2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
31 #include <asm/system.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
42 #include <asm/starfire.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
47 #include <asm/hypervisor.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
55 unsigned long kern_linear_pte_xor
[2] __read_mostly
;
57 /* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
61 unsigned long kpte_linear_bitmap
[KPTE_BITMAP_BYTES
/ sizeof(unsigned long)];
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
68 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
73 static struct linux_prom64_registers pavail
[MAX_BANKS
] __devinitdata
;
74 static int pavail_ents __devinitdata
;
76 static int cmp_p64(const void *a
, const void *b
)
78 const struct linux_prom64_registers
*x
= a
, *y
= b
;
80 if (x
->phys_addr
> y
->phys_addr
)
82 if (x
->phys_addr
< y
->phys_addr
)
87 static void __init
read_obp_memory(const char *property
,
88 struct linux_prom64_registers
*regs
,
91 phandle node
= prom_finddevice("/memory");
92 int prop_size
= prom_getproplen(node
, property
);
95 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
96 if (ents
> MAX_BANKS
) {
97 prom_printf("The machine has more %s property entries than "
98 "this kernel can support (%d).\n",
103 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
105 prom_printf("Couldn't get %s property from /memory.\n");
109 /* Sanitize what we got from the firmware, by page aligning
112 for (i
= 0; i
< ents
; i
++) {
113 unsigned long base
, size
;
115 base
= regs
[i
].phys_addr
;
116 size
= regs
[i
].reg_size
;
119 if (base
& ~PAGE_MASK
) {
120 unsigned long new_base
= PAGE_ALIGN(base
);
122 size
-= new_base
- base
;
123 if ((long) size
< 0L)
128 /* If it is empty, simply get rid of it.
129 * This simplifies the logic of the other
130 * functions that process these arrays.
132 memmove(®s
[i
], ®s
[i
+ 1],
133 (ents
- i
- 1) * sizeof(regs
[0]));
138 regs
[i
].phys_addr
= base
;
139 regs
[i
].reg_size
= size
;
144 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
148 unsigned long sparc64_valid_addr_bitmap
[VALID_ADDR_BITMAP_BYTES
/
149 sizeof(unsigned long)];
150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap
);
152 /* Kernel physical address base and size in bytes. */
153 unsigned long kern_base __read_mostly
;
154 unsigned long kern_size __read_mostly
;
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64
;
158 extern unsigned int sparc_ramdisk_image
;
159 extern unsigned int sparc_ramdisk_size
;
161 struct page
*mem_map_zero __read_mostly
;
162 EXPORT_SYMBOL(mem_map_zero
);
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
166 unsigned long sparc64_kern_pri_context __read_mostly
;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
168 unsigned long sparc64_kern_sec_context __read_mostly
;
170 int num_kernel_image_mappings
;
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
175 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
179 inline void flush_dcache_page_impl(struct page
*page
)
181 BUG_ON(tlb_type
== hypervisor
);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183 atomic_inc(&dcpage_flushes
);
186 #ifdef DCACHE_ALIASING_POSSIBLE
187 __flush_dcache_page(page_address(page
),
188 ((tlb_type
== spitfire
) &&
189 page_mapping(page
) != NULL
));
191 if (page_mapping(page
) != NULL
&&
192 tlb_type
== spitfire
)
193 __flush_icache_page(__pa(page_address(page
)));
197 #define PG_dcache_dirty PG_arch_1
198 #define PG_dcache_cpu_shift 32UL
199 #define PG_dcache_cpu_mask \
200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
202 #define dcache_dirty_cpu(page) \
203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
205 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
207 unsigned long mask
= this_cpu
;
