Merge branch 'for-usb-linus' of git+ssh://master.kernel.org/pub/scm/linux/kernel...
[zen-stable.git] / net / ipv4 / ip_output.c
blobccaaa851ab429ee48b0aa803fd5bf8edd5ee34ce
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl);
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
90 iph->check = 0;
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 EXPORT_SYMBOL(ip_send_check);
95 int __ip_local_out(struct sk_buff *skb)
97 struct iphdr *iph = ip_hdr(skb);
99 iph->tot_len = htons(skb->len);
100 ip_send_check(iph);
101 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
102 skb_dst(skb)->dev, dst_output);
105 int ip_local_out(struct sk_buff *skb)
107 int err;
109 err = __ip_local_out(skb);
110 if (likely(err == 1))
111 err = dst_output(skb);
113 return err;
115 EXPORT_SYMBOL_GPL(ip_local_out);
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
120 skb_reset_mac_header(newskb);
121 __skb_pull(newskb, skb_network_offset(newskb));
122 newskb->pkt_type = PACKET_LOOPBACK;
123 newskb->ip_summed = CHECKSUM_UNNECESSARY;
124 WARN_ON(!skb_dst(newskb));
125 netif_rx_ni(newskb);
126 return 0;
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 int ttl = inet->uc_ttl;
133 if (ttl < 0)
134 ttl = ip4_dst_hoplimit(dst);
135 return ttl;
139 * Add an ip header to a skbuff and send it out.
142 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 struct inet_sock *inet = inet_sk(sk);
146 struct rtable *rt = skb_rtable(skb);
147 struct iphdr *iph;
149 /* Build the IP header. */
150 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
151 skb_reset_network_header(skb);
152 iph = ip_hdr(skb);
153 iph->version = 4;
154 iph->ihl = 5;
155 iph->tos = inet->tos;
156 if (ip_dont_fragment(sk, &rt->dst))
157 iph->frag_off = htons(IP_DF);
158 else
159 iph->frag_off = 0;
160 iph->ttl = ip_select_ttl(inet, &rt->dst);
161 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
162 iph->saddr = saddr;
163 iph->protocol = sk->sk_protocol;
164 ip_select_ident(iph, &rt->dst, sk);
166 if (opt && opt->opt.optlen) {
167 iph->ihl += opt->opt.optlen>>2;
168 ip_options_build(skb, &opt->opt, daddr, rt, 0);
171 skb->priority = sk->sk_priority;
172 skb->mark = sk->sk_mark;
174 /* Send it out. */
175 return ip_local_out(skb);
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
179 static inline int ip_finish_output2(struct sk_buff *skb)
181 struct dst_entry *dst = skb_dst(skb);
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 struct neighbour *neigh;
187 if (rt->rt_type == RTN_MULTICAST) {
188 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
189 } else if (rt->rt_type == RTN_BROADCAST)
190 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
192 /* Be paranoid, rather than too clever. */
193 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
194 struct sk_buff *skb2;
196 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
197 if (skb2 == NULL) {
198 kfree_skb(skb);
199 return -ENOMEM;
201 if (skb->sk)
202 skb_set_owner_w(skb2, skb->sk);
203 kfree_skb(skb);
204 skb = skb2;
207 neigh = dst_get_neighbour(dst);
208 if (neigh)
209 return neigh_output(neigh, skb);
211 if (net_ratelimit())
212 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
213 kfree_skb(skb);
214 return -EINVAL;
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
219 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
221 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
225 static int ip_finish_output(struct sk_buff *skb)
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 /* Policy lookup after SNAT yielded a new policy */
229 if (skb_dst(skb)->xfrm != NULL) {
230 IPCB(skb)->flags |= IPSKB_REROUTED;
231 return dst_output(skb);
233 #endif
234 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 return ip_fragment(skb, ip_finish_output2);
236 else
237 return ip_finish_output2(skb);
240 int ip_mc_output(struct sk_buff *skb)
242 struct sock *sk = skb->sk;
243 struct rtable *rt = skb_rtable(skb);
244 struct net_device *dev = rt->dst.dev;
247 * If the indicated interface is up and running, send the packet.
249 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
251 skb->dev = dev;
252 skb->protocol = htons(ETH_P_IP);
255 * Multicasts are looped back for other local users
258 if (rt->rt_flags&RTCF_MULTICAST) {
259 if (sk_mc_loop(sk)
260 #ifdef CONFIG_IP_MROUTE
261 /* Small optimization: do not loopback not local frames,
262 which returned after forwarding; they will be dropped
263 by ip_mr_input in any case.
264 Note, that local frames are looped back to be delivered
265 to local recipients.
