4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
23 #include <asm/local.h>
27 * The ring buffer header is special. We must manually up keep it.
29 int ring_buffer_print_entry_header(struct trace_seq
*s
)
33 ret
= trace_seq_printf(s
, "# compressed entry header\n");
34 ret
= trace_seq_printf(s
, "\ttype_len : 5 bits\n");
35 ret
= trace_seq_printf(s
, "\ttime_delta : 27 bits\n");
36 ret
= trace_seq_printf(s
, "\tarray : 32 bits\n");
37 ret
= trace_seq_printf(s
, "\n");
38 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING
);
40 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND
);
42 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
62 * Here's some silly ASCII art.
65 * |reader| RING BUFFER
67 * +------+ +---+ +---+ +---+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
94 * +------------------------------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
102 * | New +---+ +---+ +---+
105 * +------------------------------+
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
112 * We will be using cmpxchg soon to make all this lockless.
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
146 RB_BUFFERS_ON_BIT
= 0,
147 RB_BUFFERS_DISABLED_BIT
= 1,
151 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
152 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
155 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160 * tracing_on - enable all tracing buffers
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
165 void tracing_on(void)
167 set_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
169 EXPORT_SYMBOL_GPL(tracing_on
);
172 * tracing_off - turn off all tracing buffers
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
179 void tracing_off(void)
181 clear_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
183 EXPORT_SYMBOL_GPL(tracing_off
);
186 * tracing_off_permanent - permanently disable ring buffers
188 * This function, once called, will disable all ring buffers
191 void tracing_off_permanent(void)
193 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
197 * tracing_is_on - show state of ring buffers enabled
199 int tracing_is_on(void)
201 return ring_buffer_flags
== RB_BUFFERS_ON
;
203 EXPORT_SYMBOL_GPL(tracing_is_on
);
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT 4U
207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT 0
212 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214 # define RB_FORCE_8BYTE_ALIGNMENT 1
215 # define RB_ARCH_ALIGNMENT 8U
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
222 RB_LEN_TIME_EXTEND
= 8,
223 RB_LEN_TIME_STAMP
= 16,
226 #define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
229 static inline int rb_null_event(struct ring_buffer_event
*event
)
231 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
234 static void rb_event_set_padding(struct ring_buffer_event
*event
)
236 /* padding has a NULL time_delta */
237 event
->type_len
= RINGBUF_TYPE_PADDING
;
238 event
->time_delta
= 0;
242 rb_event_data_length(struct ring_buffer_event
*event
)
247 length
= event
->type_len
* RB_ALIGNMENT
;
249 length
= event
->array
[0];
250 return length
+ RB_EVNT_HDR_SIZE
;
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
258 static inline unsigned
259 rb_event_length(struct ring_buffer_event
*event
)
261 switch (event
->type_len
) {
262 case RINGBUF_TYPE_PADDING
:
263 if (rb_null_event(event
))
266 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
268 case RINGBUF_TYPE_TIME_EXTEND
:
269 return RB_LEN_TIME_EXTEND
;
271 case RINGBUF_TYPE_TIME_STAMP
:
272 return RB_LEN_TIME_STAMP
;
274 case RINGBUF_TYPE_DATA
:
275 return rb_event_data_length(event
);
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
287 static inline unsigned
288 rb_event_ts_length(struct ring_buffer_event
*event
)
292 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
293 /* time extends include the data event after it */
294 len
= RB_LEN_TIME_EXTEND
;
295 event
= skip_time_extend(event
);
297 return len
+ rb_event_length(event
);
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
310 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
314 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
315 event
= skip_time_extend(event
);
317 length
= rb_event_length(event
);
318 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
320 length
-= RB_EVNT_HDR_SIZE
;
321 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
322 length
-= sizeof(event
->array
[0]);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
327 /* inline for ring buffer fast paths */
329 rb_event_data(struct ring_buffer_event
*event
)
331 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
332 event
= skip_time_extend(event
);
333 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
334 /* If length is in len field, then array[0] has the data */
336 return (void *)&event
->array
[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event
->array
[1];
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
345 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
347 return rb_event_data(event
);
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
351 #define for_each_buffer_cpu(buffer, cpu) \
352 for_each_cpu(cpu, buffer->cpumask)
355 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST (~TS_MASK)
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS (1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED (1 << 30)
363 struct buffer_data_page
{
364 u64 time_stamp
; /* page time stamp */
365 local_t commit
; /* write committed index */
366 unsigned char data
[]; /* data of buffer page */
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
378 struct list_head list
; /* list of buffer pages */
379 local_t write
; /* index for next write */
380 unsigned read
; /* index for next read */
381 local_t entries
; /* entries on this page */
382 unsigned long real_end
; /* real end of data */
383 struct buffer_data_page
*page
; /* Actual data page */
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
396 * The counter is 20 bits, and the state data is 12.
398 #define RB_WRITE_MASK 0xfffff
399 #define RB_WRITE_INTCNT (1 << 20)
401 static void rb_init_page(struct buffer_data_page
*bpage
)
403 local_set(&bpage
->commit
, 0);
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
410 * Returns the amount of data on the page, including buffer page header.
412 size_t ring_buffer_page_len(void *page
)
414 return local_read(&((struct buffer_data_page
*)page
)->commit
)
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
422 static void free_buffer_page(struct buffer_page
*bpage
)
424 free_page((unsigned long)bpage
->page
);
429 * We need to fit the time_stamp delta into 27 bits.
431 static inline int test_time_stamp(u64 delta
)
433 if (delta
& TS_DELTA_TEST
)
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
443 int ring_buffer_print_page_header(struct trace_seq
*s
)
445 struct buffer_data_page field
;
448 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field
.time_stamp
),
451 (unsigned int)is_signed_type(u64
));
453 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
455 (unsigned int)offsetof(typeof(field
), commit
),
456 (unsigned int)sizeof(field
.commit
),
457 (unsigned int)is_signed_type(long));
459 ret
= trace_seq_printf(s
, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field
), commit
),
463 (unsigned int)is_signed_type(long));
465 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
467 (unsigned int)offsetof(typeof(field
), data
),
468 (unsigned int)BUF_PAGE_SIZE
,
469 (unsigned int)is_signed_type(char));
475 * head_page == tail_page && head == tail then buffer is empty.
477 struct ring_buffer_per_cpu
{
479 atomic_t record_disabled
;
480 struct ring_buffer
*buffer
;
481 spinlock_t reader_lock
; /* serialize readers */
482 arch_spinlock_t lock
;
483 struct lock_class_key lock_key
;
484 struct list_head
*pages
;
485 struct buffer_page
*head_page
; /* read from head */
486 struct buffer_page
*tail_page
; /* write to tail */
487 struct buffer_page
*commit_page
; /* committed pages */
488 struct buffer_page
*reader_page
;
489 unsigned long lost_events
;
490 unsigned long last_overrun
;
491 local_t commit_overrun
;
505 atomic_t record_disabled
;
506 cpumask_var_t cpumask
;
508 struct lock_class_key
*reader_lock_key
;
512 struct ring_buffer_per_cpu
**buffers
;
514 #ifdef CONFIG_HOTPLUG_CPU
515 struct notifier_block cpu_notify
;
520 struct ring_buffer_iter
{
521 struct ring_buffer_per_cpu
*cpu_buffer
;
523 struct buffer_page
*head_page
;
524 struct buffer_page
*cache_reader_page
;
525 unsigned long cache_read
;
529 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
530 #define RB_WARN_ON(b, cond) \
532 int _____ret = unlikely(cond); \
534 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
535 struct ring_buffer_per_cpu *__b = \
537 atomic_inc(&__b->buffer->record_disabled); \
539 atomic_inc(&b->record_disabled); \
545 /* Up this if you want to test the TIME_EXTENTS and normalization */
546 #define DEBUG_SHIFT 0
548 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
550 /* shift to debug/test normalization and TIME_EXTENTS */
551 return buffer
->clock() << DEBUG_SHIFT
;
554 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
558 preempt_disable_notrace();
559 time
= rb_time_stamp(buffer
);
560 preempt_enable_no_resched_notrace();
564 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
566 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
569 /* Just stupid testing the normalize function and deltas */
572 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
575 * Making the ring buffer lockless makes things tricky.
576 * Although writes only happen on the CPU that they are on,
577 * and they only need to worry about interrupts. Reads can
580 * The reader page is always off the ring buffer, but when the
581 * reader finishes with a page, it needs to swap its page with
582 * a new one from the buffer. The reader needs to take from
583 * the head (writes go to the tail). But if a writer is in overwrite
584 * mode and wraps, it must push the head page forward.
586 * Here lies the problem.
588 * The reader must be careful to replace only the head page, and
589 * not another one. As described at the top of the file in the
590 * ASCII art, the reader sets its old page to point to the next
591 * page after head. It then sets the page after head to point to
592 * the old reader page. But if the writer moves the head page
593 * during this operation, the reader could end up with the tail.
595 * We use cmpxchg to help prevent this race. We also do something
596 * special with the page before head. We set the LSB to 1.
598 * When the writer must push the page forward, it will clear the
599 * bit that points to the head page, move the head, and then set
600 * the bit that points to the new head page.
602 * We also don't want an interrupt coming in and moving the head
603 * page on another writer. Thus we use the second LSB to catch
606 * head->list->prev->next bit 1 bit 0
609 * Points to head page 0 1
612 * Note we can not trust the prev pointer of the head page, because:
614 * +----+ +-----+ +-----+
615 * | |------>| T |---X--->| N |
617 * +----+ +-----+ +-----+
620 * +----------| R |----------+ |
624 * Key: ---X--> HEAD flag set in pointer
629 * (see __rb_reserve_next() to see where this happens)
631 * What the above shows is that the reader just swapped out
632 * the reader page with a page in the buffer, but before it
633 * could make the new header point back to the new page added
634 * it was preempted by a writer. The writer moved forward onto
635 * the new page added by the reader and is about to move forward
638 * You can see, it is legitimate for the previous pointer of
639 * the head (or any page) not to point back to itself. But only
643 #define RB_PAGE_NORMAL 0UL
644 #define RB_PAGE_HEAD 1UL
645 #define RB_PAGE_UPDATE 2UL
648 #define RB_FLAG_MASK 3UL
650 /* PAGE_MOVED is not part of the mask */
651 #define RB_PAGE_MOVED 4UL
654 * rb_list_head - remove any bit
656 static struct list_head
*rb_list_head(struct list_head
*list
)
658 unsigned long val
= (unsigned long)list
;
660 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
664 * rb_is_head_page - test if the given page is the head page
666 * Because the reader may move the head_page pointer, we can
667 * not trust what the head page is (it may be pointing to
668 * the reader page). But if the next page is a header page,
669 * its flags will be non zero.
