Staging: hv: remove OnChildDeviceRemove vmbus_driver callback
[zen-stable.git] / net / ipv4 / ip_fragment.c
blob168440834adedd4935b05229b533c6dad9b16e81
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The IP fragmentation functionality.
8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9 * Alan Cox <alan@lxorguk.ukuu.org.uk>
11 * Fixes:
12 * Alan Cox : Split from ip.c , see ip_input.c for history.
13 * David S. Miller : Begin massive cleanup...
14 * Andi Kleen : Add sysctls.
15 * xxxx : Overlapfrag bug.
16 * Ultima : ip_expire() kernel panic.
17 * Bill Hawes : Frag accounting and evictor fixes.
18 * John McDonald : 0 length frag bug.
19 * Alexey Kuznetsov: SMP races, threading, cleanup.
20 * Patrick McHardy : LRU queue of frag heads for evictor.
23 #include <linux/compiler.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/jiffies.h>
28 #include <linux/skbuff.h>
29 #include <linux/list.h>
30 #include <linux/ip.h>
31 #include <linux/icmp.h>
32 #include <linux/netdevice.h>
33 #include <linux/jhash.h>
34 #include <linux/random.h>
35 #include <linux/slab.h>
36 #include <net/route.h>
37 #include <net/dst.h>
38 #include <net/sock.h>
39 #include <net/ip.h>
40 #include <net/icmp.h>
41 #include <net/checksum.h>
42 #include <net/inetpeer.h>
43 #include <net/inet_frag.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/inet.h>
47 #include <linux/netfilter_ipv4.h>
49 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
50 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
51 * as well. Or notify me, at least. --ANK
54 static int sysctl_ipfrag_max_dist __read_mostly = 64;
56 struct ipfrag_skb_cb
58 struct inet_skb_parm h;
59 int offset;
62 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
64 /* Describe an entry in the "incomplete datagrams" queue. */
65 struct ipq {
66 struct inet_frag_queue q;
68 u32 user;
69 __be32 saddr;
70 __be32 daddr;
71 __be16 id;
72 u8 protocol;
73 int iif;
74 unsigned int rid;
75 struct inet_peer *peer;
78 static struct inet_frags ip4_frags;
80 int ip_frag_nqueues(struct net *net)
82 return net->ipv4.frags.nqueues;
85 int ip_frag_mem(struct net *net)
87 return atomic_read(&net->ipv4.frags.mem);
90 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
91 struct net_device *dev);
93 struct ip4_create_arg {
94 struct iphdr *iph;
95 u32 user;
98 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
100 return jhash_3words((__force u32)id << 16 | prot,
101 (__force u32)saddr, (__force u32)daddr,
102 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
105 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
107 struct ipq *ipq;
109 ipq = container_of(q, struct ipq, q);
110 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
113 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
115 struct ipq *qp;
116 struct ip4_create_arg *arg = a;
118 qp = container_of(q, struct ipq, q);
119 return qp->id == arg->iph->id &&
120 qp->saddr == arg->iph->saddr &&
121 qp->daddr == arg->iph->daddr &&
122 qp->protocol == arg->iph->protocol &&
123 qp->user == arg->user;
126 /* Memory Tracking Functions. */
127 static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb)
129 atomic_sub(skb->truesize, &nf->mem);
130 kfree_skb(skb);
133 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
135 struct ipq *qp = container_of(q, struct ipq, q);
136 struct ip4_create_arg *arg = a;
138 qp->protocol = arg->iph->protocol;
139 qp->id = arg->iph->id;
140 qp->saddr = arg->iph->saddr;
141 qp->daddr = arg->iph->daddr;
142 qp->user = arg->user;
143 qp->peer = sysctl_ipfrag_max_dist ?
144 inet_getpeer(arg->iph->saddr, 1) : NULL;
147 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
149 struct ipq *qp;
151 qp = container_of(q, struct ipq, q);
152 if (qp->peer)
153 inet_putpeer(qp->peer);
157 /* Destruction primitives. */
159 static __inline__ void ipq_put(struct ipq *ipq)
161 inet_frag_put(&ipq->q, &ip4_frags);
164 /* Kill ipq entry. It is not destroyed immediately,
165 * because caller (and someone more) holds reference count.