267 This check is duplicated in ip_mr_input at the moment.
270 ((rt->rt_flags & RTCF_LOCAL) ||
271 !(IPCB(skb)->flags & IPSKB_FORWARDED))
272 #endif
274 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
275 if (newskb)
276 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
277 newskb, NULL, newskb->dev,
278 ip_dev_loopback_xmit);
281 /* Multicasts with ttl 0 must not go beyond the host */
283 if (ip_hdr(skb)->ttl == 0) {
284 kfree_skb(skb);
285 return 0;
289 if (rt->rt_flags&RTCF_BROADCAST) {
290 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
291 if (newskb)
292 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
293 NULL, newskb->dev, ip_dev_loopback_xmit);
296 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
297 skb->dev, ip_finish_output,
298 !(IPCB(skb)->flags & IPSKB_REROUTED));
301 int ip_output(struct sk_buff *skb)
303 struct net_device *dev = skb_dst(skb)->dev;
305 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
307 skb->dev = dev;
308 skb->protocol = htons(ETH_P_IP);
310 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
311 ip_finish_output,
312 !(IPCB(skb)->flags & IPSKB_REROUTED));
315 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
317 struct sock *sk = skb->sk;
318 struct inet_sock *inet = inet_sk(sk);
319 struct ip_options_rcu *inet_opt;
320 struct flowi4 *fl4;
321 struct rtable *rt;
322 struct iphdr *iph;
323 int res;
325 /* Skip all of this if the packet is already routed,
326 * f.e. by something like SCTP.
328 rcu_read_lock();
329 inet_opt = rcu_dereference(inet->inet_opt);
330 fl4 = &fl->u.ip4;
331 rt = skb_rtable(skb);
332 if (rt != NULL)
333 goto packet_routed;
335 /* Make sure we can route this packet. */
336 rt = (struct rtable *)__sk_dst_check(sk, 0);
337 if (rt == NULL) {
338 __be32 daddr;
340 /* Use correct destination address if we have options. */
341 daddr = inet->inet_daddr;
342 if (inet_opt && inet_opt->opt.srr)
343 daddr = inet_opt->opt.faddr;
345 /* If this fails, retransmit mechanism of transport layer will
346 * keep trying until route appears or the connection times
347 * itself out.
349 rt = ip_route_output_ports(sock_net(sk), fl4, sk,
350 daddr, inet->inet_saddr,
351 inet->inet_dport,
352 inet->inet_sport,
353 sk->sk_protocol,
354 RT_CONN_FLAGS(sk),
355 sk->sk_bound_dev_if);
356 if (IS_ERR(rt))
357 goto no_route;
358 sk_setup_caps(sk, &rt->dst);
360 skb_dst_set_noref(skb, &rt->dst);
362 packet_routed:
363 if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
364 goto no_route;
366 /* OK, we know where to send it, allocate and build IP header. */
367 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
368 skb_reset_network_header(skb);
369 iph = ip_hdr(skb);
370 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
371 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
372 iph->frag_off = htons(IP_DF);
373 else
374 iph->frag_off = 0;
375 iph->ttl = ip_select_ttl(inet, &rt->dst);
376 iph->protocol = sk->sk_protocol;
377 iph->saddr = fl4->saddr;
378 iph->daddr = fl4->daddr;
379 /* Transport layer set skb->h.foo itself. */
381 if (inet_opt && inet_opt->opt.optlen) {
382 iph->ihl += inet_opt->opt.optlen >> 2;
383 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
386 ip_select_ident_more(iph, &rt->dst, sk,
387 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
389 skb->priority = sk->sk_priority;
390 skb->mark = sk->sk_mark;
392 res = ip_local_out(skb);
393 rcu_read_unlock();
394 return res;
396 no_route:
397 rcu_read_unlock();
398 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
399 kfree_skb(skb);
400 return -EHOSTUNREACH;
402 EXPORT_SYMBOL(ip_queue_xmit);
405 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
407 to->pkt_type = from->pkt_type;
408 to->priority = from->priority;
409 to->protocol = from->protocol;
410 skb_dst_drop(to);
411 skb_dst_copy(to, from);
412 to->dev = from->dev;
413 to->mark = from->mark;
415 /* Copy the flags to each fragment. */
416 IPCB(to)->flags = IPCB(from)->flags;
418 #ifdef CONFIG_NET_SCHED
419 to->tc_index = from->tc_index;
420 #endif
421 nf_copy(to, from);
422 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
423 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
424 to->nf_trace = from->nf_trace;
425 #endif
426 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
427 to->ipvs_property = from->ipvs_property;
428 #endif
429 skb_copy_secmark(to, from);
433 * This IP datagram is too large to be sent in one piece. Break it up into
434 * smaller pieces (each of size equal to IP header plus
435 * a block of the data of the original IP data part) that will yet fit in a
436 * single device frame, and queue such a frame for sending.
439 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
441 struct iphdr *iph;
442 int ptr;
443 struct net_device *dev;
444 struct sk_buff *skb2;
445 unsigned int mtu, hlen, left, len, ll_rs;
446 int offset;
447 __be16 not_last_frag;
448 struct rtable *rt = skb_rtable(skb);
449 int err = 0;
451 dev = rt->dst.dev;
454 * Point into the IP datagram header.