672 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
673 struct buffer_page
*page
, struct list_head
*list
)
677 val
= (unsigned long)list
->next
;
679 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
680 return RB_PAGE_MOVED
;
682 return val
& RB_FLAG_MASK
;
688 * The unique thing about the reader page, is that, if the
689 * writer is ever on it, the previous pointer never points
690 * back to the reader page.
692 static int rb_is_reader_page(struct buffer_page
*page
)
694 struct list_head
*list
= page
->list
.prev
;
696 return rb_list_head(list
->next
) != &page
->list
;
700 * rb_set_list_to_head - set a list_head to be pointing to head.
702 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
703 struct list_head
*list
)
707 ptr
= (unsigned long *)&list
->next
;
708 *ptr
|= RB_PAGE_HEAD
;
709 *ptr
&= ~RB_PAGE_UPDATE
;
713 * rb_head_page_activate - sets up head page
715 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
717 struct buffer_page
*head
;
719 head
= cpu_buffer
->head_page
;
724 * Set the previous list pointer to have the HEAD flag.
726 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
729 static void rb_list_head_clear(struct list_head
*list
)
731 unsigned long *ptr
= (unsigned long *)&list
->next
;
733 *ptr
&= ~RB_FLAG_MASK
;
737 * rb_head_page_dactivate - clears head page ptr (for free list)
740 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
742 struct list_head
*hd
;
744 /* Go through the whole list and clear any pointers found. */
745 rb_list_head_clear(cpu_buffer
->pages
);
747 list_for_each(hd
, cpu_buffer
->pages
)
748 rb_list_head_clear(hd
);
751 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
752 struct buffer_page
*head
,
753 struct buffer_page
*prev
,
754 int old_flag
, int new_flag
)
756 struct list_head
*list
;
757 unsigned long val
= (unsigned long)&head
->list
;
762 val
&= ~RB_FLAG_MASK
;
764 ret
= cmpxchg((unsigned long *)&list
->next
,
765 val
| old_flag
, val
| new_flag
);
767 /* check if the reader took the page */
768 if ((ret
& ~RB_FLAG_MASK
) != val
)
769 return RB_PAGE_MOVED
;
771 return ret
& RB_FLAG_MASK
;
774 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
775 struct buffer_page
*head
,
776 struct buffer_page
*prev
,
779 return rb_head_page_set(cpu_buffer
, head
, prev
,
780 old_flag
, RB_PAGE_UPDATE
);
783 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
784 struct buffer_page
*head
,
785 struct buffer_page
*prev
,
788 return rb_head_page_set(cpu_buffer
, head
, prev
,
789 old_flag
, RB_PAGE_HEAD
);
792 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
793 struct buffer_page
*head
,
794 struct buffer_page
*prev
,
797 return rb_head_page_set(cpu_buffer
, head
, prev
,
798 old_flag
, RB_PAGE_NORMAL
);
801 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
802 struct buffer_page
**bpage
)
804 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
806 *bpage
= list_entry(p
, struct buffer_page
, list
);
809 static struct buffer_page
*
810 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
812 struct buffer_page
*head
;
813 struct buffer_page
*page
;
814 struct list_head
*list
;
817 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
821 list
= cpu_buffer
->pages
;
822 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
825 page
= head
= cpu_buffer
->head_page
;
827 * It is possible that the writer moves the header behind
828 * where we started, and we miss in one loop.
829 * A second loop should grab the header, but we'll do
830 * three loops just because I'm paranoid.
832 for (i
= 0; i
< 3; i
++) {
834 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
835 cpu_buffer
->head_page
= page
;
838 rb_inc_page(cpu_buffer
, &page
);
839 } while (page
!= head
);
842 RB_WARN_ON(cpu_buffer
, 1);
847 static int rb_head_page_replace(struct buffer_page
*old
,
848 struct buffer_page
*new)
850 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
854 val
= *ptr
& ~RB_FLAG_MASK
;
857 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
863 * rb_tail_page_update - move the tail page forward
865 * Returns 1 if moved tail page, 0 if someone else did.
867 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
868 struct buffer_page
*tail_page
,
869 struct buffer_page
*next_page
)
871 struct buffer_page
*old_tail
;
872 unsigned long old_entries
;
873 unsigned long old_write
;
877 * The tail page now needs to be moved forward.
879 * We need to reset the tail page, but without messing
880 * with possible erasing of data brought in by interrupts
881 * that have moved the tail page and are currently on it.
883 * We add a counter to the write field to denote this.
885 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
886 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
889 * Just make sure we have seen our old_write and synchronize
890 * with any interrupts that come in.
895 * If the tail page is still the same as what we think
896 * it is, then it is up to us to update the tail
899 if (tail_page
== cpu_buffer
->tail_page
) {
900 /* Zero the write counter */
901 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
902 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
905 * This will only succeed if an interrupt did
906 * not come in and change it. In which case, we
907 * do not want to modify it.
909 * We add (void) to let the compiler know that we do not care
910 * about the return value of these functions. We use the
911 * cmpxchg to only update if an interrupt did not already
912 * do it for us. If the cmpxchg fails, we don't care.
914 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
915 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
918 * No need to worry about races with clearing out the commit.
919 * it only can increment when a commit takes place. But that
920 * only happens in the outer most nested commit.
922 local_set(&next_page
->page
->commit
, 0);
924 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
925 tail_page
, next_page
);
927 if (old_tail
== tail_page
)
934 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
935 struct buffer_page
*bpage
)
937 unsigned long val
= (unsigned long)bpage
;
939 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
946 * rb_check_list - make sure a pointer to a list has the last bits zero
948 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
949 struct list_head
*list
)
951 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
953 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
959 * check_pages - integrity check of buffer pages
960 * @cpu_buffer: CPU buffer with pages to test
962 * As a safety measure we check to make sure the data pages have not
965 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
967 struct list_head
*head
= cpu_buffer
->pages
;
968 struct buffer_page
*bpage
, *tmp
;
970 rb_head_page_deactivate(cpu_buffer
);
972 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
974 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
977 if (rb_check_list(cpu_buffer
, head
))
980 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
981 if (RB_WARN_ON(cpu_buffer
,
982 bpage
->list
.next
->prev
!= &bpage
->list
))
984 if (RB_WARN_ON(cpu_buffer
,
985 bpage
->list
.prev
->next
!= &bpage
->list
))
987 if (rb_check_list(cpu_buffer
, &bpage
->list
))
991 rb_head_page_activate(cpu_buffer
);
996 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
999 struct buffer_page
*bpage
, *tmp
;
1005 for (i
= 0; i
< nr_pages
; i
++) {
1008 * __GFP_NORETRY flag makes sure that the allocation fails
1009 * gracefully without invoking oom-killer and the system is
1012 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1013 GFP_KERNEL
| __GFP_NORETRY
,
1014 cpu_to_node(cpu_buffer
->cpu
));
1018 rb_check_bpage(cpu_buffer
, bpage
);
1020 list_add(&bpage
->list
, &pages
);
1022 page
= alloc_pages_node(cpu_to_node(cpu_buffer
->cpu
),
1023 GFP_KERNEL
| __GFP_NORETRY
, 0);
1026 bpage
->page
= page_address(page
);
1027 rb_init_page(bpage
->page
);
1031 * The ring buffer page list is a circular list that does not
1032 * start and end with a list head. All page list items point to
1035 cpu_buffer
->pages
= pages
.next
;
1038 rb_check_pages(cpu_buffer
);
1043 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1044 list_del_init(&bpage
->list
);
1045 free_buffer_page(bpage
);
1050 static struct ring_buffer_per_cpu
*
1051 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int cpu
)
1053 struct ring_buffer_per_cpu
*cpu_buffer
;
1054 struct buffer_page
*bpage
;
1058 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1059 GFP_KERNEL
, cpu_to_node(cpu
));
1063 cpu_buffer
->cpu
= cpu
;
1064 cpu_buffer
->buffer
= buffer
;
1065 spin_lock_init(&cpu_buffer
->reader_lock
);
1066 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1067 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1069 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1070 GFP_KERNEL
, cpu_to_node(cpu
));
1072 goto fail_free_buffer
;
1074 rb_check_bpage(cpu_buffer
, bpage
);
1076 cpu_buffer
->reader_page
= bpage
;
1077 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1079 goto fail_free_reader
;
1080 bpage
->page
= page_address(page
);
1081 rb_init_page(bpage
->page
);
1083 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1085 ret
= rb_allocate_pages(cpu_buffer
, buffer
->pages
);
1087 goto fail_free_reader
;
1089 cpu_buffer
->head_page
1090 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1091 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1093 rb_head_page_activate(cpu_buffer
);
1098 free_buffer_page(cpu_buffer
->reader_page
);
1105 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1107 struct list_head
*head
= cpu_buffer
->pages
;
1108 struct buffer_page
*bpage
, *tmp
;
1110 free_buffer_page(cpu_buffer
->reader_page
);
1112 rb_head_page_deactivate(cpu_buffer
);
1115 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1116 list_del_init(&bpage
->list
);
1117 free_buffer_page(bpage
);
1119 bpage
= list_entry(head
, struct buffer_page
, list
);
1120 free_buffer_page(bpage
);
1126 #ifdef CONFIG_HOTPLUG_CPU
1127 static int rb_cpu_notify(struct notifier_block
*self
,
1128 unsigned long action
, void *hcpu
);
1132 * ring_buffer_alloc - allocate a new ring_buffer
1133 * @size: the size in bytes per cpu that is needed.
1134 * @flags: attributes to set for the ring buffer.
1136 * Currently the only flag that is available is the RB_FL_OVERWRITE
1137 * flag. This flag means that the buffer will overwrite old data
1138 * when the buffer wraps. If this flag is not set, the buffer will
1139 * drop data when the tail hits the head.
1141 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1142 struct lock_class_key
*key
)
1144 struct ring_buffer
*buffer
;
1148 /* keep it in its own cache line */
1149 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1154 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1155 goto fail_free_buffer
;
1157 buffer
->pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1158 buffer
->flags
= flags
;
1159 buffer
->clock
= trace_clock_local
;
1160 buffer
->reader_lock_key
= key
;
1162 /* need at least two pages */
1163 if (buffer
->pages
< 2)
1167 * In case of non-hotplug cpu, if the ring-buffer is allocated
1168 * in early initcall, it will not be notified of secondary cpus.
1169 * In that off case, we need to allocate for all possible cpus.