167 static void ipq_kill(struct ipq *ipq)
169 inet_frag_kill(&ipq->q, &ip4_frags);
172 /* Memory limiting on fragments. Evictor trashes the oldest
173 * fragment queue until we are back under the threshold.
175 static void ip_evictor(struct net *net)
177 int evicted;
179 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
180 if (evicted)
181 IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
185 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
187 static void ip_expire(unsigned long arg)
189 struct ipq *qp;
190 struct net *net;
192 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
193 net = container_of(qp->q.net, struct net, ipv4.frags);
195 spin_lock(&qp->q.lock);
197 if (qp->q.last_in & INET_FRAG_COMPLETE)
198 goto out;
200 ipq_kill(qp);
202 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
203 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
205 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
206 struct sk_buff *head = qp->q.fragments;
208 rcu_read_lock();
209 head->dev = dev_get_by_index_rcu(net, qp->iif);
210 if (!head->dev)
211 goto out_rcu_unlock;
214 * Only search router table for the head fragment,
215 * when defraging timeout at PRE_ROUTING HOOK.
217 if (qp->user == IP_DEFRAG_CONNTRACK_IN && !skb_dst(head)) {
218 const struct iphdr *iph = ip_hdr(head);
219 int err = ip_route_input(head, iph->daddr, iph->saddr,
220 iph->tos, head->dev);
221 if (unlikely(err))
222 goto out_rcu_unlock;
225 * Only an end host needs to send an ICMP
226 * "Fragment Reassembly Timeout" message, per RFC792.
228 if (skb_rtable(head)->rt_type != RTN_LOCAL)
229 goto out_rcu_unlock;
233 /* Send an ICMP "Fragment Reassembly Timeout" message. */
234 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
235 out_rcu_unlock:
236 rcu_read_unlock();
238 out:
239 spin_unlock(&qp->q.lock);
240 ipq_put(qp);
243 /* Find the correct entry in the "incomplete datagrams" queue for
244 * this IP datagram, and create new one, if nothing is found.
246 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
248 struct inet_frag_queue *q;
249 struct ip4_create_arg arg;
250 unsigned int hash;
252 arg.iph = iph;
253 arg.user = user;
255 read_lock(&ip4_frags.lock);
256 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
258 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
259 if (q == NULL)
260 goto out_nomem;
262 return container_of(q, struct ipq, q);
264 out_nomem:
265 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
266 return NULL;
269 /* Is the fragment too far ahead to be part of ipq? */
270 static inline int ip_frag_too_far(struct ipq *qp)
272 struct inet_peer *peer = qp->peer;
273 unsigned int max = sysctl_ipfrag_max_dist;
274 unsigned int start, end;
276 int rc;
278 if (!peer || !max)
279 return 0;
281 start = qp->rid;
282 end = atomic_inc_return(&peer->rid);
283 qp->rid = end;
285 rc = qp->q.fragments && (end - start) > max;
287 if (rc) {
288 struct net *net;
290 net = container_of(qp->q.net, struct net, ipv4.frags);
291 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
294 return rc;
297 static int ip_frag_reinit(struct ipq *qp)
299 struct sk_buff *fp;
301 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
302 atomic_inc(&qp->q.refcnt);
303 return -ETIMEDOUT;
306 fp = qp->q.fragments;
307 do {
308 struct sk_buff *xp = fp->next;
309 frag_kfree_skb(qp->q.net, fp);
310 fp = xp;
311 } while (fp);
313 qp->q.last_in = 0;
314 qp->q.len = 0;
315 qp->q.meat = 0;
316 qp->q.fragments = NULL;
317 qp->q.fragments_tail = NULL;
318 qp->iif = 0;
320 return 0;
323 /* Add new segment to existing queue. */
324 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
326 struct sk_buff *prev, *next;
327 struct net_device *dev;
328 int flags, offset;
329 int ihl, end;
330 int err = -ENOENT;
332 if (qp->q.last_in & INET_FRAG_COMPLETE)
333 goto err;
335 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
336 unlikely(ip_frag_too_far(qp)) &&
337 unlikely(err = ip_frag_reinit(qp))) {
338 ipq_kill(qp);
339 goto err;
342 offset = ntohs(ip_hdr(skb)->frag_off);
343 flags = offset & ~IP_OFFSET;
344 offset &= IP_OFFSET;
345 offset <<= 3; /* offset is in 8-byte chunks */
346 ihl = ip_hdrlen(skb);
348 /* Determine the position of this fragment. */
349 end = offset + skb->len - ihl;
350 err = -EINVAL;
352 /* Is this the final fragment? */
353 if ((flags & IP_MF) == 0) {
354 /* If we already have some bits beyond end
355 * or have different end, the segment is corrrupted.