208 unsigned long non_cpu_bits
;
210 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
211 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
213 __asm__
__volatile__("1:\n\t"
215 "and %%g7, %1, %%g1\n\t"
216 "or %%g1, %0, %%g1\n\t"
217 "casx [%2], %%g7, %%g1\n\t"
219 "bne,pn %%xcc, 1b\n\t"
222 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
226 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
228 unsigned long mask
= (1UL << PG_dcache_dirty
);
230 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
233 "srlx %%g7, %4, %%g1\n\t"
234 "and %%g1, %3, %%g1\n\t"
236 "bne,pn %%icc, 2f\n\t"
237 " andn %%g7, %1, %%g1\n\t"
238 "casx [%2], %%g7, %%g1\n\t"
240 "bne,pn %%xcc, 1b\n\t"
244 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
245 "i" (PG_dcache_cpu_mask
),
246 "i" (PG_dcache_cpu_shift
)
250 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
252 unsigned long tsb_addr
= (unsigned long) ent
;
254 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
255 tsb_addr
= __pa(tsb_addr
);
257 __tsb_insert(tsb_addr
, tag
, pte
);
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
261 unsigned long _PAGE_SZBITS __read_mostly
;
263 static void flush_dcache(unsigned long pfn
)
267 page
= pfn_to_page(pfn
);
269 unsigned long pg_flags
;
271 pg_flags
= page
->flags
;
272 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
273 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
275 int this_cpu
= get_cpu();
277 /* This is just to optimize away some function calls
281 flush_dcache_page_impl(page
);
283 smp_flush_dcache_page_impl(page
, cpu
);
285 clear_dcache_dirty_cpu(page
, cpu
);
292 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
294 struct mm_struct
*mm
;
296 unsigned long tag
, flags
;
297 unsigned long tsb_index
, tsb_hash_shift
;
300 if (tlb_type
!= hypervisor
) {
301 unsigned long pfn
= pte_pfn(pte
);
309 tsb_index
= MM_TSB_BASE
;
310 tsb_hash_shift
= PAGE_SHIFT
;
312 spin_lock_irqsave(&mm
->context
.lock
, flags
);
314 #ifdef CONFIG_HUGETLB_PAGE
315 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
) {
316 if ((tlb_type
== hypervisor
&&
317 (pte_val(pte
) & _PAGE_SZALL_4V
) == _PAGE_SZHUGE_4V
) ||
318 (tlb_type
!= hypervisor
&&
319 (pte_val(pte
) & _PAGE_SZALL_4U
) == _PAGE_SZHUGE_4U
)) {
320 tsb_index
= MM_TSB_HUGE
;
321 tsb_hash_shift
= HPAGE_SHIFT
;
326 tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
327 tsb
+= ((address
>> tsb_hash_shift
) &
328 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
329 tag
= (address
>> 22UL);
330 tsb_insert(tsb
, tag
, pte_val(pte
));
332 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
335 void flush_dcache_page(struct page
*page
)
337 struct address_space
*mapping
;
340 if (tlb_type
== hypervisor
)
343 /* Do not bother with the expensive D-cache flush if it
344 * is merely the zero page. The 'bigcore' testcase in GDB
345 * causes this case to run millions of times.
347 if (page
== ZERO_PAGE(0))
350 this_cpu
= get_cpu();
352 mapping
= page_mapping(page
);
353 if (mapping
&& !mapping_mapped(mapping
)) {
354 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
356 int dirty_cpu
= dcache_dirty_cpu(page
);
358 if (dirty_cpu
== this_cpu
)
360 smp_flush_dcache_page_impl(page
, dirty_cpu
);
362 set_dcache_dirty(page
, this_cpu
);
364 /* We could delay the flush for the !page_mapping
365 * case too. But that case is for exec env/arg
366 * pages and those are %99 certainly going to get
367 * faulted into the tlb (and thus flushed) anyways.
369 flush_dcache_page_impl(page
);
375 EXPORT_SYMBOL(flush_dcache_page
);
377 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
379 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
380 if (tlb_type
== spitfire
) {
383 /* This code only runs on Spitfire cpus so this is
384 * why we can assume _PAGE_PADDR_4U.