1171 #ifdef CONFIG_HOTPLUG_CPU
1173 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1175 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1177 buffer
->cpus
= nr_cpu_ids
;
1179 bsize
= sizeof(void *) * nr_cpu_ids
;
1180 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1182 if (!buffer
->buffers
)
1183 goto fail_free_cpumask
;
1185 for_each_buffer_cpu(buffer
, cpu
) {
1186 buffer
->buffers
[cpu
] =
1187 rb_allocate_cpu_buffer(buffer
, cpu
);
1188 if (!buffer
->buffers
[cpu
])
1189 goto fail_free_buffers
;
1192 #ifdef CONFIG_HOTPLUG_CPU
1193 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1194 buffer
->cpu_notify
.priority
= 0;
1195 register_cpu_notifier(&buffer
->cpu_notify
);
1199 mutex_init(&buffer
->mutex
);
1204 for_each_buffer_cpu(buffer
, cpu
) {
1205 if (buffer
->buffers
[cpu
])
1206 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1208 kfree(buffer
->buffers
);
1211 free_cpumask_var(buffer
->cpumask
);
1218 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1221 * ring_buffer_free - free a ring buffer.
1222 * @buffer: the buffer to free.
1225 ring_buffer_free(struct ring_buffer
*buffer
)
1231 #ifdef CONFIG_HOTPLUG_CPU
1232 unregister_cpu_notifier(&buffer
->cpu_notify
);
1235 for_each_buffer_cpu(buffer
, cpu
)
1236 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1240 kfree(buffer
->buffers
);
1241 free_cpumask_var(buffer
->cpumask
);
1245 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1247 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1250 buffer
->clock
= clock
;
1253 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1256 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned nr_pages
)
1258 struct buffer_page
*bpage
;
1259 struct list_head
*p
;
1262 spin_lock_irq(&cpu_buffer
->reader_lock
);
1263 rb_head_page_deactivate(cpu_buffer
);
1265 for (i
= 0; i
< nr_pages
; i
++) {
1266 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1268 p
= cpu_buffer
->pages
->next
;
1269 bpage
= list_entry(p
, struct buffer_page
, list
);
1270 list_del_init(&bpage
->list
);
1271 free_buffer_page(bpage
);
1273 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1276 rb_reset_cpu(cpu_buffer
);
1277 rb_check_pages(cpu_buffer
);
1280 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1284 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1285 struct list_head
*pages
, unsigned nr_pages
)
1287 struct buffer_page
*bpage
;
1288 struct list_head
*p
;
1291 spin_lock_irq(&cpu_buffer
->reader_lock
);
1292 rb_head_page_deactivate(cpu_buffer
);
1294 for (i
= 0; i
< nr_pages
; i
++) {
1295 if (RB_WARN_ON(cpu_buffer
, list_empty(pages
)))
1298 bpage
= list_entry(p
, struct buffer_page
, list
);
1299 list_del_init(&bpage
->list
);
1300 list_add_tail(&bpage
->list
, cpu_buffer
->pages
);
1302 rb_reset_cpu(cpu_buffer
);
1303 rb_check_pages(cpu_buffer
);
1306 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1310 * ring_buffer_resize - resize the ring buffer
1311 * @buffer: the buffer to resize.
1312 * @size: the new size.
1314 * Minimum size is 2 * BUF_PAGE_SIZE.
1316 * Returns -1 on failure.
1318 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
)
1320 struct ring_buffer_per_cpu
*cpu_buffer
;
1321 unsigned nr_pages
, rm_pages
, new_pages
;
1322 struct buffer_page
*bpage
, *tmp
;
1323 unsigned long buffer_size
;
1328 * Always succeed at resizing a non-existent buffer:
1333 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1334 size
*= BUF_PAGE_SIZE
;
1335 buffer_size
= buffer
->pages
* BUF_PAGE_SIZE
;
1337 /* we need a minimum of two pages */
1338 if (size
< BUF_PAGE_SIZE
* 2)
1339 size
= BUF_PAGE_SIZE
* 2;
1341 if (size
== buffer_size
)
1344 atomic_inc(&buffer
->record_disabled
);
1346 /* Make sure all writers are done with this buffer. */
1347 synchronize_sched();
1349 mutex_lock(&buffer
->mutex
);
1352 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1354 if (size
< buffer_size
) {
1356 /* easy case, just free pages */
1357 if (RB_WARN_ON(buffer
, nr_pages
>= buffer
->pages
))
1360 rm_pages
= buffer
->pages
- nr_pages
;
1362 for_each_buffer_cpu(buffer
, cpu
) {
1363 cpu_buffer
= buffer
->buffers
[cpu
];
1364 rb_remove_pages(cpu_buffer
, rm_pages
);
1370 * This is a bit more difficult. We only want to add pages
1371 * when we can allocate enough for all CPUs. We do this
1372 * by allocating all the pages and storing them on a local
1373 * link list. If we succeed in our allocation, then we
1374 * add these pages to the cpu_buffers. Otherwise we just free
1375 * them all and return -ENOMEM;
1377 if (RB_WARN_ON(buffer
, nr_pages
<= buffer
->pages
))
1380 new_pages
= nr_pages
- buffer
->pages
;
1382 for_each_buffer_cpu(buffer
, cpu
) {
1383 for (i
= 0; i
< new_pages
; i
++) {
1386 * __GFP_NORETRY flag makes sure that the allocation
1387 * fails gracefully without invoking oom-killer and
1388 * the system is not destabilized.
1390 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
),
1392 GFP_KERNEL
| __GFP_NORETRY
,
1396 list_add(&bpage
->list
, &pages
);
1397 page
= alloc_pages_node(cpu_to_node(cpu
),
1398 GFP_KERNEL
| __GFP_NORETRY
, 0);
1401 bpage
->page
= page_address(page
);
1402 rb_init_page(bpage
->page
);
1406 for_each_buffer_cpu(buffer
, cpu
) {
1407 cpu_buffer
= buffer
->buffers
[cpu
];
1408 rb_insert_pages(cpu_buffer
, &pages
, new_pages
);
1411 if (RB_WARN_ON(buffer
, !list_empty(&pages
)))
1415 buffer
->pages
= nr_pages
;
1417 mutex_unlock(&buffer
->mutex
);
1419 atomic_dec(&buffer
->record_disabled
);
1424 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1425 list_del_init(&bpage
->list
);
1426 free_buffer_page(bpage
);
1429 mutex_unlock(&buffer
->mutex
);
1430 atomic_dec(&buffer
->record_disabled
);
1434 * Something went totally wrong, and we are too paranoid
1435 * to even clean up the mess.
1439 mutex_unlock(&buffer
->mutex
);
1440 atomic_dec(&buffer
->record_disabled
);
1443 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1445 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1447 mutex_lock(&buffer
->mutex
);
1449 buffer
->flags
|= RB_FL_OVERWRITE
;
1451 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1452 mutex_unlock(&buffer
->mutex
);
1454 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1456 static inline void *
1457 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1459 return bpage
->data
+ index
;
1462 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1464 return bpage
->page
->data
+ index
;
1467 static inline struct ring_buffer_event
*
1468 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1470 return __rb_page_index(cpu_buffer
->reader_page
,
1471 cpu_buffer
->reader_page
->read
);
1474 static inline struct ring_buffer_event
*
1475 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1477 return __rb_page_index(iter
->head_page
, iter
->head
);
1480 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1482 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1485 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1487 return local_read(&bpage
->page
->commit
);
1490 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1492 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1495 /* Size is determined by what has been committed */
1496 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1498 return rb_page_commit(bpage
);
1501 static inline unsigned
1502 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1504 return rb_page_commit(cpu_buffer
->commit_page
);
1507 static inline unsigned
1508 rb_event_index(struct ring_buffer_event
*event
)
1510 unsigned long addr
= (unsigned long)event
;
1512 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1516 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1517 struct ring_buffer_event
*event
)
1519 unsigned long addr
= (unsigned long)event
;
1520 unsigned long index
;
1522 index
= rb_event_index(event
);
1525 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1526 rb_commit_index(cpu_buffer
) == index
;
1530 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1532 unsigned long max_count
;
1535 * We only race with interrupts and NMIs on this CPU.
1536 * If we own the commit event, then we can commit
1537 * all others that interrupted us, since the interruptions
1538 * are in stack format (they finish before they come
1539 * back to us). This allows us to do a simple loop to
1540 * assign the commit to the tail.
1543 max_count
= cpu_buffer
->buffer
->pages
* 100;
1545 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1546 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1548 if (RB_WARN_ON(cpu_buffer
,
1549 rb_is_reader_page(cpu_buffer
->tail_page
)))
1551 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1552 rb_page_write(cpu_buffer
->commit_page
));
1553 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1554 cpu_buffer
->write_stamp
=
1555 cpu_buffer
->commit_page
->page
->time_stamp
;
1556 /* add barrier to keep gcc from optimizing too much */
1559 while (rb_commit_index(cpu_buffer
) !=
1560 rb_page_write(cpu_buffer
->commit_page
)) {
1562 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1563 rb_page_write(cpu_buffer
->commit_page
));
1564 RB_WARN_ON(cpu_buffer
,
1565 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1570 /* again, keep gcc from optimizing */
1574 * If an interrupt came in just after the first while loop
1575 * and pushed the tail page forward, we will be left with
1576 * a dangling commit that will never go forward.
1578 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1582 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1584 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1585 cpu_buffer
->reader_page
->read
= 0;
1588 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1590 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1593 * The iterator could be on the reader page (it starts there).
1594 * But the head could have moved, since the reader was
1595 * found. Check for this case and assign the iterator
1596 * to the head page instead of next.
1598 if (iter
->head_page
== cpu_buffer
->reader_page
)
1599 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1601 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1603 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1607 /* Slow path, do not inline */
1608 static noinline
struct ring_buffer_event
*
1609 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
1611 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
1613 /* Not the first event on the page? */
1614 if (rb_event_index(event
)) {
1615 event
->time_delta
= delta
& TS_MASK
;
1616 event
->array
[0] = delta
>> TS_SHIFT
;
1618 /* nope, just zero it */
1619 event
->time_delta
= 0;
1620 event
->array
[0] = 0;
1623 return skip_time_extend(event
);
1627 * ring_buffer_update_event - update event type and data
1628 * @event: the even to update
1629 * @type: the type of event
1630 * @length: the size of the event field in the ring buffer
1632 * Update the type and data fields of the event. The length
1633 * is the actual size that is written to the ring buffer,
1634 * and with this, we can determine what to place into the
1638 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
1639 struct ring_buffer_event
*event
, unsigned length
,
1640 int add_timestamp
, u64 delta
)
1642 /* Only a commit updates the timestamp */
1643 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
1647 * If we need to add a timestamp, then we
1648 * add it to the start of the resevered space.
1650 if (unlikely(add_timestamp
)) {
1651 event
= rb_add_time_stamp(event
, delta
);
1652 length
-= RB_LEN_TIME_EXTEND
;
1656 event
->time_delta
= delta
;
1657 length
-= RB_EVNT_HDR_SIZE
;
1658 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
1659 event
->type_len
= 0;
1660 event
->array
[0] = length
;
1662 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
1666 * rb_handle_head_page - writer hit the head page
1668 * Returns: +1 to retry page
1673 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1674 struct buffer_page
*tail_page
,
1675 struct buffer_page
*next_page
)
1677 struct buffer_page
*new_head
;
1682 entries
= rb_page_entries(next_page
);
1685 * The hard part is here. We need to move the head
1686 * forward, and protect against both readers on
1687 * other CPUs and writers coming in via interrupts.