357 if (end < qp->q.len ||
358 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
359 goto err;
360 qp->q.last_in |= INET_FRAG_LAST_IN;
361 qp->q.len = end;
362 } else {
363 if (end&7) {
364 end &= ~7;
365 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
366 skb->ip_summed = CHECKSUM_NONE;
368 if (end > qp->q.len) {
369 /* Some bits beyond end -> corruption. */
370 if (qp->q.last_in & INET_FRAG_LAST_IN)
371 goto err;
372 qp->q.len = end;
375 if (end == offset)
376 goto err;
378 err = -ENOMEM;
379 if (pskb_pull(skb, ihl) == NULL)
380 goto err;
382 err = pskb_trim_rcsum(skb, end - offset);
383 if (err)
384 goto err;
386 /* Find out which fragments are in front and at the back of us
387 * in the chain of fragments so far. We must know where to put
388 * this fragment, right?
390 prev = qp->q.fragments_tail;
391 if (!prev || FRAG_CB(prev)->offset < offset) {
392 next = NULL;
393 goto found;
395 prev = NULL;
396 for (next = qp->q.fragments; next != NULL; next = next->next) {
397 if (FRAG_CB(next)->offset >= offset)
398 break; /* bingo! */
399 prev = next;
402 found:
403 /* We found where to put this one. Check for overlap with
404 * preceding fragment, and, if needed, align things so that
405 * any overlaps are eliminated.
407 if (prev) {
408 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
410 if (i > 0) {
411 offset += i;
412 err = -EINVAL;
413 if (end <= offset)
414 goto err;
415 err = -ENOMEM;
416 if (!pskb_pull(skb, i))
417 goto err;
418 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
419 skb->ip_summed = CHECKSUM_NONE;
423 err = -ENOMEM;
425 while (next && FRAG_CB(next)->offset < end) {
426 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
428 if (i < next->len) {
429 /* Eat head of the next overlapped fragment
430 * and leave the loop. The next ones cannot overlap.
432 if (!pskb_pull(next, i))
433 goto err;
434 FRAG_CB(next)->offset += i;
435 qp->q.meat -= i;
436 if (next->ip_summed != CHECKSUM_UNNECESSARY)
437 next->ip_summed = CHECKSUM_NONE;
438 break;
439 } else {
440 struct sk_buff *free_it = next;
442 /* Old fragment is completely overridden with
443 * new one drop it.
