1 /* Performance event support for sparc64.
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 * This code is based almost entirely upon the x86 perf event
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
32 /* Sparc64 chips have two performance counters, 32-bits each, with
33 * overflow interrupts generated on transition from 0xffffffff to 0.
34 * The counters are accessed in one go using a 64-bit register.
36 * Both counters are controlled using a single control register. The
37 * only way to stop all sampling is to clear all of the context (user,
38 * supervisor, hypervisor) sampling enable bits. But these bits apply
39 * to both counters, thus the two counters can't be enabled/disabled
42 * The control register has two event fields, one for each of the two
43 * counters. It's thus nearly impossible to have one counter going
44 * while keeping the other one stopped. Therefore it is possible to
45 * get overflow interrupts for counters not currently "in use" and
46 * that condition must be checked in the overflow interrupt handler.
48 * So we use a hack, in that we program inactive counters with the
49 * "sw_count0" and "sw_count1" events. These count how many times
50 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
51 * unusual way to encode a NOP and therefore will not trigger in
55 #define MAX_HWEVENTS 2
56 #define MAX_PERIOD ((1UL << 32) - 1)
58 #define PIC_UPPER_INDEX 0
59 #define PIC_LOWER_INDEX 1
60 #define PIC_NO_INDEX -1
62 struct cpu_hw_events
{
63 /* Number of events currently scheduled onto this cpu.
64 * This tells how many entries in the arrays below
69 /* Number of new events added since the last hw_perf_disable().
70 * This works because the perf event layer always adds new
71 * events inside of a perf_{disable,enable}() sequence.
75 /* Array of events current scheduled on this cpu. */
76 struct perf_event
*event
[MAX_HWEVENTS
];
78 /* Array of encoded longs, specifying the %pcr register
79 * encoding and the mask of PIC counters this even can
80 * be scheduled on. See perf_event_encode() et al.
82 unsigned long events
[MAX_HWEVENTS
];
84 /* The current counter index assigned to an event. When the
85 * event hasn't been programmed into the cpu yet, this will
86 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
87 * we ought to schedule the event.
89 int current_idx
[MAX_HWEVENTS
];
91 /* Software copy of %pcr register on this cpu. */
94 /* Enabled/disable state. */
97 unsigned int group_flag
;
99 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = { .enabled
= 1, };
101 /* An event map describes the characteristics of a performance
102 * counter event. In particular it gives the encoding as well as
103 * a mask telling which counters the event can be measured on.
105 struct perf_event_map
{
108 #define PIC_NONE 0x00
109 #define PIC_UPPER 0x01
110 #define PIC_LOWER 0x02
113 /* Encode a perf_event_map entry into a long. */
114 static unsigned long perf_event_encode(const struct perf_event_map
*pmap
)
116 return ((unsigned long) pmap
->encoding
<< 16) | pmap
->pic_mask
;
119 static u8
perf_event_get_msk(unsigned long val
)
124 static u64
perf_event_get_enc(unsigned long val
)
129 #define C(x) PERF_COUNT_HW_CACHE_##x
131 #define CACHE_OP_UNSUPPORTED 0xfffe
132 #define CACHE_OP_NONSENSE 0xffff
134 typedef struct perf_event_map cache_map_t
135 [PERF_COUNT_HW_CACHE_MAX
]
136 [PERF_COUNT_HW_CACHE_OP_MAX
]
137 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
140 const struct perf_event_map
*(*event_map
)(int);
141 const cache_map_t
*cache_map
;
152 static const struct perf_event_map ultra3_perfmon_event_map
[] = {
153 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x0000, PIC_UPPER
| PIC_LOWER
},
154 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x0001, PIC_UPPER
| PIC_LOWER
},
155 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0009, PIC_LOWER
},
156 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0009, PIC_UPPER
},
159 static const struct perf_event_map
*ultra3_event_map(int event_id
)
161 return &ultra3_perfmon_event_map
[event_id
];
164 static const cache_map_t ultra3_cache_map
= {
167 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
168 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
171 [C(RESULT_ACCESS
)] = { 0x0a, PIC_LOWER
},
172 [C(RESULT_MISS
)] = { 0x0a, PIC_UPPER
},
175 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
176 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
181 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
182 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