1689 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1693 * type can be one of four:
1694 * NORMAL - an interrupt already moved it for us
1695 * HEAD - we are the first to get here.
1696 * UPDATE - we are the interrupt interrupting
1698 * MOVED - a reader on another CPU moved the next
1699 * pointer to its reader page. Give up
1706 * We changed the head to UPDATE, thus
1707 * it is our responsibility to update
1710 local_add(entries
, &cpu_buffer
->overrun
);
1713 * The entries will be zeroed out when we move the
1717 /* still more to do */
1720 case RB_PAGE_UPDATE
:
1722 * This is an interrupt that interrupt the
1723 * previous update. Still more to do.
1726 case RB_PAGE_NORMAL
:
1728 * An interrupt came in before the update
1729 * and processed this for us.
1730 * Nothing left to do.
1735 * The reader is on another CPU and just did
1736 * a swap with our next_page.
1741 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1746 * Now that we are here, the old head pointer is
1747 * set to UPDATE. This will keep the reader from
1748 * swapping the head page with the reader page.
1749 * The reader (on another CPU) will spin till
1752 * We just need to protect against interrupts
1753 * doing the job. We will set the next pointer
1754 * to HEAD. After that, we set the old pointer
1755 * to NORMAL, but only if it was HEAD before.
1756 * otherwise we are an interrupt, and only
1757 * want the outer most commit to reset it.
1759 new_head
= next_page
;
1760 rb_inc_page(cpu_buffer
, &new_head
);
1762 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
1766 * Valid returns are:
1767 * HEAD - an interrupt came in and already set it.
1768 * NORMAL - One of two things:
1769 * 1) We really set it.
1770 * 2) A bunch of interrupts came in and moved
1771 * the page forward again.
1775 case RB_PAGE_NORMAL
:
1779 RB_WARN_ON(cpu_buffer
, 1);
1784 * It is possible that an interrupt came in,
1785 * set the head up, then more interrupts came in
1786 * and moved it again. When we get back here,
1787 * the page would have been set to NORMAL but we
1788 * just set it back to HEAD.
1790 * How do you detect this? Well, if that happened
1791 * the tail page would have moved.
1793 if (ret
== RB_PAGE_NORMAL
) {
1795 * If the tail had moved passed next, then we need
1796 * to reset the pointer.
1798 if (cpu_buffer
->tail_page
!= tail_page
&&
1799 cpu_buffer
->tail_page
!= next_page
)
1800 rb_head_page_set_normal(cpu_buffer
, new_head
,
1806 * If this was the outer most commit (the one that
1807 * changed the original pointer from HEAD to UPDATE),
1808 * then it is up to us to reset it to NORMAL.
1810 if (type
== RB_PAGE_HEAD
) {
1811 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
1814 if (RB_WARN_ON(cpu_buffer
,
1815 ret
!= RB_PAGE_UPDATE
))
1822 static unsigned rb_calculate_event_length(unsigned length
)
1824 struct ring_buffer_event event
; /* Used only for sizeof array */
1826 /* zero length can cause confusions */
1830 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
1831 length
+= sizeof(event
.array
[0]);
1833 length
+= RB_EVNT_HDR_SIZE
;
1834 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
1840 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1841 struct buffer_page
*tail_page
,
1842 unsigned long tail
, unsigned long length
)
1844 struct ring_buffer_event
*event
;
1847 * Only the event that crossed the page boundary
1848 * must fill the old tail_page with padding.
1850 if (tail
>= BUF_PAGE_SIZE
) {
1852 * If the page was filled, then we still need
1853 * to update the real_end. Reset it to zero
1854 * and the reader will ignore it.
1856 if (tail
== BUF_PAGE_SIZE
)
1857 tail_page
->real_end
= 0;
1859 local_sub(length
, &tail_page
->write
);
1863 event
= __rb_page_index(tail_page
, tail
);
1864 kmemcheck_annotate_bitfield(event
, bitfield
);
1867 * Save the original length to the meta data.
1868 * This will be used by the reader to add lost event
1871 tail_page
->real_end
= tail
;
1874 * If this event is bigger than the minimum size, then
1875 * we need to be careful that we don't subtract the
1876 * write counter enough to allow another writer to slip
1878 * We put in a discarded commit instead, to make sure
1879 * that this space is not used again.
1881 * If we are less than the minimum size, we don't need to
1884 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
1885 /* No room for any events */
1887 /* Mark the rest of the page with padding */
1888 rb_event_set_padding(event
);
1890 /* Set the write back to the previous setting */
1891 local_sub(length
, &tail_page
->write
);
1895 /* Put in a discarded event */
1896 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
1897 event
->type_len
= RINGBUF_TYPE_PADDING
;
1898 /* time delta must be non zero */
1899 event
->time_delta
= 1;
1901 /* Set write to end of buffer */
1902 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
1903 local_sub(length
, &tail_page
->write
);
1907 * This is the slow path, force gcc not to inline it.
1909 static noinline
struct ring_buffer_event
*
1910 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1911 unsigned long length
, unsigned long tail
,
1912 struct buffer_page
*tail_page
, u64 ts
)
1914 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
1915 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
1916 struct buffer_page
*next_page
;
1919 next_page
= tail_page
;
1921 rb_inc_page(cpu_buffer
, &next_page
);
1924 * If for some reason, we had an interrupt storm that made
1925 * it all the way around the buffer, bail, and warn
1928 if (unlikely(next_page
== commit_page
)) {
1929 local_inc(&cpu_buffer
->commit_overrun
);
1934 * This is where the fun begins!
1936 * We are fighting against races between a reader that
1937 * could be on another CPU trying to swap its reader
1938 * page with the buffer head.
1940 * We are also fighting against interrupts coming in and
1941 * moving the head or tail on us as well.
1943 * If the next page is the head page then we have filled
1944 * the buffer, unless the commit page is still on the
1947 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
1950 * If the commit is not on the reader page, then
1951 * move the header page.
1953 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
1955 * If we are not in overwrite mode,
1956 * this is easy, just stop here.
1958 if (!(buffer
->flags
& RB_FL_OVERWRITE
))
1961 ret
= rb_handle_head_page(cpu_buffer
,
1970 * We need to be careful here too. The
1971 * commit page could still be on the reader
1972 * page. We could have a small buffer, and
1973 * have filled up the buffer with events
1974 * from interrupts and such, and wrapped.
1976 * Note, if the tail page is also the on the
1977 * reader_page, we let it move out.
1979 if (unlikely((cpu_buffer
->commit_page
!=
1980 cpu_buffer
->tail_page
) &&
1981 (cpu_buffer
->commit_page
==
1982 cpu_buffer
->reader_page
))) {
1983 local_inc(&cpu_buffer
->commit_overrun
);
1989 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
1992 * Nested commits always have zero deltas, so
1993 * just reread the time stamp
1995 ts
= rb_time_stamp(buffer
);
1996 next_page
->page
->time_stamp
= ts
;
2001 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2003 /* fail and let the caller try again */
2004 return ERR_PTR(-EAGAIN
);
2008 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2013 static struct ring_buffer_event
*
2014 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2015 unsigned long length
, u64 ts
,
2016 u64 delta
, int add_timestamp
)
2018 struct buffer_page
*tail_page
;
2019 struct ring_buffer_event
*event
;
2020 unsigned long tail
, write
;
2023 * If the time delta since the last event is too big to
2024 * hold in the time field of the event, then we append a
2025 * TIME EXTEND event ahead of the data event.
2027 if (unlikely(add_timestamp
))
2028 length
+= RB_LEN_TIME_EXTEND
;
2030 tail_page
= cpu_buffer
->tail_page
;
2031 write
= local_add_return(length
, &tail_page
->write
);
2033 /* set write to only the index of the write */
2034 write
&= RB_WRITE_MASK
;
2035 tail
= write
- length
;
2037 /* See if we shot pass the end of this buffer page */
2038 if (unlikely(write
> BUF_PAGE_SIZE
))
2039 return rb_move_tail(cpu_buffer
, length
, tail
,
2042 /* We reserved something on the buffer */
2044 event
= __rb_page_index(tail_page
, tail
);
2045 kmemcheck_annotate_bitfield(event
, bitfield
);
2046 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2048 local_inc(&tail_page
->entries
);
2051 * If this is the first commit on the page, then update
2055 tail_page
->page
->time_stamp
= ts
;
2061 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2062 struct ring_buffer_event
*event
)
2064 unsigned long new_index
, old_index
;
2065 struct buffer_page
*bpage
;
2066 unsigned long index
;
2069 new_index
= rb_event_index(event
);
2070 old_index
= new_index
+ rb_event_ts_length(event
);
2071 addr
= (unsigned long)event
;
2074 bpage
= cpu_buffer
->tail_page
;
2076 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2077 unsigned long write_mask
=
2078 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2080 * This is on the tail page. It is possible that
2081 * a write could come in and move the tail page
2082 * and write to the next page. That is fine
2083 * because we just shorten what is on this page.
2085 old_index
+= write_mask
;
2086 new_index
+= write_mask
;
2087 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2088 if (index
== old_index
)
2092 /* could not discard */
2096 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2098 local_inc(&cpu_buffer
->committing
);
2099 local_inc(&cpu_buffer
->commits
);
2102 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2104 unsigned long commits
;
2106 if (RB_WARN_ON(cpu_buffer
,
2107 !local_read(&cpu_buffer
->committing
)))
2111 commits
= local_read(&cpu_buffer
->commits
);
2112 /* synchronize with interrupts */
2114 if (local_read(&cpu_buffer
->committing
) == 1)
2115 rb_set_commit_to_write(cpu_buffer
);
2117 local_dec(&cpu_buffer
->committing
);
2119 /* synchronize with interrupts */
2123 * Need to account for interrupts coming in between the
2124 * updating of the commit page and the clearing of the
2125 * committing counter.
2127 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2128 !local_read(&cpu_buffer
->committing
)) {
2129 local_inc(&cpu_buffer
->committing
);
2134 static struct ring_buffer_event
*
2135 rb_reserve_next_event(struct ring_buffer
*buffer
,
2136 struct ring_buffer_per_cpu
*cpu_buffer
,
2137 unsigned long length
)
2139 struct ring_buffer_event
*event
;
2145 rb_start_commit(cpu_buffer
);
2147 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2149 * Due to the ability to swap a cpu buffer from a buffer
2150 * it is possible it was swapped before we committed.
2151 * (committing stops a swap). We check for it here and
2152 * if it happened, we have to fail the write.
2155 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2156 local_dec(&cpu_buffer
->committing
);
2157 local_dec(&cpu_buffer
->commits
);
2162 length
= rb_calculate_event_length(length
);
2168 * We allow for interrupts to reenter here and do a trace.