445 next = next->next;
447 if (prev)
448 prev->next = next;
449 else
450 qp->q.fragments = next;
452 qp->q.meat -= free_it->len;
453 frag_kfree_skb(qp->q.net, free_it);
457 FRAG_CB(skb)->offset = offset;
459 /* Insert this fragment in the chain of fragments. */
460 skb->next = next;
461 if (!next)
462 qp->q.fragments_tail = skb;
463 if (prev)
464 prev->next = skb;
465 else
466 qp->q.fragments = skb;
468 dev = skb->dev;
469 if (dev) {
470 qp->iif = dev->ifindex;
471 skb->dev = NULL;
473 qp->q.stamp = skb->tstamp;
474 qp->q.meat += skb->len;
475 atomic_add(skb->truesize, &qp->q.net->mem);
476 if (offset == 0)
477 qp->q.last_in |= INET_FRAG_FIRST_IN;
479 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
480 qp->q.meat == qp->q.len)
481 return ip_frag_reasm(qp, prev, dev);
483 write_lock(&ip4_frags.lock);
484 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
485 write_unlock(&ip4_frags.lock);
486 return -EINPROGRESS;
488 err:
489 kfree_skb(skb);
490 return err;
494 /* Build a new IP datagram from all its fragments. */
496 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
497 struct net_device *dev)
499 struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
500 struct iphdr *iph;
501 struct sk_buff *fp, *head = qp->q.fragments;
502 int len;
503 int ihlen;
504 int err;
506 ipq_kill(qp);
508 /* Make the one we just received the head. */
509 if (prev) {
510 head = prev->next;
511 fp = skb_clone(head, GFP_ATOMIC);
512 if (!fp)
513 goto out_nomem;
515 fp->next = head->next;
516 if (!fp->next)
517 qp->q.fragments_tail = fp;
518 prev->next = fp;
520 skb_morph(head, qp->q.fragments);
521 head->next = qp->q.fragments->next;
523 kfree_skb(qp->q.fragments);
524 qp->q.fragments = head;
527 WARN_ON(head == NULL);
528 WARN_ON(FRAG_CB(head)->offset != 0);
530 /* Allocate a new buffer for the datagram. */
531 ihlen = ip_hdrlen(head);
532 len = ihlen + qp->q.len;
534 err = -E2BIG;
535 if (len > 65535)
536 goto out_oversize;
538 /* Head of list must not be cloned. */
539 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
540 goto out_nomem;
542 /* If the first fragment is fragmented itself, we split
543 * it to two chunks: the first with data and paged part
544 * and the second, holding only fragments. */
545 if (skb_has_frag_list(head)) {
546 struct sk_buff *clone;
547 int i, plen = 0;
549 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
550 goto out_nomem;
551 clone->next = head->next;
552 head->next = clone;
553 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
554 skb_frag_list_init(head);
555 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
556 plen += skb_shinfo(head)->frags[i].size;
557 clone->len = clone->data_len = head->data_len - plen;
558 head->data_len -= clone->len;
559 head->len -= clone->len;
560 clone->csum = 0;
561 clone->ip_summed = head->ip_summed;
562 atomic_add(clone->truesize, &qp->q.net->mem);
565 skb_shinfo(head)->frag_list = head->next;
566 skb_push(head, head->data - skb_network_header(head));
568 for (fp=head->next; fp; fp = fp->next) {
569 head->data_len += fp->len;
570 head->len += fp->len;
571 if (head->ip_summed != fp->ip_summed)
572 head->ip_summed = CHECKSUM_NONE;
573 else if (head->ip_summed == CHECKSUM_COMPLETE)
574 head->csum = csum_add(head->csum, fp->csum);
575 head->truesize += fp->truesize;
577 atomic_sub(head->truesize, &qp->q.net->mem);
579 head->next = NULL;
580 head->dev = dev;
581 head->tstamp = qp->q.stamp;
583 iph = ip_hdr(head);
584 iph->frag_off = 0;
585 iph->tot_len = htons(len);
586 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
587 qp->q.fragments = NULL;
588 qp->q.fragments_tail = NULL;
589 return 0;
591 out_nomem:
592 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
593 "queue %p\n", qp);
594 err = -ENOMEM;
595 goto out_fail;
596 out_oversize:
597 if (net_ratelimit())
598 printk(KERN_INFO "Oversized IP packet from %pI4.\n",
599 &qp->saddr);
600 out_fail:
601 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
602 return err;
605 /* Process an incoming IP datagram fragment. */
606 int ip_defrag(struct sk_buff *skb, u32 user)
608 struct ipq *qp;
609 struct net *net;
611 net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