386 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
387 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
389 if (kaddr
>= PAGE_OFFSET
)
390 paddr
= kaddr
& mask
;
392 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
393 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
394 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
395 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
397 paddr
= pte_val(*ptep
) & mask
;
399 __flush_icache_page(paddr
);
403 EXPORT_SYMBOL(flush_icache_range
);
405 void mmu_info(struct seq_file
*m
)
407 if (tlb_type
== cheetah
)
408 seq_printf(m
, "MMU Type\t: Cheetah\n");
409 else if (tlb_type
== cheetah_plus
)
410 seq_printf(m
, "MMU Type\t: Cheetah+\n");
411 else if (tlb_type
== spitfire
)
412 seq_printf(m
, "MMU Type\t: Spitfire\n");
413 else if (tlb_type
== hypervisor
)
414 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
416 seq_printf(m
, "MMU Type\t: ???\n");
418 #ifdef CONFIG_DEBUG_DCFLUSH
419 seq_printf(m
, "DCPageFlushes\t: %d\n",
420 atomic_read(&dcpage_flushes
));
422 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
423 atomic_read(&dcpage_flushes_xcall
));
424 #endif /* CONFIG_SMP */
425 #endif /* CONFIG_DEBUG_DCFLUSH */
428 struct linux_prom_translation prom_trans
[512] __read_mostly
;
429 unsigned int prom_trans_ents __read_mostly
;
431 unsigned long kern_locked_tte_data
;
433 /* The obp translations are saved based on 8k pagesize, since obp can
434 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
435 * HI_OBP_ADDRESS range are handled in ktlb.S.
437 static inline int in_obp_range(unsigned long vaddr
)
439 return (vaddr
>= LOW_OBP_ADDRESS
&&
440 vaddr
< HI_OBP_ADDRESS
);
443 static int cmp_ptrans(const void *a
, const void *b
)
445 const struct linux_prom_translation
*x
= a
, *y
= b
;
447 if (x
->virt
> y
->virt
)
449 if (x
->virt
< y
->virt
)
454 /* Read OBP translations property into 'prom_trans[]'. */
455 static void __init
read_obp_translations(void)
457 int n
, node
, ents
, first
, last
, i
;
459 node
= prom_finddevice("/virtual-memory");
460 n
= prom_getproplen(node
, "translations");
461 if (unlikely(n
== 0 || n
== -1)) {
462 prom_printf("prom_mappings: Couldn't get size.\n");
465 if (unlikely(n
> sizeof(prom_trans
))) {
466 prom_printf("prom_mappings: Size %Zd is too big.\n", n
);
470 if ((n
= prom_getproperty(node
, "translations",
471 (char *)&prom_trans
[0],
472 sizeof(prom_trans
))) == -1) {
473 prom_printf("prom_mappings: Couldn't get property.\n");
477 n
= n
/ sizeof(struct linux_prom_translation
);
481 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
484 /* Now kick out all the non-OBP entries. */
485 for (i
= 0; i
< ents
; i
++) {
486 if (in_obp_range(prom_trans
[i
].virt
))
490 for (; i
< ents
; i
++) {
491 if (!in_obp_range(prom_trans
[i
].virt
))
496 for (i
= 0; i
< (last
- first
); i
++) {
497 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
498 struct linux_prom_translation
*dest
= &prom_trans
[i
];
502 for (; i
< ents
; i
++) {
503 struct linux_prom_translation
*dest
= &prom_trans
[i
];
504 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
507 prom_trans_ents
= last
- first
;
509 if (tlb_type
== spitfire
) {
510 /* Clear diag TTE bits. */
511 for (i
= 0; i
< prom_trans_ents
; i
++)
512 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
516 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
520 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
523 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
524 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
529 static unsigned long kern_large_tte(unsigned long paddr
);
531 static void __init
remap_kernel(void)
533 unsigned long phys_page
, tte_vaddr
, tte_data
;
534 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
536 tte_vaddr
= (unsigned long) KERNBASE
;
537 phys_page
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
538 tte_data
= kern_large_tte(phys_page
);
540 kern_locked_tte_data
= tte_data
;
542 /* Now lock us into the TLBs via Hypervisor or OBP. */
543 if (tlb_type
== hypervisor
) {
544 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
545 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