185 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
186 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
188 [ C(OP_PREFETCH
) ] = {
189 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
190 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
195 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
, },
196 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
, },
199 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
},
200 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
},
203 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
204 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
209 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
210 [C(RESULT_MISS
)] = { 0x12, PIC_UPPER
, },
213 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
214 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
216 [ C(OP_PREFETCH
) ] = {
217 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
218 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
223 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
224 [C(RESULT_MISS
)] = { 0x11, PIC_UPPER
, },
227 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
228 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
230 [ C(OP_PREFETCH
) ] = {
231 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
232 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
237 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
238 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
241 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
242 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
244 [ C(OP_PREFETCH
) ] = {
245 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
246 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
251 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
252 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
255 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
256 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
258 [ C(OP_PREFETCH
) ] = {
259 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
260 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
265 static const struct sparc_pmu ultra3_pmu
= {
266 .event_map
= ultra3_event_map
,
267 .cache_map
= &ultra3_cache_map
,
268 .max_events
= ARRAY_SIZE(ultra3_perfmon_event_map
),
276 /* Niagara1 is very limited. The upper PIC is hard-locked to count
277 * only instructions, so it is free running which creates all kinds of
278 * problems. Some hardware designs make one wonder if the creator
279 * even looked at how this stuff gets used by software.
281 static const struct perf_event_map niagara1_perfmon_event_map
[] = {
282 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, PIC_UPPER
},
283 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x00, PIC_UPPER
},
284 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0, PIC_NONE
},
285 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x03, PIC_LOWER
},
288 static const struct perf_event_map
*niagara1_event_map(int event_id
)
290 return &niagara1_perfmon_event_map
[event_id
];
293 static const cache_map_t niagara1_cache_map
= {
296 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
297 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
300 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
301 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
304 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
305 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
310 [C(RESULT_ACCESS
)] = { 0x00, PIC_UPPER
},
311 [C(RESULT_MISS
)] = { 0x02, PIC_LOWER
, },
314 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
315 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
317 [ C(OP_PREFETCH
) ] = {
318 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
319 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
324 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
325 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
328 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
329 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
332 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
333 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
338 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
339 [C(RESULT_MISS
)] = { 0x05, PIC_LOWER
, },
342 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
343 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
345 [ C(OP_PREFETCH
) ] = {
346 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
347 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
352 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
