staging: brcm80211: decreased indentation level of brcms_c_wme_setparams function
[zen-stable.git] / arch / powerpc / sysdev / qe_lib / qe.c
blob904c6cbaf45b23b4c6ffd0655a8a4f47f13015d2
1 /*
2 * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
4 * Authors: Shlomi Gridish <gridish@freescale.com>
5 * Li Yang <leoli@freescale.com>
6 * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
8 * Description:
9 * General Purpose functions for the global management of the
10 * QUICC Engine (QE).
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/param.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/crc32.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/of_platform.h>
32 #include <asm/irq.h>
33 #include <asm/page.h>
34 #include <asm/pgtable.h>
35 #include <asm/immap_qe.h>
36 #include <asm/qe.h>
37 #include <asm/prom.h>
38 #include <asm/rheap.h>
40 static void qe_snums_init(void);
41 static int qe_sdma_init(void);
43 static DEFINE_SPINLOCK(qe_lock);
44 DEFINE_SPINLOCK(cmxgcr_lock);
45 EXPORT_SYMBOL(cmxgcr_lock);
47 /* QE snum state */
48 enum qe_snum_state {
49 QE_SNUM_STATE_USED,
50 QE_SNUM_STATE_FREE
53 /* QE snum */
54 struct qe_snum {
55 u8 num;
56 enum qe_snum_state state;
59 /* We allocate this here because it is used almost exclusively for
60 * the communication processor devices.
62 struct qe_immap __iomem *qe_immr;
63 EXPORT_SYMBOL(qe_immr);
65 static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */
66 static unsigned int qe_num_of_snum;
68 static phys_addr_t qebase = -1;
70 phys_addr_t get_qe_base(void)
72 struct device_node *qe;
73 int size;
74 const u32 *prop;
76 if (qebase != -1)
77 return qebase;
79 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
80 if (!qe) {
81 qe = of_find_node_by_type(NULL, "qe");
82 if (!qe)
83 return qebase;
86 prop = of_get_property(qe, "reg", &size);
87 if (prop && size >= sizeof(*prop))
88 qebase = of_translate_address(qe, prop);
89 of_node_put(qe);
91 return qebase;
94 EXPORT_SYMBOL(get_qe_base);
96 void qe_reset(void)
98 if (qe_immr == NULL)
99 qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
101 qe_snums_init();
103 qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
104 QE_CR_PROTOCOL_UNSPECIFIED, 0);
106 /* Reclaim the MURAM memory for our use. */
107 qe_muram_init();
109 if (qe_sdma_init())
110 panic("sdma init failed!");
113 int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
115 unsigned long flags;
116 u8 mcn_shift = 0, dev_shift = 0;
117 u32 ret;
119 spin_lock_irqsave(&qe_lock, flags);
120 if (cmd == QE_RESET) {
121 out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG));
122 } else {
123 if (cmd == QE_ASSIGN_PAGE) {
124 /* Here device is the SNUM, not sub-block */
125 dev_shift = QE_CR_SNUM_SHIFT;
126 } else if (cmd == QE_ASSIGN_RISC) {
127 /* Here device is the SNUM, and mcnProtocol is
128 * e_QeCmdRiscAssignment value */
129 dev_shift = QE_CR_SNUM_SHIFT;
130 mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
131 } else {
132 if (device == QE_CR_SUBBLOCK_USB)
133 mcn_shift = QE_CR_MCN_USB_SHIFT;
134 else
135 mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
138 out_be32(&qe_immr->cp.cecdr, cmd_input);
139 out_be32(&qe_immr->cp.cecr,
140 (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32)
141 mcn_protocol << mcn_shift));
144 /* wait for the QE_CR_FLG to clear */
145 ret = spin_event_timeout((in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) == 0,
146 100, 0);
147 /* On timeout (e.g. failure), the expression will be false (ret == 0),
148 otherwise it will be true (ret == 1). */
149 spin_unlock_irqrestore(&qe_lock, flags);
151 return ret == 1;
153 EXPORT_SYMBOL(qe_issue_cmd);
155 /* Set a baud rate generator. This needs lots of work. There are
156 * 16 BRGs, which can be connected to the QE channels or output
157 * as clocks. The BRGs are in two different block of internal
158 * memory mapped space.
159 * The BRG clock is the QE clock divided by 2.
160 * It was set up long ago during the initial boot phase and is
161 * is given to us.
162 * Baud rate clocks are zero-based in the driver code (as that maps
163 * to port numbers). Documentation uses 1-based numbering.