546 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
547 tte_vaddr
+= 0x400000;
548 tte_data
+= 0x400000;
551 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
552 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
553 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
554 tte_vaddr
+= 0x400000;
555 tte_data
+= 0x400000;
557 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
559 if (tlb_type
== cheetah_plus
) {
560 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
561 CTX_CHEETAH_PLUS_NUC
);
562 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
563 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
568 static void __init
inherit_prom_mappings(void)
570 /* Now fixup OBP's idea about where we really are mapped. */
571 printk("Remapping the kernel... ");
576 void prom_world(int enter
)
579 set_fs((mm_segment_t
) { get_thread_current_ds() });
581 __asm__
__volatile__("flushw");
584 void __flush_dcache_range(unsigned long start
, unsigned long end
)
588 if (tlb_type
== spitfire
) {
591 for (va
= start
; va
< end
; va
+= 32) {
592 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
596 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
599 for (va
= start
; va
< end
; va
+= 32)
600 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
604 "i" (ASI_DCACHE_INVALIDATE
));
607 EXPORT_SYMBOL(__flush_dcache_range
);
609 /* get_new_mmu_context() uses "cache + 1". */
610 DEFINE_SPINLOCK(ctx_alloc_lock
);
611 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
612 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
613 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
614 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
616 /* Caller does TLB context flushing on local CPU if necessary.
617 * The caller also ensures that CTX_VALID(mm->context) is false.
619 * We must be careful about boundary cases so that we never
620 * let the user have CTX 0 (nucleus) or we ever use a CTX
621 * version of zero (and thus NO_CONTEXT would not be caught
622 * by version mis-match tests in mmu_context.h).
624 * Always invoked with interrupts disabled.
626 void get_new_mmu_context(struct mm_struct
*mm
)
628 unsigned long ctx
, new_ctx
;
629 unsigned long orig_pgsz_bits
;
633 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
634 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
635 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
636 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
638 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
639 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
640 if (new_ctx
>= ctx
) {
642 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
645 new_ctx
= CTX_FIRST_VERSION
;
647 /* Don't call memset, for 16 entries that's just
650 mmu_context_bmap
[0] = 3;
651 mmu_context_bmap
[1] = 0;
652 mmu_context_bmap
[2] = 0;
653 mmu_context_bmap
[3] = 0;
654 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
655 mmu_context_bmap
[i
+ 0] = 0;
656 mmu_context_bmap
[i
+ 1] = 0;
657 mmu_context_bmap
[i
+ 2] = 0;
658 mmu_context_bmap
[i
+ 3] = 0;
664 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
665 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
667 tlb_context_cache
= new_ctx
;
668 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
669 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);
671 if (unlikely(new_version
))
672 smp_new_mmu_context_version();
675 static int numa_enabled
= 1;
676 static int numa_debug
;
678 static int __init
early_numa(char *p
)
683 if (strstr(p
, "off"))
686 if (strstr(p
, "debug"))
691 early_param("numa", early_numa
);
693 #define numadbg(f, a...) \
694 do { if (numa_debug) \
695 printk(KERN_INFO f, ## a); \
698 static void __init
find_ramdisk(unsigned long phys_base
)
700 #ifdef CONFIG_BLK_DEV_INITRD
701 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
702 unsigned long ramdisk_image
;
704 /* Older versions of the bootloader only supported a
705 * 32-bit physical address for the ramdisk image
706 * location, stored at sparc_ramdisk_image. Newer
707 * SILO versions set sparc_ramdisk_image to zero and
708 * provide a full 64-bit physical address at
709 * sparc_ramdisk_image64.