353 [C(RESULT_MISS
)] = { 0x04, PIC_LOWER
, },
356 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
357 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
359 [ C(OP_PREFETCH
) ] = {
360 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
361 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
366 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
367 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
370 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
371 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
373 [ C(OP_PREFETCH
) ] = {
374 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
375 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
380 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
381 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
384 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
385 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
387 [ C(OP_PREFETCH
) ] = {
388 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
389 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
394 static const struct sparc_pmu niagara1_pmu
= {
395 .event_map
= niagara1_event_map
,
396 .cache_map
= &niagara1_cache_map
,
397 .max_events
= ARRAY_SIZE(niagara1_perfmon_event_map
),
405 static const struct perf_event_map niagara2_perfmon_event_map
[] = {
406 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
407 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
408 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0208, PIC_UPPER
| PIC_LOWER
},
409 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0302, PIC_UPPER
| PIC_LOWER
},
410 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x0201, PIC_UPPER
| PIC_LOWER
},
411 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x0202, PIC_UPPER
| PIC_LOWER
},
414 static const struct perf_event_map
*niagara2_event_map(int event_id
)
416 return &niagara2_perfmon_event_map
[event_id
];
419 static const cache_map_t niagara2_cache_map
= {
422 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
423 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
426 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
427 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
430 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
431 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
436 [C(RESULT_ACCESS
)] = { 0x02ff, PIC_UPPER
| PIC_LOWER
, },
437 [C(RESULT_MISS
)] = { 0x0301, PIC_UPPER
| PIC_LOWER
, },
440 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
441 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
443 [ C(OP_PREFETCH
) ] = {
444 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
445 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
450 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
451 [C(RESULT_MISS
)] = { 0x0330, PIC_UPPER
| PIC_LOWER
, },
454 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
455 [C(RESULT_MISS
)] = { 0x0320, PIC_UPPER
| PIC_LOWER
, },
458 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
459 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
464 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
465 [C(RESULT_MISS
)] = { 0x0b08, PIC_UPPER
| PIC_LOWER
, },
468 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
469 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
471 [ C(OP_PREFETCH
) ] = {
472 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
473 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
478 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
479 [C(RESULT_MISS
)] = { 0xb04, PIC_UPPER
| PIC_LOWER
, },
482 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
483 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
485 [ C(OP_PREFETCH
) ] = {
486 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
487 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
492 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
493 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
496 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
497 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
499 [ C(OP_PREFETCH
) ] = {
500 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
501 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
506 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
507 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
510 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
511 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
513 [ C(OP_PREFETCH
) ] = {
514 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
515 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