2169 * If one does, it will cause this original code to loop
2170 * back here. Even with heavy interrupts happening, this
2171 * should only happen a few times in a row. If this happens
2172 * 1000 times in a row, there must be either an interrupt
2173 * storm or we have something buggy.
2176 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2179 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2180 diff
= ts
- cpu_buffer
->write_stamp
;
2182 /* make sure this diff is calculated here */
2185 /* Did the write stamp get updated already? */
2186 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2188 if (unlikely(test_time_stamp(delta
))) {
2189 int local_clock_stable
= 1;
2190 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2191 local_clock_stable
= sched_clock_stable
;
2193 WARN_ONCE(delta
> (1ULL << 59),
2194 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2195 (unsigned long long)delta
,
2196 (unsigned long long)ts
,
2197 (unsigned long long)cpu_buffer
->write_stamp
,
2198 local_clock_stable
? "" :
2199 "If you just came from a suspend/resume,\n"
2200 "please switch to the trace global clock:\n"
2201 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2206 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2207 delta
, add_timestamp
);
2208 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2217 rb_end_commit(cpu_buffer
);
2221 #ifdef CONFIG_TRACING
2223 #define TRACE_RECURSIVE_DEPTH 16
2225 /* Keep this code out of the fast path cache */
2226 static noinline
void trace_recursive_fail(void)
2228 /* Disable all tracing before we do anything else */
2229 tracing_off_permanent();
2231 printk_once(KERN_WARNING
"Tracing recursion: depth[%ld]:"
2232 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2233 trace_recursion_buffer(),
2234 hardirq_count() >> HARDIRQ_SHIFT
,
2235 softirq_count() >> SOFTIRQ_SHIFT
,
2241 static inline int trace_recursive_lock(void)
2243 trace_recursion_inc();
2245 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH
))
2248 trace_recursive_fail();
2253 static inline void trace_recursive_unlock(void)
2255 WARN_ON_ONCE(!trace_recursion_buffer());
2257 trace_recursion_dec();
2262 #define trace_recursive_lock() (0)
2263 #define trace_recursive_unlock() do { } while (0)
2268 * ring_buffer_lock_reserve - reserve a part of the buffer
2269 * @buffer: the ring buffer to reserve from
2270 * @length: the length of the data to reserve (excluding event header)
2272 * Returns a reseverd event on the ring buffer to copy directly to.
2273 * The user of this interface will need to get the body to write into
2274 * and can use the ring_buffer_event_data() interface.
2276 * The length is the length of the data needed, not the event length
2277 * which also includes the event header.
2279 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2280 * If NULL is returned, then nothing has been allocated or locked.
2282 struct ring_buffer_event
*
2283 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2285 struct ring_buffer_per_cpu
*cpu_buffer
;
2286 struct ring_buffer_event
*event
;
2289 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2292 /* If we are tracing schedule, we don't want to recurse */
2293 preempt_disable_notrace();
2295 if (atomic_read(&buffer
->record_disabled
))
2298 if (trace_recursive_lock())
2301 cpu
= raw_smp_processor_id();
2303 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2306 cpu_buffer
= buffer
->buffers
[cpu
];
2308 if (atomic_read(&cpu_buffer
->record_disabled
))
2311 if (length
> BUF_MAX_DATA_SIZE
)
2314 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2321 trace_recursive_unlock();
2324 preempt_enable_notrace();
2327 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2330 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2331 struct ring_buffer_event
*event
)
2336 * The event first in the commit queue updates the
2339 if (rb_event_is_commit(cpu_buffer
, event
)) {
2341 * A commit event that is first on a page
2342 * updates the write timestamp with the page stamp
2344 if (!rb_event_index(event
))
2345 cpu_buffer
->write_stamp
=
2346 cpu_buffer
->commit_page
->page
->time_stamp
;
2347 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2348 delta
= event
->array
[0];
2350 delta
+= event
->time_delta
;
2351 cpu_buffer
->write_stamp
+= delta
;
2353 cpu_buffer
->write_stamp
+= event
->time_delta
;
2357 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2358 struct ring_buffer_event
*event
)
2360 local_inc(&cpu_buffer
->entries
);
2361 rb_update_write_stamp(cpu_buffer
, event
);
2362 rb_end_commit(cpu_buffer
);
2366 * ring_buffer_unlock_commit - commit a reserved
2367 * @buffer: The buffer to commit to
2368 * @event: The event pointer to commit.
2370 * This commits the data to the ring buffer, and releases any locks held.
2372 * Must be paired with ring_buffer_lock_reserve.
2374 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2375 struct ring_buffer_event
*event
)
2377 struct ring_buffer_per_cpu
*cpu_buffer
;
2378 int cpu
= raw_smp_processor_id();
2380 cpu_buffer
= buffer
->buffers
[cpu
];
2382 rb_commit(cpu_buffer
, event
);
2384 trace_recursive_unlock();
2386 preempt_enable_notrace();
2390 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2392 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2394 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2395 event
= skip_time_extend(event
);
2397 /* array[0] holds the actual length for the discarded event */
2398 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2399 event
->type_len
= RINGBUF_TYPE_PADDING
;
2400 /* time delta must be non zero */
2401 if (!event
->time_delta
)
2402 event
->time_delta
= 1;
2406 * Decrement the entries to the page that an event is on.
2407 * The event does not even need to exist, only the pointer
2408 * to the page it is on. This may only be called before the commit
2412 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2413 struct ring_buffer_event
*event
)
2415 unsigned long addr
= (unsigned long)event
;
2416 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2417 struct buffer_page
*start
;
2421 /* Do the likely case first */
2422 if (likely(bpage
->page
== (void *)addr
)) {
2423 local_dec(&bpage
->entries
);
2428 * Because the commit page may be on the reader page we
2429 * start with the next page and check the end loop there.
2431 rb_inc_page(cpu_buffer
, &bpage
);
2434 if (bpage
->page
== (void *)addr
) {
2435 local_dec(&bpage
->entries
);
2438 rb_inc_page(cpu_buffer
, &bpage
);
2439 } while (bpage
!= start
);
2441 /* commit not part of this buffer?? */
2442 RB_WARN_ON(cpu_buffer
, 1);
2446 * ring_buffer_commit_discard - discard an event that has not been committed
2447 * @buffer: the ring buffer
2448 * @event: non committed event to discard
2450 * Sometimes an event that is in the ring buffer needs to be ignored.
2451 * This function lets the user discard an event in the ring buffer
2452 * and then that event will not be read later.
2454 * This function only works if it is called before the the item has been
2455 * committed. It will try to free the event from the ring buffer
2456 * if another event has not been added behind it.
2458 * If another event has been added behind it, it will set the event
2459 * up as discarded, and perform the commit.
2461 * If this function is called, do not call ring_buffer_unlock_commit on
2464 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2465 struct ring_buffer_event
*event
)
2467 struct ring_buffer_per_cpu
*cpu_buffer
;
2470 /* The event is discarded regardless */
2471 rb_event_discard(event
);
2473 cpu
= smp_processor_id();
2474 cpu_buffer
= buffer
->buffers
[cpu
];
2477 * This must only be called if the event has not been
2478 * committed yet. Thus we can assume that preemption
2479 * is still disabled.
2481 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2483 rb_decrement_entry(cpu_buffer
, event
);
2484 if (rb_try_to_discard(cpu_buffer
, event
))
2488 * The commit is still visible by the reader, so we
2489 * must still update the timestamp.
2491 rb_update_write_stamp(cpu_buffer
, event
);
2493 rb_end_commit(cpu_buffer
);
2495 trace_recursive_unlock();
2497 preempt_enable_notrace();
2500 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2503 * ring_buffer_write - write data to the buffer without reserving
2504 * @buffer: The ring buffer to write to.
2505 * @length: The length of the data being written (excluding the event header)
2506 * @data: The data to write to the buffer.
2508 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2509 * one function. If you already have the data to write to the buffer, it
2510 * may be easier to simply call this function.
2512 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2513 * and not the length of the event which would hold the header.
2515 int ring_buffer_write(struct ring_buffer
*buffer
,
2516 unsigned long length
,
2519 struct ring_buffer_per_cpu
*cpu_buffer
;
2520 struct ring_buffer_event
*event
;
2525 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2528 preempt_disable_notrace();
2530 if (atomic_read(&buffer
->record_disabled
))
2533 cpu
= raw_smp_processor_id();
2535 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2538 cpu_buffer
= buffer
->buffers
[cpu
];
2540 if (atomic_read(&cpu_buffer
->record_disabled
))
2543 if (length
> BUF_MAX_DATA_SIZE
)
2546 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2550 body
= rb_event_data(event
);
2552 memcpy(body
, data
, length
);
2554 rb_commit(cpu_buffer
, event
);
2558 preempt_enable_notrace();
2562 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2564 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2566 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2567 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2568 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
2570 /* In case of error, head will be NULL */
2571 if (unlikely(!head
))
2574 return reader
->read
== rb_page_commit(reader
) &&
2575 (commit
== reader
||
2577 head
->read
== rb_page_commit(commit
)));
2581 * ring_buffer_record_disable - stop all writes into the buffer
2582 * @buffer: The ring buffer to stop writes to.
2584 * This prevents all writes to the buffer. Any attempt to write
2585 * to the buffer after this will fail and return NULL.
2587 * The caller should call synchronize_sched() after this.
2589 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
2591 atomic_inc(&buffer
->record_disabled
);
2593 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
2596 * ring_buffer_record_enable - enable writes to the buffer
2597 * @buffer: The ring buffer to enable writes
2599 * Note, multiple disables will need the same number of enables
2600 * to truly enable the writing (much like preempt_disable).
2602 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
2604 atomic_dec(&buffer
->record_disabled
);
2606 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
2609 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2610 * @buffer: The ring buffer to stop writes to.
2611 * @cpu: The CPU buffer to stop
2613 * This prevents all writes to the buffer. Any attempt to write
2614 * to the buffer after this will fail and return NULL.
2616 * The caller should call synchronize_sched() after this.
2618 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
2620 struct ring_buffer_per_cpu
*cpu_buffer
;
2622 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2625 cpu_buffer
= buffer
->buffers
[cpu
];
2626 atomic_inc(&cpu_buffer
->record_disabled
);
2628 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
2631 * ring_buffer_record_enable_cpu - enable writes to the buffer
2632 * @buffer: The ring buffer to enable writes
2633 * @cpu: The CPU to enable.
2635 * Note, multiple disables will need the same number of enables
2636 * to truly enable the writing (much like preempt_disable).
2638 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
2640 struct ring_buffer_per_cpu
*cpu_buffer
;
2642 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2645 cpu_buffer
= buffer
->buffers
[cpu
];
2646 atomic_dec(&cpu_buffer
->record_disabled
);
2648 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
2651 * The total entries in the ring buffer is the running counter
2652 * of entries entered into the ring buffer, minus the sum of
2653 * the entries read from the ring buffer and the number of
2654 * entries that were overwritten.