711 ramdisk_image
= sparc_ramdisk_image
;
713 ramdisk_image
= sparc_ramdisk_image64
;
715 /* Another bootloader quirk. The bootloader normalizes
716 * the physical address to KERNBASE, so we have to
717 * factor that back out and add in the lowest valid
718 * physical page address to get the true physical address.
720 ramdisk_image
-= KERNBASE
;
721 ramdisk_image
+= phys_base
;
723 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
724 ramdisk_image
, sparc_ramdisk_size
);
726 initrd_start
= ramdisk_image
;
727 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
729 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
731 initrd_start
+= PAGE_OFFSET
;
732 initrd_end
+= PAGE_OFFSET
;
737 struct node_mem_mask
{
740 unsigned long bootmem_paddr
;
742 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
743 static int num_node_masks
;
745 int numa_cpu_lookup_table
[NR_CPUS
];
746 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
748 #ifdef CONFIG_NEED_MULTIPLE_NODES
750 struct mdesc_mblock
{
753 u64 offset
; /* RA-to-PA */
755 static struct mdesc_mblock
*mblocks
;
756 static int num_mblocks
;
758 static unsigned long ra_to_pa(unsigned long addr
)
762 for (i
= 0; i
< num_mblocks
; i
++) {
763 struct mdesc_mblock
*m
= &mblocks
[i
];
765 if (addr
>= m
->base
&&
766 addr
< (m
->base
+ m
->size
)) {
774 static int find_node(unsigned long addr
)
778 addr
= ra_to_pa(addr
);
779 for (i
= 0; i
< num_node_masks
; i
++) {
780 struct node_mem_mask
*p
= &node_masks
[i
];
782 if ((addr
& p
->mask
) == p
->val
)
788 u64
memblock_nid_range(u64 start
, u64 end
, int *nid
)
790 *nid
= find_node(start
);
792 while (start
< end
) {
793 int n
= find_node(start
);
806 u64
memblock_nid_range(u64 start
, u64 end
, int *nid
)
813 /* This must be invoked after performing all of the necessary
814 * add_active_range() calls for 'nid'. We need to be able to get
815 * correct data from get_pfn_range_for_nid().
817 static void __init
allocate_node_data(int nid
)
819 unsigned long paddr
, num_pages
, start_pfn
, end_pfn
;
820 struct pglist_data
*p
;
822 #ifdef CONFIG_NEED_MULTIPLE_NODES
823 paddr
= memblock_alloc_try_nid(sizeof(struct pglist_data
), SMP_CACHE_BYTES
, nid
);
825 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
828 NODE_DATA(nid
) = __va(paddr
);
829 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
831 NODE_DATA(nid
)->bdata
= &bootmem_node_data
[nid
];
836 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
837 p
->node_start_pfn
= start_pfn
;
838 p
->node_spanned_pages
= end_pfn
- start_pfn
;
840 if (p
->node_spanned_pages
) {
841 num_pages
= bootmem_bootmap_pages(p
->node_spanned_pages
);
843 paddr
= memblock_alloc_try_nid(num_pages
<< PAGE_SHIFT
, PAGE_SIZE
, nid
);
845 prom_printf("Cannot allocate bootmap for nid[%d]\n",
849 node_masks
[nid
].bootmem_paddr
= paddr
;
853 static void init_node_masks_nonnuma(void)
857 numadbg("Initializing tables for non-numa.\n");
859 node_masks
[0].mask
= node_masks
[0].val
= 0;
862 for (i
= 0; i
< NR_CPUS
; i
++)
863 numa_cpu_lookup_table
[i
] = 0;
865 cpumask_setall(&numa_cpumask_lookup_table
[0]);
868 #ifdef CONFIG_NEED_MULTIPLE_NODES
869 struct pglist_data
*node_data
[MAX_NUMNODES
];
871 EXPORT_SYMBOL(numa_cpu_lookup_table
);
872 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
873 EXPORT_SYMBOL(node_data
);
875 struct mdesc_mlgroup
{
881 static struct mdesc_mlgroup
*mlgroups
;
882 static int num_mlgroups
;
884 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
889 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
890 u64 target
= mdesc_arc_target(md
, arc
);
893 val
= mdesc_get_property(md
, target
,
895 if (val
&& *val
== cfg_handle
)
901 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
904 u64 arc
, candidate
, best_latency
= ~(u64
)0;
906 candidate
= MDESC_NODE_NULL
;
907 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
908 u64 target
= mdesc_arc_target(md
, arc
);
909 const char *name
= mdesc_node_name(md
, target
);
912 if (strcmp(name
, "pio-latency-group"))
915 val
= mdesc_get_property(md
, target
, "latency", NULL
);
919 if (*val
< best_latency
) {
925 if (candidate
== MDESC_NODE_NULL
)
928 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
931 int of_node_to_nid(struct device_node
*dp
)
933 const struct linux_prom64_registers
*regs
;
934 struct mdesc_handle
*md
;
939 /* This is the right thing to do on currently supported
940 * SUN4U NUMA platforms as well, as the PCI controller does
941 * not sit behind any particular memory controller.
