;
299 return 0;
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 struct tcp_sock *tp = tcp_sk(sk);
306 /* Check #1 */
307 if (tp->rcv_ssthresh < tp->window_clamp &&
308 (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 !tcp_memory_pressure) {
310 int incr;
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
315 if (tcp_win_from_space(skb->truesize) <= skb->len)
316 incr = 2 * tp->advmss;
317 else
318 incr = __tcp_grow_window(sk, skb);
320 if (incr) {
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 tp->window_clamp);
323 inet_csk(sk)->icsk_ack.quick |= 1;
328 /* 3. Tuning rcvbuf, when connection enters established state. */
330 static void tcp_fixup_rcvbuf(struct sock *sk)
332 struct tcp_sock *tp = tcp_sk(sk);
333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 while (tcp_win_from_space(rcvmem) < tp->advmss)
340 rcvmem += 128;
341 if (sk->sk_rcvbuf < 4 * rcvmem)
342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 /* 4. Try to fixup all. It is made immediately after connection enters
346 * established state.
348 static void tcp_init_buffer_space(struct sock *sk)
350 struct tcp_sock *tp = tcp_sk(sk);
351 int maxwin;
353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 tcp_fixup_rcvbuf(sk);
355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 tcp_fixup_sndbuf(sk);
358 tp->rcvq_space.space = tp->rcv_wnd;
360 maxwin = tcp_full_space(sk);
362 if (tp->window_clamp >= maxwin) {
363 tp->window_clamp = maxwin;
365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 tp->window_clamp = max(maxwin -
367 (maxwin >> sysctl_tcp_app_win),
368 4 * tp->advmss);
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win &&
373 tp->window_clamp > 2 * tp->advmss &&
374 tp->window_clamp + tp->advmss > maxwin)
375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 tp->snd_cwnd_stamp = tcp_time_stamp;
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
384 struct tcp_sock *tp = tcp_sk(sk);
385 struct inet_connection_sock *icsk = inet_csk(sk);
387 icsk->icsk_ack.quick = 0;
389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 !tcp_memory_pressure &&
392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 sysctl_tcp_rmem[2]);
396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 void tcp_initialize_rcv_mss(struct sock *sk)
409 struct tcp_sock *tp = tcp_sk(sk);
410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 hint = min(hint, tp->rcv_wnd / 2);
413 hint = min(hint, TCP_MIN_RCVMSS);
414 hint = max(hint, TCP_MIN_MSS);
416 inet_csk(sk)->icsk_ack.rcv_mss = hint;
419 /* Receiver "autotuning" code.
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
428 * is pending.
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 u32 new_sample = tp->rcv_rtt_est.rtt;
433 long m = sample;
435 if (m == 0)
436 m = 1;
438 if (new_sample != 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
447 * long.
449 if (!win_dep) {
450 m -= (new_sample >> 3);
451 new_sample += m;
452 } else if (m < new_sample)
453 new_sample = m << 3;
454 } else {
455 /* No previous measure. */
456 new_sample = m << 3;
459 if (tp->rcv_rtt_est.rtt != new_sample)
460 tp->rcv_rtt_est.rtt = new_sample;
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 if (tp->rcv_rtt_est.time == 0)
466 goto new_measure;
467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 return;
469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471 new_measure:
472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 tp->rcv_rtt_est.time = tcp_time_stamp;
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 const struct sk_buff *skb)
479 struct tcp_sock *tp = tcp_sk(sk);
480 if (tp->rx_opt.rcv_tsecr &&
481 (TCP_SKB_CB(skb)->end_seq -
482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
490 void tcp_rcv_space_adjust(struct sock *sk)
492 struct tcp_sock *tp = tcp_sk(sk);
493 int time;
494 int space;
496 if (tp->rcvq_space.time == 0)
497 goto new_measure;
499 time = tcp_time_stamp - tp->rcvq_space.time;
500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 return;
503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 space = max(tp->rcvq_space.space, space);
507 if (tp->rcvq_space.space != space) {
508 int rcvmem;
510 tp->rcvq_space.space = space;
512 if (sysctl_tcp_moderate_rcvbuf &&
513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 int new_clamp = space;
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
520 space /= tp->advmss;
521 if (!space)
522 space = 1;
523 rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 16 + sizeof(struct sk_buff));
525 while (tcp_win_from_space(rcvmem) < tp->advmss)
526 rcvmem += 128;
527 space *= rcvmem;
528 space = min(space, sysctl_tcp_rmem[2]);
529 if (space > sk->sk_rcvbuf) {
530 sk->sk_rcvbuf = space;
532 /* Make the window clamp follow along. */
533 tp->window_clamp = new_clamp;
538 new_measure:
539 tp->rcvq_space.seq = tp->copied_seq;
540 tp->rcvq_space.time = tcp_time_stamp;
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
551 * queue. -DaveM
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 struct tcp_sock *tp = tcp_sk(sk);
556 struct inet_connection_sock *icsk = inet_csk(sk);
557 u32 now;
559 inet_csk_schedule_ack(sk);
561 tcp_measure_rcv_mss(sk, skb);
563 tcp_rcv_rtt_measure(tp);
565 now = tcp_time_stamp;
567 if (!icsk->icsk_ack.ato) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
571 tcp_incr_quickack(sk);
572 icsk->icsk_ack.ato = TCP_ATO_MIN;
573 } else {
574 int m = now - icsk->icsk_ack.lrcvtime;
576 if (m <= TCP_ATO_MIN / 2) {
577 /* The fastest case is the first. */
578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 } else if (m < icsk->icsk_ack.ato) {
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 icsk->icsk_ack.ato = icsk->icsk_rto;
583 } else if (m > icsk->icsk_rto) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
587 tcp_incr_quickack(sk);
588 sk_mem_reclaim(sk);
591 icsk->icsk_ack.lrcvtime = now;
593 TCP_ECN_check_ce(tp, skb);
595 if (skb->len >= 128)
596 tcp_grow_window(sk, skb);
599 static u32 tcp_rto_min(struct sock *sk)
601 struct dst_entry *dst = __sk_dst_get(sk);
602 u32 rto_min = TCP_RTO_MIN;
604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 return rto_min;
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 struct tcp_sock *tp = tcp_sk(sk);
621 long m = mrtt; /* RTT */
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
639 if (m == 0)
640 m = 1;
641 if (tp->srtt != 0) {
642 m -= (tp->srtt >> 3); /* m is now error in rtt est */
643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
644 if (m < 0) {
645 m = -m; /* m is now abs(error) */
646 m -= (tp->mdev >> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
655 if (m > 0)
656 m >>= 3;
657 } else {
658 m -= (tp->mdev >> 2); /* similar update on mdev */
660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp->mdev > tp->mdev_max) {
662 tp->mdev_max = tp->mdev;
663 if (tp->mdev_max > tp->rttvar)
664 tp->rttvar = tp->mdev_max;
666 if (after(tp->snd_una, tp->rtt_seq)) {
667 if (tp->mdev_max < tp->rttvar)
668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 tp->rtt_seq = tp->snd_nxt;
670 tp->mdev_max = tcp_rto_min(sk);
672 } else {
673 /* no previous measure. */
674 tp->srtt = m << 3; /* take the measured time to be rtt */
675 tp->mdev = m << 1; /* make sure rto = 3*rtt */
676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 tp->rtt_seq = tp->snd_nxt;
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
684 static inline void tcp_set_rto(struct sock *sk)
686 const struct tcp_sock *tp = tcp_sk(sk);
687 /* Old crap is replaced with new one. 8)
689 * More seriously:
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
709 static inline void tcp_bound_rto(struct sock *sk)
711 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715 /* Save metrics learned by this TCP session.
716 This function is called only, when TCP finishes successfully
717 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
719 void tcp_update_metrics(struct sock *sk)
721 struct tcp_sock *tp = tcp_sk(sk);
722 struct dst_entry *dst = __sk_dst_get(sk);
724 if (sysctl_tcp_nometrics_save)
725 return;
727 dst_confirm(dst);
729 if (dst && (dst->flags & DST_HOST)) {
730 const struct inet_connection_sock *icsk = inet_csk(sk);
731 int m;
732 unsigned long rtt;
734 if (icsk->icsk_backoff || !tp->srtt) {
735 /* This session failed to estimate rtt. Why?
736 * Probably, no packets returned in time.
737 * Reset our results.
739 if (!(dst_metric_locked(dst, RTAX_RTT)))
740 dst->metrics[RTAX_RTT - 1] = 0;
741 return;
744 rtt = dst_metric_rtt(dst, RTAX_RTT);
745 m = rtt - tp->srtt;
747 /* If newly calculated rtt larger than stored one,
748 * store new one. Otherwise, use EWMA. Remember,
749 * rtt overestimation is always better than underestimation.
751 if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 if (m <= 0)
753 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754 else
755 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
758 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 unsigned long var;
760 if (m < 0)
761 m = -m;
763 /* Scale deviation to rttvar fixed point */
764 m >>= 1;
765 if (m < tp->mdev)
766 m = tp->mdev;
768 var = dst_metric_rtt(dst, RTAX_RTTVAR);
769 if (m >= var)
770 var = m;
771 else
772 var -= (var - m) >> 2;
774 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
777 if (tp->snd_ssthresh >= 0xFFFF) {
778 /* Slow start still did not finish. */
779 if (dst_metric(dst, RTAX_SSTHRESH) &&
780 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 if (!dst_metric_locked(dst, RTAX_CWND) &&
784 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
787 icsk->icsk_ca_state == TCP_CA_Open) {
788 /* Cong. avoidance phase, cwnd is reliable. */
789 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 dst->metrics[RTAX_SSTHRESH-1] =
791 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794 } else {
795 /* Else slow start did not finish, cwnd is non-sense,
796 ssthresh may be also invalid.
798 if (!dst_metric_locked(dst, RTAX_CWND))
799 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800 if (dst_metric(dst, RTAX_SSTHRESH) &&
801 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
806 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808 tp->reordering != sysctl_tcp_reordering)
809 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
814 /* Numbers are taken from RFC3390.
816 * John Heffner states:
818 * The RFC specifies a window of no more than 4380 bytes
819 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
820 * is a bit misleading because they use a clamp at 4380 bytes
821 * rather than use a multiplier in the relevant range.
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827 if (!cwnd) {
828 if (tp->mss_cache > 1460)
829 cwnd = 2;
830 else
831 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 struct tcp_sock *tp = tcp_sk(sk);
840 const struct inet_connection_sock *icsk = inet_csk(sk);
842 tp->prior_ssthresh = 0;
843 tp->bytes_acked = 0;
844 if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 tp->undo_marker = 0;
846 if (set_ssthresh)
847 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848 tp->snd_cwnd = min(tp->snd_cwnd,
849 tcp_packets_in_flight(tp) + 1U);
850 tp->snd_cwnd_cnt = 0;
851 tp->high_seq = tp->snd_nxt;
852 tp->snd_cwnd_stamp = tcp_time_stamp;
853 TCP_ECN_queue_cwr(tp);
855 tcp_set_ca_state(sk, TCP_CA_CWR);
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
863 static void tcp_disable_fack(struct tcp_sock *tp)
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
868 tp->rx_opt.sack_ok &= ~2;
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
874 tp->rx_opt.sack_ok |= 4;
877 /* Initialize metrics on socket. */
879 static void tcp_init_metrics(struct sock *sk)
881 struct tcp_sock *tp = tcp_sk(sk);
882 struct dst_entry *dst = __sk_dst_get(sk);
884 if (dst == NULL)
885 goto reset;
887 dst_confirm(dst);
889 if (dst_metric_locked(dst, RTAX_CWND))
890 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891 if (dst_metric(dst, RTAX_SSTHRESH)) {
892 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894 tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 if (dst_metric(dst, RTAX_REORDERING) &&
897 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898 tcp_disable_fack(tp);
899 tp->reordering = dst_metric(dst, RTAX_REORDERING);
902 if (dst_metric(dst, RTAX_RTT) == 0)
903 goto reset;
905 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906 goto reset;
908 /* Initial rtt is determined from SYN,SYN-ACK.
909 * The segment is small and rtt may appear much
910 * less than real one. Use per-dst memory
911 * to make it more realistic.
913 * A bit of theory. RTT is time passed after "normal" sized packet
914 * is sent until it is ACKed. In normal circumstances sending small
915 * packets force peer to delay ACKs and calculation is correct too.
916 * The algorithm is adaptive and, provided we follow specs, it
917 * NEVER underestimate RTT. BUT! If peer tries to make some clever
918 * tricks sort of "quick acks" for time long enough to decrease RTT
919 * to low value, and then abruptly stops to do it and starts to delay
920 * ACKs, wait for troubles.
922 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924 tp->rtt_seq = tp->snd_nxt;
926 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 tcp_set_rto(sk);
931 tcp_bound_rto(sk);
932 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933 goto reset;
934 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935 tp->snd_cwnd_stamp = tcp_time_stamp;
936 return;
938 reset:
939 /* Play conservative. If timestamps are not
940 * supported, TCP will fail to recalculate correct
941 * rtt, if initial rto is too small. FORGET ALL AND RESET!
943 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944 tp->srtt = 0;
945 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951 const int ts)
953 struct tcp_sock *tp = tcp_sk(sk);
954 if (metric > tp->reordering) {
955 int mib_idx;
957 tp->reordering = min(TCP_MAX_REORDERING, metric);
959 /* This exciting event is worth to be remembered. 8) */
960 if (ts)
961 mib_idx = LINUX_MIB_TCPTSREORDER;
962 else if (tcp_is_reno(tp))
963 mib_idx = LINUX_MIB_TCPRENOREORDER;
964 else if (tcp_is_fack(tp))
965 mib_idx = LINUX_MIB_TCPFACKREORDER;
966 else
967 mib_idx = LINUX_MIB_TCPSACKREORDER;
969 NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 tp->reordering,
974 tp->fackets_out,
975 tp->sacked_out,
976 tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978 tcp_disable_fack(tp);
982 /* This must be called before lost_out is incremented */
983 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
985 if ((tp->retransmit_skb_hint == NULL) ||
986 before(TCP_SKB_CB(skb)->seq,
987 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
988 tp->retransmit_skb_hint = skb;
990 if (!tp->lost_out ||
991 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
992 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
995 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
997 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
998 tcp_verify_retransmit_hint(tp, skb);
1000 tp->lost_out += tcp_skb_pcount(skb);
1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1005 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
1007 tcp_verify_retransmit_hint(tp, skb);
1009 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1010 tp->lost_out += tcp_skb_pcount(skb);
1011 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1015 /* This procedure tags the retransmission queue when SACKs arrive.
1017 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1018 * Packets in queue with these bits set are counted in variables
1019 * sacked_out, retrans_out and lost_out, correspondingly.
1021 * Valid combinations are:
1022 * Tag InFlight Description
1023 * 0 1 - orig segment is in flight.
1024 * S 0 - nothing flies, orig reached receiver.
1025 * L 0 - nothing flies, orig lost by net.
1026 * R 2 - both orig and retransmit are in flight.
1027 * L|R 1 - orig is lost, retransmit is in flight.
1028 * S|R 1 - orig reached receiver, retrans is still in flight.
1029 * (L|S|R is logically valid, it could occur when L|R is sacked,
1030 * but it is equivalent to plain S and code short-curcuits it to S.
1031 * L|S is logically invalid, it would mean -1 packet in flight 8))
1033 * These 6 states form finite state machine, controlled by the following events:
1034 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1035 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1036 * 3. Loss detection event of one of three flavors:
1037 * A. Scoreboard estimator decided the packet is lost.
1038 * A'. Reno "three dupacks" marks head of queue lost.
1039 * A''. Its FACK modfication, head until snd.fack is lost.
1040 * B. SACK arrives sacking data transmitted after never retransmitted
1041 * hole was sent out.
1042 * C. SACK arrives sacking SND.NXT at the moment, when the
1043 * segment was retransmitted.
1044 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1046 * It is pleasant to note, that state diagram turns out to be commutative,
1047 * so that we are allowed not to be bothered by order of our actions,
1048 * when multiple events arrive simultaneously. (see the function below).
1050 * Reordering detection.
1051 * --------------------
1052 * Reordering metric is maximal distance, which a packet can be displaced
1053 * in packet stream. With SACKs we can estimate it:
1055 * 1. SACK fills old hole and the corresponding segment was not
1056 * ever retransmitted -> reordering. Alas, we cannot use it
1057 * when segment was retransmitted.
1058 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1059 * for retransmitted and already SACKed segment -> reordering..
1060 * Both of these heuristics are not used in Loss state, when we cannot
1061 * account for retransmits accurately.
1063 * SACK block validation.
1064 * ----------------------
1066 * SACK block range validation checks that the received SACK block fits to
1067 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1068 * Note that SND.UNA is not included to the range though being valid because
1069 * it means that the receiver is rather inconsistent with itself reporting
1070 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1071 * perfectly valid, however, in light of RFC2018 which explicitly states
1072 * that "SACK block MUST reflect the newest segment. Even if the newest
1073 * segment is going to be discarded ...", not that it looks very clever
1074 * in case of head skb. Due to potentional receiver driven attacks, we
1075 * choose to avoid immediate execution of a walk in write queue due to
1076 * reneging and defer head skb's loss recovery to standard loss recovery
1077 * procedure that will eventually trigger (nothing forbids us doing this).
1079 * Implements also blockage to start_seq wrap-around. Problem lies in the
1080 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1081 * there's no guarantee that it will be before snd_nxt (n). The problem
1082 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1083 * wrap (s_w):
1085 * <- outs wnd -> <- wrapzone ->
1086 * u e n u_w e_w s n_w
1087 * | | | | | | |
1088 * |<------------+------+----- TCP seqno space --------------+---------->|
1089 * ...-- <2^31 ->| |<--------...