2656 static inline unsigned long
2657 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
2659 return local_read(&cpu_buffer
->entries
) -
2660 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
2664 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2665 * @buffer: The ring buffer
2666 * @cpu: The per CPU buffer to get the entries from.
2668 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
2670 struct ring_buffer_per_cpu
*cpu_buffer
;
2672 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2675 cpu_buffer
= buffer
->buffers
[cpu
];
2677 return rb_num_of_entries(cpu_buffer
);
2679 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
2682 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2683 * @buffer: The ring buffer
2684 * @cpu: The per CPU buffer to get the number of overruns from
2686 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2688 struct ring_buffer_per_cpu
*cpu_buffer
;
2691 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2694 cpu_buffer
= buffer
->buffers
[cpu
];
2695 ret
= local_read(&cpu_buffer
->overrun
);
2699 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
2702 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2703 * @buffer: The ring buffer
2704 * @cpu: The per CPU buffer to get the number of overruns from
2707 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2709 struct ring_buffer_per_cpu
*cpu_buffer
;
2712 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2715 cpu_buffer
= buffer
->buffers
[cpu
];
2716 ret
= local_read(&cpu_buffer
->commit_overrun
);
2720 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
2723 * ring_buffer_entries - get the number of entries in a buffer
2724 * @buffer: The ring buffer
2726 * Returns the total number of entries in the ring buffer
2729 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
2731 struct ring_buffer_per_cpu
*cpu_buffer
;
2732 unsigned long entries
= 0;
2735 /* if you care about this being correct, lock the buffer */
2736 for_each_buffer_cpu(buffer
, cpu
) {
2737 cpu_buffer
= buffer
->buffers
[cpu
];
2738 entries
+= rb_num_of_entries(cpu_buffer
);
2743 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
2746 * ring_buffer_overruns - get the number of overruns in buffer
2747 * @buffer: The ring buffer
2749 * Returns the total number of overruns in the ring buffer
2752 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
2754 struct ring_buffer_per_cpu
*cpu_buffer
;
2755 unsigned long overruns
= 0;
2758 /* if you care about this being correct, lock the buffer */
2759 for_each_buffer_cpu(buffer
, cpu
) {
2760 cpu_buffer
= buffer
->buffers
[cpu
];
2761 overruns
+= local_read(&cpu_buffer
->overrun
);
2766 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
2768 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
2770 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2772 /* Iterator usage is expected to have record disabled */
2773 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
2774 iter
->head_page
= rb_set_head_page(cpu_buffer
);
2775 if (unlikely(!iter
->head_page
))
2777 iter
->head
= iter
->head_page
->read
;
2779 iter
->head_page
= cpu_buffer
->reader_page
;
2780 iter
->head
= cpu_buffer
->reader_page
->read
;
2783 iter
->read_stamp
= cpu_buffer
->read_stamp
;
2785 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
2786 iter
->cache_reader_page
= cpu_buffer
->reader_page
;
2787 iter
->cache_read
= cpu_buffer
->read
;
2791 * ring_buffer_iter_reset - reset an iterator
2792 * @iter: The iterator to reset
2794 * Resets the iterator, so that it will start from the beginning
2797 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
2799 struct ring_buffer_per_cpu
*cpu_buffer
;
2800 unsigned long flags
;
2805 cpu_buffer
= iter
->cpu_buffer
;
2807 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2808 rb_iter_reset(iter
);
2809 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2811 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
2814 * ring_buffer_iter_empty - check if an iterator has no more to read
2815 * @iter: The iterator to check
2817 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
2819 struct ring_buffer_per_cpu
*cpu_buffer
;
2821 cpu_buffer
= iter
->cpu_buffer
;
2823 return iter
->head_page
== cpu_buffer
->commit_page
&&
2824 iter
->head
== rb_commit_index(cpu_buffer
);
2826 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
2829 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2830 struct ring_buffer_event
*event
)
2834 switch (event
->type_len
) {
2835 case RINGBUF_TYPE_PADDING
:
2838 case RINGBUF_TYPE_TIME_EXTEND
:
2839 delta
= event
->array
[0];
2841 delta
+= event
->time_delta
;
2842 cpu_buffer
->read_stamp
+= delta
;
2845 case RINGBUF_TYPE_TIME_STAMP
:
2846 /* FIXME: not implemented */
2849 case RINGBUF_TYPE_DATA
:
2850 cpu_buffer
->read_stamp
+= event
->time_delta
;
2860 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
2861 struct ring_buffer_event
*event
)
2865 switch (event
->type_len
) {
2866 case RINGBUF_TYPE_PADDING
:
2869 case RINGBUF_TYPE_TIME_EXTEND
:
2870 delta
= event
->array
[0];
2872 delta
+= event
->time_delta
;
2873 iter
->read_stamp
+= delta
;
2876 case RINGBUF_TYPE_TIME_STAMP
:
2877 /* FIXME: not implemented */
2880 case RINGBUF_TYPE_DATA
:
2881 iter
->read_stamp
+= event
->time_delta
;
2890 static struct buffer_page
*
2891 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
2893 struct buffer_page
*reader
= NULL
;
2894 unsigned long overwrite
;
2895 unsigned long flags
;
2899 local_irq_save(flags
);
2900 arch_spin_lock(&cpu_buffer
->lock
);
2904 * This should normally only loop twice. But because the
2905 * start of the reader inserts an empty page, it causes
2906 * a case where we will loop three times. There should be no
2907 * reason to loop four times (that I know of).
2909 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
2914 reader
= cpu_buffer
->reader_page
;
2916 /* If there's more to read, return this page */
2917 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
2920 /* Never should we have an index greater than the size */
2921 if (RB_WARN_ON(cpu_buffer
,
2922 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
2925 /* check if we caught up to the tail */
2927 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
2931 * Reset the reader page to size zero.
2933 local_set(&cpu_buffer
->reader_page
->write
, 0);
2934 local_set(&cpu_buffer
->reader_page
->entries
, 0);
2935 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
2936 cpu_buffer
->reader_page
->real_end
= 0;
2940 * Splice the empty reader page into the list around the head.
2942 reader
= rb_set_head_page(cpu_buffer
);
2943 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
2944 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
2947 * cpu_buffer->pages just needs to point to the buffer, it
2948 * has no specific buffer page to point to. Lets move it out
2949 * of our way so we don't accidentally swap it.
2951 cpu_buffer
->pages
= reader
->list
.prev
;
2953 /* The reader page will be pointing to the new head */
2954 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
2957 * We want to make sure we read the overruns after we set up our
2958 * pointers to the next object. The writer side does a
2959 * cmpxchg to cross pages which acts as the mb on the writer
2960 * side. Note, the reader will constantly fail the swap
2961 * while the writer is updating the pointers, so this
2962 * guarantees that the overwrite recorded here is the one we
2963 * want to compare with the last_overrun.
2966 overwrite
= local_read(&(cpu_buffer
->overrun
));
2969 * Here's the tricky part.
2971 * We need to move the pointer past the header page.
2972 * But we can only do that if a writer is not currently
2973 * moving it. The page before the header page has the
2974 * flag bit '1' set if it is pointing to the page we want.
2975 * but if the writer is in the process of moving it
2976 * than it will be '2' or already moved '0'.
2979 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
2982 * If we did not convert it, then we must try again.
2988 * Yeah! We succeeded in replacing the page.
2990 * Now make the new head point back to the reader page.
2992 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
2993 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
2995 /* Finally update the reader page to the new head */
2996 cpu_buffer
->reader_page
= reader
;
2997 rb_reset_reader_page(cpu_buffer
);
2999 if (overwrite
!= cpu_buffer
->last_overrun
) {
3000 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3001 cpu_buffer
->last_overrun
= overwrite
;
3007 arch_spin_unlock(&cpu_buffer
->lock
);
3008 local_irq_restore(flags
);
3013 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3015 struct ring_buffer_event
*event
;
3016 struct buffer_page
*reader
;
3019 reader
= rb_get_reader_page(cpu_buffer
);
3021 /* This function should not be called when buffer is empty */
3022 if (RB_WARN_ON(cpu_buffer
, !reader
))
3025 event
= rb_reader_event(cpu_buffer
);
3027 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3030 rb_update_read_stamp(cpu_buffer
, event
);
3032 length
= rb_event_length(event
);
3033 cpu_buffer
->reader_page
->read
+= length
;
3036 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3038 struct ring_buffer_per_cpu
*cpu_buffer
;
3039 struct ring_buffer_event
*event
;
3042 cpu_buffer
= iter
->cpu_buffer
;
3045 * Check if we are at the end of the buffer.
3047 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3048 /* discarded commits can make the page empty */
3049 if (iter
->head_page
== cpu_buffer
->commit_page
)
3055 event
= rb_iter_head_event(iter
);
3057 length
= rb_event_length(event
);
3060 * This should not be called to advance the header if we are
3061 * at the tail of the buffer.
3063 if (RB_WARN_ON(cpu_buffer
,
3064 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3065 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3068 rb_update_iter_read_stamp(iter
, event
);
3070 iter
->head
+= length
;
3072 /* check for end of page padding */
3073 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3074 (iter
->head_page
!= cpu_buffer
->commit_page
))
3075 rb_advance_iter(iter
);
3078 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3080 return cpu_buffer
->lost_events
;
3083 static struct ring_buffer_event
*
3084 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3085 unsigned long *lost_events
)
3087 struct ring_buffer_event
*event
;
3088 struct buffer_page
*reader
;
3093 * We repeat when a time extend is encountered.
3094 * Since the time extend is always attached to a data event,
3095 * we should never loop more than once.
3096 * (We never hit the following condition more than twice).
3098 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3101 reader
= rb_get_reader_page(cpu_buffer
);
3105 event
= rb_reader_event(cpu_buffer
);
3107 switch (event
->type_len
) {
3108 case RINGBUF_TYPE_PADDING
:
3109 if (rb_null_event(event
))
3110 RB_WARN_ON(cpu_buffer
, 1);
3112 * Because the writer could be discarding every
3113 * event it creates (which would probably be bad)
3114 * if we were to go back to "again" then we may never
3115 * catch up, and will trigger the warn on, or lock
3116 * the box. Return the padding, and we will release
3117 * the current locks, and try again.