946 regs
= of_get_property(dp
, "reg", NULL
);
950 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
956 mdesc_for_each_node_by_name(md
, grp
, "group") {
957 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
969 static void __init
add_node_ranges(void)
971 struct memblock_region
*reg
;
973 for_each_memblock(memory
, reg
) {
974 unsigned long size
= reg
->size
;
975 unsigned long start
, end
;
979 while (start
< end
) {
980 unsigned long this_end
;
983 this_end
= memblock_nid_range(start
, end
, &nid
);
985 numadbg("Adding active range nid[%d] "
986 "start[%lx] end[%lx]\n",
987 nid
, start
, this_end
);
989 add_active_range(nid
,
991 this_end
>> PAGE_SHIFT
);
998 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1000 unsigned long paddr
;
1004 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1009 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mlgroup
),
1014 mlgroups
= __va(paddr
);
1015 num_mlgroups
= count
;
1018 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1019 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1024 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1026 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1028 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1031 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1032 "match[%llx] mask[%llx]\n",
1033 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1039 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1041 unsigned long paddr
;
1045 mdesc_for_each_node_by_name(md
, node
, "mblock")
1050 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mblock
),
1055 mblocks
= __va(paddr
);
1056 num_mblocks
= count
;
1059 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1060 struct mdesc_mblock
*m
= &mblocks
[count
++];
1063 val
= mdesc_get_property(md
, node
, "base", NULL
);
1065 val
= mdesc_get_property(md
, node
, "size", NULL
);
1067 val
= mdesc_get_property(md
, node
,
1068 "address-congruence-offset", NULL
);
1071 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1072 count
- 1, m
->base
, m
->size
, m
->offset
);
1078 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1079 u64 grp
, cpumask_t
*mask
)
1083 cpumask_clear(mask
);
1085 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1086 u64 target
= mdesc_arc_target(md
, arc
);
1087 const char *name
= mdesc_node_name(md
, target
);
1090 if (strcmp(name
, "cpu"))
1092 id
= mdesc_get_property(md
, target
, "id", NULL
);
1093 if (*id
< nr_cpu_ids
)
1094 cpumask_set_cpu(*id
, mask
);
1098 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1102 for (i
= 0; i
< num_mlgroups
; i
++) {
1103 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1104 if (m
->node
== node
)
1110 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1113 struct mdesc_mlgroup
*candidate
= NULL
;
1114 u64 arc
, best_latency
= ~(u64
)0;
1115 struct node_mem_mask
*n
;
1117 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1118 u64 target
= mdesc_arc_target(md
, arc
);
1119 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1122 if (m
->latency
< best_latency
) {
1124 best_latency
= m
->latency
;
1130 if (num_node_masks
!= index
) {
1131 printk(KERN_ERR
"Inconsistent NUMA state, "
1132 "index[%d] != num_node_masks[%d]\n",
1133 index
, num_node_masks
);
1137 n
= &node_masks
[num_node_masks
++];
1139 n
->mask
= candidate
->mask
;
1140 n
->val
= candidate
->match
;
1142 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1143 index
, n
->mask
, n
->val
, candidate