1090 * ...---- >2^31 ------>| |<--------...
1092 * Current code wouldn't be vulnerable but it's better still to discard such
1093 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1094 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1095 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1096 * equal to the ideal case (infinite seqno space without wrap caused issues).
1098 * With D-SACK the lower bound is extended to cover sequence space below
1099 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1100 * again, D-SACK block must not to go across snd_una (for the same reason as
1101 * for the normal SACK blocks, explained above). But there all simplicity
1102 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1103 * fully below undo_marker they do not affect behavior in anyway and can
1104 * therefore be safely ignored. In rare cases (which are more or less
1105 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1106 * fragmentation and packet reordering past skb's retransmission. To consider
1107 * them correctly, the acceptable range must be extended even more though
1108 * the exact amount is rather hard to quantify. However, tp->max_window can
1109 * be used as an exaggerated estimate.
1111 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1112 u32 start_seq, u32 end_seq)
1114 /* Too far in future, or reversed (interpretation is ambiguous) */
1115 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1116 return 0;
1118 /* Nasty start_seq wrap-around check (see comments above) */
1119 if (!before(start_seq, tp->snd_nxt))
1120 return 0;
1122 /* In outstanding window? ...This is valid exit for D-SACKs too.
1123 * start_seq == snd_una is non-sensical (see comments above)
1125 if (after(start_seq, tp->snd_una))
1126 return 1;
1128 if (!is_dsack || !tp->undo_marker)
1129 return 0;
1131 /* ...Then it's D-SACK, and must reside below snd_una completely */
1132 if (!after(end_seq, tp->snd_una))
1133 return 0;
1135 if (!before(start_seq, tp->undo_marker))
1136 return 1;
1138 /* Too old */
1139 if (!after(end_seq, tp->undo_marker))
1140 return 0;
1142 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1143 * start_seq < undo_marker and end_seq >= undo_marker.
1145 return !before(start_seq, end_seq - tp->max_window);
1148 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1149 * Event "C". Later note: FACK people cheated me again 8), we have to account
1150 * for reordering! Ugly, but should help.
1152 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1153 * less than what is now known to be received by the other end (derived from
1154 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1155 * retransmitted skbs to avoid some costly processing per ACKs.
1157 static void tcp_mark_lost_retrans(struct sock *sk)
1159 const struct inet_connection_sock *icsk = inet_csk(sk);
1160 struct tcp_sock *tp = tcp_sk(sk);
1161 struct sk_buff *skb;
1162 int cnt = 0;
1163 u32 new_low_seq = tp->snd_nxt;
1164 u32 received_upto = tcp_highest_sack_seq(tp);
1166 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1167 !after(received_upto, tp->lost_retrans_low) ||
1168 icsk->icsk_ca_state != TCP_CA_Recovery)
1169 return;
1171 tcp_for_write_queue(skb, sk) {
1172 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1174 if (skb == tcp_send_head(sk))
1175 break;
1176 if (cnt == tp->retrans_out)
1177 break;
1178 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1179 continue;
1181 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1182 continue;
1184 if (after(received_upto, ack_seq) &&
1185 (tcp_is_fack(tp) ||
1186 !before(received_upto,
1187 ack_seq + tp->reordering * tp->mss_cache))) {
1188 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1189 tp->retrans_out -= tcp_skb_pcount(skb);
1191 tcp_skb_mark_lost_uncond_verify(tp, skb);
1192 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1193 } else {
1194 if (before(ack_seq, new_low_seq))
1195 new_low_seq = ack_seq;
1196 cnt += tcp_skb_pcount(skb);
1200 if (tp->retrans_out)
1201 tp->lost_retrans_low = new_low_seq;
1204 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1205 struct tcp_sack_block_wire *sp, int num_sacks,
1206 u32 prior_snd_una)
1208 struct tcp_sock *tp = tcp_sk(sk);
1209 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1210 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1211 int dup_sack = 0;
1213 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1214 dup_sack = 1;
1215 tcp_dsack_seen(tp);
1216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1217 } else if (num_sacks > 1) {
1218 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1219 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221 if (!after(end_seq_0, end_seq_1) &&
1222 !before(start_seq_0, start_seq_1)) {
1223 dup_sack = 1;
1224 tcp_dsack_seen(tp);
1225 NET_INC_STATS_BH(sock_net(sk),
1226 LINUX_MIB_TCPDSACKOFORECV);
1230 /* D-SACK for already forgotten data... Do dumb counting. */
1231 if (dup_sack &&
1232 !after(end_seq_0, prior_snd_una) &&
1233 after(end_seq_0, tp->undo_marker))
1234 tp->undo_retrans--;
1236 return dup_sack;
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240 * the incoming SACK may not exactly match but we can find smaller MSS
1241 * aligned portion of it that matches. Therefore we might need to fragment
1242 * which may fail and creates some hassle (caller must handle error case
1243 * returns).
1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1246 u32 start_seq, u32 end_seq)
1248 int in_sack, err;
1249 unsigned int pkt_len;
1251 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1252 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1254 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1255 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1257 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1259 if (!in_sack)
1260 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1261 else
1262 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1263 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1264 if (err < 0)
1265 return err;
1268 return in_sack;
1271 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1272 int *reord, int dup_sack, int fack_count)
1274 struct tcp_sock *tp = tcp_sk(sk);
1275 u8 sacked = TCP_SKB_CB(skb)->sacked;
1276 int flag = 0;
1278 /* Account D-SACK for retransmitted packet. */
1279 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1280 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1281 tp->undo_retrans--;
1282 if (sacked & TCPCB_SACKED_ACKED)
1283 *reord = min(fack_count, *reord);
1286 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1287 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1288 return flag;
1290 if (!(sacked & TCPCB_SACKED_ACKED)) {
1291 if (sacked & TCPCB_SACKED_RETRANS) {
1292 /* If the segment is not tagged as lost,
1293 * we do not clear RETRANS, believing
1294 * that retransmission is still in flight.
1296 if (sacked & TCPCB_LOST) {
1297 TCP_SKB_CB(skb)->sacked &=
1298 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1299 tp->lost_out -= tcp_skb_pcount(skb);
1300 tp->retrans_out -= tcp_skb_pcount(skb);
1302 } else {
1303 if (!(sacked & TCPCB_RETRANS)) {
1304 /* New sack for not retransmitted frame,
1305 * which was in hole. It is reordering.
1307 if (before(TCP_SKB_CB(skb)->seq,
1308 tcp_highest_sack_seq(tp)))
1309 *reord = min(fack_count, *reord);
1311 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1312 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1313 flag |= FLAG_ONLY_ORIG_SACKED;
1316 if (sacked & TCPCB_LOST) {
1317 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1318 tp->lost_out -= tcp_skb_pcount(skb);
1322 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1323 flag |= FLAG_DATA_SACKED;
1324 tp->sacked_out += tcp_skb_pcount(skb);
1326 fack_count += tcp_skb_pcount(skb);
1328 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1329 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1330 before(TCP_SKB_CB(skb)->seq,
1331 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1332 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1334 if (fack_count > tp->fackets_out)
1335 tp->fackets_out = fack_count;
1337 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1338 tcp_advance_highest_sack(sk, skb);
1341 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1342 * frames and clear it. undo_retrans is decreased above, L|R frames
1343 * are accounted above as well.
1345 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1346 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1347 tp->retrans_out -= tcp_skb_pcount(skb);
1350 return flag;
1353 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1354 struct tcp_sack_block *next_dup,
1355 u32 start_seq, u32 end_seq,
1356 int dup_sack_in, int *fack_count,
1357 int *reord, int *flag)
1359 tcp_for_write_queue_from(skb, sk) {
1360 int in_sack = 0;
1361 int dup_sack = dup_sack_in;
1363 if (skb == tcp_send_head(sk))
1364 break;
1366 /* queue is in-order => we can short-circuit the walk early */
1367 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1368 break;
1370 if ((next_dup != NULL) &&
1371 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1372 in_sack = tcp_match_skb_to_sack(sk, skb,
1373 next_dup->start_seq,
1374 next_dup->end_seq);
1375 if (in_sack > 0)
1376 dup_sack = 1;
1379 if (in_sack <= 0)
1380 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1381 end_seq);
1382 if (unlikely(in_sack < 0))
1383 break;
1385 if (in_sack)
1386 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1387 *fack_count);
1389 *fack_count += tcp_skb_pcount(skb);
1391 return skb;
1394 /* Avoid all extra work that is being done by sacktag while walking in
1395 * a normal way
1397 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1398 u32 skip_to_seq, int *fack_count)
1400 tcp_for_write_queue_from(skb, sk) {
1401 if (skb == tcp_send_head(sk))
1402 break;
1404 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1405 break;
1407 *fack_count += tcp_skb_pcount(skb);
1409 return skb;
1412 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1413 struct sock *sk,
1414 struct tcp_sack_block *next_dup,
1415 u32 skip_to_seq,
1416 int *fack_count, int *reord,
1417 int *flag)
1419 if (next_dup == NULL)
1420 return skb;
1422 if (before(next_dup->start_seq, skip_to_seq)) {
1423 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1424 skb = tcp_sacktag_walk(skb, sk, NULL,
1425 next_dup->start_seq, next_dup->end_seq,
1426 1, fack_count, reord, flag);
1429 return skb;
1432 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1434 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1437 static int
1438 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1439 u32 prior_snd_una)
1441 const struct inet_connection_sock *icsk = inet_csk(sk);
1442 struct tcp_sock *tp = tcp_sk(sk);
1443 unsigned char *ptr = (skb_transport_header(ack_skb) +
1444 TCP_SKB_CB(ack_skb)->sacked);
1445 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1446 struct tcp_sack_block sp[TCP_NUM_SACKS];
1447 struct tcp_sack_block *cache;
1448 struct sk_buff *skb;
1449 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1450 int used_sacks;
1451 int reord = tp->packets_out;
1452 int flag = 0;
1453 int found_dup_sack = 0;
1454 int fack_count;
1455 int i, j;
1456 int first_sack_index;
1458 if (!tp->sacked_out) {
1459 if (WARN_ON(tp->fackets_out))
1460 tp->fackets_out = 0;
1461 tcp_highest_sack_reset(sk);
1464 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1465 num_sacks, prior_snd_una);
1466 if (found_dup_sack)
1467 flag |= FLAG_DSACKING_ACK;
1469 /* Eliminate too old ACKs, but take into
1470 * account more or less fresh ones, they can
1471 * contain valid SACK info.
1473 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1474 return 0;
1476 if (!tp->packets_out)
1477 goto out;
1479 used_sacks = 0;
1480 first_sack_index = 0;
1481 for (i = 0; i < num_sacks; i++) {
1482 int dup_sack = !i && found_dup_sack;
1484 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1485 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1487 if (!tcp_is_sackblock_valid(tp, dup_sack,
1488 sp[used_sacks].start_seq,
1489 sp[used_sacks].end_seq)) {
1490 int mib_idx;
1492 if (dup_sack) {
1493 if (!tp->undo_marker)
1494 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1495 else
1496 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1497 } else {
1498 /* Don't count olds caused by ACK reordering */
1499 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1500 !after(sp[used_sacks].end_seq, tp->snd_una))
1501 continue;
1502 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1505 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1506 if (i == 0)
1507 first_sack_index = -1;
1508 continue;
1511 /* Ignore very old stuff early */
1512 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1513 continue;
1515 used_sacks++;
1518 /* order SACK blocks to allow in order walk of the retrans queue */
1519 for (i = used_sacks - 1; i > 0; i--) {
1520 for (j = 0; j < i; j++) {
1521 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1522 struct tcp_sack_block tmp;
1524 tmp = sp[j];
1525 sp[j] = sp[j + 1];
1526 sp[j + 1] = tmp;
1528 /* Track where the first SACK block goes to */
1529 if (j == first_sack_index)
1530 first_sack_index = j + 1;
1535 skb = tcp_write_queue_head(sk);
1536 fack_count = 0;
1537 i = 0;
1539 if (!tp->sacked_out) {
1540 /* It's already past, so skip checking against it */
1541 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1542 } else {
1543 cache = tp->recv_sack_cache;
1544 /* Skip empty blocks in at head of the cache */
1545 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1546 !cache->end_seq)
1547 cache++;
1550 while (i < used_sacks) {
1551 u32 start_seq = sp[i].start_seq;
1552 u32 end_seq = sp[i].end_seq;
1553 int dup_sack = (found_dup_sack && (i == first_sack_index));
1554 struct tcp_sack_block *next_dup = NULL;
1556 if (found_dup_sack && ((i + 1) == first_sack_index))
1557 next_dup = &sp[i + 1];
1559 /* Event "B" in the comment above. */
1560 if (after(end_seq, tp->high_seq))
1561 flag |= FLAG_DATA_LOST;
1563 /* Skip too early cached blocks */
1564 while (tcp_sack_cache_ok(tp, cache) &&
1565 !before(start_seq, cache->end_seq))
1566 cache++;
1568 /* Can skip some work by looking recv_sack_cache? */
1569 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1570 after(end_seq, cache->start_seq)) {
1572 /* Head todo? */
1573 if (before(start_seq, cache->start_seq)) {
1574 skb = tcp_sacktag_skip(skb, sk, start_seq,
1575 &fack_count);
1576 skb = tcp_sacktag_walk(skb, sk, next_dup,
1577 start_seq,
1578 cache->start_seq,
1579 dup_sack, &fack_count,
1580 &reord, &flag);
1583 /* Rest of the block already fully processed? */
1584 if (!after(end_seq, cache->end_seq))
1585 goto advance_sp;
1587 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1588 cache->end_seq,
1589 &fack_count, &reord,
1590 &flag);
1592 /* ...tail remains todo... */
1593 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1594 /* ...but better entrypoint exists! */
1595 skb = tcp_highest_sack(sk);
1596 if (skb == NULL)
1597 break;
1598 fack_count = tp->fackets_out;
1599 cache++;
1600 goto walk;
1603 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1604 &fack_count);
1605 /* Check overlap against next cached too (past this one already) */
1606 cache++;
1607 continue;
1610 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1611 skb = tcp_highest_sack(sk);
1612 if (skb == NULL)
1613 break;
1614 fack_count = tp->fackets_out;
1616 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1618 walk:
1619 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1620 dup_sack, &fack_count, &reord, &flag);
1622 advance_sp:
1623 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1624 * due to in-order walk
1626 if (after(end_seq, tp->frto_highmark))
1627 flag &= ~FLAG_ONLY_ORIG_SACKED;
1629 i++;
1632 /* Clear the head of the cache sack blocks so we can skip it next time */
1633 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1634 tp->recv_sack_cache[i].start_seq = 0;
1635 tp->recv_sack_cache[i].end_seq = 0;
1637 for (j = 0; j < used_sacks; j++)
1638 tp->recv_sack_cache[i++] = sp[j];
1640 tcp_mark_lost_retrans(sk);
1642 tcp_verify_left_out(tp);
1644 if ((reord < tp->fackets_out) &&
1645 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1646 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1647 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1649 out:
1651 #if FASTRETRANS_DEBUG > 0
1652 WARN_ON((int)tp->sacked_out < 0);
1653 WARN_ON((int)tp->lost_out < 0);
1654 WARN_ON((int)tp->retrans_out < 0);
1655 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1656 #endif
1657 return flag;
1660 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1661 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1663 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1665 u32 holes;
1667 holes = max(tp->lost_out, 1U);
1668 holes = min(holes, tp->packets_out);
1670 if ((tp->sacked_out + holes) > tp->packets_out) {
1671 tp->sacked_out = tp->packets_out - holes;
1672 return 1;
1674 return 0;
1677 /* If we receive more dupacks than we expected counting segments
1678 * in assumption of absent reordering, interpret this as reordering.
1679 * The only another reason could be bug in receiver TCP.
1681 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1683 struct tcp_sock *tp = tcp_sk(sk);
1684 if (tcp_limit_reno_sacked(tp))
1685 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1688 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1690 static void tcp_add_reno_sack(struct sock *sk)
1692 struct tcp_sock *tp = tcp_sk(sk);
1693 tp->sacked_out++;
1694 tcp_check_reno_reordering(sk, 0);
1695 tcp_verify_left_out(tp);
1698 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1700 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1702 struct tcp_sock *tp = tcp_sk(sk);
1704 if (acked > 0) {
1705 /* One ACK acked hole. The rest eat duplicate ACKs. */
1706 if (acked - 1 >= tp->sacked_out)
1707 tp->sacked_out = 0;
1708 else
1709 tp->sacked_out -= acked - 1;
1711 tcp_check_reno_reordering(sk, acked);
1712 tcp_verify_left_out(tp);
1715 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1717 tp->sacked_out = 0;
1720 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1722 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1725 /* F-RTO can only be used if TCP has never retransmitted anything other than
1726 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1728 int tcp_use_frto(struct sock *sk)
1730 const struct tcp_sock *tp = tcp_sk(sk);
1731 const struct inet_connection_sock *icsk = inet_csk(sk);
1732 struct sk_buff *skb;
1734 if (!sysctl_tcp_frto)
1735 return 0;
1737 /* MTU probe and F-RTO won't really play nicely along currently */
1738 if (icsk->icsk_mtup.probe_size)
1739 return 0;
1741 if (tcp_is_sackfrto(tp))
1742 return 1;
1744 /* Avoid expensive walking of rexmit queue if possible */
1745 if (tp->retrans_out > 1)
1746 return 0;
1748 skb = tcp_write_queue_head(sk);
1749 if (tcp_skb_is_last(sk, skb))
1750 return 1;
1751 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1752 tcp_for_write_queue_from(skb, sk) {
1753 if (skb == tcp_send_head(sk))
1754 break;
1755 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1756 return 0;
1757 /* Short-circuit when first non-SACKed skb has been checked */
1758 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1759 break;
1761 return 1;
1764 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1765 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1766 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1767 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1768 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1769 * bits are handled if the Loss state is really to be entered (in
1770 * tcp_enter_frto_loss).