520 static const struct sparc_pmu niagara2_pmu
= {
521 .event_map
= niagara2_event_map
,
522 .cache_map
= &niagara2_cache_map
,
523 .max_events
= ARRAY_SIZE(niagara2_perfmon_event_map
),
533 static const struct sparc_pmu
*sparc_pmu __read_mostly
;
535 static u64
event_encoding(u64 event_id
, int idx
)
537 if (idx
== PIC_UPPER_INDEX
)
538 event_id
<<= sparc_pmu
->upper_shift
;
540 event_id
<<= sparc_pmu
->lower_shift
;
544 static u64
mask_for_index(int idx
)
546 return event_encoding(sparc_pmu
->event_mask
, idx
);
549 static u64
nop_for_index(int idx
)
551 return event_encoding(idx
== PIC_UPPER_INDEX
?
552 sparc_pmu
->upper_nop
:
553 sparc_pmu
->lower_nop
, idx
);
556 static inline void sparc_pmu_enable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
558 u64 val
, mask
= mask_for_index(idx
);
565 pcr_ops
->write(cpuc
->pcr
);
568 static inline void sparc_pmu_disable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
570 u64 mask
= mask_for_index(idx
);
571 u64 nop
= nop_for_index(idx
);
579 pcr_ops
->write(cpuc
->pcr
);
582 static u32
read_pmc(int idx
)
587 if (idx
== PIC_UPPER_INDEX
)
590 return val
& 0xffffffff;
593 static void write_pmc(int idx
, u64 val
)
595 u64 shift
, mask
, pic
;
598 if (idx
== PIC_UPPER_INDEX
)
601 mask
= ((u64
) 0xffffffff) << shift
;
610 static u64
sparc_perf_event_update(struct perf_event
*event
,
611 struct hw_perf_event
*hwc
, int idx
)
614 u64 prev_raw_count
, new_raw_count
;
618 prev_raw_count
= local64_read(&hwc
->prev_count
);
619 new_raw_count
= read_pmc(idx
);
621 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
622 new_raw_count
) != prev_raw_count
)
625 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
628 local64_add(delta
, &event
->count
);
629 local64_sub(delta
, &hwc
->period_left
);
631 return new_raw_count
;
634 static int sparc_perf_event_set_period(struct perf_event
*event
,
635 struct hw_perf_event
*hwc
, int idx
)
637 s64 left
= local64_read(&hwc
->period_left
);
638 s64 period
= hwc
->sample_period
;
641 if (unlikely(left
<= -period
)) {
643 local64_set(&hwc
->period_left
, left
);
644 hwc
->last_period
= period
;
648 if (unlikely(left
<= 0)) {
650 local64_set(&hwc
->period_left
, left
);
651 hwc
->last_period
= period
;
654 if (left
> MAX_PERIOD
)
657 local64_set(&hwc
->prev_count
, (u64
)-left
);
659 write_pmc(idx
, (u64
)(-left
) & 0xffffffff);
661 perf_event_update_userpage(event
);
666 /* If performance event entries have been added, move existing
667 * events around (if necessary) and then assign new entries to
670 static u64
maybe_change_configuration(struct cpu_hw_events
*cpuc
, u64 pcr
)
677 /* Read in the counters which are moving. */
678 for (i
= 0; i
< cpuc
->n_events
; i
++) {
679 struct perf_event
*cp
= cpuc
->event
[i
];
681 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
&&
682 cpuc
->current_idx
[i
] != cp
->hw
.idx
) {
683 sparc_perf_event_update(cp
, &cp
->hw
,
684 cpuc
->current_idx
[i
]);
685 cpuc
->current_idx
[i
] = PIC_NO_INDEX
;
689 /* Assign to counters all unassigned events. */
690 for (i
= 0; i
< cpuc
->n_events
; i
++) {
691 struct perf_event
*cp
= cpuc
->event
[i
];
692 struct hw_perf_event
*hwc
= &cp
->hw
;
696 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
)
699 sparc_perf_event_set_period(cp
, hwc
, idx
);
700 cpuc
->current_idx
[i
] = idx
;
702 enc
= perf_event_get_enc(cpuc
->events
[i
]);
703 pcr
&= ~mask_for_index(idx
);
704 if (hwc
->state
& PERF_HES_STOPPED
)
705 pcr
|= nop_for_index(idx
);
707 pcr
|= event_encoding(enc
, idx
);
713 static void sparc_pmu_enable(struct pmu
*pmu
)
715 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
725 if (!cpuc
->n_events
) {
728 pcr
= maybe_change_configuration(cpuc
, pcr
);
730 /* We require that all of the events have the same
731 * configuration, so just fetch the settings from the
734 cpuc
->pcr
= pcr
| cpuc
->event
[0]->hw
.config_base
;
737 pcr_ops
->write(cpuc
->pcr
);
740 static void sparc_pmu_disable(struct pmu
*pmu
)
742 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
752 val
&= ~(PCR_UTRACE
| PCR_STRACE
|
753 sparc_pmu
->hv_bit
| sparc_pmu
->irq_bit
);
756 pcr_ops
->write(cpuc
->pcr
);
759 static int active_event_index(struct cpu_hw_events
*cpuc
,
760 struct perf_event
*event
)
764 for (i
= 0; i
< cpuc
->n_events
; i
++) {
765 if (cpuc
->event
[i
] == event
)
768 BUG_ON(i
== cpuc
->n_events
);
769 return cpuc
->current_idx
[i
];
772 static void sparc_pmu_start(struct perf_event
*event
, int flags
)
774 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
775 int idx
= active_event_index(cpuc
, event
);
777 if (flags
& PERF_EF_RELOAD