457 iph = ip_hdr(skb);
459 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
460 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
461 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
462 htonl(ip_skb_dst_mtu(skb)));
463 kfree_skb(skb);
464 return -EMSGSIZE;
468 * Setup starting values.
471 hlen = iph->ihl * 4;
472 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
473 #ifdef CONFIG_BRIDGE_NETFILTER
474 if (skb->nf_bridge)
475 mtu -= nf_bridge_mtu_reduction(skb);
476 #endif
477 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
479 /* When frag_list is given, use it. First, check its validity:
480 * some transformers could create wrong frag_list or break existing
481 * one, it is not prohibited. In this case fall back to copying.
483 * LATER: this step can be merged to real generation of fragments,
484 * we can switch to copy when see the first bad fragment.
486 if (skb_has_frag_list(skb)) {
487 struct sk_buff *frag, *frag2;
488 int first_len = skb_pagelen(skb);
490 if (first_len - hlen > mtu ||
491 ((first_len - hlen) & 7) ||
492 ip_is_fragment(iph) ||
493 skb_cloned(skb))
494 goto slow_path;
496 skb_walk_frags(skb, frag) {
497 /* Correct geometry. */
498 if (frag->len > mtu ||
499 ((frag->len & 7) && frag->next) ||
500 skb_headroom(frag) < hlen)
501 goto slow_path_clean;
503 /* Partially cloned skb? */
504 if (skb_shared(frag))
505 goto slow_path_clean;
507 BUG_ON(frag->sk);
508 if (skb->sk) {
509 frag->sk = skb->sk;
510 frag->destructor = sock_wfree;
512 skb->truesize -= frag->truesize;
515 /* Everything is OK. Generate! */
517 err = 0;
518 offset = 0;
519 frag = skb_shinfo(skb)->frag_list;
520 skb_frag_list_init(skb);
521 skb->data_len = first_len - skb_headlen(skb);
522 skb->len = first_len;
523 iph->tot_len = htons(first_len);
524 iph->frag_off = htons(IP_MF);
525 ip_send_check(iph);
527 for (;;) {
528 /* Prepare header of the next frame,
529 * before previous one went down. */
530 if (frag) {
531 frag->ip_summed = CHECKSUM_NONE;
532 skb_reset_transport_header(frag);
533 __skb_push(frag, hlen);
534 skb_reset_network_header(frag);
535 memcpy(skb_network_header(frag), iph, hlen);
536 iph = ip_hdr(frag);
537 iph->tot_len = htons(frag->len);
538 ip_copy_metadata(frag, skb);
539 if (offset == 0)
540 ip_options_fragment(frag);
541 offset += skb->len - hlen;
542 iph->frag_off = htons(offset>>3);
543 if (frag->next != NULL)
544 iph->frag_off |= htons(IP_MF);
545 /* Ready, complete checksum */
546 ip_send_check(iph);
549 err = output(skb);
551 if (!err)
552 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
553 if (err || !frag)
554 break;
556 skb = frag;
557 frag = skb->next;
558 skb->next = NULL;
561 if (err == 0) {
562 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
563 return 0;
566 while (frag) {
567 skb = frag->next;
568 kfree_skb(frag);
569 frag = skb;
571 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
572 return err;
574 slow_path_clean:
575 skb_walk_frags(skb, frag2) {
576 if (frag2 == frag)
577 break;
578 frag2->sk = NULL;
579 frag2->destructor = NULL;
580 skb->truesize += frag2->truesize;
584 slow_path:
585 left = skb->len - hlen; /* Space per frame */
586 ptr = hlen; /* Where to start from */
588 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
589 * we need to make room for the encapsulating header
591 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
594 * Fragment the datagram.
597 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
598 not_last_frag = iph->frag_off & htons(IP_MF);
601 * Keep copying data until we run out.
604 while (left > 0) {
605 len = left;
606 /* IF: it doesn't fit, use 'mtu' - the data space left */
607 if (len > mtu)
608 len = mtu;
609 /* IF: we are not sending up to and including the packet end
610 then align the next start on an eight byte boundary */
611 if (len < left) {
612 len &= ~7;
615 * Allocate buffer.
618 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
619 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
620 err = -ENOMEM;
621 goto fail;
625 * Set up data on packet
628 ip_copy_metadata(skb2, skb);
629 skb_reserve(skb2, ll_rs);
630 skb_put(skb2, len + hlen);
631 skb_reset_network_header(skb2);
632 skb2->transport_header = skb2->network_header + hlen;
635 * Charge the memory for the fragment to any owner
636 * it might possess
639 if (skb->sk)
640 skb_set_owner_w(skb2, skb->sk);
643 * Copy the packet header into the new buffer.
646 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
649 * Copy a block of the IP datagram.
651 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
652 BUG();
653 left -= len;
656 * Fill in the new header fields.