->latency
);
1148 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1154 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1156 for_each_cpu(cpu
, &mask
)
1157 numa_cpu_lookup_table
[cpu
] = index
;
1158 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1161 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1162 for_each_cpu(cpu
, &mask
)
1167 return numa_attach_mlgroup(md
, grp
, index
);
1170 static int __init
numa_parse_mdesc(void)
1172 struct mdesc_handle
*md
= mdesc_grab();
1176 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1177 if (node
== MDESC_NODE_NULL
) {
1182 err
= grab_mblocks(md
);
1186 err
= grab_mlgroups(md
);
1191 mdesc_for_each_node_by_name(md
, node
, "group") {
1192 err
= numa_parse_mdesc_group(md
, node
, count
);
1200 for (i
= 0; i
< num_node_masks
; i
++) {
1201 allocate_node_data(i
);
1211 static int __init
numa_parse_jbus(void)
1213 unsigned long cpu
, index
;
1215 /* NUMA node id is encoded in bits 36 and higher, and there is
1216 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1219 for_each_present_cpu(cpu
) {
1220 numa_cpu_lookup_table
[cpu
] = index
;
1221 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1222 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1223 node_masks
[index
].val
= cpu
<< 36UL;
1227 num_node_masks
= index
;
1231 for (index
= 0; index
< num_node_masks
; index
++) {
1232 allocate_node_data(index
);
1233 node_set_online(index
);
1239 static int __init
numa_parse_sun4u(void)
1241 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1244 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1245 if ((ver
>> 32UL) == __JALAPENO_ID
||
1246 (ver
>> 32UL) == __SERRANO_ID
)
1247 return numa_parse_jbus();
1252 static int __init
bootmem_init_numa(void)
1256 numadbg("bootmem_init_numa()\n");
1259 if (tlb_type
== hypervisor
)
1260 err
= numa_parse_mdesc();
1262 err
= numa_parse_sun4u();
1269 static int bootmem_init_numa(void)
1276 static void __init
bootmem_init_nonnuma(void)
1278 unsigned long top_of_ram
= memblock_end_of_DRAM();
1279 unsigned long total_ram
= memblock_phys_mem_size();
1280 struct memblock_region
*reg
;
1282 numadbg("bootmem_init_nonnuma()\n");
1284 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1285 top_of_ram
, total_ram
);
1286 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1287 (top_of_ram
- total_ram
) >> 20);
1289 init_node_masks_nonnuma();
1291 for_each_memblock(memory
, reg
) {
1292 unsigned long start_pfn
, end_pfn
;
1297 start_pfn
= memblock_region_memory_base_pfn(reg
);
1298 end_pfn
= memblock_region_memory_end_pfn(reg
);
1299 add_active_range(0, start_pfn
, end_pfn
);
1302 allocate_node_data(0);
1307 static void __init
reserve_range_in_node(int nid
, unsigned long start
,
1310 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1312 while (start
< end
) {
1313 unsigned long this_end
;
1316 this_end
= memblock_nid_range(start
, end
, &n
);
1318 numadbg(" MATCH reserving range [%lx:%lx]\n",
1320 reserve_bootmem_node(NODE_DATA(nid
), start
,
1321 (this_end
- start
), BOOTMEM_DEFAULT
);
1323 numadbg(" NO MATCH, advancing start to %lx\n",
1330 static void __init
trim_reserved_in_node(int nid
)
1332 struct memblock_region
*reg
;
1334 numadbg(" trim_reserved_in_node(%d)\n", nid
);
1336 for_each_memblock(reserved
, reg
)
1337 reserve_range_in_node(nid
, reg
->base
, reg
->base
+ reg
->size
);
1340 static void __init
bootmem_init_one_node(int nid
)
1342 struct pglist_data
*p
;