) {
778 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
779 sparc_perf_event_set_period(event
, &event
->hw
, idx
);
784 sparc_pmu_enable_event(cpuc
, &event
->hw
, idx
);
787 static void sparc_pmu_stop(struct perf_event
*event
, int flags
)
789 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
790 int idx
= active_event_index(cpuc
, event
);
792 if (!(event
->hw
.state
& PERF_HES_STOPPED
)) {
793 sparc_pmu_disable_event(cpuc
, &event
->hw
, idx
);
794 event
->hw
.state
|= PERF_HES_STOPPED
;
797 if (!(event
->hw
.state
& PERF_HES_UPTODATE
) && (flags
& PERF_EF_UPDATE
)) {
798 sparc_perf_event_update(event
, &event
->hw
, idx
);
799 event
->hw
.state
|= PERF_HES_UPTODATE
;
803 static void sparc_pmu_del(struct perf_event
*event
, int _flags
)
805 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
809 local_irq_save(flags
);
810 perf_pmu_disable(event
->pmu
);
812 for (i
= 0; i
< cpuc
->n_events
; i
++) {
813 if (event
== cpuc
->event
[i
]) {
814 /* Absorb the final count and turn off the
817 sparc_pmu_stop(event
, PERF_EF_UPDATE
);
819 /* Shift remaining entries down into
822 while (++i
< cpuc
->n_events
) {
823 cpuc
->event
[i
- 1] = cpuc
->event
[i
];
824 cpuc
->events
[i
- 1] = cpuc
->events
[i
];
825 cpuc
->current_idx
[i
- 1] =
826 cpuc
->current_idx
[i
];
829 perf_event_update_userpage(event
);
836 perf_pmu_enable(event
->pmu
);
837 local_irq_restore(flags
);
840 static void sparc_pmu_read(struct perf_event
*event
)
842 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
843 int idx
= active_event_index(cpuc
, event
);
844 struct hw_perf_event
*hwc
= &event
->hw
;
846 sparc_perf_event_update(event
, hwc
, idx
);
849 static atomic_t active_events
= ATOMIC_INIT(0);
850 static DEFINE_MUTEX(pmc_grab_mutex
);
852 static void perf_stop_nmi_watchdog(void *unused
)
854 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
856 stop_nmi_watchdog(NULL
);
857 cpuc
->pcr
= pcr_ops
->read();
860 void perf_event_grab_pmc(void)
862 if (atomic_inc_not_zero(&active_events
))
865 mutex_lock(&pmc_grab_mutex
);
866 if (atomic_read(&active_events
) == 0) {
867 if (atomic_read(&nmi_active
) > 0) {
868 on_each_cpu(perf_stop_nmi_watchdog
, NULL
, 1);
869 BUG_ON(atomic_read(&nmi_active
) != 0);
871 atomic_inc(&active_events
);
873 mutex_unlock(&pmc_grab_mutex
);
876 void perf_event_release_pmc(void)
878 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_grab_mutex
)) {
879 if (atomic_read(&nmi_active
) == 0)
880 on_each_cpu(start_nmi_watchdog
, NULL
, 1);
881 mutex_unlock(&pmc_grab_mutex
);
885 static const struct perf_event_map
*sparc_map_cache_event(u64 config
)
887 unsigned int cache_type
, cache_op
, cache_result
;
888 const struct perf_event_map
*pmap
;
890 if (!sparc_pmu
->cache_map
)
891 return ERR_PTR(-ENOENT
);
893 cache_type
= (config
>> 0) & 0xff;
894 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
895 return ERR_PTR(-EINVAL
);
897 cache_op
= (config
>> 8) & 0xff;
898 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
899 return ERR_PTR(-EINVAL
);
901 cache_result
= (config
>> 16) & 0xff;
902 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
903 return ERR_PTR(-EINVAL
);
905 pmap
= &((*sparc_pmu
->cache_map
)[cache_type
][cache_op
][cache_result
]);
907 if (pmap
->encoding
== CACHE_OP_UNSUPPORTED
)
908 return ERR_PTR(-ENOENT
);
910 if (pmap
->encoding
== CACHE_OP_NONSENSE
)
911 return ERR_PTR(-EINVAL
);
916 static void hw_perf_event_destroy(struct perf_event
*event
)
918 perf_event_release_pmc();
921 /* Make sure all events can be scheduled into the hardware at
922 * the same time. This is simplified by the fact that we only
923 * need to support 2 simultaneous HW events.
925 * As a side effect, the evts[]->hw.idx values will be assigned
926 * on success. These are pending indexes. When the events are
927 * actually programmed into the chip, these values will propagate
928 * to the per-cpu cpuc->current_idx[] slots, see the code in
929 * maybe_change_configuration() for details.
931 static int sparc_check_constraints(struct perf_event
**evts
,
932 unsigned long *events
, int n_ev
)
934 u8 msk0
= 0, msk1
= 0;
937 /* This case is possible when we are invoked from
938 * hw_perf_group_sched_in().
943 if (n_ev
> MAX_HWEVENTS
)
946 msk0
= perf_event_get_msk(events
[0]);
948 if (msk0
& PIC_LOWER
)
953 msk1
= perf_event_get_msk(events
[1]);
955 /* If both events can go on any counter, OK. */
956 if (msk0
== (PIC_UPPER
| PIC_LOWER
) &&
957 msk1
== (PIC_UPPER
| PIC_LOWER
))
960 /* If one event is limited to a specific counter,
961 * and the other can go on both, OK.