658 iph = ip_hdr(skb2);
659 iph->frag_off = htons((offset >> 3));
661 /* ANK: dirty, but effective trick. Upgrade options only if
662 * the segment to be fragmented was THE FIRST (otherwise,
663 * options are already fixed) and make it ONCE
664 * on the initial skb, so that all the following fragments
665 * will inherit fixed options.
667 if (offset == 0)
668 ip_options_fragment(skb);
671 * Added AC : If we are fragmenting a fragment that's not the
672 * last fragment then keep MF on each bit
674 if (left > 0 || not_last_frag)
675 iph->frag_off |= htons(IP_MF);
676 ptr += len;
677 offset += len;
680 * Put this fragment into the sending queue.
682 iph->tot_len = htons(len + hlen);
684 ip_send_check(iph);
686 err = output(skb2);
687 if (err)
688 goto fail;
690 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
692 kfree_skb(skb);
693 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
694 return err;
696 fail:
697 kfree_skb(skb);
698 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
699 return err;
701 EXPORT_SYMBOL(ip_fragment);
704 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
706 struct iovec *iov = from;
708 if (skb->ip_summed == CHECKSUM_PARTIAL) {
709 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
710 return -EFAULT;
711 } else {
712 __wsum csum = 0;
713 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
714 return -EFAULT;
715 skb->csum = csum_block_add(skb->csum, csum, odd);
717 return 0;
719 EXPORT_SYMBOL(ip_generic_getfrag);
721 static inline __wsum
722 csum_page(struct page *page, int offset, int copy)
724 char *kaddr;
725 __wsum csum;
726 kaddr = kmap(page);
727 csum = csum_partial(kaddr + offset, copy, 0);
728 kunmap(page);
729 return csum;
732 static inline int ip_ufo_append_data(struct sock *sk,
733 struct sk_buff_head *queue,
734 int getfrag(void *from, char *to, int offset, int len,
735 int odd, struct sk_buff *skb),
736 void *from, int length, int hh_len, int fragheaderlen,
737 int transhdrlen, int maxfraglen, unsigned int flags)
739 struct sk_buff *skb;
740 int err;
742 /* There is support for UDP fragmentation offload by network
743 * device, so create one single skb packet containing complete
744 * udp datagram
746 if ((skb = skb_peek_tail(queue)) == NULL) {
747 skb = sock_alloc_send_skb(sk,
748 hh_len + fragheaderlen + transhdrlen + 20,
749 (flags & MSG_DONTWAIT), &err);
751 if (skb == NULL)
752 return err;
754 /* reserve space for Hardware header */
755 skb_reserve(skb, hh_len);
757 /* create space for UDP/IP header */
758 skb_put(skb, fragheaderlen + transhdrlen);
760 /* initialize network header pointer */
761 skb_reset_network_header(skb);
763 /* initialize protocol header pointer */
764 skb->transport_header = skb->network_header + fragheaderlen;
766 skb->ip_summed = CHECKSUM_PARTIAL;
767 skb->csum = 0;
769 /* specify the length of each IP datagram fragment */
770 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
771 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
772 __skb_queue_tail(queue, skb);
775 return skb_append_datato_frags(sk, skb, getfrag, from,
776 (length - transhdrlen));
779 static int __ip_append_data(struct sock *sk,
780 struct flowi4 *fl4,
781 struct sk_buff_head *queue,
782 struct inet_cork *cork,
783 int getfrag(void *from, char *to, int offset,
784 int len, int odd, struct sk_buff *skb),
785 void *from, int length, int transhdrlen,
786 unsigned int flags)
788 struct inet_sock *inet = inet_sk(sk);
789 struct sk_buff *skb;
791 struct ip_options *opt = cork->opt;
792 int hh_len;
793 int exthdrlen;
794 int mtu;
795 int copy;
796 int err;
797 int offset = 0;
798 unsigned int maxfraglen, fragheaderlen;
799 int csummode = CHECKSUM_NONE;
800 struct rtable *rt = (struct rtable *)cork->dst;
802 skb = skb_peek_tail(queue);
804 exthdrlen = !skb ? rt->dst.header_len : 0;
805 mtu = cork->fragsize;
807 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
809 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
810 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
812 if (cork->length + length > 0xFFFF - fragheaderlen) {
813 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
814 mtu-exthdrlen);
815 return -EMSGSIZE;
819 * transhdrlen > 0 means that this is the first fragment and we wish
820 * it won't be fragmented in the future.
822 if (transhdrlen &&
823 length + fragheaderlen <= mtu &&
824 rt->dst.dev->features & NETIF_F_V4_CSUM &&
825 !exthdrlen)
826 csummode = CHECKSUM_PARTIAL;
828 cork->length += length;
829 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
830 (sk->sk_protocol == IPPROTO_UDP) &&
831 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
832 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
833 hh_len, fragheaderlen, transhdrlen,
834 maxfraglen, flags);
835 if (err)
836 goto error;
837 return 0;
840 /* So, what's going on in the loop below?