1772 * Do like tcp_enter_loss() would; when RTO expires the second time it
1773 * does:
1774 * "Reduce ssthresh if it has not yet been made inside this window."
1776 void tcp_enter_frto(struct sock *sk)
1778 const struct inet_connection_sock *icsk = inet_csk(sk);
1779 struct tcp_sock *tp = tcp_sk(sk);
1780 struct sk_buff *skb;
1782 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1783 tp->snd_una == tp->high_seq ||
1784 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1785 !icsk->icsk_retransmits)) {
1786 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1787 /* Our state is too optimistic in ssthresh() call because cwnd
1788 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1789 * recovery has not yet completed. Pattern would be this: RTO,
1790 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1791 * up here twice).
1792 * RFC4138 should be more specific on what to do, even though
1793 * RTO is quite unlikely to occur after the first Cumulative ACK
1794 * due to back-off and complexity of triggering events ...
1796 if (tp->frto_counter) {
1797 u32 stored_cwnd;
1798 stored_cwnd = tp->snd_cwnd;
1799 tp->snd_cwnd = 2;
1800 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1801 tp->snd_cwnd = stored_cwnd;
1802 } else {
1803 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1805 /* ... in theory, cong.control module could do "any tricks" in
1806 * ssthresh(), which means that ca_state, lost bits and lost_out
1807 * counter would have to be faked before the call occurs. We
1808 * consider that too expensive, unlikely and hacky, so modules
1809 * using these in ssthresh() must deal these incompatibility
1810 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1812 tcp_ca_event(sk, CA_EVENT_FRTO);
1815 tp->undo_marker = tp->snd_una;
1816 tp->undo_retrans = 0;
1818 skb = tcp_write_queue_head(sk);
1819 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1820 tp->undo_marker = 0;
1821 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1822 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1823 tp->retrans_out -= tcp_skb_pcount(skb);
1825 tcp_verify_left_out(tp);
1827 /* Too bad if TCP was application limited */
1828 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1830 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1831 * The last condition is necessary at least in tp->frto_counter case.
1833 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1834 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1835 after(tp->high_seq, tp->snd_una)) {
1836 tp->frto_highmark = tp->high_seq;
1837 } else {
1838 tp->frto_highmark = tp->snd_nxt;
1840 tcp_set_ca_state(sk, TCP_CA_Disorder);
1841 tp->high_seq = tp->snd_nxt;
1842 tp->frto_counter = 1;
1845 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1846 * which indicates that we should follow the traditional RTO recovery,
1847 * i.e. mark everything lost and do go-back-N retransmission.
1849 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1851 struct tcp_sock *tp = tcp_sk(sk);
1852 struct sk_buff *skb;
1854 tp->lost_out = 0;
1855 tp->retrans_out = 0;
1856 if (tcp_is_reno(tp))
1857 tcp_reset_reno_sack(tp);
1859 tcp_for_write_queue(skb, sk) {
1860 if (skb == tcp_send_head(sk))
1861 break;
1863 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1865 * Count the retransmission made on RTO correctly (only when
1866 * waiting for the first ACK and did not get it)...
1868 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1869 /* For some reason this R-bit might get cleared? */
1870 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1871 tp->retrans_out += tcp_skb_pcount(skb);
1872 /* ...enter this if branch just for the first segment */
1873 flag |= FLAG_DATA_ACKED;
1874 } else {
1875 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1876 tp->undo_marker = 0;
1877 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1880 /* Marking forward transmissions that were made after RTO lost
1881 * can cause unnecessary retransmissions in some scenarios,
1882 * SACK blocks will mitigate that in some but not in all cases.
1883 * We used to not mark them but it was causing break-ups with
1884 * receivers that do only in-order receival.
1886 * TODO: we could detect presence of such receiver and select
1887 * different behavior per flow.
1889 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1890 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1891 tp->lost_out += tcp_skb_pcount(skb);
1892 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1895 tcp_verify_left_out(tp);
1897 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1898 tp->snd_cwnd_cnt = 0;
1899 tp->snd_cwnd_stamp = tcp_time_stamp;
1900 tp->frto_counter = 0;
1901 tp->bytes_acked = 0;
1903 tp->reordering = min_t(unsigned int, tp->reordering,
1904 sysctl_tcp_reordering);
1905 tcp_set_ca_state(sk, TCP_CA_Loss);
1906 tp->high_seq = tp->snd_nxt;
1907 TCP_ECN_queue_cwr(tp);
1909 tcp_clear_all_retrans_hints(tp);
1912 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1914 tp->retrans_out = 0;
1915 tp->lost_out = 0;
1917 tp->undo_marker = 0;
1918 tp->undo_retrans = 0;
1921 void tcp_clear_retrans(struct tcp_sock *tp)
1923 tcp_clear_retrans_partial(tp);
1925 tp->fackets_out = 0;
1926 tp->sacked_out = 0;
1929 /* Enter Loss state. If "how" is not zero, forget all SACK information
1930 * and reset tags completely, otherwise preserve SACKs. If receiver
1931 * dropped its ofo queue, we will know this due to reneging detection.
1933 void tcp_enter_loss(struct sock *sk, int how)
1935 const struct inet_connection_sock *icsk = inet_csk(sk);
1936 struct tcp_sock *tp = tcp_sk(sk);
1937 struct sk_buff *skb;
1939 /* Reduce ssthresh if it has not yet been made inside this window. */
1940 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1941 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1942 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1943 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1944 tcp_ca_event(sk, CA_EVENT_LOSS);
1946 tp->snd_cwnd = 1;
1947 tp->snd_cwnd_cnt = 0;
1948 tp->snd_cwnd_stamp = tcp_time_stamp;
1950 tp->bytes_acked = 0;
1951 tcp_clear_retrans_partial(tp);
1953 if (tcp_is_reno(tp))
1954 tcp_reset_reno_sack(tp);
1956 if (!how) {
1957 /* Push undo marker, if it was plain RTO and nothing
1958 * was retransmitted. */
1959 tp->undo_marker = tp->snd_una;
1960 } else {
1961 tp->sacked_out = 0;
1962 tp->fackets_out = 0;
1964 tcp_clear_all_retrans_hints(tp);
1966 tcp_for_write_queue(skb, sk) {
1967 if (skb == tcp_send_head(sk))
1968 break;
1970 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1971 tp->undo_marker = 0;
1972 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1973 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1976 tp->lost_out += tcp_skb_pcount(skb);
1977 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1980 tcp_verify_left_out(tp);
1982 tp->reordering = min_t(unsigned int, tp->reordering,
1983 sysctl_tcp_reordering);
1984 tcp_set_ca_state(sk, TCP_CA_Loss);
1985 tp->high_seq = tp->snd_nxt;
1986 TCP_ECN_queue_cwr(tp);
1987 /* Abort F-RTO algorithm if one is in progress */
1988 tp->frto_counter = 0;
1991 /* If ACK arrived pointing to a remembered SACK, it means that our
1992 * remembered SACKs do not reflect real state of receiver i.e.
1993 * receiver _host_ is heavily congested (or buggy).
1995 * Do processing similar to RTO timeout.
1997 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1999 if (flag & FLAG_SACK_RENEGING) {
2000 struct inet_connection_sock *icsk = inet_csk(sk);
2001 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2003 tcp_enter_loss(sk, 1);
2004 icsk->icsk_retransmits++;
2005 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2006 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2007 icsk->icsk_rto, TCP_RTO_MAX);
2008 return 1;
2010 return 0;
2013 static inline int tcp_fackets_out(struct tcp_sock *tp)
2015 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2018 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2019 * counter when SACK is enabled (without SACK, sacked_out is used for
2020 * that purpose).
2022 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2023 * segments up to the highest received SACK block so far and holes in
2024 * between them.
2026 * With reordering, holes may still be in flight, so RFC3517 recovery
2027 * uses pure sacked_out (total number of SACKed segments) even though
2028 * it violates the RFC that uses duplicate ACKs, often these are equal
2029 * but when e.g. out-of-window ACKs or packet duplication occurs,
2030 * they differ. Since neither occurs due to loss, TCP should really
2031 * ignore them.
2033 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2035 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2038 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2040 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2043 static inline int tcp_head_timedout(struct sock *sk)
2045 struct tcp_sock *tp = tcp_sk(sk);
2047 return tp->packets_out &&
2048 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2051 /* Linux NewReno/SACK/FACK/ECN state machine.
2052 * --------------------------------------
2054 * "Open" Normal state, no dubious events, fast path.
2055 * "Disorder" In all the respects it is "Open",
2056 * but requires a bit more attention. It is entered when
2057 * we see some SACKs or dupacks. It is split of "Open"
2058 * mainly to move some processing from fast path to slow one.
2059 * "CWR" CWND was reduced due to some Congestion Notification event.
2060 * It can be ECN, ICMP source quench, local device congestion.
2061 * "Recovery" CWND was reduced, we are fast-retransmitting.
2062 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2064 * tcp_fastretrans_alert() is entered:
2065 * - each incoming ACK, if state is not "Open"
2066 * - when arrived ACK is unusual, namely:
2067 * * SACK
2068 * * Duplicate ACK.
2069 * * ECN ECE.
2071 * Counting packets in flight is pretty simple.
2073 * in_flight = packets_out - left_out + retrans_out
2075 * packets_out is SND.NXT-SND.UNA counted in packets.
2077 * retrans_out is number of retransmitted segments.
2079 * left_out is number of segments left network, but not ACKed yet.
2081 * left_out = sacked_out + lost_out
2083 * sacked_out: Packets, which arrived to receiver out of order
2084 * and hence not ACKed. With SACKs this number is simply
2085 * amount of SACKed data. Even without SACKs
2086 * it is easy to give pretty reliable estimate of this number,
2087 * counting duplicate ACKs.
2089 * lost_out: Packets lost by network. TCP has no explicit
2090 * "loss notification" feedback from network (for now).
2091 * It means that this number can be only _guessed_.
2092 * Actually, it is the heuristics to predict lossage that
2093 * distinguishes different algorithms.
2095 * F.e. after RTO, when all the queue is considered as lost,
2096 * lost_out = packets_out and in_flight = retrans_out.
2098 * Essentially, we have now two algorithms counting
2099 * lost packets.
2101 * FACK: It is the simplest heuristics. As soon as we decided
2102 * that something is lost, we decide that _all_ not SACKed
2103 * packets until the most forward SACK are lost. I.e.
2104 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2105 * It is absolutely correct estimate, if network does not reorder
2106 * packets. And it loses any connection to reality when reordering
2107 * takes place. We use FACK by default until reordering
2108 * is suspected on the path to this destination.
2110 * NewReno: when Recovery is entered, we assume that one segment
2111 * is lost (classic Reno). While we are in Recovery and
2112 * a partial ACK arrives, we assume that one more packet
2113 * is lost (NewReno). This heuristics are the same in NewReno
2114 * and SACK.
2116 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2117 * deflation etc. CWND is real congestion window, never inflated, changes
2118 * only according to classic VJ rules.
2120 * Really tricky (and requiring careful tuning) part of algorithm
2121 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2122 * The first determines the moment _when_ we should reduce CWND and,
2123 * hence, slow down forward transmission. In fact, it determines the moment
2124 * when we decide that hole is caused by loss, rather than by a reorder.
2126 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2127 * holes, caused by lost packets.
2129 * And the most logically complicated part of algorithm is undo
2130 * heuristics. We detect false retransmits due to both too early
2131 * fast retransmit (reordering) and underestimated RTO, analyzing
2132 * timestamps and D-SACKs. When we detect that some segments were
2133 * retransmitted by mistake and CWND reduction was wrong, we undo
2134 * window reduction and abort recovery phase. This logic is hidden
2135 * inside several functions named tcp_try_undo_<something>.
2138 /* This function decides, when we should leave Disordered state
2139 * and enter Recovery phase, reducing congestion window.
2141 * Main question: may we further continue forward transmission
2142 * with the same cwnd?
2144 static int tcp_time_to_recover(struct sock *sk)
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 __u32 packets_out;
2149 /* Do not perform any recovery during F-RTO algorithm */
2150 if (tp->frto_counter)
2151 return 0;
2153 /* Trick#1: The loss is proven. */
2154 if (tp->lost_out)
2155 return 1;
2157 /* Not-A-Trick#2 : Classic rule... */
2158 if (tcp_dupack_heurestics(tp) > tp->reordering)
2159 return 1;
2161 /* Trick#3 : when we use RFC2988 timer restart, fast
2162 * retransmit can be triggered by timeout of queue head.
2164 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2165 return 1;
2167 /* Trick#4: It is still not OK... But will it be useful to delay
2168 * recovery more?
2170 packets_out = tp->packets_out;
2171 if (packets_out <= tp->reordering &&
2172 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2173 !tcp_may_send_now(sk)) {
2174 /* We have nothing to send. This connection is limited
2175 * either by receiver window or by application.
2177 return 1;
2180 return 0;
2183 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2184 * is against sacked "cnt", otherwise it's against facked "cnt"
2186 static void tcp_mark_head_lost(struct sock *sk, int packets)
2188 struct tcp_sock *tp = tcp_sk(sk);
2189 struct sk_buff *skb;
2190 int cnt, oldcnt;
2191 int err;
2192 unsigned int mss;
2194 WARN_ON(packets > tp->packets_out);
2195 if (tp->lost_skb_hint) {
2196 skb = tp->lost_skb_hint;
2197 cnt = tp->lost_cnt_hint;
2198 } else {
2199 skb = tcp_write_queue_head(sk);
2200 cnt = 0;
2203 tcp_for_write_queue_from(skb, sk) {
2204 if (skb == tcp_send_head(sk))
2205 break;
2206 /* TODO: do this better */
2207 /* this is not the most efficient way to do this... */
2208 tp->lost_skb_hint = skb;
2209 tp->lost_cnt_hint = cnt;
2211 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2212 break;
2214 oldcnt = cnt;
2215 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2216 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2217 cnt += tcp_skb_pcount(skb);
2219 if (cnt > packets) {
2220 if (tcp_is_sack(tp) || (oldcnt >= packets))
2221 break;
2223 mss = skb_shinfo(skb)->gso_size;
2224 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2225 if (err < 0)
2226 break;
2227 cnt = packets;
2230 tcp_skb_mark_lost(tp, skb);
2232 tcp_verify_left_out(tp);
2235 /* Account newly detected lost packet(s) */
2237 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2239 struct tcp_sock *tp = tcp_sk(sk);
2241 if (tcp_is_reno(tp)) {
2242 tcp_mark_head_lost(sk, 1);
2243 } else if (tcp_is_fack(tp)) {
2244 int lost = tp->fackets_out - tp->reordering;
2245 if (lost <= 0)
2246 lost = 1;
2247 tcp_mark_head_lost(sk, lost);
2248 } else {
2249 int sacked_upto = tp->sacked_out - tp->reordering;
2250 if (sacked_upto < fast_rexmit)
2251 sacked_upto = fast_rexmit;
2252 tcp_mark_head_lost(sk, sacked_upto);
2255 /* New heuristics: it is possible only after we switched
2256 * to restart timer each time when something is ACKed.
2257 * Hence, we can detect timed out packets during fast
2258 * retransmit without falling to slow start.
2260 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2261 struct sk_buff *skb;
2263 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2264 : tcp_write_queue_head(sk);
2266 tcp_for_write_queue_from(skb, sk) {
2267 if (skb == tcp_send_head(sk))
2268 break;
2269 if (!tcp_skb_timedout(sk, skb))
2270 break;
2272 tcp_skb_mark_lost(tp, skb);
2275 tp->scoreboard_skb_hint = skb;
2277 tcp_verify_left_out(tp);
2281 /* CWND moderation, preventing bursts due to too big ACKs
2282 * in dubious situations.
2284 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2286 tp->snd_cwnd = min(tp->snd_cwnd,
2287 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2288 tp->snd_cwnd_stamp = tcp_time_stamp;
2291 /* Lower bound on congestion window is slow start threshold
2292 * unless congestion avoidance choice decides to overide it.
2294 static inline u32 tcp_cwnd_min(const struct sock *sk)
2296 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2298 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2301 /* Decrease cwnd each second ack. */
2302 static void tcp_cwnd_down(struct sock *sk, int flag)
2304 struct tcp_sock *tp = tcp_sk(sk);
2305 int decr = tp->snd_cwnd_cnt + 1;
2307 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2308 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2309 tp->snd_cwnd_cnt = decr & 1;
2310 decr >>= 1;
2312 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2313 tp->snd_cwnd -= decr;
2315 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2316 tp->snd_cwnd_stamp = tcp_time_stamp;
2320 /* Nothing was retransmitted or returned timestamp is less
2321 * than timestamp of the first retransmission.