963 if ((msk0
== PIC_UPPER
|| msk0
== PIC_LOWER
) &&
964 msk1
== (PIC_UPPER
| PIC_LOWER
)) {
965 if (msk0
& PIC_LOWER
)
970 if ((msk1
== PIC_UPPER
|| msk1
== PIC_LOWER
) &&
971 msk0
== (PIC_UPPER
| PIC_LOWER
)) {
972 if (msk1
& PIC_UPPER
)
977 /* If the events are fixed to different counters, OK. */
978 if ((msk0
== PIC_UPPER
&& msk1
== PIC_LOWER
) ||
979 (msk0
== PIC_LOWER
&& msk1
== PIC_UPPER
)) {
980 if (msk0
& PIC_LOWER
)
985 /* Otherwise, there is a conflict. */
989 evts
[0]->hw
.idx
= idx0
;
991 evts
[1]->hw
.idx
= idx0
^ 1;
995 static int check_excludes(struct perf_event
**evts
, int n_prev
, int n_new
)
997 int eu
= 0, ek
= 0, eh
= 0;
998 struct perf_event
*event
;
1006 for (i
= 0; i
< n
; i
++) {
1009 eu
= event
->attr
.exclude_user
;
1010 ek
= event
->attr
.exclude_kernel
;
1011 eh
= event
->attr
.exclude_hv
;
1013 } else if (event
->attr
.exclude_user
!= eu
||
1014 event
->attr
.exclude_kernel
!= ek
||
1015 event
->attr
.exclude_hv
!= eh
) {
1023 static int collect_events(struct perf_event
*group
, int max_count
,
1024 struct perf_event
*evts
[], unsigned long *events
,
1027 struct perf_event
*event
;
1030 if (!is_software_event(group
)) {
1034 events
[n
] = group
->hw
.event_base
;
1035 current_idx
[n
++] = PIC_NO_INDEX
;
1037 list_for_each_entry(event
, &group
->sibling_list
, group_entry
) {
1038 if (!is_software_event(event
) &&
1039 event
->state
!= PERF_EVENT_STATE_OFF
) {
1043 events
[n
] = event
->hw
.event_base
;
1044 current_idx
[n
++] = PIC_NO_INDEX
;
1050 static int sparc_pmu_add(struct perf_event
*event
, int ef_flags
)
1052 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1053 int n0
, ret
= -EAGAIN
;
1054 unsigned long flags
;
1056 local_irq_save(flags
);
1057 perf_pmu_disable(event
->pmu
);
1059 n0
= cpuc
->n_events
;
1060 if (n0
>= MAX_HWEVENTS
)
1063 cpuc
->event
[n0
] = event
;
1064 cpuc
->events
[n0
] = event
->hw
.event_base
;
1065 cpuc
->current_idx
[n0
] = PIC_NO_INDEX
;
1067 event
->hw
.state
= PERF_HES_UPTODATE
;
1068 if (!(ef_flags
& PERF_EF_START
))
1069 event
->hw
.state
|= PERF_HES_STOPPED
;
1072 * If group events scheduling transaction was started,
1073 * skip the schedulability test here, it will be performed
1074 * at commit time(->commit_txn) as a whole
1076 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1079 if (check_excludes(cpuc
->event
, n0
, 1))
1081 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n0
+ 1))
1090 perf_pmu_enable(event
->pmu
);
1091 local_irq_restore(flags
);
1095 static int sparc_pmu_event_init(struct perf_event
*event
)
1097 struct perf_event_attr
*attr
= &event
->attr
;
1098 struct perf_event
*evts
[MAX_HWEVENTS
];
1099 struct hw_perf_event
*hwc
= &event
->hw
;
1100 unsigned long events
[MAX_HWEVENTS
];
1101 int current_idx_dmy
[MAX_HWEVENTS
];
1102 const struct perf_event_map
*pmap
;
1105 if (atomic_read(&nmi_active
) < 0)
1108 switch (attr
->type
) {
1109 case PERF_TYPE_HARDWARE
:
1110 if (attr
->config
>= sparc_pmu
->max_events
)
1112 pmap
= sparc_pmu
->event_map(attr
->config
);
1115 case PERF_TYPE_HW_CACHE
:
1116 pmap
= sparc_map_cache_event(attr
->config
);
1118 return PTR_ERR(pmap
);
1131 hwc
->event_base
= perf_event_encode(pmap
);
1134 * User gives us "(encoding << 16) | pic_mask" for
1135 * PERF_TYPE_RAW events.