842 * We use calculated fragment length to generate chained skb,
843 * each of segments is IP fragment ready for sending to network after
844 * adding appropriate IP header.
847 if (!skb)
848 goto alloc_new_skb;
850 while (length > 0) {
851 /* Check if the remaining data fits into current packet. */
852 copy = mtu - skb->len;
853 if (copy < length)
854 copy = maxfraglen - skb->len;
855 if (copy <= 0) {
856 char *data;
857 unsigned int datalen;
858 unsigned int fraglen;
859 unsigned int fraggap;
860 unsigned int alloclen;
861 struct sk_buff *skb_prev;
862 alloc_new_skb:
863 skb_prev = skb;
864 if (skb_prev)
865 fraggap = skb_prev->len - maxfraglen;
866 else
867 fraggap = 0;
870 * If remaining data exceeds the mtu,
871 * we know we need more fragment(s).
873 datalen = length + fraggap;
874 if (datalen > mtu - fragheaderlen)
875 datalen = maxfraglen - fragheaderlen;
876 fraglen = datalen + fragheaderlen;
878 if ((flags & MSG_MORE) &&
879 !(rt->dst.dev->features&NETIF_F_SG))
880 alloclen = mtu;
881 else
882 alloclen = fraglen;
884 alloclen += exthdrlen;
886 /* The last fragment gets additional space at tail.
887 * Note, with MSG_MORE we overallocate on fragments,
888 * because we have no idea what fragment will be
889 * the last.
891 if (datalen == length + fraggap)
892 alloclen += rt->dst.trailer_len;
894 if (transhdrlen) {
895 skb = sock_alloc_send_skb(sk,
896 alloclen + hh_len + 15,
897 (flags & MSG_DONTWAIT), &err);
898 } else {
899 skb = NULL;
900 if (atomic_read(&sk->sk_wmem_alloc) <=
901 2 * sk->sk_sndbuf)
902 skb = sock_wmalloc(sk,
903 alloclen + hh_len + 15, 1,
904 sk->sk_allocation);
905 if (unlikely(skb == NULL))
906 err = -ENOBUFS;
907 else
908 /* only the initial fragment is
909 time stamped */
910 cork->tx_flags = 0;
912 if (skb == NULL)
913 goto error;
916 * Fill in the control structures
918 skb->ip_summed = csummode;
919 skb->csum = 0;
920 skb_reserve(skb, hh_len);
921 skb_shinfo(skb)->tx_flags = cork->tx_flags;
924 * Find where to start putting bytes.
926 data = skb_put(skb, fraglen + exthdrlen);
927 skb_set_network_header(skb, exthdrlen);
928 skb->transport_header = (skb->network_header +
929 fragheaderlen);
930 data += fragheaderlen + exthdrlen;
932 if (fraggap) {
933 skb->csum = skb_copy_and_csum_bits(
934 skb_prev, maxfraglen,
935 data + transhdrlen, fraggap, 0);
936 skb_prev->csum = csum_sub(skb_prev->csum,
937 skb->csum);
938 data += fraggap;
939 pskb_trim_unique(skb_prev, maxfraglen);
942 copy = datalen - transhdrlen - fraggap;
943 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
944 err = -EFAULT;
945 kfree_skb(skb);
946 goto error;
949 offset += copy;
950 length -= datalen - fraggap;
951 transhdrlen = 0;
952 exthdrlen = 0;
953 csummode = CHECKSUM_NONE;
956 * Put the packet on the pending queue.
958 __skb_queue_tail(queue, skb);
959 continue;
962 if (copy > length)
963 copy = length;
965 if (!(rt->dst.dev->features&NETIF_F_SG)) {
966 unsigned int off;
968 off = skb->len;
969 if (getfrag(from, skb_put(skb, copy),
970 offset, copy, off, skb) < 0) {
971 __skb_trim(skb, off);
972 err = -EFAULT;
973 goto error;
975 } else {
976 int i = skb_shinfo(skb)->nr_frags;
977 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
978 struct page *page = cork->page;
979 int off = cork->off;
980 unsigned int left;
982 if (page && (left = PAGE_SIZE - off) > 0) {
983 if (copy >= left)
984 copy = left;
985 if (page != frag->page) {
986 if (i == MAX_SKB_FRAGS) {
987 err = -EMSGSIZE;
988 goto error;
990 get_page(page);
991 skb_fill_page_desc(skb, i, page, off, 0);
992 frag = &skb_shinfo(skb)->frags[i];
994 } else if (i < MAX_SKB_FRAGS) {
995 if (copy > PAGE_SIZE)
996 copy = PAGE_SIZE;
997 page = alloc_pages(sk->sk_allocation, 0);
998 if (page == NULL) {
999 err = -ENOMEM;
1000 goto error;
1002 cork->page = page;
1003 cork->off = 0;
1005 skb_fill_page_desc(skb, i, page, 0, 0);
1006 frag = &skb_shinfo(skb)->frags[i];
1007 } else {
1008 err = -EMSGSIZE;
1009 goto error;
1011 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1012 err = -EFAULT;
1013 goto error;
1015 cork->off += copy;
1016 frag->size += copy;
1017 skb->len += copy;
1018 skb->data_len += copy;
1019 skb->truesize += copy;
1020 atomic_add(copy, &sk->sk_wmem_alloc);
1022 offset += copy;
1023 length -= copy;
1026 return 0;
1028 error:
1029 cork->length -= length;
1030 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1031 return err;
1034 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1035 struct ipcm_cookie *ipc, struct rtable **rtp)
1037 struct inet_sock *inet = inet_sk(sk);
1038 struct ip_options_rcu *opt;
1039 struct rtable *rt;
1042 * setup for corking.