2323 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2325 return !tp->retrans_stamp ||
2326 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2327 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2330 /* Undo procedures. */
2332 #if FASTRETRANS_DEBUG > 1
2333 static void DBGUNDO(struct sock *sk, const char *msg)
2335 struct tcp_sock *tp = tcp_sk(sk);
2336 struct inet_sock *inet = inet_sk(sk);
2338 if (sk->sk_family == AF_INET) {
2339 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2340 msg,
2341 NIPQUAD(inet->daddr), ntohs(inet->dport),
2342 tp->snd_cwnd, tcp_left_out(tp),
2343 tp->snd_ssthresh, tp->prior_ssthresh,
2344 tp->packets_out);
2346 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2347 else if (sk->sk_family == AF_INET6) {
2348 struct ipv6_pinfo *np = inet6_sk(sk);
2349 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2350 msg,
2351 NIP6(np->daddr), ntohs(inet->dport),
2352 tp->snd_cwnd, tcp_left_out(tp),
2353 tp->snd_ssthresh, tp->prior_ssthresh,
2354 tp->packets_out);
2356 #endif
2358 #else
2359 #define DBGUNDO(x...) do { } while (0)
2360 #endif
2362 static void tcp_undo_cwr(struct sock *sk, const int undo)
2364 struct tcp_sock *tp = tcp_sk(sk);
2366 if (tp->prior_ssthresh) {
2367 const struct inet_connection_sock *icsk = inet_csk(sk);
2369 if (icsk->icsk_ca_ops->undo_cwnd)
2370 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2371 else
2372 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2374 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2375 tp->snd_ssthresh = tp->prior_ssthresh;
2376 TCP_ECN_withdraw_cwr(tp);
2378 } else {
2379 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2381 tcp_moderate_cwnd(tp);
2382 tp->snd_cwnd_stamp = tcp_time_stamp;
2385 static inline int tcp_may_undo(struct tcp_sock *tp)
2387 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2390 /* People celebrate: "We love our President!" */
2391 static int tcp_try_undo_recovery(struct sock *sk)
2393 struct tcp_sock *tp = tcp_sk(sk);
2395 if (tcp_may_undo(tp)) {
2396 int mib_idx;
2398 /* Happy end! We did not retransmit anything
2399 * or our original transmission succeeded.
2401 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2402 tcp_undo_cwr(sk, 1);
2403 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2404 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2405 else
2406 mib_idx = LINUX_MIB_TCPFULLUNDO;
2408 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2409 tp->undo_marker = 0;
2411 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2412 /* Hold old state until something *above* high_seq
2413 * is ACKed. For Reno it is MUST to prevent false
2414 * fast retransmits (RFC2582). SACK TCP is safe. */
2415 tcp_moderate_cwnd(tp);
2416 return 1;
2418 tcp_set_ca_state(sk, TCP_CA_Open);
2419 return 0;
2422 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2423 static void tcp_try_undo_dsack(struct sock *sk)
2425 struct tcp_sock *tp = tcp_sk(sk);
2427 if (tp->undo_marker && !tp->undo_retrans) {
2428 DBGUNDO(sk, "D-SACK");
2429 tcp_undo_cwr(sk, 1);
2430 tp->undo_marker = 0;
2431 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2435 /* Undo during fast recovery after partial ACK. */
2437 static int tcp_try_undo_partial(struct sock *sk, int acked)
2439 struct tcp_sock *tp = tcp_sk(sk);
2440 /* Partial ACK arrived. Force Hoe's retransmit. */
2441 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2443 if (tcp_may_undo(tp)) {
2444 /* Plain luck! Hole if filled with delayed
2445 * packet, rather than with a retransmit.
2447 if (tp->retrans_out == 0)
2448 tp->retrans_stamp = 0;
2450 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2452 DBGUNDO(sk, "Hoe");
2453 tcp_undo_cwr(sk, 0);
2454 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2456 /* So... Do not make Hoe's retransmit yet.
2457 * If the first packet was delayed, the rest
2458 * ones are most probably delayed as well.
2460 failed = 0;
2462 return failed;
2465 /* Undo during loss recovery after partial ACK. */
2466 static int tcp_try_undo_loss(struct sock *sk)
2468 struct tcp_sock *tp = tcp_sk(sk);
2470 if (tcp_may_undo(tp)) {
2471 struct sk_buff *skb;
2472 tcp_for_write_queue(skb, sk) {
2473 if (skb == tcp_send_head(sk))
2474 break;
2475 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2478 tcp_clear_all_retrans_hints(tp);
2480 DBGUNDO(sk, "partial loss");
2481 tp->lost_out = 0;
2482 tcp_undo_cwr(sk, 1);
2483 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2484 inet_csk(sk)->icsk_retransmits = 0;
2485 tp->undo_marker = 0;
2486 if (tcp_is_sack(tp))
2487 tcp_set_ca_state(sk, TCP_CA_Open);
2488 return 1;
2490 return 0;
2493 static inline void tcp_complete_cwr(struct sock *sk)
2495 struct tcp_sock *tp = tcp_sk(sk);
2496 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2497 tp->snd_cwnd_stamp = tcp_time_stamp;
2498 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2501 static void tcp_try_keep_open(struct sock *sk)
2503 struct tcp_sock *tp = tcp_sk(sk);
2504 int state = TCP_CA_Open;
2506 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2507 state = TCP_CA_Disorder;
2509 if (inet_csk(sk)->icsk_ca_state != state) {
2510 tcp_set_ca_state(sk, state);
2511 tp->high_seq = tp->snd_nxt;
2515 static void tcp_try_to_open(struct sock *sk, int flag)
2517 struct tcp_sock *tp = tcp_sk(sk);
2519 tcp_verify_left_out(tp);
2521 if (!tp->frto_counter && tp->retrans_out == 0)
2522 tp->retrans_stamp = 0;
2524 if (flag & FLAG_ECE)
2525 tcp_enter_cwr(sk, 1);
2527 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2528 tcp_try_keep_open(sk);
2529 tcp_moderate_cwnd(tp);
2530 } else {
2531 tcp_cwnd_down(sk, flag);
2535 static void tcp_mtup_probe_failed(struct sock *sk)
2537 struct inet_connection_sock *icsk = inet_csk(sk);
2539 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2540 icsk->icsk_mtup.probe_size = 0;
2543 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2545 struct tcp_sock *tp = tcp_sk(sk);
2546 struct inet_connection_sock *icsk = inet_csk(sk);
2548 /* FIXME: breaks with very large cwnd */
2549 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2550 tp->snd_cwnd = tp->snd_cwnd *
2551 tcp_mss_to_mtu(sk, tp->mss_cache) /
2552 icsk->icsk_mtup.probe_size;
2553 tp->snd_cwnd_cnt = 0;
2554 tp->snd_cwnd_stamp = tcp_time_stamp;
2555 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2557 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2558 icsk->icsk_mtup.probe_size = 0;
2559 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2562 /* Process an event, which can update packets-in-flight not trivially.
2563 * Main goal of this function is to calculate new estimate for left_out,
2564 * taking into account both packets sitting in receiver's buffer and
2565 * packets lost by network.
2567 * Besides that it does CWND reduction, when packet loss is detected
2568 * and changes state of machine.
2570 * It does _not_ decide what to send, it is made in function
2571 * tcp_xmit_retransmit_queue().
2573 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2575 struct inet_connection_sock *icsk = inet_csk(sk);
2576 struct tcp_sock *tp = tcp_sk(sk);
2577 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2578 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2579 (tcp_fackets_out(tp) > tp->reordering));
2580 int fast_rexmit = 0, mib_idx;
2582 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2583 tp->sacked_out = 0;
2584 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2585 tp->fackets_out = 0;
2587 /* Now state machine starts.
2588 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2589 if (flag & FLAG_ECE)
2590 tp->prior_ssthresh = 0;
2592 /* B. In all the states check for reneging SACKs. */
2593 if (tcp_check_sack_reneging(sk, flag))
2594 return;
2596 /* C. Process data loss notification, provided it is valid. */
2597 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2598 before(tp->snd_una, tp->high_seq) &&
2599 icsk->icsk_ca_state != TCP_CA_Open &&
2600 tp->fackets_out > tp->reordering) {
2601 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2602 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2605 /* D. Check consistency of the current state. */
2606 tcp_verify_left_out(tp);
2608 /* E. Check state exit conditions. State can be terminated
2609 * when high_seq is ACKed. */
2610 if (icsk->icsk_ca_state == TCP_CA_Open) {
2611 WARN_ON(tp->retrans_out != 0);
2612 tp->retrans_stamp = 0;
2613 } else if (!before(tp->snd_una, tp->high_seq)) {
2614 switch (icsk->icsk_ca_state) {
2615 case TCP_CA_Loss:
2616 icsk->icsk_retransmits = 0;
2617 if (tcp_try_undo_recovery(sk))
2618 return;
2619 break;
2621 case TCP_CA_CWR:
2622 /* CWR is to be held something *above* high_seq
2623 * is ACKed for CWR bit to reach receiver. */
2624 if (tp->snd_una != tp->high_seq) {
2625 tcp_complete_cwr(sk);
2626 tcp_set_ca_state(sk, TCP_CA_Open);
2628 break;
2630 case TCP_CA_Disorder:
2631 tcp_try_undo_dsack(sk);
2632 if (!tp->undo_marker ||
2633 /* For SACK case do not Open to allow to undo
2634 * catching for all duplicate ACKs. */
2635 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2636 tp->undo_marker = 0;
2637 tcp_set_ca_state(sk, TCP_CA_Open);
2639 break;
2641 case TCP_CA_Recovery:
2642 if (tcp_is_reno(tp))
2643 tcp_reset_reno_sack(tp);
2644 if (tcp_try_undo_recovery(sk))
2645 return;
2646 tcp_complete_cwr(sk);
2647 break;
2651 /* F. Process state. */
2652 switch (icsk->icsk_ca_state) {
2653 case TCP_CA_Recovery:
2654 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2655 if (tcp_is_reno(tp) && is_dupack)
2656 tcp_add_reno_sack(sk);
2657 } else
2658 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2659 break;
2660 case TCP_CA_Loss:
2661 if (flag & FLAG_DATA_ACKED)
2662 icsk->icsk_retransmits = 0;
2663 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2664 tcp_reset_reno_sack(tp);
2665 if (!tcp_try_undo_loss(sk)) {
2666 tcp_moderate_cwnd(tp);
2667 tcp_xmit_retransmit_queue(sk);
2668 return;
2670 if (icsk->icsk_ca_state != TCP_CA_Open)
2671 return;
2672 /* Loss is undone; fall through to processing in Open state. */
2673 default:
2674 if (tcp_is_reno(tp)) {
2675 if (flag & FLAG_SND_UNA_ADVANCED)
2676 tcp_reset_reno_sack(tp);
2677 if (is_dupack)
2678 tcp_add_reno_sack(sk);
2681 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2682 tcp_try_undo_dsack(sk);
2684 if (!tcp_time_to_recover(sk)) {
2685 tcp_try_to_open(sk, flag);
2686 return;
2689 /* MTU probe failure: don't reduce cwnd */
2690 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2691 icsk->icsk_mtup.probe_size &&
2692 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2693 tcp_mtup_probe_failed(sk);
2694 /* Restores the reduction we did in tcp_mtup_probe() */
2695 tp->snd_cwnd++;
2696 tcp_simple_retransmit(sk);
2697 return;
2700 /* Otherwise enter Recovery state */
2702 if (tcp_is_reno(tp))
2703 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2704 else
2705 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2707 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2709 tp->high_seq = tp->snd_nxt;
2710 tp->prior_ssthresh = 0;
2711 tp->undo_marker = tp->snd_una;
2712 tp->undo_retrans = tp->retrans_out;
2714 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2715 if (!(flag & FLAG_ECE))
2716 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2717 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2718 TCP_ECN_queue_cwr(tp);
2721 tp->bytes_acked = 0;
2722 tp->snd_cwnd_cnt = 0;
2723 tcp_set_ca_state(sk, TCP_CA_Recovery);
2724 fast_rexmit = 1;
2727 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2728 tcp_update_scoreboard(sk, fast_rexmit);
2729 tcp_cwnd_down(sk, flag);
2730 tcp_xmit_retransmit_queue(sk);
2733 /* Read draft-ietf-tcplw-high-performance before mucking
2734 * with this code. (Supersedes RFC1323)
2736 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2738 /* RTTM Rule: A TSecr value received in a segment is used to
2739 * update the averaged RTT measurement only if the segment
2740 * acknowledges some new data, i.e., only if it advances the
2741 * left edge of the send window.
2743 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2744 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2746 * Changed: reset backoff as soon as we see the first valid sample.
2747 * If we do not, we get strongly overestimated rto. With timestamps
2748 * samples are accepted even from very old segments: f.e., when rtt=1
2749 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2750 * answer arrives rto becomes 120 seconds! If at least one of segments
2751 * in window is lost... Voila. --ANK (010210)
2753 struct tcp_sock *tp = tcp_sk(sk);
2754 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2755 tcp_rtt_estimator(sk, seq_rtt);
2756 tcp_set_rto(sk);
2757 inet_csk(sk)->icsk_backoff = 0;
2758 tcp_bound_rto(sk);
2761 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2763 /* We don't have a timestamp. Can only use
2764 * packets that are not retransmitted to determine
2765 * rtt estimates. Also, we must not reset the
2766 * backoff for rto until we get a non-retransmitted
2767 * packet. This allows us to deal with a situation
2768 * where the network delay has increased suddenly.
2769 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2772 if (flag & FLAG_RETRANS_DATA_ACKED)
2773 return;
2775 tcp_rtt_estimator(sk, seq_rtt);
2776 tcp_set_rto(sk);
2777 inet_csk(sk)->icsk_backoff = 0;
2778 tcp_bound_rto(sk);
2781 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2782 const s32 seq_rtt)
2784 const struct tcp_sock *tp = tcp_sk(sk);
2785 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2786 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2787 tcp_ack_saw_tstamp(sk, flag);
2788 else if (seq_rtt >= 0)
2789 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2792 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2794 const struct inet_connection_sock *icsk = inet_csk(sk);
2795 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2796 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2799 /* Restart timer after forward progress on connection.
2800 * RFC2988 recommends to restart timer to now+rto.
2802 static void tcp_rearm_rto(struct sock *sk)
2804 struct tcp_sock *tp = tcp_sk(sk);
2806 if (!tp->packets_out) {
2807 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2808 } else {
2809 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2810 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2814 /* If we get here, the whole TSO packet has not been acked. */
2815 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2817 struct tcp_sock *tp = tcp_sk(sk);
2818 u32 packets_acked;
2820 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2822 packets_acked = tcp_skb_pcount(skb);
2823 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2824 return 0;
2825 packets_acked -= tcp_skb_pcount(skb);
2827 if (packets_acked) {
2828 BUG_ON(tcp_skb_pcount(skb) == 0);
2829 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2832 return packets_acked;
2835 /* Remove acknowledged frames from the retransmission queue. If our packet
2836 * is before the ack sequence we can discard it as it's confirmed to have
2837 * arrived at the other end.
2839 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2840 u32 prior_snd_una)
2842 struct tcp_sock *tp = tcp_sk(sk);
2843 const struct inet_connection_sock *icsk = inet_csk(sk);
2844 struct sk_buff *skb;
2845 u32 now = tcp_time_stamp;
2846 int fully_acked = 1;
2847 int flag = 0;
2848 u32 pkts_acked = 0;
2849 u32 reord = tp->packets_out;
2850 u32 prior_sacked = tp->sacked_out;
2851 s32 seq_rtt = -1;
2852 s32 ca_seq_rtt = -1;
2853 ktime_t last_ackt = net_invalid_timestamp();
2855 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2856 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2857 u32 end_seq;
2858 u32 acked_pcount;
2859 u8 sacked = scb->sacked;
2861 /* Determine how many packets and what bytes were acked, tso and else */
2862 if (after(scb->end_seq, tp->snd_una)) {
2863 if (tcp_skb_pcount(skb) == 1 ||
2864 !after(tp->snd_una, scb->seq))
2865 break;
2867 acked_pcount = tcp_tso_acked(sk, skb);
2868 if (!acked_pcount)
2869 break;
2871 fully_acked = 0;
2872 end_seq = tp->snd_una;
2873 } else {
2874 acked_pcount = tcp_skb_pcount(skb);
2875 end_seq = scb->end_seq;
2878 /* MTU probing checks */
2879 if (fully_acked && icsk->icsk_mtup.probe_size &&
2880 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2881 tcp_mtup_probe_success(sk, skb);
2884 if (sacked & TCPCB_RETRANS) {
2885 if (sacked & TCPCB_SACKED_RETRANS)
2886 tp->retrans_out -= acked_pcount;
2887 flag |= FLAG_RETRANS_DATA_ACKED;
2888 ca_seq_rtt = -1;
2889 seq_rtt = -1;
2890 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2891 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2892 } else {
2893 ca_seq_rtt = now - scb->when;
2894 last_ackt = skb->tstamp;
2895 if (seq_rtt < 0) {
2896 seq_rtt = ca_seq_rtt;
2898 if (!(sacked & TCPCB_SACKED_ACKED))
2899 reord = min(pkts_acked, reord);
2902 if (sacked & TCPCB_SACKED_ACKED)
2903 tp->sacked_out -= acked_pcount;
2904 if (sacked & TCPCB_LOST)
2905 tp->lost_out -= acked_pcount;
2907 tp->packets_out -= acked_pcount;
2908 pkts_acked += acked_pcount;
2910 /* Initial outgoing SYN's get put onto the write_queue
2911 * just like anything else we transmit. It is not
2912 * true data, and if we misinform our callers that
2913 * this ACK acks real data, we will erroneously exit
2914 * connection startup slow start one packet too
2915 * quickly. This is severely frowned upon behavior.