3121 case RINGBUF_TYPE_TIME_EXTEND
:
3122 /* Internal data, OK to advance */
3123 rb_advance_reader(cpu_buffer
);
3126 case RINGBUF_TYPE_TIME_STAMP
:
3127 /* FIXME: not implemented */
3128 rb_advance_reader(cpu_buffer
);
3131 case RINGBUF_TYPE_DATA
:
3133 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3134 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3135 cpu_buffer
->cpu
, ts
);
3138 *lost_events
= rb_lost_events(cpu_buffer
);
3147 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3149 static struct ring_buffer_event
*
3150 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3152 struct ring_buffer
*buffer
;
3153 struct ring_buffer_per_cpu
*cpu_buffer
;
3154 struct ring_buffer_event
*event
;
3157 cpu_buffer
= iter
->cpu_buffer
;
3158 buffer
= cpu_buffer
->buffer
;
3161 * Check if someone performed a consuming read to
3162 * the buffer. A consuming read invalidates the iterator
3163 * and we need to reset the iterator in this case.
3165 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3166 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3167 rb_iter_reset(iter
);
3170 if (ring_buffer_iter_empty(iter
))
3174 * We repeat when a time extend is encountered.
3175 * Since the time extend is always attached to a data event,
3176 * we should never loop more than once.
3177 * (We never hit the following condition more than twice).
3179 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3182 if (rb_per_cpu_empty(cpu_buffer
))
3185 if (iter
->head
>= local_read(&iter
->head_page
->page
->commit
)) {
3190 event
= rb_iter_head_event(iter
);
3192 switch (event
->type_len
) {
3193 case RINGBUF_TYPE_PADDING
:
3194 if (rb_null_event(event
)) {
3198 rb_advance_iter(iter
);
3201 case RINGBUF_TYPE_TIME_EXTEND
:
3202 /* Internal data, OK to advance */
3203 rb_advance_iter(iter
);
3206 case RINGBUF_TYPE_TIME_STAMP
:
3207 /* FIXME: not implemented */
3208 rb_advance_iter(iter
);
3211 case RINGBUF_TYPE_DATA
:
3213 *ts
= iter
->read_stamp
+ event
->time_delta
;
3214 ring_buffer_normalize_time_stamp(buffer
,
3215 cpu_buffer
->cpu
, ts
);
3225 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3227 static inline int rb_ok_to_lock(void)
3230 * If an NMI die dumps out the content of the ring buffer
3231 * do not grab locks. We also permanently disable the ring
3232 * buffer too. A one time deal is all you get from reading
3233 * the ring buffer from an NMI.
3235 if (likely(!in_nmi()))
3238 tracing_off_permanent();
3243 * ring_buffer_peek - peek at the next event to be read
3244 * @buffer: The ring buffer to read
3245 * @cpu: The cpu to peak at
3246 * @ts: The timestamp counter of this event.
3247 * @lost_events: a variable to store if events were lost (may be NULL)
3249 * This will return the event that will be read next, but does
3250 * not consume the data.
3252 struct ring_buffer_event
*
3253 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3254 unsigned long *lost_events
)
3256 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3257 struct ring_buffer_event
*event
;
3258 unsigned long flags
;
3261 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3264 dolock
= rb_ok_to_lock();
3266 local_irq_save(flags
);
3268 spin_lock(&cpu_buffer
->reader_lock
);
3269 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3270 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3271 rb_advance_reader(cpu_buffer
);
3273 spin_unlock(&cpu_buffer
->reader_lock
);
3274 local_irq_restore(flags
);
3276 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3283 * ring_buffer_iter_peek - peek at the next event to be read
3284 * @iter: The ring buffer iterator
3285 * @ts: The timestamp counter of this event.
3287 * This will return the event that will be read next, but does
3288 * not increment the iterator.
3290 struct ring_buffer_event
*
3291 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3293 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3294 struct ring_buffer_event
*event
;
3295 unsigned long flags
;
3298 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3299 event
= rb_iter_peek(iter
, ts
);
3300 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3302 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3309 * ring_buffer_consume - return an event and consume it
3310 * @buffer: The ring buffer to get the next event from
3311 * @cpu: the cpu to read the buffer from
3312 * @ts: a variable to store the timestamp (may be NULL)
3313 * @lost_events: a variable to store if events were lost (may be NULL)
3315 * Returns the next event in the ring buffer, and that event is consumed.
3316 * Meaning, that sequential reads will keep returning a different event,
3317 * and eventually empty the ring buffer if the producer is slower.
3319 struct ring_buffer_event
*
3320 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3321 unsigned long *lost_events
)
3323 struct ring_buffer_per_cpu
*cpu_buffer
;
3324 struct ring_buffer_event
*event
= NULL
;
3325 unsigned long flags
;
3328 dolock
= rb_ok_to_lock();
3331 /* might be called in atomic */
3334 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3337 cpu_buffer
= buffer
->buffers
[cpu
];
3338 local_irq_save(flags
);
3340 spin_lock(&cpu_buffer
->reader_lock
);
3342 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3344 cpu_buffer
->lost_events
= 0;
3345 rb_advance_reader(cpu_buffer
);
3349 spin_unlock(&cpu_buffer
->reader_lock
);
3350 local_irq_restore(flags
);
3355 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3360 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3363 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3364 * @buffer: The ring buffer to read from
3365 * @cpu: The cpu buffer to iterate over
3367 * This performs the initial preparations necessary to iterate
3368 * through the buffer. Memory is allocated, buffer recording
3369 * is disabled, and the iterator pointer is returned to the caller.
3371 * Disabling buffer recordng prevents the reading from being
3372 * corrupted. This is not a consuming read, so a producer is not
3375 * After a sequence of ring_buffer_read_prepare calls, the user is
3376 * expected to make at least one call to ring_buffer_prepare_sync.
3377 * Afterwards, ring_buffer_read_start is invoked to get things going
3380 * This overall must be paired with ring_buffer_finish.
3382 struct ring_buffer_iter
*
3383 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3385 struct ring_buffer_per_cpu
*cpu_buffer
;
3386 struct ring_buffer_iter
*iter
;
3388 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3391 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3395 cpu_buffer
= buffer
->buffers
[cpu
];
3397 iter
->cpu_buffer
= cpu_buffer
;
3399 atomic_inc(&cpu_buffer
->record_disabled
);
3403 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
3406 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3408 * All previously invoked ring_buffer_read_prepare calls to prepare
3409 * iterators will be synchronized. Afterwards, read_buffer_read_start
3410 * calls on those iterators are allowed.
3413 ring_buffer_read_prepare_sync(void)
3415 synchronize_sched();
3417 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
3420 * ring_buffer_read_start - start a non consuming read of the buffer
3421 * @iter: The iterator returned by ring_buffer_read_prepare
3423 * This finalizes the startup of an iteration through the buffer.
3424 * The iterator comes from a call to ring_buffer_read_prepare and
3425 * an intervening ring_buffer_read_prepare_sync must have been
3428 * Must be paired with ring_buffer_finish.
3431 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
3433 struct ring_buffer_per_cpu
*cpu_buffer
;
3434 unsigned long flags
;
3439 cpu_buffer
= iter
->cpu_buffer
;
3441 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3442 arch_spin_lock(&cpu_buffer
->lock
);
3443 rb_iter_reset(iter
);
3444 arch_spin_unlock(&cpu_buffer
->lock
);
3445 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3447 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
3450 * ring_buffer_finish - finish reading the iterator of the buffer
3451 * @iter: The iterator retrieved by ring_buffer_start
3453 * This re-enables the recording to the buffer, and frees the
3457 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
3459 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3461 atomic_dec(&cpu_buffer
->record_disabled
);
3464 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
3467 * ring_buffer_read - read the next item in the ring buffer by the iterator
3468 * @iter: The ring buffer iterator
3469 * @ts: The time stamp of the event read.
3471 * This reads the next event in the ring buffer and increments the iterator.
3473 struct ring_buffer_event
*
3474 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
3476 struct ring_buffer_event
*event
;
3477 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3478 unsigned long flags
;
3480 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3482 event
= rb_iter_peek(iter
, ts
);
3486 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
3489 rb_advance_iter(iter
);
3491 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3495 EXPORT_SYMBOL_GPL(ring_buffer_read
);
3498 * ring_buffer_size - return the size of the ring buffer (in bytes)
3499 * @buffer: The ring buffer.
3501 unsigned long ring_buffer_size(struct ring_buffer
*buffer
)
3503 return BUF_PAGE_SIZE
* buffer
->pages
;
3505 EXPORT_SYMBOL_GPL(ring_buffer_size
);
3508 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
3510 rb_head_page_deactivate(cpu_buffer
);
3512 cpu_buffer
->head_page
3513 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
3514 local_set(&cpu_buffer
->head_page
->write
, 0);
3515 local_set(&cpu_buffer
->head_page
->entries
, 0);
3516 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
3518 cpu_buffer
->head_page
->read
= 0;
3520 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
3521 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
3523 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
3524 local_set(&cpu_buffer
->reader_page
->write
, 0);
3525 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3526 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3527 cpu_buffer
->reader_page
->read
= 0;
3529 local_set(&cpu_buffer
->commit_overrun
, 0);
3530 local_set(&cpu_buffer
->overrun
, 0);
3531 local_set(&cpu_buffer
->entries
, 0);
3532 local_set(&cpu_buffer
->committing
, 0);
3533 local_set(&cpu_buffer
->commits
, 0);
3534 cpu_buffer
->read
= 0;
3536 cpu_buffer
->write_stamp
= 0;
3537 cpu_buffer
->read_stamp
= 0;
3539 cpu_buffer
->lost_events
= 0;
3540 cpu_buffer
->last_overrun
= 0;
3542 rb_head_page_activate(cpu_buffer
);
3546 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3547 * @buffer: The ring buffer to reset a per cpu buffer of
3548 * @cpu: The CPU buffer to be reset
3550 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
3552 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3553 unsigned long flags
;
3555 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3558 atomic_inc(&cpu_buffer
->record_disabled
);
3560 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3562 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
3565 arch_spin_lock(&cpu_buffer
->lock
);
3567 rb_reset_cpu(cpu_buffer
);
3569 arch_spin_unlock(&cpu_buffer
->lock
);
3572 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3574 atomic_dec(&cpu_buffer
->record_disabled
);
3576 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
3579 * ring_buffer_reset - reset a ring buffer
3580 * @buffer: The ring buffer to reset all cpu buffers
3582 void ring_buffer_reset(struct ring_buffer
*buffer
)
3586 for_each_buffer_cpu(buffer
, cpu
)
3587 ring_buffer_reset_cpu(buffer
, cpu
);
3589 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
3592 * rind_buffer_empty - is the ring buffer empty?