1044 opt = ipc->opt;
1045 if (opt) {
1046 if (cork->opt == NULL) {
1047 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1048 sk->sk_allocation);
1049 if (unlikely(cork->opt == NULL))
1050 return -ENOBUFS;
1052 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1053 cork->flags |= IPCORK_OPT;
1054 cork->addr = ipc->addr;
1056 rt = *rtp;
1057 if (unlikely(!rt))
1058 return -EFAULT;
1060 * We steal reference to this route, caller should not release it
1062 *rtp = NULL;
1063 cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1064 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1065 cork->dst = &rt->dst;
1066 cork->length = 0;
1067 cork->tx_flags = ipc->tx_flags;
1068 cork->page = NULL;
1069 cork->off = 0;
1071 return 0;
1075 * ip_append_data() and ip_append_page() can make one large IP datagram
1076 * from many pieces of data. Each pieces will be holded on the socket
1077 * until ip_push_pending_frames() is called. Each piece can be a page
1078 * or non-page data.
1080 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1081 * this interface potentially.
1083 * LATER: length must be adjusted by pad at tail, when it is required.
1085 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1086 int getfrag(void *from, char *to, int offset, int len,
1087 int odd, struct sk_buff *skb),
1088 void *from, int length, int transhdrlen,
1089 struct ipcm_cookie *ipc, struct rtable **rtp,
1090 unsigned int flags)
1092 struct inet_sock *inet = inet_sk(sk);
1093 int err;
1095 if (flags&MSG_PROBE)
1096 return 0;
1098 if (skb_queue_empty(&sk->sk_write_queue)) {
1099 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1100 if (err)
1101 return err;
1102 } else {
1103 transhdrlen = 0;
1106 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
1107 from, length, transhdrlen, flags);
1110 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1111 int offset, size_t size, int flags)
1113 struct inet_sock *inet = inet_sk(sk);
1114 struct sk_buff *skb;
1115 struct rtable *rt;
1116 struct ip_options *opt = NULL;
1117 struct inet_cork *cork;
1118 int hh_len;
1119 int mtu;
1120 int len;
1121 int err;
1122 unsigned int maxfraglen, fragheaderlen, fraggap;
1124 if (inet->hdrincl)
1125 return -EPERM;
1127 if (flags&MSG_PROBE)
1128 return 0;
1130 if (skb_queue_empty(&sk->sk_write_queue))
1131 return -EINVAL;
1133 cork = &inet->cork.base;
1134 rt = (struct rtable *)cork->dst;
1135 if (cork->flags & IPCORK_OPT)
1136 opt = cork->opt;
1138 if (!(rt->dst.dev->features&NETIF_F_SG))
1139 return -EOPNOTSUPP;
1141 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1142 mtu = cork->fragsize;
1144 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1145 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1147 if (cork->length + size > 0xFFFF - fragheaderlen) {
1148 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1149 return -EMSGSIZE;
1152 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1153 return -EINVAL;
1155 cork->length += size;
1156 if ((size + skb->len > mtu) &&
1157 (sk->sk_protocol == IPPROTO_UDP) &&
1158 (rt->dst.dev->features & NETIF_F_UFO)) {
1159 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1160 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1164 while (size > 0) {
1165 int i;
1167 if (skb_is_gso(skb))
1168 len = size;
1169 else {
1171 /* Check if the remaining data fits into current packet. */
1172 len = mtu - skb->len;
1173 if (len < size)
1174 len = maxfraglen - skb->len;
1176 if (len <= 0) {
1177 struct sk_buff *skb_prev;
1178 int alloclen;
1180 skb_prev = skb;
1181 fraggap = skb_prev->len - maxfraglen;
1183 alloclen = fragheaderlen + hh_len + fraggap + 15;
1184 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1185 if (unlikely(!skb)) {
1186 err = -ENOBUFS;
1187 goto error;
1191 * Fill in the control structures
1193 skb->ip_summed = CHECKSUM_NONE;
1194 skb->csum = 0;
1195 skb_reserve(skb, hh_len);
1198 * Find where to start putting bytes.