165 static unsigned int brg_clk = 0;
167 unsigned int qe_get_brg_clk(void)
169 struct device_node *qe;
170 int size;
171 const u32 *prop;
173 if (brg_clk)
174 return brg_clk;
176 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
177 if (!qe) {
178 qe = of_find_node_by_type(NULL, "qe");
179 if (!qe)
180 return brg_clk;
183 prop = of_get_property(qe, "brg-frequency", &size);
184 if (prop && size == sizeof(*prop))
185 brg_clk = *prop;
187 of_node_put(qe);
189 return brg_clk;
191 EXPORT_SYMBOL(qe_get_brg_clk);
193 /* Program the BRG to the given sampling rate and multiplier
195 * @brg: the BRG, QE_BRG1 - QE_BRG16
196 * @rate: the desired sampling rate
197 * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or
198 * GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01,
199 * then 'multiplier' should be 8.
201 int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier)
203 u32 divisor, tempval;
204 u32 div16 = 0;
206 if ((brg < QE_BRG1) || (brg > QE_BRG16))
207 return -EINVAL;
209 divisor = qe_get_brg_clk() / (rate * multiplier);
211 if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
212 div16 = QE_BRGC_DIV16;
213 divisor /= 16;
216 /* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says
217 that the BRG divisor must be even if you're not using divide-by-16
218 mode. */
219 if (!div16 && (divisor & 1))
220 divisor++;
222 tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) |
223 QE_BRGC_ENABLE | div16;
225 out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval);
227 return 0;
229 EXPORT_SYMBOL(qe_setbrg);
231 /* Convert a string to a QE clock source enum
233 * This function takes a string, typically from a property in the device
234 * tree, and returns the corresponding "enum qe_clock" value.
236 enum qe_clock qe_clock_source(const char *source)
238 unsigned int i;
240 if (strcasecmp(source, "none") == 0)
241 return QE_CLK_NONE;
243 if (strncasecmp(source, "brg", 3) == 0) {
244 i = simple_strtoul(source + 3, NULL, 10);
245 if ((i >= 1) && (i <= 16))
246 return (QE_BRG1 - 1) + i;
247 else
248 return QE_CLK_DUMMY;
251 if (strncasecmp(source, "clk", 3) == 0) {
252 i = simple_strtoul(source + 3, NULL, 10);
253 if ((i >= 1) && (i <= 24))
254 return (QE_CLK1 - 1) + i;
255 else
256 return QE_CLK_DUMMY;
259 return QE_CLK_DUMMY;
261 EXPORT_SYMBOL(qe_clock_source);
263 /* Initialize SNUMs (thread serial numbers) according to
264 * QE Module Control chapter, SNUM table
266 static void qe_snums_init(void)
268 int i;
269 static const u8 snum_init[] = {
270 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
271 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
272 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
273 0xD8, 0xD9, 0xE8, 0xE9, 0x08, 0x09, 0x18, 0x19,
274 0x28, 0x29, 0x38, 0x39, 0x48, 0x49, 0x58, 0x59,
275 0x68, 0x69, 0x78, 0x79, 0x80, 0x81,
278 qe_num_of_snum = qe_get_num_of_snums();
280 for (i = 0; i < qe_num_of_snum; i++) {
281 snums[i].num = snum_init[i];
282 snums[i].state = QE_SNUM_STATE_FREE;
286 int qe_get_snum(void)
288 unsigned long flags;
289 int snum = -EBUSY;
290 int i;
292 spin_lock_irqsave(&qe_lock, flags);
293 for (i = 0; i < qe_num_of_snum; i++) {
294 if (snums[i].state == QE_SNUM_STATE_FREE) {
295 snums[i].state = QE_SNUM_STATE_USED;
296 snum = snums[i].num;
297 break;
300 spin_unlock_irqrestore(&qe_lock, flags);
302 return snum;
304 EXPORT_SYMBOL(qe_get_snum);
306 void qe_put_snum(u8 snum)
308 int i;
310 for (i = 0; i < qe_num_of_snum; i++) {
311 if (snums[i].num == snum) {
312 snums[i].state = QE_SNUM_STATE_FREE;
313 break;
317 EXPORT_SYMBOL(qe_put_snum);
319 static int qe_sdma_init(void)
321 struct sdma __iomem *sdma = &qe_immr->sdma;
322 static unsigned long sdma_buf_offset = (unsigned long)-ENOMEM;
324 if (!sdma)
325 return -ENODEV;
327 /* allocate 2 internal temporary buffers (512 bytes size each) for
328 * the SDMA */
329 if (IS_ERR_VALUE(sdma_buf_offset)) {
330 sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
331 if (IS_ERR_VALUE(sdma_buf_offset))
332 return -ENOMEM;
335 out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK);
336 out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK |
337 (0x1 << QE_SDMR_CEN_SHIFT)));
339 return 0;
342 /* The maximum number of RISCs we support */
343 #define MAX_QE_RISC 4
345 /* Firmware information stored here for qe_get_firmware_info() */
346 static struct qe_firmware_info qe_firmware_info;
349 * Set to 1 if QE firmware has been uploaded, and therefore
350 * qe_firmware_info contains valid data.