1137 hwc
->event_base
= attr
->config
;
1140 /* We save the enable bits in the config_base. */
1141 hwc
->config_base
= sparc_pmu
->irq_bit
;
1142 if (!attr
->exclude_user
)
1143 hwc
->config_base
|= PCR_UTRACE
;
1144 if (!attr
->exclude_kernel
)
1145 hwc
->config_base
|= PCR_STRACE
;
1146 if (!attr
->exclude_hv
)
1147 hwc
->config_base
|= sparc_pmu
->hv_bit
;
1150 if (event
->group_leader
!= event
) {
1151 n
= collect_events(event
->group_leader
,
1153 evts
, events
, current_idx_dmy
);
1157 events
[n
] = hwc
->event_base
;
1160 if (check_excludes(evts
, n
, 1))
1163 if (sparc_check_constraints(evts
, events
, n
+ 1))
1166 hwc
->idx
= PIC_NO_INDEX
;
1168 /* Try to do all error checking before this point, as unwinding
1169 * state after grabbing the PMC is difficult.
1171 perf_event_grab_pmc();
1172 event
->destroy
= hw_perf_event_destroy
;
1174 if (!hwc
->sample_period
) {
1175 hwc
->sample_period
= MAX_PERIOD
;
1176 hwc
->last_period
= hwc
->sample_period
;
1177 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1184 * Start group events scheduling transaction
1185 * Set the flag to make pmu::enable() not perform the
1186 * schedulability test, it will be performed at commit time
1188 static void sparc_pmu_start_txn(struct pmu
*pmu
)
1190 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1192 perf_pmu_disable(pmu
);
1193 cpuhw
->group_flag
|= PERF_EVENT_TXN
;
1197 * Stop group events scheduling transaction
1198 * Clear the flag and pmu::enable() will perform the
1199 * schedulability test.
1201 static void sparc_pmu_cancel_txn(struct pmu
*pmu
)
1203 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1205 cpuhw
->group_flag
&= ~PERF_EVENT_TXN
;
1206 perf_pmu_enable(pmu
);
1210 * Commit group events scheduling transaction
1211 * Perform the group schedulability test as a whole
1212 * Return 0 if success
1214 static int sparc_pmu_commit_txn(struct pmu
*pmu
)
1216 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1222 cpuc
= &__get_cpu_var(cpu_hw_events
);
1224 if (check_excludes(cpuc
->event
, 0, n
))
1226 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n
))
1229 cpuc
->group_flag
&= ~PERF_EVENT_TXN
;
1230 perf_pmu_enable(pmu
);
1234 static struct pmu pmu
= {
1235 .pmu_enable
= sparc_pmu_enable
,
1236 .pmu_disable
= sparc_pmu_disable
,
1237 .event_init
= sparc_pmu_event_init
,
1238 .add
= sparc_pmu_add
,
1239 .del
= sparc_pmu_del
,
1240 .start
= sparc_pmu_start
,
1241 .stop
= sparc_pmu_stop
,
1242 .read
= sparc_pmu_read
,
1243 .start_txn
= sparc_pmu_start_txn
,
1244 .cancel_txn
= sparc_pmu_cancel_txn
,
1245 .commit_txn
= sparc_pmu_commit_txn
,
1248 void perf_event_print_debug(void)
1250 unsigned long flags
;
1257 local_irq_save(flags
);
1259 cpu
= smp_processor_id();
1261 pcr
= pcr_ops
->read();
1265 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1268 local_irq_restore(flags
);
1271 static int __kprobes
perf_event_nmi_handler(struct notifier_block
*self
,
1272 unsigned long cmd
, void *__args
)
1274 struct die_args
*args
= __args
;
1275 struct perf_sample_data data
;
1276 struct cpu_hw_events
*cpuc
;
1277 struct pt_regs
*regs
;
1280 if (!atomic_read(&active_events
))
1293 perf_sample_data_init(&data
, 0);
1295 cpuc
= &__get_cpu_var(cpu_hw_events
);
1297 /* If the PMU has the TOE IRQ enable bits, we need to do a
1298 * dummy write to the %pcr to clear the overflow bits and thus
1301 * Do this before we peek at the counters to determine
1302 * overflow so we don't lose any events.