1200 skb_put(skb, fragheaderlen + fraggap);
1201 skb_reset_network_header(skb);
1202 skb->transport_header = (skb->network_header +
1203 fragheaderlen);
1204 if (fraggap) {
1205 skb->csum = skb_copy_and_csum_bits(skb_prev,
1206 maxfraglen,
1207 skb_transport_header(skb),
1208 fraggap, 0);
1209 skb_prev->csum = csum_sub(skb_prev->csum,
1210 skb->csum);
1211 pskb_trim_unique(skb_prev, maxfraglen);
1215 * Put the packet on the pending queue.
1217 __skb_queue_tail(&sk->sk_write_queue, skb);
1218 continue;
1221 i = skb_shinfo(skb)->nr_frags;
1222 if (len > size)
1223 len = size;
1224 if (skb_can_coalesce(skb, i, page, offset)) {
1225 skb_shinfo(skb)->frags[i-1].size += len;
1226 } else if (i < MAX_SKB_FRAGS) {
1227 get_page(page);
1228 skb_fill_page_desc(skb, i, page, offset, len);
1229 } else {
1230 err = -EMSGSIZE;
1231 goto error;
1234 if (skb->ip_summed == CHECKSUM_NONE) {
1235 __wsum csum;
1236 csum = csum_page(page, offset, len);
1237 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1240 skb->len += len;
1241 skb->data_len += len;
1242 skb->truesize += len;
1243 atomic_add(len, &sk->sk_wmem_alloc);
1244 offset += len;
1245 size -= len;
1247 return 0;
1249 error:
1250 cork->length -= size;
1251 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1252 return err;
1255 static void ip_cork_release(struct inet_cork *cork)
1257 cork->flags &= ~IPCORK_OPT;
1258 kfree(cork->opt);
1259 cork->opt = NULL;
1260 dst_release(cork->dst);
1261 cork->dst = NULL;
1265 * Combined all pending IP fragments on the socket as one IP datagram
1266 * and push them out.
1268 struct sk_buff *__ip_make_skb(struct sock *sk,
1269 struct flowi4 *fl4,
1270 struct sk_buff_head *queue,
1271 struct inet_cork *cork)
1273 struct sk_buff *skb, *tmp_skb;
1274 struct sk_buff **tail_skb;
1275 struct inet_sock *inet = inet_sk(sk);
1276 struct net *net = sock_net(sk);
1277 struct ip_options *opt = NULL;
1278 struct rtable *rt = (struct rtable *)cork->dst;
1279 struct iphdr *iph;
1280 __be16 df = 0;
1281 __u8 ttl;
1283 if ((skb = __skb_dequeue(queue)) == NULL)
1284 goto out;
1285 tail_skb = &(skb_shinfo(skb)->frag_list);
1287 /* move skb->data to ip header from ext header */
1288 if (skb->data < skb_network_header(skb))
1289 __skb_pull(skb, skb_network_offset(skb));
1290 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1291 __skb_pull(tmp_skb, skb_network_header_len(skb));
1292 *tail_skb = tmp_skb;
1293 tail_skb = &(tmp_skb->next);
1294 skb->len += tmp_skb->len;
1295 skb->data_len += tmp_skb->len;
1296 skb->truesize += tmp_skb->truesize;
1297 tmp_skb->destructor = NULL;
1298 tmp_skb->sk = NULL;
1301 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1302 * to fragment the frame generated here. No matter, what transforms
1303 * how transforms change size of the packet, it will come out.
1305 if (inet->pmtudisc < IP_PMTUDISC_DO)
1306 skb->local_df = 1;
1308 /* DF bit is set when we want to see DF on outgoing frames.
1309 * If local_df is set too, we still allow to fragment this frame
1310 * locally. */
1311 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1312 (skb->len <= dst_mtu(&rt->dst) &&
1313 ip_dont_fragment(sk, &rt->dst)))
1314 df = htons(IP_DF);
1316 if (cork->flags & IPCORK_OPT)
1317 opt = cork->opt;
1319 if (rt->rt_type == RTN_MULTICAST)
1320 ttl = inet->mc_ttl;
1321 else
1322 ttl = ip_select_ttl(inet, &rt->dst);
1324 iph = (struct iphdr *)skb->data;
1325 iph->version = 4;
1326 iph->ihl = 5;
1327 iph->tos = inet->tos;
1328 iph->frag_off = df;
1329 ip_select_ident(iph, &rt->dst, sk);
1330 iph->ttl = ttl;
1331 iph->protocol = sk->sk_protocol;
1332 iph->saddr = fl4->saddr;
1333 iph->daddr = fl4->daddr;
1335 if (opt) {
1336 iph->ihl += opt->optlen>>2;
1337 ip_options_build(skb, opt, cork->addr, rt, 0);
1340 skb->priority = sk->sk_priority;
1341 skb->mark = sk->sk_mark;
1343 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1344 * on dst refcount
1346 cork->dst = NULL;
1347 skb_dst_set(skb, &rt->dst);
1349 if (iph->protocol == IPPROTO_ICMP)
1350 icmp_out_count(net, ((struct icmphdr *)
1351 skb_transport_header(skb))->type);
1353 ip_cork_release(cork);
1354 out:
1355 return skb;
1358 int ip_send_skb(struct sk_buff *skb)
1360 struct net *net = sock_net(skb->sk);
1361 int err;
1363 err = ip_local_out(skb);
1364 if (err) {
1365 if (err > 0)
1366 err = net_xmit_errno(err);
1367 if (err)
1368 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1371 return err;
1374 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1376 struct sk_buff *skb;
1378 skb = ip_finish_skb(sk, fl4);
1379 if (!skb)
1380 return 0;
1382 /* Netfilter gets whole the not fragmented skb. */
1383 return ip_send_skb(skb);
1387 * Throw away all pending data on the socket.