2917 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2918 flag |= FLAG_DATA_ACKED;
2919 } else {
2920 flag |= FLAG_SYN_ACKED;
2921 tp->retrans_stamp = 0;
2924 if (!fully_acked)
2925 break;
2927 tcp_unlink_write_queue(skb, sk);
2928 sk_wmem_free_skb(sk, skb);
2929 tp->scoreboard_skb_hint = NULL;
2930 if (skb == tp->retransmit_skb_hint)
2931 tp->retransmit_skb_hint = NULL;
2932 if (skb == tp->lost_skb_hint)
2933 tp->lost_skb_hint = NULL;
2936 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
2937 tp->snd_up = tp->snd_una;
2939 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2940 flag |= FLAG_SACK_RENEGING;
2942 if (flag & FLAG_ACKED) {
2943 const struct tcp_congestion_ops *ca_ops
2944 = inet_csk(sk)->icsk_ca_ops;
2946 tcp_ack_update_rtt(sk, flag, seq_rtt);
2947 tcp_rearm_rto(sk);
2949 if (tcp_is_reno(tp)) {
2950 tcp_remove_reno_sacks(sk, pkts_acked);
2951 } else {
2952 /* Non-retransmitted hole got filled? That's reordering */
2953 if (reord < prior_fackets)
2954 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2956 /* No need to care for underflows here because
2957 * the lost_skb_hint gets NULLed if we're past it
2958 * (or something non-trivial happened)
2960 if (tcp_is_fack(tp))
2961 tp->lost_cnt_hint -= pkts_acked;
2962 else
2963 tp->lost_cnt_hint -= prior_sacked - tp->sacked_out;
2966 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2968 if (ca_ops->pkts_acked) {
2969 s32 rtt_us = -1;
2971 /* Is the ACK triggering packet unambiguous? */
2972 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2973 /* High resolution needed and available? */
2974 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2975 !ktime_equal(last_ackt,
2976 net_invalid_timestamp()))
2977 rtt_us = ktime_us_delta(ktime_get_real(),
2978 last_ackt);
2979 else if (ca_seq_rtt > 0)
2980 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2983 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2987 #if FASTRETRANS_DEBUG > 0
2988 WARN_ON((int)tp->sacked_out < 0);
2989 WARN_ON((int)tp->lost_out < 0);
2990 WARN_ON((int)tp->retrans_out < 0);
2991 if (!tp->packets_out && tcp_is_sack(tp)) {
2992 icsk = inet_csk(sk);
2993 if (tp->lost_out) {
2994 printk(KERN_DEBUG "Leak l=%u %d\n",
2995 tp->lost_out, icsk->icsk_ca_state);
2996 tp->lost_out = 0;
2998 if (tp->sacked_out) {
2999 printk(KERN_DEBUG "Leak s=%u %d\n",
3000 tp->sacked_out, icsk->icsk_ca_state);
3001 tp->sacked_out = 0;
3003 if (tp->retrans_out) {
3004 printk(KERN_DEBUG "Leak r=%u %d\n",
3005 tp->retrans_out, icsk->icsk_ca_state);
3006 tp->retrans_out = 0;
3009 #endif
3010 return flag;
3013 static void tcp_ack_probe(struct sock *sk)
3015 const struct tcp_sock *tp = tcp_sk(sk);
3016 struct inet_connection_sock *icsk = inet_csk(sk);
3018 /* Was it a usable window open? */
3020 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3021 icsk->icsk_backoff = 0;
3022 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3023 /* Socket must be waked up by subsequent tcp_data_snd_check().
3024 * This function is not for random using!
3026 } else {
3027 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3028 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3029 TCP_RTO_MAX);
3033 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3035 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3036 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3039 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3041 const struct tcp_sock *tp = tcp_sk(sk);
3042 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3043 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3046 /* Check that window update is acceptable.
3047 * The function assumes that snd_una<=ack<=snd_next.
3049 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3050 const u32 ack, const u32 ack_seq,
3051 const u32 nwin)
3053 return (after(ack, tp->snd_una) ||
3054 after(ack_seq, tp->snd_wl1) ||
3055 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3058 /* Update our send window.
3060 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3061 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3063 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3064 u32 ack_seq)
3066 struct tcp_sock *tp = tcp_sk(sk);
3067 int flag = 0;
3068 u32 nwin = ntohs(tcp_hdr(skb)->window);
3070 if (likely(!tcp_hdr(skb)->syn))
3071 nwin <<= tp->rx_opt.snd_wscale;
3073 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3074 flag |= FLAG_WIN_UPDATE;
3075 tcp_update_wl(tp, ack, ack_seq);
3077 if (tp->snd_wnd != nwin) {
3078 tp->snd_wnd = nwin;
3080 /* Note, it is the only place, where
3081 * fast path is recovered for sending TCP.
3083 tp->pred_flags = 0;
3084 tcp_fast_path_check(sk);
3086 if (nwin > tp->max_window) {
3087 tp->max_window = nwin;
3088 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3093 tp->snd_una = ack;
3095 return flag;
3098 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3099 * continue in congestion avoidance.
3101 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3103 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3104 tp->snd_cwnd_cnt = 0;
3105 tp->bytes_acked = 0;
3106 TCP_ECN_queue_cwr(tp);
3107 tcp_moderate_cwnd(tp);
3110 /* A conservative spurious RTO response algorithm: reduce cwnd using
3111 * rate halving and continue in congestion avoidance.
3113 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3115 tcp_enter_cwr(sk, 0);
3118 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3120 if (flag & FLAG_ECE)
3121 tcp_ratehalving_spur_to_response(sk);
3122 else
3123 tcp_undo_cwr(sk, 1);
3126 /* F-RTO spurious RTO detection algorithm (RFC4138)
3128 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3129 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3130 * window (but not to or beyond highest sequence sent before RTO):
3131 * On First ACK, send two new segments out.
3132 * On Second ACK, RTO was likely spurious. Do spurious response (response
3133 * algorithm is not part of the F-RTO detection algorithm
3134 * given in RFC4138 but can be selected separately).
3135 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3136 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3137 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3138 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3140 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3141 * original window even after we transmit two new data segments.
3143 * SACK version:
3144 * on first step, wait until first cumulative ACK arrives, then move to
3145 * the second step. In second step, the next ACK decides.
3147 * F-RTO is implemented (mainly) in four functions:
3148 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3149 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3150 * called when tcp_use_frto() showed green light
3151 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3152 * - tcp_enter_frto_loss() is called if there is not enough evidence
3153 * to prove that the RTO is indeed spurious. It transfers the control
3154 * from F-RTO to the conventional RTO recovery
3156 static int tcp_process_frto(struct sock *sk, int flag)
3158 struct tcp_sock *tp = tcp_sk(sk);
3160 tcp_verify_left_out(tp);
3162 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3163 if (flag & FLAG_DATA_ACKED)
3164 inet_csk(sk)->icsk_retransmits = 0;
3166 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3167 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3168 tp->undo_marker = 0;
3170 if (!before(tp->snd_una, tp->frto_highmark)) {
3171 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3172 return 1;
3175 if (!tcp_is_sackfrto(tp)) {
3176 /* RFC4138 shortcoming in step 2; should also have case c):
3177 * ACK isn't duplicate nor advances window, e.g., opposite dir
3178 * data, winupdate
3180 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3181 return 1;
3183 if (!(flag & FLAG_DATA_ACKED)) {
3184 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3185 flag);
3186 return 1;
3188 } else {
3189 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3190 /* Prevent sending of new data. */
3191 tp->snd_cwnd = min(tp->snd_cwnd,
3192 tcp_packets_in_flight(tp));
3193 return 1;
3196 if ((tp->frto_counter >= 2) &&
3197 (!(flag & FLAG_FORWARD_PROGRESS) ||
3198 ((flag & FLAG_DATA_SACKED) &&
3199 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3200 /* RFC4138 shortcoming (see comment above) */
3201 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3202 (flag & FLAG_NOT_DUP))
3203 return 1;
3205 tcp_enter_frto_loss(sk, 3, flag);
3206 return 1;
3210 if (tp->frto_counter == 1) {
3211 /* tcp_may_send_now needs to see updated state */
3212 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3213 tp->frto_counter = 2;
3215 if (!tcp_may_send_now(sk))
3216 tcp_enter_frto_loss(sk, 2, flag);
3218 return 1;
3219 } else {
3220 switch (sysctl_tcp_frto_response) {
3221 case 2:
3222 tcp_undo_spur_to_response(sk, flag);
3223 break;
3224 case 1:
3225 tcp_conservative_spur_to_response(tp);
3226 break;
3227 default:
3228 tcp_ratehalving_spur_to_response(sk);
3229 break;
3231 tp->frto_counter = 0;
3232 tp->undo_marker = 0;
3233 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3235 return 0;
3238 /* This routine deals with incoming acks, but not outgoing ones. */
3239 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3241 struct inet_connection_sock *icsk = inet_csk(sk);
3242 struct tcp_sock *tp = tcp_sk(sk);
3243 u32 prior_snd_una = tp->snd_una;
3244 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3245 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3246 u32 prior_in_flight;
3247 u32 prior_fackets;
3248 int prior_packets;
3249 int frto_cwnd = 0;
3251 /* If the ack is newer than sent or older than previous acks
3252 * then we can probably ignore it.
3254 if (after(ack, tp->snd_nxt))
3255 goto uninteresting_ack;
3257 if (before(ack, prior_snd_una))
3258 goto old_ack;
3260 if (after(ack, prior_snd_una))
3261 flag |= FLAG_SND_UNA_ADVANCED;
3263 if (sysctl_tcp_abc) {
3264 if (icsk->icsk_ca_state < TCP_CA_CWR)
3265 tp->bytes_acked += ack - prior_snd_una;
3266 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3267 /* we assume just one segment left network */
3268 tp->bytes_acked += min(ack - prior_snd_una,
3269 tp->mss_cache);
3272 prior_fackets = tp->fackets_out;
3273 prior_in_flight = tcp_packets_in_flight(tp);
3275 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3276 /* Window is constant, pure forward advance.
3277 * No more checks are required.
3278 * Note, we use the fact that SND.UNA>=SND.WL2.
3280 tcp_update_wl(tp, ack, ack_seq);
3281 tp->snd_una = ack;
3282 flag |= FLAG_WIN_UPDATE;
3284 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3286 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3287 } else {
3288 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3289 flag |= FLAG_DATA;
3290 else
3291 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3293 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3295 if (TCP_SKB_CB(skb)->sacked)
3296 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3298 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3299 flag |= FLAG_ECE;
3301 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3304 /* We passed data and got it acked, remove any soft error
3305 * log. Something worked...
3307 sk->sk_err_soft = 0;
3308 icsk->icsk_probes_out = 0;
3309 tp->rcv_tstamp = tcp_time_stamp;
3310 prior_packets = tp->packets_out;
3311 if (!prior_packets)
3312 goto no_queue;
3314 /* See if we can take anything off of the retransmit queue. */
3315 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3317 if (tp->frto_counter)
3318 frto_cwnd = tcp_process_frto(sk, flag);
3319 /* Guarantee sacktag reordering detection against wrap-arounds */
3320 if (before(tp->frto_highmark, tp->snd_una))
3321 tp->frto_highmark = 0;
3323 if (tcp_ack_is_dubious(sk, flag)) {
3324 /* Advance CWND, if state allows this. */
3325 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3326 tcp_may_raise_cwnd(sk, flag))
3327 tcp_cong_avoid(sk, ack, prior_in_flight);
3328 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3329 flag);
3330 } else {
3331 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3332 tcp_cong_avoid(sk, ack, prior_in_flight);
3335 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3336 dst_confirm(sk->sk_dst_cache);
3338 return 1;
3340 no_queue:
3341 /* If this ack opens up a zero window, clear backoff. It was
3342 * being used to time the probes, and is probably far higher than
3343 * it needs to be for normal retransmission.
3345 if (tcp_send_head(sk))
3346 tcp_ack_probe(sk);
3347 return 1;
3349 old_ack:
3350 if (TCP_SKB_CB(skb)->sacked) {
3351 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3352 if (icsk->icsk_ca_state == TCP_CA_Open)
3353 tcp_try_keep_open(sk);
3356 uninteresting_ack:
3357 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3358 return 0;
3361 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3362 * But, this can also be called on packets in the established flow when
3363 * the fast version below fails.
3365 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3366 int estab)
3368 unsigned char *ptr;
3369 struct tcphdr *th = tcp_hdr(skb);
3370 int length = (th->doff * 4) - sizeof(struct tcphdr);
3372 ptr = (unsigned char *)(th + 1);
3373 opt_rx->saw_tstamp = 0;
3375 while (length > 0) {
3376 int opcode = *ptr++;
3377 int opsize;
3379 switch (opcode) {
3380 case TCPOPT_EOL:
3381 return;
3382 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3383 length--;
3384 continue;
3385 default:
3386 opsize = *ptr++;
3387 if (opsize < 2) /* "silly options" */
3388 return;
3389 if (opsize > length)
3390 return; /* don't parse partial options */
3391 switch (opcode) {
3392 case TCPOPT_MSS:
3393 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3394 u16 in_mss = get_unaligned_be16(ptr);
3395 if (in_mss) {
3396 if (opt_rx->user_mss &&
3397 opt_rx->user_mss < in_mss)
3398 in_mss = opt_rx->user_mss;
3399 opt_rx->mss_clamp = in_mss;
3402 break;
3403 case TCPOPT_WINDOW:
3404 if (opsize == TCPOLEN_WINDOW && th->syn &&
3405 !estab && sysctl_tcp_window_scaling) {
3406 __u8 snd_wscale = *(__u8 *)ptr;
3407 opt_rx->wscale_ok = 1;
3408 if (snd_wscale > 14) {
3409 if (net_ratelimit())
3410 printk(KERN_INFO "tcp_parse_options: Illegal window "
3411 "scaling value %d >14 received.\n",
3412 snd_wscale);
3413 snd_wscale = 14;
3415 opt_rx->snd_wscale = snd_wscale;
3417 break;
3418 case TCPOPT_TIMESTAMP:
3419 if ((opsize == TCPOLEN_TIMESTAMP) &&
3420 ((estab && opt_rx->tstamp_ok) ||
3421 (!estab && sysctl_tcp_timestamps))) {
3422 opt_rx->saw_tstamp = 1;
3423 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3424 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3426 break;
3427 case TCPOPT_SACK_PERM:
3428 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3429 !estab && sysctl_tcp_sack) {
3430 opt_rx->sack_ok = 1;
3431 tcp_sack_reset(opt_rx);
3433 break;
3435 case TCPOPT_SACK:
3436 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3437 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3438 opt_rx->sack_ok) {
3439 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3441 break;
3442 #ifdef CONFIG_TCP_MD5SIG
3443 case TCPOPT_MD5SIG:
3445 * The MD5 Hash has already been
3446 * checked (see tcp_v{4,6}_do_rcv()).
3448 break;
3449 #endif
3452 ptr += opsize-2;
3453 length -= opsize;
3458 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3460 __be32 *ptr = (__be32 *)(th + 1);
3462 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3463 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3464 tp->rx_opt.saw_tstamp = 1;
3465 ++ptr;
3466 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3467 ++ptr;
3468 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3469 return 1;
3471 return 0;
3474 /* Fast parse options. This hopes to only see timestamps.
3475 * If it is wrong it falls back on tcp_parse_options().
3477 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3478 struct tcp_sock *tp)
3480 if (th->doff == sizeof(struct tcphdr) >> 2) {
3481 tp->rx_opt.saw_tstamp = 0;
3482 return 0;
3483 } else if (tp->rx_opt.tstamp_ok &&
3484 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3485 if (tcp_parse_aligned_timestamp(tp, th))
3486 return 1;
3488 tcp_parse_options(skb, &tp->rx_opt, 1);
3489 return 1;
3492 #ifdef CONFIG_TCP_MD5SIG
3494 * Parse MD5 Signature option
3496 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3498 int length = (th->doff << 2) - sizeof (*th);
3499 u8 *ptr = (u8*)(th + 1);
3501 /* If the TCP option is too short, we can short cut */
3502 if (length < TCPOLEN_MD5SIG)
3503 return NULL;
3505 while (length > 0) {
3506 int opcode = *ptr++;
3507 int opsize;
3509 switch(opcode) {
3510 case TCPOPT_EOL:
3511 return NULL;
3512 case TCPOPT_NOP:
3513 length--;
3514 continue;
3515 default:
3516 opsize = *ptr++;
3517 if (opsize < 2 || opsize > length)
3518 return NULL;
3519 if (opcode == TCPOPT_MD5SIG)
3520 return ptr;
3522 ptr += opsize - 2;
3523 length -= opsize;
3525 return NULL;
3527 #endif
3529 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3531 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3532 tp->rx_opt.ts_recent_stamp = get_seconds();
3535 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3537 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3538 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3539 * extra check below makes sure this can only happen
3540 * for pure ACK frames. -DaveM
3542 * Not only, also it occurs for expired timestamps.
3545 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3546 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3547 tcp_store_ts_recent(tp);
3551 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3553 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3554 * it can pass through stack. So, the following predicate verifies that
3555 * this segment is not used for anything but congestion avoidance or
3556 * fast retransmit. Moreover, we even are able to eliminate most of such
3557 * second order effects, if we apply some small "replay" window (~RTO)
3558 * to timestamp space.
3560 * All these measures still do not guarantee that we reject wrapped ACKs
3561 * on networks with high bandwidth, when sequence space is recycled fastly,
3562 * but it guarantees that such events will be very rare and do not affect
3563 * connection seriously. This doesn't look nice, but alas, PAWS is really
3564 * buggy extension.
3566 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3567 * states that events when retransmit arrives after original data are rare.
3568 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3569 * the biggest problem on large power networks even with minor reordering.