612 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
614 /* Start by cleaning up the memory. */
615 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
616 ip_evictor(net);
618 /* Lookup (or create) queue header */
619 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
620 int ret;
622 spin_lock(&qp->q.lock);
624 ret = ip_frag_queue(qp, skb);
626 spin_unlock(&qp->q.lock);
627 ipq_put(qp);
628 return ret;
631 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
632 kfree_skb(skb);
633 return -ENOMEM;
635 EXPORT_SYMBOL(ip_defrag);
637 #ifdef CONFIG_SYSCTL
638 static int zero;
640 static struct ctl_table ip4_frags_ns_ctl_table[] = {
642 .procname = "ipfrag_high_thresh",
643 .data = &init_net.ipv4.frags.high_thresh,
644 .maxlen = sizeof(int),
645 .mode = 0644,
646 .proc_handler = proc_dointvec
649 .procname = "ipfrag_low_thresh",
650 .data = &init_net.ipv4.frags.low_thresh,
651 .maxlen = sizeof(int),
652 .mode = 0644,
653 .proc_handler = proc_dointvec
656 .procname = "ipfrag_time",
657 .data = &init_net.ipv4.frags.timeout,
658 .maxlen = sizeof(int),
659 .mode = 0644,
660 .proc_handler = proc_dointvec_jiffies,
665 static struct ctl_table ip4_frags_ctl_table[] = {
667 .procname = "ipfrag_secret_interval",
668 .data = &ip4_frags.secret_interval,
669 .maxlen = sizeof(int),
670 .mode = 0644,
671 .proc_handler = proc_dointvec_jiffies,
674 .procname = "ipfrag_max_dist",
675 .data = &sysctl_ipfrag_max_dist,
676 .maxlen = sizeof(int),
677 .mode = 0644,
678 .proc_handler = proc_dointvec_minmax,
679 .extra1 = &zero
684 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
686 struct ctl_table *table;
687 struct ctl_table_header *hdr;
689 table = ip4_frags_ns_ctl_table;
690 if (!net_eq(net, &init_net)) {
691 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
692 if (table == NULL)
693 goto err_alloc;
695 table[0].data = &net->ipv4.frags.high_thresh;
696 table[1].data = &net->ipv4.frags.low_thresh;
697 table[2].data = &net->ipv4.frags.timeout;
700 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
701 if (hdr == NULL)
702 goto err_reg;
704 net->ipv4.frags_hdr = hdr;
705 return 0;
707 err_reg:
708 if (!net_eq(net, &init_net))
709 kfree(table);
710 err_alloc:
711 return -ENOMEM;
714 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
716 struct ctl_table *table;
718 table = net->ipv4.frags_hdr->ctl_table_arg;
719 unregister_net_sysctl_table(net->ipv4.frags_hdr);
720 kfree(table);
723 static void ip4_frags_ctl_register(void)
725 register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
727 #else
728 static inline int ip4_frags_ns_ctl_register(struct net *net)
730 return 0;
733 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
737 static inline void ip4_frags_ctl_register(void)
740 #endif
742 static int __net_init ipv4_frags_init_net(struct net *net)
745 * Fragment cache limits. We will commit 256K at one time. Should we
746 * cross that limit we will prune down to 192K. This should cope with
747 * even the most extreme cases without allowing an attacker to
748 * measurably harm machine performance.
750 net->ipv4.frags.high_thresh = 256 * 1024;
751 net->ipv4.frags.low_thresh = 192 * 1024;
753 * Important NOTE! Fragment queue must be destroyed before MSL expires.
754 * RFC791 is wrong proposing to prolongate timer each fragment arrival
755 * by TTL.
757 net->ipv4.frags.timeout = IP_FRAG_TIME;
759 inet_frags_init_net(&net->ipv4.frags);
761 return ip4_frags_ns_ctl_register(net);
764 static void __net_exit ipv4_frags_exit_net(struct net *net)
766 ip4_frags_ns_ctl_unregister(net);
767 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
770 static struct pernet_operations ip4_frags_ops = {
771 .init = ipv4_frags_init_net,
772 .exit = ipv4_frags_exit_net,
775 void __init ipfrag_init(void)
777 ip4_frags_ctl_register();
778 register_pernet_subsys(&ip4_frags_ops);
779 ip4_frags.hashfn = ip4_hashfn;
780 ip4_frags.constructor = ip4_frag_init;
781 ip4_frags.destructor = ip4_frag_free;
782 ip4_frags.skb_free = NULL;
783 ip4_frags.qsize = sizeof(struct ipq);
784 ip4_frags.match = ip4_frag_match;
785 ip4_frags.frag_expire = ip_expire;
786 ip4_frags.secret_interval = 10 * 60 * HZ;
787 inet_frags_init(&ip4_frags);