1304 if (sparc_pmu
->irq_bit
)
1305 pcr_ops
->write(cpuc
->pcr
);
1307 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1308 struct perf_event
*event
= cpuc
->event
[i
];
1309 int idx
= cpuc
->current_idx
[i
];
1310 struct hw_perf_event
*hwc
;
1314 val
= sparc_perf_event_update(event
, hwc
, idx
);
1315 if (val
& (1ULL << 31))
1318 data
.period
= event
->hw
.last_period
;
1319 if (!sparc_perf_event_set_period(event
, hwc
, idx
))
1322 if (perf_event_overflow(event
, &data
, regs
))
1323 sparc_pmu_stop(event
, 0);
1329 static __read_mostly
struct notifier_block perf_event_nmi_notifier
= {
1330 .notifier_call
= perf_event_nmi_handler
,
1333 static bool __init
supported_pmu(void)
1335 if (!strcmp(sparc_pmu_type
, "ultra3") ||
1336 !strcmp(sparc_pmu_type
, "ultra3+") ||
1337 !strcmp(sparc_pmu_type
, "ultra3i") ||
1338 !strcmp(sparc_pmu_type
, "ultra4+")) {
1339 sparc_pmu
= &ultra3_pmu
;
1342 if (!strcmp(sparc_pmu_type
, "niagara")) {
1343 sparc_pmu
= &niagara1_pmu
;
1346 if (!strcmp(sparc_pmu_type
, "niagara2") ||
1347 !strcmp(sparc_pmu_type
, "niagara3")) {
1348 sparc_pmu
= &niagara2_pmu
;
1354 int __init
init_hw_perf_events(void)
1356 pr_info("Performance events: ");
1358 if (!supported_pmu()) {
1359 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type
);
1363 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type
);
1365 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1366 register_die_notifier(&perf_event_nmi_notifier
);
1370 early_initcall(init_hw_perf_events
);
1372 void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
1373 struct pt_regs
*regs
)
1375 unsigned long ksp
, fp
;
1376 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1380 stack_trace_flush();
1382 perf_callchain_store(entry
, regs
->tpc
);
1384 ksp
= regs
->u_regs
[UREG_I6
];
1385 fp
= ksp
+ STACK_BIAS
;
1387 struct sparc_stackf
*sf
;
1388 struct pt_regs
*regs
;
1391 if (!kstack_valid(current_thread_info(), fp
))
1394 sf
= (struct sparc_stackf
*) fp
;
1395 regs
= (struct pt_regs
*) (sf
+ 1);
1397 if (kstack_is_trap_frame(current_thread_info(), regs
)) {
1398 if (user_mode(regs
))
1401 fp
= regs
->u_regs
[UREG_I6
] + STACK_BIAS
;
1403 pc
= sf
->callers_pc
;
1404 fp
= (unsigned long)sf
->fp
+ STACK_BIAS
;
1406 perf_callchain_store(entry
, pc
);
1407 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1408 if ((pc
+ 8UL) == (unsigned long) &return_to_handler
) {
1409 int index
= current
->curr_ret_stack
;
1410 if (current
->ret_stack
&& index
>= graph
) {
1411 pc
= current
->ret_stack
[index
- graph
].ret
;
1412 perf_callchain_store(entry
, pc
);
1417 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1420 static void perf_callchain_user_64(struct perf_callchain_entry
*entry
,
1421 struct pt_regs
*regs
)
1425 perf_callchain_store(entry
, regs
->tpc
);
1427 ufp
= regs
->u_regs
[UREG_I6
] + STACK_BIAS
;
1429 struct sparc_stackf
*usf
, sf
;
1432 usf
= (struct sparc_stackf
*) ufp
;
1433 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1437 ufp
= (unsigned long)sf
.fp
+ STACK_BIAS
;
1438 perf_callchain_store(entry
, pc
);
1439 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1442 static void perf_callchain_user_32(struct perf_callchain_entry
*entry
,
1443 struct pt_regs
*regs
)
1447 perf_callchain_store(entry
, regs
->tpc
);
1449 ufp
= regs
->u_regs
[UREG_I6
] & 0xffffffffUL
;
1451 struct sparc_stackf32
*usf
, sf
;
1454 usf
= (struct sparc_stackf32
*) ufp
;
1455 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1459 ufp
= (unsigned long)sf
.fp
;
1460 perf_callchain_store(entry
, pc
);
1461 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1465 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1468 if (test_thread_flag(TIF_32BIT
))
1469 perf_callchain_user_32(entry
, regs
);
1471 perf_callchain_user_64(entry
, regs
);