3570 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3571 * up to bandwidth of 18Gigabit/sec. 8) ]
3574 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3576 struct tcp_sock *tp = tcp_sk(sk);
3577 struct tcphdr *th = tcp_hdr(skb);
3578 u32 seq = TCP_SKB_CB(skb)->seq;
3579 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3581 return (/* 1. Pure ACK with correct sequence number. */
3582 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3584 /* 2. ... and duplicate ACK. */
3585 ack == tp->snd_una &&
3587 /* 3. ... and does not update window. */
3588 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3590 /* 4. ... and sits in replay window. */
3591 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3594 static inline int tcp_paws_discard(const struct sock *sk,
3595 const struct sk_buff *skb)
3597 const struct tcp_sock *tp = tcp_sk(sk);
3598 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3599 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3600 !tcp_disordered_ack(sk, skb));
3603 /* Check segment sequence number for validity.
3605 * Segment controls are considered valid, if the segment
3606 * fits to the window after truncation to the window. Acceptability
3607 * of data (and SYN, FIN, of course) is checked separately.
3608 * See tcp_data_queue(), for example.
3610 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3611 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3612 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3613 * (borrowed from freebsd)
3616 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3618 return !before(end_seq, tp->rcv_wup) &&
3619 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3622 /* When we get a reset we do this. */
3623 static void tcp_reset(struct sock *sk)
3625 /* We want the right error as BSD sees it (and indeed as we do). */
3626 switch (sk->sk_state) {
3627 case TCP_SYN_SENT:
3628 sk->sk_err = ECONNREFUSED;
3629 break;
3630 case TCP_CLOSE_WAIT:
3631 sk->sk_err = EPIPE;
3632 break;
3633 case TCP_CLOSE:
3634 return;
3635 default:
3636 sk->sk_err = ECONNRESET;
3639 if (!sock_flag(sk, SOCK_DEAD))
3640 sk->sk_error_report(sk);
3642 tcp_done(sk);
3646 * Process the FIN bit. This now behaves as it is supposed to work
3647 * and the FIN takes effect when it is validly part of sequence
3648 * space. Not before when we get holes.
3650 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3651 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3652 * TIME-WAIT)
3654 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3655 * close and we go into CLOSING (and later onto TIME-WAIT)
3657 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3659 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3661 struct tcp_sock *tp = tcp_sk(sk);
3663 inet_csk_schedule_ack(sk);
3665 sk->sk_shutdown |= RCV_SHUTDOWN;
3666 sock_set_flag(sk, SOCK_DONE);
3668 switch (sk->sk_state) {
3669 case TCP_SYN_RECV:
3670 case TCP_ESTABLISHED:
3671 /* Move to CLOSE_WAIT */
3672 tcp_set_state(sk, TCP_CLOSE_WAIT);
3673 inet_csk(sk)->icsk_ack.pingpong = 1;
3674 break;
3676 case TCP_CLOSE_WAIT:
3677 case TCP_CLOSING:
3678 /* Received a retransmission of the FIN, do
3679 * nothing.
3681 break;
3682 case TCP_LAST_ACK:
3683 /* RFC793: Remain in the LAST-ACK state. */
3684 break;
3686 case TCP_FIN_WAIT1:
3687 /* This case occurs when a simultaneous close
3688 * happens, we must ack the received FIN and
3689 * enter the CLOSING state.
3691 tcp_send_ack(sk);
3692 tcp_set_state(sk, TCP_CLOSING);
3693 break;
3694 case TCP_FIN_WAIT2:
3695 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3696 tcp_send_ack(sk);
3697 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3698 break;
3699 default:
3700 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3701 * cases we should never reach this piece of code.
3703 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3704 __func__, sk->sk_state);
3705 break;
3708 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3709 * Probably, we should reset in this case. For now drop them.
3711 __skb_queue_purge(&tp->out_of_order_queue);
3712 if (tcp_is_sack(tp))
3713 tcp_sack_reset(&tp->rx_opt);
3714 sk_mem_reclaim(sk);
3716 if (!sock_flag(sk, SOCK_DEAD)) {
3717 sk->sk_state_change(sk);
3719 /* Do not send POLL_HUP for half duplex close. */
3720 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3721 sk->sk_state == TCP_CLOSE)
3722 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3723 else
3724 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3728 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3729 u32 end_seq)
3731 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3732 if (before(seq, sp->start_seq))
3733 sp->start_seq = seq;
3734 if (after(end_seq, sp->end_seq))
3735 sp->end_seq = end_seq;
3736 return 1;
3738 return 0;
3741 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3743 struct tcp_sock *tp = tcp_sk(sk);
3745 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3746 int mib_idx;
3748 if (before(seq, tp->rcv_nxt))
3749 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3750 else
3751 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3753 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3755 tp->rx_opt.dsack = 1;
3756 tp->duplicate_sack[0].start_seq = seq;
3757 tp->duplicate_sack[0].end_seq = end_seq;
3758 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3762 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3764 struct tcp_sock *tp = tcp_sk(sk);
3766 if (!tp->rx_opt.dsack)
3767 tcp_dsack_set(sk, seq, end_seq);
3768 else
3769 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3772 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3774 struct tcp_sock *tp = tcp_sk(sk);
3776 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3777 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3778 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3779 tcp_enter_quickack_mode(sk);
3781 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3782 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3784 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3785 end_seq = tp->rcv_nxt;
3786 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3790 tcp_send_ack(sk);
3793 /* These routines update the SACK block as out-of-order packets arrive or
3794 * in-order packets close up the sequence space.
3796 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3798 int this_sack;
3799 struct tcp_sack_block *sp = &tp->selective_acks[0];
3800 struct tcp_sack_block *swalk = sp + 1;
3802 /* See if the recent change to the first SACK eats into
3803 * or hits the sequence space of other SACK blocks, if so coalesce.
3805 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3806 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3807 int i;
3809 /* Zap SWALK, by moving every further SACK up by one slot.
3810 * Decrease num_sacks.
3812 tp->rx_opt.num_sacks--;
3813 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3814 tp->rx_opt.dsack;
3815 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3816 sp[i] = sp[i + 1];
3817 continue;
3819 this_sack++, swalk++;
3823 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3824 struct tcp_sack_block *sack2)
3826 __u32 tmp;
3828 tmp = sack1->start_seq;
3829 sack1->start_seq = sack2->start_seq;
3830 sack2->start_seq = tmp;
3832 tmp = sack1->end_seq;
3833 sack1->end_seq = sack2->end_seq;
3834 sack2->end_seq = tmp;
3837 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3839 struct tcp_sock *tp = tcp_sk(sk);
3840 struct tcp_sack_block *sp = &tp->selective_acks[0];
3841 int cur_sacks = tp->rx_opt.num_sacks;
3842 int this_sack;
3844 if (!cur_sacks)
3845 goto new_sack;
3847 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3848 if (tcp_sack_extend(sp, seq, end_seq)) {
3849 /* Rotate this_sack to the first one. */
3850 for (; this_sack > 0; this_sack--, sp--)
3851 tcp_sack_swap(sp, sp - 1);
3852 if (cur_sacks > 1)
3853 tcp_sack_maybe_coalesce(tp);
3854 return;
3858 /* Could not find an adjacent existing SACK, build a new one,
3859 * put it at the front, and shift everyone else down. We
3860 * always know there is at least one SACK present already here.
3862 * If the sack array is full, forget about the last one.
3864 if (this_sack >= TCP_NUM_SACKS) {
3865 this_sack--;
3866 tp->rx_opt.num_sacks--;
3867 sp--;
3869 for (; this_sack > 0; this_sack--, sp--)
3870 *sp = *(sp - 1);
3872 new_sack:
3873 /* Build the new head SACK, and we're done. */
3874 sp->start_seq = seq;
3875 sp->end_seq = end_seq;
3876 tp->rx_opt.num_sacks++;
3877 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3880 /* RCV.NXT advances, some SACKs should be eaten. */
3882 static void tcp_sack_remove(struct tcp_sock *tp)
3884 struct tcp_sack_block *sp = &tp->selective_acks[0];
3885 int num_sacks = tp->rx_opt.num_sacks;
3886 int this_sack;
3888 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3889 if (skb_queue_empty(&tp->out_of_order_queue)) {
3890 tp->rx_opt.num_sacks = 0;
3891 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3892 return;
3895 for (this_sack = 0; this_sack < num_sacks;) {
3896 /* Check if the start of the sack is covered by RCV.NXT. */
3897 if (!before(tp->rcv_nxt, sp->start_seq)) {
3898 int i;
3900 /* RCV.NXT must cover all the block! */
3901 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3903 /* Zap this SACK, by moving forward any other SACKS. */
3904 for (i=this_sack+1; i < num_sacks; i++)
3905 tp->selective_acks[i-1] = tp->selective_acks[i];
3906 num_sacks--;
3907 continue;
3909 this_sack++;
3910 sp++;
3912 if (num_sacks != tp->rx_opt.num_sacks) {
3913 tp->rx_opt.num_sacks = num_sacks;
3914 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3915 tp->rx_opt.dsack;
3919 /* This one checks to see if we can put data from the
3920 * out_of_order queue into the receive_queue.
3922 static void tcp_ofo_queue(struct sock *sk)
3924 struct tcp_sock *tp = tcp_sk(sk);
3925 __u32 dsack_high = tp->rcv_nxt;
3926 struct sk_buff *skb;
3928 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3929 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3930 break;
3932 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3933 __u32 dsack = dsack_high;
3934 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3935 dsack_high = TCP_SKB_CB(skb)->end_seq;
3936 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3939 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3940 SOCK_DEBUG(sk, "ofo packet was already received \n");
3941 __skb_unlink(skb, &tp->out_of_order_queue);
3942 __kfree_skb(skb);
3943 continue;
3945 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3946 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3947 TCP_SKB_CB(skb)->end_seq);
3949 __skb_unlink(skb, &tp->out_of_order_queue);
3950 __skb_queue_tail(&sk->sk_receive_queue, skb);
3951 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3952 if (tcp_hdr(skb)->fin)
3953 tcp_fin(skb, sk, tcp_hdr(skb));
3957 static int tcp_prune_ofo_queue(struct sock *sk);
3958 static int tcp_prune_queue(struct sock *sk);
3960 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3962 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3963 !sk_rmem_schedule(sk, size)) {
3965 if (tcp_prune_queue(sk) < 0)
3966 return -1;
3968 if (!sk_rmem_schedule(sk, size)) {
3969 if (!tcp_prune_ofo_queue(sk))
3970 return -1;
3972 if (!sk_rmem_schedule(sk, size))
3973 return -1;
3976 return 0;
3979 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3981 struct tcphdr *th = tcp_hdr(skb);
3982 struct tcp_sock *tp = tcp_sk(sk);
3983 int eaten = -1;
3985 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3986 goto drop;
3988 __skb_pull(skb, th->doff * 4);
3990 TCP_ECN_accept_cwr(tp, skb);
3992 if (tp->rx_opt.dsack) {
3993 tp->rx_opt.dsack = 0;
3994 tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
3997 /* Queue data for delivery to the user.
3998 * Packets in sequence go to the receive queue.
3999 * Out of sequence packets to the out_of_order_queue.
4001 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4002 if (tcp_receive_window(tp) == 0)
4003 goto out_of_window;
4005 /* Ok. In sequence. In window. */
4006 if (tp->ucopy.task == current &&
4007 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4008 sock_owned_by_user(sk) && !tp->urg_data) {
4009 int chunk = min_t(unsigned int, skb->len,
4010 tp->ucopy.len);
4012 __set_current_state(TASK_RUNNING);
4014 local_bh_enable();
4015 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4016 tp->ucopy.len -= chunk;
4017 tp->copied_seq += chunk;
4018 eaten = (chunk == skb->len && !th->fin);
4019 tcp_rcv_space_adjust(sk);
4021 local_bh_disable();
4024 if (eaten <= 0) {
4025 queue_and_out:
4026 if (eaten < 0 &&
4027 tcp_try_rmem_schedule(sk, skb->truesize))
4028 goto drop;
4030 skb_set_owner_r(skb, sk);
4031 __skb_queue_tail(&sk->sk_receive_queue, skb);
4033 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4034 if (skb->len)
4035 tcp_event_data_recv(sk, skb);
4036 if (th->fin)
4037 tcp_fin(skb, sk, th);
4039 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4040 tcp_ofo_queue(sk);
4042 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4043 * gap in queue is filled.
4045 if (skb_queue_empty(&tp->out_of_order_queue))
4046 inet_csk(sk)->icsk_ack.pingpong = 0;
4049 if (tp->rx_opt.num_sacks)
4050 tcp_sack_remove(tp);
4052 tcp_fast_path_check(sk);
4054 if (eaten > 0)
4055 __kfree_skb(skb);
4056 else if (!sock_flag(sk, SOCK_DEAD))
4057 sk->sk_data_ready(sk, 0);
4058 return;
4061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4062 /* A retransmit, 2nd most common case. Force an immediate ack. */
4063 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4064 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4066 out_of_window:
4067 tcp_enter_quickack_mode(sk);
4068 inet_csk_schedule_ack(sk);
4069 drop:
4070 __kfree_skb(skb);
4071 return;
4074 /* Out of window. F.e. zero window probe. */
4075 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4076 goto out_of_window;
4078 tcp_enter_quickack_mode(sk);
4080 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4081 /* Partial packet, seq < rcv_next < end_seq */
4082 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4083 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4084 TCP_SKB_CB(skb)->end_seq);
4086 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4088 /* If window is closed, drop tail of packet. But after
4089 * remembering D-SACK for its head made in previous line.
4091 if (!tcp_receive_window(tp))
4092 goto out_of_window;
4093 goto queue_and_out;
4096 TCP_ECN_check_ce(tp, skb);
4098 if (tcp_try_rmem_schedule(sk, skb->truesize))
4099 goto drop;
4101 /* Disable header prediction. */
4102 tp->pred_flags = 0;
4103 inet_csk_schedule_ack(sk);
4105 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4106 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4108 skb_set_owner_r(skb, sk);
4110 if (!skb_peek(&tp->out_of_order_queue)) {
4111 /* Initial out of order segment, build 1 SACK. */
4112 if (tcp_is_sack(tp)) {
4113 tp->rx_opt.num_sacks = 1;
4114 tp->rx_opt.dsack = 0;
4115 tp->rx_opt.eff_sacks = 1;
4116 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4117 tp->selective_acks[0].end_seq =
4118 TCP_SKB_CB(skb)->end_seq;
4120 __skb_queue_head(&tp->out_of_order_queue, skb);
4121 } else {
4122 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4123 u32 seq = TCP_SKB_CB(skb)->seq;
4124 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4126 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4127 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4129 if (!tp->rx_opt.num_sacks ||
4130 tp->selective_acks[0].end_seq != seq)
4131 goto add_sack;
4133 /* Common case: data arrive in order after hole. */
4134 tp->selective_acks[0].end_seq = end_seq;
4135 return;
4138 /* Find place to insert this segment. */
4139 do {
4140 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4141 break;
4142 } while ((skb1 = skb1->prev) !=
4143 (struct sk_buff *)&tp->out_of_order_queue);
4145 /* Do skb overlap to previous one? */
4146 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4147 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4148 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4149 /* All the bits are present. Drop. */
4150 __kfree_skb(skb);
4151 tcp_dsack_set(sk, seq, end_seq);
4152 goto add_sack;
4154 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4155 /* Partial overlap. */
4156 tcp_dsack_set(sk, seq,
4157 TCP_SKB_CB(skb1)->end_seq);
4158 } else {
4159 skb1 = skb1->prev;
4162 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4164 /* And clean segments covered by new one as whole. */
4165 while ((skb1 = skb->next) !=
4166 (struct sk_buff *)&tp->out_of_order_queue &&
4167 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4168 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4169 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4170 end_seq);
4171 break;
4173 __skb_unlink(skb1, &tp->out_of_order_queue);
4174 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4175 TCP_SKB_CB(skb1)->end_seq);
4176 __kfree_skb(skb1);
4179 add_sack:
4180 if (tcp_is_sack(tp))
4181 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4185 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4186 struct sk_buff_head *list)
4188 struct sk_buff *next = skb->next;
4190 __skb_unlink(skb, list);
4191 __kfree_skb(skb);
4192 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4194 return next;
4197 /* Collapse contiguous sequence of skbs head..tail with
4198 * sequence numbers start..end.
4199 * Segments with FIN/SYN are not collapsed (only because this
4200 * simplifies code)
4202 static void
4203 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4204 struct sk_buff *head, struct sk_buff *tail,
4205 u32 start, u32 end)
4207 struct sk_buff *skb;
4209 /* First, check that queue is collapsible and find
4210 * the point where collapsing can be useful. */
4211 for (skb = head; skb != tail;) {
4212 /* No new bits? It is possible on ofo queue. */
4213 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4214 skb = tcp_collapse_one(sk, skb, list);
4215 continue;
4218 /* The first skb to collapse is:
4219 * - not SYN/FIN and
4220 * - bloated or contains data before "start" or
4221 * overlaps to the next one.