1389 static void __ip_flush_pending_frames(struct sock *sk,
1390 struct sk_buff_head *queue,
1391 struct inet_cork *cork)
1393 struct sk_buff *skb;
1395 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1396 kfree_skb(skb);
1398 ip_cork_release(cork);
1401 void ip_flush_pending_frames(struct sock *sk)
1403 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1406 struct sk_buff *ip_make_skb(struct sock *sk,
1407 struct flowi4 *fl4,
1408 int getfrag(void *from, char *to, int offset,
1409 int len, int odd, struct sk_buff *skb),
1410 void *from, int length, int transhdrlen,
1411 struct ipcm_cookie *ipc, struct rtable **rtp,
1412 unsigned int flags)
1414 struct inet_cork cork;
1415 struct sk_buff_head queue;
1416 int err;
1418 if (flags & MSG_PROBE)
1419 return NULL;
1421 __skb_queue_head_init(&queue);
1423 cork.flags = 0;
1424 cork.addr = 0;
1425 cork.opt = NULL;
1426 err = ip_setup_cork(sk, &cork, ipc, rtp);
1427 if (err)
1428 return ERR_PTR(err);
1430 err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
1431 from, length, transhdrlen, flags);
1432 if (err) {
1433 __ip_flush_pending_frames(sk, &queue, &cork);
1434 return ERR_PTR(err);
1437 return __ip_make_skb(sk, fl4, &queue, &cork);
1441 * Fetch data from kernel space and fill in checksum if needed.
1443 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1444 int len, int odd, struct sk_buff *skb)
1446 __wsum csum;
1448 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1449 skb->csum = csum_block_add(skb->csum, csum, odd);
1450 return 0;
1454 * Generic function to send a packet as reply to another packet.
1455 * Used to send TCP resets so far. ICMP should use this function too.
1457 * Should run single threaded per socket because it uses the sock
1458 * structure to pass arguments.
1460 void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1461 struct ip_reply_arg *arg, unsigned int len)
1463 struct inet_sock *inet = inet_sk(sk);
1464 struct ip_options_data replyopts;
1465 struct ipcm_cookie ipc;
1466 struct flowi4 fl4;
1467 struct rtable *rt = skb_rtable(skb);
1469 if (ip_options_echo(&replyopts.opt.opt, skb))
1470 return;
1472 ipc.addr = daddr;
1473 ipc.opt = NULL;
1474 ipc.tx_flags = 0;
1476 if (replyopts.opt.opt.optlen) {
1477 ipc.opt = &replyopts.opt;
1479 if (replyopts.opt.opt.srr)
1480 daddr = replyopts.opt.opt.faddr;
1483 flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1484 RT_TOS(ip_hdr(skb)->tos),
1485 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1486 ip_reply_arg_flowi_flags(arg),
1487 daddr, rt->rt_spec_dst,
1488 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1489 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1490 rt = ip_route_output_key(sock_net(sk), &fl4);
1491 if (IS_ERR(rt))
1492 return;
1494 /* And let IP do all the hard work.
1496 This chunk is not reenterable, hence spinlock.
1497 Note that it uses the fact, that this function is called
1498 with locally disabled BH and that sk cannot be already spinlocked.
1500 bh_lock_sock(sk);
1501 inet->tos = ip_hdr(skb)->tos;
1502 sk->sk_priority = skb->priority;
1503 sk->sk_protocol = ip_hdr(skb)->protocol;
1504 sk->sk_bound_dev_if = arg->bound_dev_if;
1505 ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1506 &ipc, &rt, MSG_DONTWAIT);
1507 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1508 if (arg->csumoffset >= 0)
1509 *((__sum16 *)skb_transport_header(skb) +
1510 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1511 arg->csum));
1512 skb->ip_summed = CHECKSUM_NONE;
1513 ip_push_pending_frames(sk, &fl4);
1516 bh_unlock_sock(sk);
1518 ip_rt_put(rt);
1521 void __init ip_init(void)
1523 ip_rt_init();
1524 inet_initpeers();
1526 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1527 igmp_mc_proc_init();
1528 #endif