352 static int qe_firmware_uploaded;
355 * Upload a QE microcode
357 * This function is a worker function for qe_upload_firmware(). It does
358 * the actual uploading of the microcode.
360 static void qe_upload_microcode(const void *base,
361 const struct qe_microcode *ucode)
363 const __be32 *code = base + be32_to_cpu(ucode->code_offset);
364 unsigned int i;
366 if (ucode->major || ucode->minor || ucode->revision)
367 printk(KERN_INFO "qe-firmware: "
368 "uploading microcode '%s' version %u.%u.%u\n",
369 ucode->id, ucode->major, ucode->minor, ucode->revision);
370 else
371 printk(KERN_INFO "qe-firmware: "
372 "uploading microcode '%s'\n", ucode->id);
374 /* Use auto-increment */
375 out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) |
376 QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR);
378 for (i = 0; i < be32_to_cpu(ucode->count); i++)
379 out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i]));
383 * Upload a microcode to the I-RAM at a specific address.
385 * See Documentation/powerpc/qe-firmware.txt for information on QE microcode
386 * uploading.
388 * Currently, only version 1 is supported, so the 'version' field must be
389 * set to 1.
391 * The SOC model and revision are not validated, they are only displayed for
392 * informational purposes.
394 * 'calc_size' is the calculated size, in bytes, of the firmware structure and
395 * all of the microcode structures, minus the CRC.
397 * 'length' is the size that the structure says it is, including the CRC.
399 int qe_upload_firmware(const struct qe_firmware *firmware)
401 unsigned int i;
402 unsigned int j;
403 u32 crc;
404 size_t calc_size = sizeof(struct qe_firmware);
405 size_t length;
406 const struct qe_header *hdr;
408 if (!firmware) {
409 printk(KERN_ERR "qe-firmware: invalid pointer\n");
410 return -EINVAL;
413 hdr = &firmware->header;
414 length = be32_to_cpu(hdr->length);
416 /* Check the magic */
417 if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
418 (hdr->magic[2] != 'F')) {
419 printk(KERN_ERR "qe-firmware: not a microcode\n");
420 return -EPERM;
423 /* Check the version */
424 if (hdr->version != 1) {
425 printk(KERN_ERR "qe-firmware: unsupported version\n");
426 return -EPERM;
429 /* Validate some of the fields */
430 if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) {
431 printk(KERN_ERR "qe-firmware: invalid data\n");
432 return -EINVAL;
435 /* Validate the length and check if there's a CRC */
436 calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
438 for (i = 0; i < firmware->count; i++)
440 * For situations where the second RISC uses the same microcode
441 * as the first, the 'code_offset' and 'count' fields will be
442 * zero, so it's okay to add those.
444 calc_size += sizeof(__be32) *
445 be32_to_cpu(firmware->microcode[i].count);
447 /* Validate the length */
448 if (length != calc_size + sizeof(__be32)) {
449 printk(KERN_ERR "qe-firmware: invalid length\n");
450 return -EPERM;
453 /* Validate the CRC */
454 crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
455 if (crc != crc32(0, firmware, calc_size)) {
456 printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
457 return -EIO;
461 * If the microcode calls for it, split the I-RAM.
463 if (!firmware->split)
464 setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
466 if (firmware->soc.model)
467 printk(KERN_INFO
468 "qe-firmware: firmware '%s' for %u V%u.%u\n",
469 firmware->id, be16_to_cpu(firmware->soc.model),
470 firmware->soc.major, firmware->soc.minor);
471 else
472 printk(KERN_INFO "qe-firmware: firmware '%s'\n",
473 firmware->id);
476 * The QE only supports one microcode per RISC, so clear out all the
477 * saved microcode information and put in the new.
479 memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
480 strcpy(qe_firmware_info.id, firmware->id);
481 qe_firmware_info.extended_modes = firmware->extended_modes;
482 memcpy(qe_firmware_info.vtraps, firmware->vtraps,
483 sizeof(firmware->vtraps));
485 /* Loop through each microcode. */
486 for (i = 0; i < firmware->count; i++) {
487 const struct qe_microcode *ucode = &firmware->microcode[i];
489 /* Upload a microcode if it's present */
490 if (ucode->code_offset)
491 qe_upload_microcode(firmware, ucode);
493 /* Program the traps for this processor */
494 for (j = 0; j < 16; j++) {
495 u32 trap = be32_to_cpu(ucode->traps[j]);
497 if (trap)
498 out_be32(&qe_immr->rsp[i].tibcr[j], trap);
501 /* Enable traps */
502 out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr));
505 qe_firmware_uploaded = 1;
507 return 0;
509 EXPORT_SYMBOL(qe_upload_firmware);
512 * Get info on the currently-loaded firmware
514 * This function also checks the device tree to see if the boot loader has
515 * uploaded a firmware already.