4223 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4224 (tcp_win_from_space(skb->truesize) > skb->len ||
4225 before(TCP_SKB_CB(skb)->seq, start) ||
4226 (skb->next != tail &&
4227 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4228 break;
4230 /* Decided to skip this, advance start seq. */
4231 start = TCP_SKB_CB(skb)->end_seq;
4232 skb = skb->next;
4234 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4235 return;
4237 while (before(start, end)) {
4238 struct sk_buff *nskb;
4239 unsigned int header = skb_headroom(skb);
4240 int copy = SKB_MAX_ORDER(header, 0);
4242 /* Too big header? This can happen with IPv6. */
4243 if (copy < 0)
4244 return;
4245 if (end - start < copy)
4246 copy = end - start;
4247 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4248 if (!nskb)
4249 return;
4251 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4252 skb_set_network_header(nskb, (skb_network_header(skb) -
4253 skb->head));
4254 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4255 skb->head));
4256 skb_reserve(nskb, header);
4257 memcpy(nskb->head, skb->head, header);
4258 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4259 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4260 __skb_queue_before(list, skb, nskb);
4261 skb_set_owner_r(nskb, sk);
4263 /* Copy data, releasing collapsed skbs. */
4264 while (copy > 0) {
4265 int offset = start - TCP_SKB_CB(skb)->seq;
4266 int size = TCP_SKB_CB(skb)->end_seq - start;
4268 BUG_ON(offset < 0);
4269 if (size > 0) {
4270 size = min(copy, size);
4271 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4272 BUG();
4273 TCP_SKB_CB(nskb)->end_seq += size;
4274 copy -= size;
4275 start += size;
4277 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4278 skb = tcp_collapse_one(sk, skb, list);
4279 if (skb == tail ||
4280 tcp_hdr(skb)->syn ||
4281 tcp_hdr(skb)->fin)
4282 return;
4288 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4289 * and tcp_collapse() them until all the queue is collapsed.
4291 static void tcp_collapse_ofo_queue(struct sock *sk)
4293 struct tcp_sock *tp = tcp_sk(sk);
4294 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4295 struct sk_buff *head;
4296 u32 start, end;
4298 if (skb == NULL)
4299 return;
4301 start = TCP_SKB_CB(skb)->seq;
4302 end = TCP_SKB_CB(skb)->end_seq;
4303 head = skb;
4305 for (;;) {
4306 skb = skb->next;
4308 /* Segment is terminated when we see gap or when
4309 * we are at the end of all the queue. */
4310 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4311 after(TCP_SKB_CB(skb)->seq, end) ||
4312 before(TCP_SKB_CB(skb)->end_seq, start)) {
4313 tcp_collapse(sk, &tp->out_of_order_queue,
4314 head, skb, start, end);
4315 head = skb;
4316 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4317 break;
4318 /* Start new segment */
4319 start = TCP_SKB_CB(skb)->seq;
4320 end = TCP_SKB_CB(skb)->end_seq;
4321 } else {
4322 if (before(TCP_SKB_CB(skb)->seq, start))
4323 start = TCP_SKB_CB(skb)->seq;
4324 if (after(TCP_SKB_CB(skb)->end_seq, end))
4325 end = TCP_SKB_CB(skb)->end_seq;
4331 * Purge the out-of-order queue.
4332 * Return true if queue was pruned.
4334 static int tcp_prune_ofo_queue(struct sock *sk)
4336 struct tcp_sock *tp = tcp_sk(sk);
4337 int res = 0;
4339 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4340 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4341 __skb_queue_purge(&tp->out_of_order_queue);
4343 /* Reset SACK state. A conforming SACK implementation will
4344 * do the same at a timeout based retransmit. When a connection
4345 * is in a sad state like this, we care only about integrity
4346 * of the connection not performance.
4348 if (tp->rx_opt.sack_ok)
4349 tcp_sack_reset(&tp->rx_opt);
4350 sk_mem_reclaim(sk);
4351 res = 1;
4353 return res;
4356 /* Reduce allocated memory if we can, trying to get
4357 * the socket within its memory limits again.
4359 * Return less than zero if we should start dropping frames
4360 * until the socket owning process reads some of the data
4361 * to stabilize the situation.
4363 static int tcp_prune_queue(struct sock *sk)
4365 struct tcp_sock *tp = tcp_sk(sk);
4367 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4369 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4371 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4372 tcp_clamp_window(sk);
4373 else if (tcp_memory_pressure)
4374 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4376 tcp_collapse_ofo_queue(sk);
4377 tcp_collapse(sk, &sk->sk_receive_queue,
4378 sk->sk_receive_queue.next,
4379 (struct sk_buff *)&sk->sk_receive_queue,
4380 tp->copied_seq, tp->rcv_nxt);
4381 sk_mem_reclaim(sk);
4383 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4384 return 0;
4386 /* Collapsing did not help, destructive actions follow.
4387 * This must not ever occur. */
4389 tcp_prune_ofo_queue(sk);
4391 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4392 return 0;
4394 /* If we are really being abused, tell the caller to silently
4395 * drop receive data on the floor. It will get retransmitted
4396 * and hopefully then we'll have sufficient space.
4398 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4400 /* Massive buffer overcommit. */
4401 tp->pred_flags = 0;
4402 return -1;
4405 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4406 * As additional protections, we do not touch cwnd in retransmission phases,
4407 * and if application hit its sndbuf limit recently.
4409 void tcp_cwnd_application_limited(struct sock *sk)
4411 struct tcp_sock *tp = tcp_sk(sk);
4413 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4414 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4415 /* Limited by application or receiver window. */
4416 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4417 u32 win_used = max(tp->snd_cwnd_used, init_win);
4418 if (win_used < tp->snd_cwnd) {
4419 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4420 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4422 tp->snd_cwnd_used = 0;
4424 tp->snd_cwnd_stamp = tcp_time_stamp;
4427 static int tcp_should_expand_sndbuf(struct sock *sk)
4429 struct tcp_sock *tp = tcp_sk(sk);
4431 /* If the user specified a specific send buffer setting, do
4432 * not modify it.
4434 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4435 return 0;
4437 /* If we are under global TCP memory pressure, do not expand. */
4438 if (tcp_memory_pressure)
4439 return 0;
4441 /* If we are under soft global TCP memory pressure, do not expand. */
4442 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4443 return 0;
4445 /* If we filled the congestion window, do not expand. */
4446 if (tp->packets_out >= tp->snd_cwnd)
4447 return 0;
4449 return 1;
4452 /* When incoming ACK allowed to free some skb from write_queue,
4453 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4454 * on the exit from tcp input handler.
4456 * PROBLEM: sndbuf expansion does not work well with largesend.
4458 static void tcp_new_space(struct sock *sk)
4460 struct tcp_sock *tp = tcp_sk(sk);
4462 if (tcp_should_expand_sndbuf(sk)) {
4463 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4464 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4465 int demanded = max_t(unsigned int, tp->snd_cwnd,
4466 tp->reordering + 1);
4467 sndmem *= 2 * demanded;
4468 if (sndmem > sk->sk_sndbuf)
4469 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4470 tp->snd_cwnd_stamp = tcp_time_stamp;
4473 sk->sk_write_space(sk);
4476 static void tcp_check_space(struct sock *sk)
4478 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4479 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4480 if (sk->sk_socket &&
4481 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4482 tcp_new_space(sk);
4486 static inline void tcp_data_snd_check(struct sock *sk)
4488 tcp_push_pending_frames(sk);
4489 tcp_check_space(sk);
4493 * Check if sending an ack is needed.
4495 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4497 struct tcp_sock *tp = tcp_sk(sk);
4499 /* More than one full frame received... */
4500 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4501 /* ... and right edge of window advances far enough.
4502 * (tcp_recvmsg() will send ACK otherwise). Or...
4504 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4505 /* We ACK each frame or... */
4506 tcp_in_quickack_mode(sk) ||
4507 /* We have out of order data. */
4508 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4509 /* Then ack it now */
4510 tcp_send_ack(sk);
4511 } else {
4512 /* Else, send delayed ack. */
4513 tcp_send_delayed_ack(sk);
4517 static inline void tcp_ack_snd_check(struct sock *sk)
4519 if (!inet_csk_ack_scheduled(sk)) {
4520 /* We sent a data segment already. */
4521 return;
4523 __tcp_ack_snd_check(sk, 1);
4527 * This routine is only called when we have urgent data
4528 * signaled. Its the 'slow' part of tcp_urg. It could be
4529 * moved inline now as tcp_urg is only called from one
4530 * place. We handle URGent data wrong. We have to - as
4531 * BSD still doesn't use the correction from RFC961.
4532 * For 1003.1g we should support a new option TCP_STDURG to permit
4533 * either form (or just set the sysctl tcp_stdurg).
4536 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4538 struct tcp_sock *tp = tcp_sk(sk);
4539 u32 ptr = ntohs(th->urg_ptr);
4541 if (ptr && !sysctl_tcp_stdurg)
4542 ptr--;
4543 ptr += ntohl(th->seq);
4545 /* Ignore urgent data that we've already seen and read. */
4546 if (after(tp->copied_seq, ptr))
4547 return;
4549 /* Do not replay urg ptr.
4551 * NOTE: interesting situation not covered by specs.
4552 * Misbehaving sender may send urg ptr, pointing to segment,
4553 * which we already have in ofo queue. We are not able to fetch
4554 * such data and will stay in TCP_URG_NOTYET until will be eaten
4555 * by recvmsg(). Seems, we are not obliged to handle such wicked
4556 * situations. But it is worth to think about possibility of some
4557 * DoSes using some hypothetical application level deadlock.
4559 if (before(ptr, tp->rcv_nxt))
4560 return;
4562 /* Do we already have a newer (or duplicate) urgent pointer? */
4563 if (tp->urg_data && !after(ptr, tp->urg_seq))
4564 return;
4566 /* Tell the world about our new urgent pointer. */
4567 sk_send_sigurg(sk);
4569 /* We may be adding urgent data when the last byte read was
4570 * urgent. To do this requires some care. We cannot just ignore
4571 * tp->copied_seq since we would read the last urgent byte again
4572 * as data, nor can we alter copied_seq until this data arrives
4573 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4575 * NOTE. Double Dutch. Rendering to plain English: author of comment
4576 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4577 * and expect that both A and B disappear from stream. This is _wrong_.
4578 * Though this happens in BSD with high probability, this is occasional.
4579 * Any application relying on this is buggy. Note also, that fix "works"
4580 * only in this artificial test. Insert some normal data between A and B and we will
4581 * decline of BSD again. Verdict: it is better to remove to trap
4582 * buggy users.
4584 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4585 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4586 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4587 tp->copied_seq++;
4588 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4589 __skb_unlink(skb, &sk->sk_receive_queue);
4590 __kfree_skb(skb);
4594 tp->urg_data = TCP_URG_NOTYET;
4595 tp->urg_seq = ptr;
4597 /* Disable header prediction. */
4598 tp->pred_flags = 0;
4601 /* This is the 'fast' part of urgent handling. */
4602 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4604 struct tcp_sock *tp = tcp_sk(sk);
4606 /* Check if we get a new urgent pointer - normally not. */
4607 if (th->urg)
4608 tcp_check_urg(sk, th);
4610 /* Do we wait for any urgent data? - normally not... */
4611 if (tp->urg_data == TCP_URG_NOTYET) {
4612 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4613 th->syn;
4615 /* Is the urgent pointer pointing into this packet? */
4616 if (ptr < skb->len) {
4617 u8 tmp;
4618 if (skb_copy_bits(skb, ptr, &tmp, 1))
4619 BUG();
4620 tp->urg_data = TCP_URG_VALID | tmp;
4621 if (!sock_flag(sk, SOCK_DEAD))
4622 sk->sk_data_ready(sk, 0);
4627 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4629 struct tcp_sock *tp = tcp_sk(sk);
4630 int chunk = skb->len - hlen;
4631 int err;
4633 local_bh_enable();
4634 if (skb_csum_unnecessary(skb))
4635 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4636 else
4637 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4638 tp->ucopy.iov);
4640 if (!err) {
4641 tp->ucopy.len -= chunk;
4642 tp->copied_seq += chunk;
4643 tcp_rcv_space_adjust(sk);
4646 local_bh_disable();
4647 return err;
4650 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4651 struct sk_buff *skb)
4653 __sum16 result;
4655 if (sock_owned_by_user(sk)) {
4656 local_bh_enable();
4657 result = __tcp_checksum_complete(skb);
4658 local_bh_disable();
4659 } else {
4660 result = __tcp_checksum_complete(skb);
4662 return result;
4665 static inline int tcp_checksum_complete_user(struct sock *sk,
4666 struct sk_buff *skb)
4668 return !skb_csum_unnecessary(skb) &&
4669 __tcp_checksum_complete_user(sk, skb);
4672 #ifdef CONFIG_NET_DMA
4673 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4674 int hlen)
4676 struct tcp_sock *tp = tcp_sk(sk);
4677 int chunk = skb->len - hlen;
4678 int dma_cookie;
4679 int copied_early = 0;
4681 if (tp->ucopy.wakeup)
4682 return 0;
4684 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4685 tp->ucopy.dma_chan = get_softnet_dma();
4687 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4689 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4690 skb, hlen,
4691 tp->ucopy.iov, chunk,
4692 tp->ucopy.pinned_list);
4694 if (dma_cookie < 0)
4695 goto out;
4697 tp->ucopy.dma_cookie = dma_cookie;
4698 copied_early = 1;
4700 tp->ucopy.len -= chunk;
4701 tp->copied_seq += chunk;
4702 tcp_rcv_space_adjust(sk);
4704 if ((tp->ucopy.len == 0) ||
4705 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4706 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4707 tp->ucopy.wakeup = 1;
4708 sk->sk_data_ready(sk, 0);
4710 } else if (chunk > 0) {
4711 tp->ucopy.wakeup = 1;
4712 sk->sk_data_ready(sk, 0);
4714 out:
4715 return copied_early;
4717 #endif /* CONFIG_NET_DMA */
4719 /* Does PAWS and seqno based validation of an incoming segment, flags will
4720 * play significant role here.
4722 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4723 struct tcphdr *th, int syn_inerr)
4725 struct tcp_sock *tp = tcp_sk(sk);
4727 /* RFC1323: H1. Apply PAWS check first. */
4728 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4729 tcp_paws_discard(sk, skb)) {
4730 if (!th->rst) {
4731 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4732 tcp_send_dupack(sk, skb);
4733 goto discard;
4735 /* Reset is accepted even if it did not pass PAWS. */
4738 /* Step 1: check sequence number */
4739 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4740 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4741 * (RST) segments are validated by checking their SEQ-fields."
4742 * And page 69: "If an incoming segment is not acceptable,
4743 * an acknowledgment should be sent in reply (unless the RST
4744 * bit is set, if so drop the segment and return)".
4746 if (!th->rst)
4747 tcp_send_dupack(sk, skb);
4748 goto discard;
4751 /* Step 2: check RST bit */
4752 if (th->rst) {
4753 tcp_reset(sk);
4754 goto discard;
4757 /* ts_recent update must be made after we are sure that the packet
4758 * is in window.
4760 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4762 /* step 3: check security and precedence [ignored] */
4764 /* step 4: Check for a SYN in window. */
4765 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4766 if (syn_inerr)
4767 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4769 tcp_reset(sk);
4770 return -1;
4773 return 1;
4775 discard:
4776 __kfree_skb(skb);
4777 return 0;
4781 * TCP receive function for the ESTABLISHED state.
4783 * It is split into a fast path and a slow path. The fast path is
4784 * disabled when:
4785 * - A zero window was announced from us - zero window probing
4786 * is only handled properly in the slow path.
4787 * - Out of order segments arrived.
4788 * - Urgent data is expected.
4789 * - There is no buffer space left
4790 * - Unexpected TCP flags/window values/header lengths are received
4791 * (detected by checking the TCP header against pred_flags)
4792 * - Data is sent in both directions. Fast path only supports pure senders
4793 * or pure receivers (this means either the sequence number or the ack
4794 * value must stay constant)
4795 * - Unexpected TCP option.
4797 * When these conditions are not satisfied it drops into a standard
4798 * receive procedure patterned after RFC793 to handle all cases.
4799 * The first three cases are guaranteed by proper pred_flags setting,
4800 * the rest is checked inline. Fast processing is turned on in
4801 * tcp_data_queue when everything is OK.
4803 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4804 struct tcphdr *th, unsigned len)
4806 struct tcp_sock *tp = tcp_sk(sk);
4807 int res;
4810 * Header prediction.
4811 * The code loosely follows the one in the famous
4812 * "30 instruction TCP receive" Van Jacobson mail.
4814 * Van's trick is to deposit buffers into socket queue
4815 * on a device interrupt, to call tcp_recv function
4816 * on the receive process context and checksum and copy
4817 * the buffer to user space. smart...
4819 * Our current scheme is not silly either but we take the
4820 * extra cost of the net_bh soft interrupt processing...
4821 * We do checksum and copy also but from device to kernel.
4824 tp->rx_opt.saw_tstamp = 0;
4826 /* pred_flags is 0xS?10 << 16 + snd_wnd
4827 * if header_prediction is to be made
4828 * 'S' will always be tp->tcp_header_len >> 2
4829 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4830 * turn it off (when there are holes in the receive
4831 * space for instance)
4832 * PSH flag is ignored.
4835 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4836 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4837 int tcp_header_len = tp->tcp_header_len;
4839 /* Timestamp header prediction: tcp_header_len
4840 * is automatically equal to th->doff*4 due to pred_flags
4841 * match.
4844 /* Check timestamp */
4845 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4846 /* No? Slow path! */
4847 if (!tcp_parse_aligned_timestamp(tp, th))
4848 goto slow_path;
4850 /* If PAWS failed, check it more carefully in slow path */
4851 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4852 goto slow_path;
4854 /* DO NOT update ts_recent here, if checksum fails
4855 * and timestamp was corrupted part, it will result
4856 * in a hung connection since we will drop all
4857 * future packets due to the PAWS test.
4861 if (len <= tcp_header_len) {
4862 /* Bulk data transfer: sender */
4863 if (len == tcp_header_len) {
4864 /* Predicted packet is in window by definition.