3593 * @buffer: The ring buffer to test
3595 int ring_buffer_empty(struct ring_buffer
*buffer
)
3597 struct ring_buffer_per_cpu
*cpu_buffer
;
3598 unsigned long flags
;
3603 dolock
= rb_ok_to_lock();
3605 /* yes this is racy, but if you don't like the race, lock the buffer */
3606 for_each_buffer_cpu(buffer
, cpu
) {
3607 cpu_buffer
= buffer
->buffers
[cpu
];
3608 local_irq_save(flags
);
3610 spin_lock(&cpu_buffer
->reader_lock
);
3611 ret
= rb_per_cpu_empty(cpu_buffer
);
3613 spin_unlock(&cpu_buffer
->reader_lock
);
3614 local_irq_restore(flags
);
3622 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
3625 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3626 * @buffer: The ring buffer
3627 * @cpu: The CPU buffer to test
3629 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
3631 struct ring_buffer_per_cpu
*cpu_buffer
;
3632 unsigned long flags
;
3636 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3639 dolock
= rb_ok_to_lock();
3641 cpu_buffer
= buffer
->buffers
[cpu
];
3642 local_irq_save(flags
);
3644 spin_lock(&cpu_buffer
->reader_lock
);
3645 ret
= rb_per_cpu_empty(cpu_buffer
);
3647 spin_unlock(&cpu_buffer
->reader_lock
);
3648 local_irq_restore(flags
);
3652 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
3654 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3656 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3657 * @buffer_a: One buffer to swap with
3658 * @buffer_b: The other buffer to swap with
3660 * This function is useful for tracers that want to take a "snapshot"
3661 * of a CPU buffer and has another back up buffer lying around.
3662 * it is expected that the tracer handles the cpu buffer not being
3663 * used at the moment.
3665 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
3666 struct ring_buffer
*buffer_b
, int cpu
)
3668 struct ring_buffer_per_cpu
*cpu_buffer_a
;
3669 struct ring_buffer_per_cpu
*cpu_buffer_b
;
3672 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
3673 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
3676 /* At least make sure the two buffers are somewhat the same */
3677 if (buffer_a
->pages
!= buffer_b
->pages
)
3682 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
3685 if (atomic_read(&buffer_a
->record_disabled
))
3688 if (atomic_read(&buffer_b
->record_disabled
))
3691 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
3692 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
3694 if (atomic_read(&cpu_buffer_a
->record_disabled
))
3697 if (atomic_read(&cpu_buffer_b
->record_disabled
))
3701 * We can't do a synchronize_sched here because this
3702 * function can be called in atomic context.
3703 * Normally this will be called from the same CPU as cpu.
3704 * If not it's up to the caller to protect this.
3706 atomic_inc(&cpu_buffer_a
->record_disabled
);
3707 atomic_inc(&cpu_buffer_b
->record_disabled
);
3710 if (local_read(&cpu_buffer_a
->committing
))
3712 if (local_read(&cpu_buffer_b
->committing
))
3715 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
3716 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
3718 cpu_buffer_b
->buffer
= buffer_a
;
3719 cpu_buffer_a
->buffer
= buffer_b
;
3724 atomic_dec(&cpu_buffer_a
->record_disabled
);
3725 atomic_dec(&cpu_buffer_b
->record_disabled
);
3729 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
3730 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3733 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3734 * @buffer: the buffer to allocate for.
3736 * This function is used in conjunction with ring_buffer_read_page.
3737 * When reading a full page from the ring buffer, these functions
3738 * can be used to speed up the process. The calling function should
3739 * allocate a few pages first with this function. Then when it
3740 * needs to get pages from the ring buffer, it passes the result
3741 * of this function into ring_buffer_read_page, which will swap
3742 * the page that was allocated, with the read page of the buffer.
3745 * The page allocated, or NULL on error.
3747 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
3749 struct buffer_data_page
*bpage
;
3752 page
= alloc_pages_node(cpu_to_node(cpu
),
3753 GFP_KERNEL
| __GFP_NORETRY
, 0);
3757 bpage
= page_address(page
);
3759 rb_init_page(bpage
);
3763 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
3766 * ring_buffer_free_read_page - free an allocated read page
3767 * @buffer: the buffer the page was allocate for
3768 * @data: the page to free
3770 * Free a page allocated from ring_buffer_alloc_read_page.
3772 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
3774 free_page((unsigned long)data
);
3776 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
3779 * ring_buffer_read_page - extract a page from the ring buffer
3780 * @buffer: buffer to extract from
3781 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3782 * @len: amount to extract
3783 * @cpu: the cpu of the buffer to extract
3784 * @full: should the extraction only happen when the page is full.
3786 * This function will pull out a page from the ring buffer and consume it.
3787 * @data_page must be the address of the variable that was returned
3788 * from ring_buffer_alloc_read_page. This is because the page might be used
3789 * to swap with a page in the ring buffer.
3792 * rpage = ring_buffer_alloc_read_page(buffer);
3795 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3797 * process_page(rpage, ret);
3799 * When @full is set, the function will not return true unless
3800 * the writer is off the reader page.
3802 * Note: it is up to the calling functions to handle sleeps and wakeups.
3803 * The ring buffer can be used anywhere in the kernel and can not
3804 * blindly call wake_up. The layer that uses the ring buffer must be
3805 * responsible for that.
3808 * >=0 if data has been transferred, returns the offset of consumed data.
3809 * <0 if no data has been transferred.
3811 int ring_buffer_read_page(struct ring_buffer
*buffer
,
3812 void **data_page
, size_t len
, int cpu
, int full
)
3814 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3815 struct ring_buffer_event
*event
;
3816 struct buffer_data_page
*bpage
;
3817 struct buffer_page
*reader
;
3818 unsigned long missed_events
;
3819 unsigned long flags
;
3820 unsigned int commit
;
3825 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3829 * If len is not big enough to hold the page header, then
3830 * we can not copy anything.
3832 if (len
<= BUF_PAGE_HDR_SIZE
)
3835 len
-= BUF_PAGE_HDR_SIZE
;
3844 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3846 reader
= rb_get_reader_page(cpu_buffer
);
3850 event
= rb_reader_event(cpu_buffer
);
3852 read
= reader
->read
;
3853 commit
= rb_page_commit(reader
);
3855 /* Check if any events were dropped */
3856 missed_events
= cpu_buffer
->lost_events
;
3859 * If this page has been partially read or
3860 * if len is not big enough to read the rest of the page or
3861 * a writer is still on the page, then
3862 * we must copy the data from the page to the buffer.
3863 * Otherwise, we can simply swap the page with the one passed in.
3865 if (read
|| (len
< (commit
- read
)) ||
3866 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
3867 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
3868 unsigned int rpos
= read
;
3869 unsigned int pos
= 0;
3875 if (len
> (commit
- read
))
3876 len
= (commit
- read
);
3878 /* Always keep the time extend and data together */
3879 size
= rb_event_ts_length(event
);
3884 /* save the current timestamp, since the user will need it */
3885 save_timestamp
= cpu_buffer
->read_stamp
;
3887 /* Need to copy one event at a time */
3889 /* We need the size of one event, because
3890 * rb_advance_reader only advances by one event,
3891 * whereas rb_event_ts_length may include the size of
3892 * one or two events.
3893 * We have already ensured there's enough space if this
3894 * is a time extend. */
3895 size
= rb_event_length(event
);
3896 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
3900 rb_advance_reader(cpu_buffer
);
3901 rpos
= reader
->read
;
3907 event
= rb_reader_event(cpu_buffer
);
3908 /* Always keep the time extend and data together */
3909 size
= rb_event_ts_length(event
);
3910 } while (len
>= size
);
3913 local_set(&bpage
->commit
, pos
);
3914 bpage
->time_stamp
= save_timestamp
;
3916 /* we copied everything to the beginning */
3919 /* update the entry counter */
3920 cpu_buffer
->read
+= rb_page_entries(reader
);
3922 /* swap the pages */
3923 rb_init_page(bpage
);
3924 bpage
= reader
->page
;
3925 reader
->page
= *data_page
;
3926 local_set(&reader
->write
, 0);
3927 local_set(&reader
->entries
, 0);
3932 * Use the real_end for the data size,
3933 * This gives us a chance to store the lost events
3936 if (reader
->real_end
)
3937 local_set(&bpage
->commit
, reader
->real_end
);
3941 cpu_buffer
->lost_events
= 0;
3943 commit
= local_read(&bpage
->commit
);
3945 * Set a flag in the commit field if we lost events
3947 if (missed_events
) {
3948 /* If there is room at the end of the page to save the
3949 * missed events, then record it there.
3951 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
3952 memcpy(&bpage
->data
[commit
], &missed_events
,
3953 sizeof(missed_events
));
3954 local_add(RB_MISSED_STORED
, &bpage
->commit
);
3955 commit
+= sizeof(missed_events
);
3957 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
3961 * This page may be off to user land. Zero it out here.
3963 if (commit
< BUF_PAGE_SIZE
)
3964 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
3967 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3972 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
3974 #ifdef CONFIG_TRACING
3976 rb_simple_read(struct file
*filp
, char __user
*ubuf
,
3977 size_t cnt
, loff_t
*ppos
)
3979 unsigned long *p
= filp
->private_data
;
3983 if (test_bit(RB_BUFFERS_DISABLED_BIT
, p
))
3984 r
= sprintf(buf
, "permanently disabled\n");
3986 r
= sprintf(buf
, "%d\n", test_bit(RB_BUFFERS_ON_BIT
, p
));
3988 return simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
3992 rb_simple_write(struct file
*filp
, const char __user
*ubuf
,
3993 size_t cnt
, loff_t
*ppos
)
3995 unsigned long *p
= filp
->private_data
;
3999 ret
= kstrtoul_from_user(ubuf
, cnt
, 10, &val
);
4004 set_bit(RB_BUFFERS_ON_BIT
, p
);
4006 clear_bit(RB_BUFFERS_ON_BIT
, p
);
4013 static const struct file_operations rb_simple_fops
= {
4014 .open
= tracing_open_generic
,
4015 .read
= rb_simple_read
,
4016 .write
= rb_simple_write
,
4017 .llseek
= default_llseek
,
4021 static __init
int rb_init_debugfs(void)
4023 struct dentry
*d_tracer
;
4025 d_tracer
= tracing_init_dentry();
4027 trace_create_file("tracing_on", 0644, d_tracer
,
4028 &ring_buffer_flags
, &rb_simple_fops
);
4033 fs_initcall(rb_init_debugfs
);
4036 #ifdef CONFIG_HOTPLUG_CPU
4037 static int rb_cpu_notify(struct notifier_block
*self
,
4038 unsigned long action
, void *hcpu
)
4040 struct ring_buffer
*buffer
=
4041 container_of(self
, struct ring_buffer
, cpu_notify
);
4042 long cpu
= (long)hcpu
;
4045 case CPU_UP_PREPARE
:
4046 case CPU_UP_PREPARE_FROZEN
:
4047 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4050 buffer
->buffers
[cpu
] =
4051 rb_allocate_cpu_buffer(buffer
, cpu
);
4052 if (!buffer
->buffers
[cpu
]) {
4053 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4058 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4060 case CPU_DOWN_PREPARE
:
4061 case CPU_DOWN_PREPARE_FROZEN
:
4064 * If we were to free the buffer, then the user would
4065 * lose any trace that was in the buffer.