517 struct qe_firmware_info *qe_get_firmware_info(void)
519 static int initialized;
520 struct property *prop;
521 struct device_node *qe;
522 struct device_node *fw = NULL;
523 const char *sprop;
524 unsigned int i;
527 * If we haven't checked yet, and a driver hasn't uploaded a firmware
528 * yet, then check the device tree for information.
530 if (qe_firmware_uploaded)
531 return &qe_firmware_info;
533 if (initialized)
534 return NULL;
536 initialized = 1;
539 * Newer device trees have an "fsl,qe" compatible property for the QE
540 * node, but we still need to support older device trees.
542 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
543 if (!qe) {
544 qe = of_find_node_by_type(NULL, "qe");
545 if (!qe)
546 return NULL;
549 /* Find the 'firmware' child node */
550 for_each_child_of_node(qe, fw) {
551 if (strcmp(fw->name, "firmware") == 0)
552 break;
555 of_node_put(qe);
557 /* Did we find the 'firmware' node? */
558 if (!fw)
559 return NULL;
561 qe_firmware_uploaded = 1;
563 /* Copy the data into qe_firmware_info*/
564 sprop = of_get_property(fw, "id", NULL);
565 if (sprop)
566 strncpy(qe_firmware_info.id, sprop,
567 sizeof(qe_firmware_info.id) - 1);
569 prop = of_find_property(fw, "extended-modes", NULL);
570 if (prop && (prop->length == sizeof(u64))) {
571 const u64 *iprop = prop->value;
573 qe_firmware_info.extended_modes = *iprop;
576 prop = of_find_property(fw, "virtual-traps", NULL);
577 if (prop && (prop->length == 32)) {
578 const u32 *iprop = prop->value;
580 for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++)
581 qe_firmware_info.vtraps[i] = iprop[i];
584 of_node_put(fw);
586 return &qe_firmware_info;
588 EXPORT_SYMBOL(qe_get_firmware_info);
590 unsigned int qe_get_num_of_risc(void)
592 struct device_node *qe;
593 int size;
594 unsigned int num_of_risc = 0;
595 const u32 *prop;
597 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
598 if (!qe) {
599 /* Older devices trees did not have an "fsl,qe"
600 * compatible property, so we need to look for
601 * the QE node by name.
603 qe = of_find_node_by_type(NULL, "qe");
604 if (!qe)
605 return num_of_risc;
608 prop = of_get_property(qe, "fsl,qe-num-riscs", &size);
609 if (prop && size == sizeof(*prop))
610 num_of_risc = *prop;
612 of_node_put(qe);
614 return num_of_risc;
616 EXPORT_SYMBOL(qe_get_num_of_risc);
618 unsigned int qe_get_num_of_snums(void)
620 struct device_node *qe;
621 int size;
622 unsigned int num_of_snums;
623 const u32 *prop;
625 num_of_snums = 28; /* The default number of snum for threads is 28 */
626 qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
627 if (!qe) {
628 /* Older devices trees did not have an "fsl,qe"
629 * compatible property, so we need to look for
630 * the QE node by name.
632 qe = of_find_node_by_type(NULL, "qe");
633 if (!qe)
634 return num_of_snums;
637 prop = of_get_property(qe, "fsl,qe-num-snums", &size);
638 if (prop && size == sizeof(*prop)) {
639 num_of_snums = *prop;
640 if ((num_of_snums < 28) || (num_of_snums > QE_NUM_OF_SNUM)) {
641 /* No QE ever has fewer than 28 SNUMs */
642 pr_err("QE: number of snum is invalid\n");
643 of_node_put(qe);
644 return -EINVAL;
648 of_node_put(qe);
650 return num_of_snums;
652 EXPORT_SYMBOL(qe_get_num_of_snums);
654 #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx)
655 static int qe_resume(struct platform_device *ofdev)
657 if (!qe_alive_during_sleep())
658 qe_reset();
659 return 0;
662 static int qe_probe(struct platform_device *ofdev)
664 return 0;
667 static const struct of_device_id qe_ids[] = {
668 { .compatible = "fsl,qe", },
669 { },
672 static struct platform_driver qe_driver = {
673 .driver = {
674 .name = "fsl-qe",
675 .owner = THIS_MODULE,
676 .of_match_table = qe_ids,
678 .probe = qe_probe,
679 .resume = qe_resume,
682 static int __init qe_drv_init(void)
684 return platform_driver_register(&qe_driver);
686 device_initcall(qe_drv_init);
687 #endif /* defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx) */