4865 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4866 * Hence, check seq<=rcv_wup reduces to:
4868 if (tcp_header_len ==
4869 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4870 tp->rcv_nxt == tp->rcv_wup)
4871 tcp_store_ts_recent(tp);
4873 /* We know that such packets are checksummed
4874 * on entry.
4876 tcp_ack(sk, skb, 0);
4877 __kfree_skb(skb);
4878 tcp_data_snd_check(sk);
4879 return 0;
4880 } else { /* Header too small */
4881 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4882 goto discard;
4884 } else {
4885 int eaten = 0;
4886 int copied_early = 0;
4888 if (tp->copied_seq == tp->rcv_nxt &&
4889 len - tcp_header_len <= tp->ucopy.len) {
4890 #ifdef CONFIG_NET_DMA
4891 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4892 copied_early = 1;
4893 eaten = 1;
4895 #endif
4896 if (tp->ucopy.task == current &&
4897 sock_owned_by_user(sk) && !copied_early) {
4898 __set_current_state(TASK_RUNNING);
4900 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4901 eaten = 1;
4903 if (eaten) {
4904 /* Predicted packet is in window by definition.
4905 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4906 * Hence, check seq<=rcv_wup reduces to:
4908 if (tcp_header_len ==
4909 (sizeof(struct tcphdr) +
4910 TCPOLEN_TSTAMP_ALIGNED) &&
4911 tp->rcv_nxt == tp->rcv_wup)
4912 tcp_store_ts_recent(tp);
4914 tcp_rcv_rtt_measure_ts(sk, skb);
4916 __skb_pull(skb, tcp_header_len);
4917 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4918 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4920 if (copied_early)
4921 tcp_cleanup_rbuf(sk, skb->len);
4923 if (!eaten) {
4924 if (tcp_checksum_complete_user(sk, skb))
4925 goto csum_error;
4927 /* Predicted packet is in window by definition.
4928 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4929 * Hence, check seq<=rcv_wup reduces to:
4931 if (tcp_header_len ==
4932 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4933 tp->rcv_nxt == tp->rcv_wup)
4934 tcp_store_ts_recent(tp);
4936 tcp_rcv_rtt_measure_ts(sk, skb);
4938 if ((int)skb->truesize > sk->sk_forward_alloc)
4939 goto step5;
4941 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4943 /* Bulk data transfer: receiver */
4944 __skb_pull(skb, tcp_header_len);
4945 __skb_queue_tail(&sk->sk_receive_queue, skb);
4946 skb_set_owner_r(skb, sk);
4947 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4950 tcp_event_data_recv(sk, skb);
4952 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4953 /* Well, only one small jumplet in fast path... */
4954 tcp_ack(sk, skb, FLAG_DATA);
4955 tcp_data_snd_check(sk);
4956 if (!inet_csk_ack_scheduled(sk))
4957 goto no_ack;
4960 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
4961 __tcp_ack_snd_check(sk, 0);
4962 no_ack:
4963 #ifdef CONFIG_NET_DMA
4964 if (copied_early)
4965 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4966 else
4967 #endif
4968 if (eaten)
4969 __kfree_skb(skb);
4970 else
4971 sk->sk_data_ready(sk, 0);
4972 return 0;
4976 slow_path:
4977 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4978 goto csum_error;
4981 * Standard slow path.
4984 res = tcp_validate_incoming(sk, skb, th, 1);
4985 if (res <= 0)
4986 return -res;
4988 step5:
4989 if (th->ack)
4990 tcp_ack(sk, skb, FLAG_SLOWPATH);
4992 tcp_rcv_rtt_measure_ts(sk, skb);
4994 /* Process urgent data. */
4995 tcp_urg(sk, skb, th);
4997 /* step 7: process the segment text */
4998 tcp_data_queue(sk, skb);
5000 tcp_data_snd_check(sk);
5001 tcp_ack_snd_check(sk);
5002 return 0;
5004 csum_error:
5005 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5007 discard:
5008 __kfree_skb(skb);
5009 return 0;
5012 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5013 struct tcphdr *th, unsigned len)
5015 struct tcp_sock *tp = tcp_sk(sk);
5016 struct inet_connection_sock *icsk = inet_csk(sk);
5017 int saved_clamp = tp->rx_opt.mss_clamp;
5019 tcp_parse_options(skb, &tp->rx_opt, 0);
5021 if (th->ack) {
5022 /* rfc793:
5023 * "If the state is SYN-SENT then
5024 * first check the ACK bit
5025 * If the ACK bit is set
5026 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5027 * a reset (unless the RST bit is set, if so drop
5028 * the segment and return)"
5030 * We do not send data with SYN, so that RFC-correct
5031 * test reduces to:
5033 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5034 goto reset_and_undo;
5036 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5037 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5038 tcp_time_stamp)) {
5039 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5040 goto reset_and_undo;
5043 /* Now ACK is acceptable.
5045 * "If the RST bit is set
5046 * If the ACK was acceptable then signal the user "error:
5047 * connection reset", drop the segment, enter CLOSED state,
5048 * delete TCB, and return."
5051 if (th->rst) {
5052 tcp_reset(sk);
5053 goto discard;
5056 /* rfc793:
5057 * "fifth, if neither of the SYN or RST bits is set then
5058 * drop the segment and return."
5060 * See note below!
5061 * --ANK(990513)
5063 if (!th->syn)
5064 goto discard_and_undo;
5066 /* rfc793:
5067 * "If the SYN bit is on ...
5068 * are acceptable then ...
5069 * (our SYN has been ACKed), change the connection
5070 * state to ESTABLISHED..."
5073 TCP_ECN_rcv_synack(tp, th);
5075 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5076 tcp_ack(sk, skb, FLAG_SLOWPATH);
5078 /* Ok.. it's good. Set up sequence numbers and
5079 * move to established.
5081 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5082 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5084 /* RFC1323: The window in SYN & SYN/ACK segments is
5085 * never scaled.
5087 tp->snd_wnd = ntohs(th->window);
5088 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5090 if (!tp->rx_opt.wscale_ok) {
5091 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5092 tp->window_clamp = min(tp->window_clamp, 65535U);
5095 if (tp->rx_opt.saw_tstamp) {
5096 tp->rx_opt.tstamp_ok = 1;
5097 tp->tcp_header_len =
5098 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5099 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5100 tcp_store_ts_recent(tp);
5101 } else {
5102 tp->tcp_header_len = sizeof(struct tcphdr);
5105 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5106 tcp_enable_fack(tp);
5108 tcp_mtup_init(sk);
5109 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5110 tcp_initialize_rcv_mss(sk);
5112 /* Remember, tcp_poll() does not lock socket!
5113 * Change state from SYN-SENT only after copied_seq
5114 * is initialized. */
5115 tp->copied_seq = tp->rcv_nxt;
5116 smp_mb();
5117 tcp_set_state(sk, TCP_ESTABLISHED);
5119 security_inet_conn_established(sk, skb);
5121 /* Make sure socket is routed, for correct metrics. */
5122 icsk->icsk_af_ops->rebuild_header(sk);
5124 tcp_init_metrics(sk);
5126 tcp_init_congestion_control(sk);
5128 /* Prevent spurious tcp_cwnd_restart() on first data
5129 * packet.
5131 tp->lsndtime = tcp_time_stamp;
5133 tcp_init_buffer_space(sk);
5135 if (sock_flag(sk, SOCK_KEEPOPEN))
5136 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5138 if (!tp->rx_opt.snd_wscale)
5139 __tcp_fast_path_on(tp, tp->snd_wnd);
5140 else
5141 tp->pred_flags = 0;
5143 if (!sock_flag(sk, SOCK_DEAD)) {
5144 sk->sk_state_change(sk);
5145 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5148 if (sk->sk_write_pending ||
5149 icsk->icsk_accept_queue.rskq_defer_accept ||
5150 icsk->icsk_ack.pingpong) {
5151 /* Save one ACK. Data will be ready after
5152 * several ticks, if write_pending is set.
5154 * It may be deleted, but with this feature tcpdumps
5155 * look so _wonderfully_ clever, that I was not able
5156 * to stand against the temptation 8) --ANK
5158 inet_csk_schedule_ack(sk);
5159 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5160 icsk->icsk_ack.ato = TCP_ATO_MIN;
5161 tcp_incr_quickack(sk);
5162 tcp_enter_quickack_mode(sk);
5163 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5164 TCP_DELACK_MAX, TCP_RTO_MAX);
5166 discard:
5167 __kfree_skb(skb);
5168 return 0;
5169 } else {
5170 tcp_send_ack(sk);
5172 return -1;
5175 /* No ACK in the segment */
5177 if (th->rst) {
5178 /* rfc793:
5179 * "If the RST bit is set
5181 * Otherwise (no ACK) drop the segment and return."
5184 goto discard_and_undo;
5187 /* PAWS check. */
5188 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5189 tcp_paws_check(&tp->rx_opt, 0))
5190 goto discard_and_undo;
5192 if (th->syn) {
5193 /* We see SYN without ACK. It is attempt of
5194 * simultaneous connect with crossed SYNs.
5195 * Particularly, it can be connect to self.
5197 tcp_set_state(sk, TCP_SYN_RECV);
5199 if (tp->rx_opt.saw_tstamp) {
5200 tp->rx_opt.tstamp_ok = 1;
5201 tcp_store_ts_recent(tp);
5202 tp->tcp_header_len =
5203 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5204 } else {
5205 tp->tcp_header_len = sizeof(struct tcphdr);
5208 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5209 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5211 /* RFC1323: The window in SYN & SYN/ACK segments is
5212 * never scaled.
5214 tp->snd_wnd = ntohs(th->window);
5215 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5216 tp->max_window = tp->snd_wnd;
5218 TCP_ECN_rcv_syn(tp, th);
5220 tcp_mtup_init(sk);
5221 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5222 tcp_initialize_rcv_mss(sk);
5224 tcp_send_synack(sk);
5225 #if 0
5226 /* Note, we could accept data and URG from this segment.
5227 * There are no obstacles to make this.
5229 * However, if we ignore data in ACKless segments sometimes,
5230 * we have no reasons to accept it sometimes.
5231 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5232 * is not flawless. So, discard packet for sanity.
5233 * Uncomment this return to process the data.
5235 return -1;
5236 #else
5237 goto discard;
5238 #endif
5240 /* "fifth, if neither of the SYN or RST bits is set then
5241 * drop the segment and return."
5244 discard_and_undo:
5245 tcp_clear_options(&tp->rx_opt);
5246 tp->rx_opt.mss_clamp = saved_clamp;
5247 goto discard;
5249 reset_and_undo:
5250 tcp_clear_options(&tp->rx_opt);
5251 tp->rx_opt.mss_clamp = saved_clamp;
5252 return 1;
5256 * This function implements the receiving procedure of RFC 793 for
5257 * all states except ESTABLISHED and TIME_WAIT.
5258 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5259 * address independent.
5262 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5263 struct tcphdr *th, unsigned len)
5265 struct tcp_sock *tp = tcp_sk(sk);
5266 struct inet_connection_sock *icsk = inet_csk(sk);
5267 int queued = 0;
5268 int res;
5270 tp->rx_opt.saw_tstamp = 0;
5272 switch (sk->sk_state) {
5273 case TCP_CLOSE:
5274 goto discard;
5276 case TCP_LISTEN:
5277 if (th->ack)
5278 return 1;
5280 if (th->rst)
5281 goto discard;
5283 if (th->syn) {
5284 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5285 return 1;
5287 /* Now we have several options: In theory there is
5288 * nothing else in the frame. KA9Q has an option to
5289 * send data with the syn, BSD accepts data with the
5290 * syn up to the [to be] advertised window and
5291 * Solaris 2.1 gives you a protocol error. For now
5292 * we just ignore it, that fits the spec precisely
5293 * and avoids incompatibilities. It would be nice in
5294 * future to drop through and process the data.
5296 * Now that TTCP is starting to be used we ought to
5297 * queue this data.
5298 * But, this leaves one open to an easy denial of
5299 * service attack, and SYN cookies can't defend
5300 * against this problem. So, we drop the data
5301 * in the interest of security over speed unless
5302 * it's still in use.
5304 kfree_skb(skb);
5305 return 0;
5307 goto discard;
5309 case TCP_SYN_SENT:
5310 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5311 if (queued >= 0)
5312 return queued;
5314 /* Do step6 onward by hand. */
5315 tcp_urg(sk, skb, th);
5316 __kfree_skb(skb);
5317 tcp_data_snd_check(sk);
5318 return 0;
5321 res = tcp_validate_incoming(sk, skb, th, 0);
5322 if (res <= 0)
5323 return -res;
5325 /* step 5: check the ACK field */
5326 if (th->ack) {
5327 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5329 switch (sk->sk_state) {
5330 case TCP_SYN_RECV:
5331 if (acceptable) {
5332 tp->copied_seq = tp->rcv_nxt;
5333 smp_mb();
5334 tcp_set_state(sk, TCP_ESTABLISHED);
5335 sk->sk_state_change(sk);
5337 /* Note, that this wakeup is only for marginal
5338 * crossed SYN case. Passively open sockets
5339 * are not waked up, because sk->sk_sleep ==
5340 * NULL and sk->sk_socket == NULL.
5342 if (sk->sk_socket)
5343 sk_wake_async(sk,
5344 SOCK_WAKE_IO, POLL_OUT);
5346 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5347 tp->snd_wnd = ntohs(th->window) <<
5348 tp->rx_opt.snd_wscale;
5349 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5350 TCP_SKB_CB(skb)->seq);
5352 /* tcp_ack considers this ACK as duplicate
5353 * and does not calculate rtt.
5354 * Fix it at least with timestamps.
5356 if (tp->rx_opt.saw_tstamp &&
5357 tp->rx_opt.rcv_tsecr && !tp->srtt)
5358 tcp_ack_saw_tstamp(sk, 0);
5360 if (tp->rx_opt.tstamp_ok)
5361 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5363 /* Make sure socket is routed, for
5364 * correct metrics.
5366 icsk->icsk_af_ops->rebuild_header(sk);
5368 tcp_init_metrics(sk);
5370 tcp_init_congestion_control(sk);
5372 /* Prevent spurious tcp_cwnd_restart() on
5373 * first data packet.
5375 tp->lsndtime = tcp_time_stamp;
5377 tcp_mtup_init(sk);
5378 tcp_initialize_rcv_mss(sk);
5379 tcp_init_buffer_space(sk);
5380 tcp_fast_path_on(tp);
5381 } else {
5382 return 1;
5384 break;
5386 case TCP_FIN_WAIT1:
5387 if (tp->snd_una == tp->write_seq) {
5388 tcp_set_state(sk, TCP_FIN_WAIT2);
5389 sk->sk_shutdown |= SEND_SHUTDOWN;
5390 dst_confirm(sk->sk_dst_cache);
5392 if (!sock_flag(sk, SOCK_DEAD))
5393 /* Wake up lingering close() */
5394 sk->sk_state_change(sk);
5395 else {
5396 int tmo;
5398 if (tp->linger2 < 0 ||
5399 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5400 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5401 tcp_done(sk);
5402 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5403 return 1;
5406 tmo = tcp_fin_time(sk);
5407 if (tmo > TCP_TIMEWAIT_LEN) {
5408 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5409 } else if (th->fin || sock_owned_by_user(sk)) {
5410 /* Bad case. We could lose such FIN otherwise.
5411 * It is not a big problem, but it looks confusing
5412 * and not so rare event. We still can lose it now,
5413 * if it spins in bh_lock_sock(), but it is really
5414 * marginal case.
5416 inet_csk_reset_keepalive_timer(sk, tmo);
5417 } else {
5418 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5419 goto discard;
5423 break;
5425 case TCP_CLOSING:
5426 if (tp->snd_una == tp->write_seq) {
5427 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5428 goto discard;
5430 break;
5432 case TCP_LAST_ACK:
5433 if (tp->snd_una == tp->write_seq) {
5434 tcp_update_metrics(sk);
5435 tcp_done(sk);
5436 goto discard;
5438 break;
5440 } else
5441 goto discard;
5443 /* step 6: check the URG bit */
5444 tcp_urg(sk, skb, th);
5446 /* step 7: process the segment text */
5447 switch (sk->sk_state) {
5448 case TCP_CLOSE_WAIT:
5449 case TCP_CLOSING:
5450 case TCP_LAST_ACK:
5451 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5452 break;
5453 case TCP_FIN_WAIT1:
5454 case TCP_FIN_WAIT2:
5455 /* RFC 793 says to queue data in these states,
5456 * RFC 1122 says we MUST send a reset.
5457 * BSD 4.4 also does reset.
5459 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5460 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5461 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5462 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5463 tcp_reset(sk);
5464 return 1;
5467 /* Fall through */
5468 case TCP_ESTABLISHED:
5469 tcp_data_queue(sk, skb);
5470 queued = 1;
5471 break;
5474 /* tcp_data could move socket to TIME-WAIT */
5475 if (sk->sk_state != TCP_CLOSE) {
5476 tcp_data_snd_check(sk);
5477 tcp_ack_snd_check(sk);
5480 if (!queued) {
5481 discard:
5482 __kfree_skb(skb);
5484 return 0;
5487 EXPORT_SYMBOL(sysctl_tcp_ecn);
5488 EXPORT_SYMBOL(sysctl_tcp_reordering);
5489 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5490 EXPORT_SYMBOL(tcp_parse_options);
5491 #ifdef CONFIG_TCP_MD5SIG
5492 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5493 #endif
5494 EXPORT_SYMBOL(tcp_rcv_established);
5495 EXPORT_SYMBOL(tcp_rcv_state_process);
5496 EXPORT_SYMBOL(tcp_initialize_rcv_mss);