1344 numadbg("bootmem_init_one_node(%d)\n", nid
);
1348 if (p
->node_spanned_pages
) {
1349 unsigned long paddr
= node_masks
[nid
].bootmem_paddr
;
1350 unsigned long end_pfn
;
1352 end_pfn
= p
->node_start_pfn
+ p
->node_spanned_pages
;
1354 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1355 nid
, paddr
>> PAGE_SHIFT
, p
->node_start_pfn
, end_pfn
);
1357 init_bootmem_node(p
, paddr
>> PAGE_SHIFT
,
1358 p
->node_start_pfn
, end_pfn
);
1360 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1362 free_bootmem_with_active_regions(nid
, end_pfn
);
1364 trim_reserved_in_node(nid
);
1366 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1368 sparse_memory_present_with_active_regions(nid
);
1372 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1374 unsigned long end_pfn
;
1377 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1378 max_pfn
= max_low_pfn
= end_pfn
;
1379 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1381 if (bootmem_init_numa() < 0)
1382 bootmem_init_nonnuma();
1384 /* XXX cpu notifier XXX */
1386 for_each_online_node(nid
)
1387 bootmem_init_one_node(nid
);
1394 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1395 static int pall_ents __initdata
;
1397 #ifdef CONFIG_DEBUG_PAGEALLOC
1398 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1399 unsigned long pend
, pgprot_t prot
)
1401 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1402 unsigned long vend
= PAGE_OFFSET
+ pend
;
1403 unsigned long alloc_bytes
= 0UL;
1405 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1406 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1411 while (vstart
< vend
) {
1412 unsigned long this_end
, paddr
= __pa(vstart
);
1413 pgd_t
*pgd
= pgd_offset_k(vstart
);
1418 pud
= pud_offset(pgd
, vstart
);
1419 if (pud_none(*pud
)) {
1422 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1423 alloc_bytes
+= PAGE_SIZE
;
1424 pud_populate(&init_mm
, pud
, new);
1427 pmd
= pmd_offset(pud
, vstart
);
1428 if (!pmd_present(*pmd
)) {
1431 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1432 alloc_bytes
+= PAGE_SIZE
;
1433 pmd_populate_kernel(&init_mm
, pmd
, new);
1436 pte
= pte_offset_kernel(pmd
, vstart
);
1437 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1438 if (this_end
> vend
)
1441 while (vstart
< this_end
) {
1442 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1444 vstart
+= PAGE_SIZE
;
1453 extern unsigned int kvmap_linear_patch
[1];
1454 #endif /* CONFIG_DEBUG_PAGEALLOC */
1456 static void __init
mark_kpte_bitmap(unsigned long start
, unsigned long end
)
1458 const unsigned long shift_256MB
= 28;
1459 const unsigned long mask_256MB
= ((1UL << shift_256MB
) - 1UL);
1460 const unsigned long size_256MB
= (1UL << shift_256MB
);
1462 while (start
< end
) {
1465 remains
= end
- start
;
1466 if (remains
< size_256MB
)
1469 if (start
& mask_256MB
) {
1470 start
= (start
+ size_256MB
) & ~mask_256MB
;
1474 while (remains
>= size_256MB
) {
1475 unsigned long index
= start
>> shift_256MB
;
1477 __set_bit(index
, kpte_linear_bitmap
);
1479 start
+= size_256MB
;
1480 remains
-= size_256MB
;
1485 static void __init
init_kpte_bitmap(void)
1489 for (i
= 0; i
< pall_ents
; i
++) {
1490 unsigned long phys_start
, phys_end
;
1492 phys_start
= pall
[i
].phys_addr
;
1493 phys_end
= phys_start
+ pall
[i
].reg_size
;
1495 mark_kpte_bitmap(phys_start
, phys_end
);
1499 static void __init
kernel_physical_mapping_init(void)
1501 #ifdef CONFIG_DEBUG_PAGEALLOC
1502 unsigned long i
, mem_alloced
= 0UL;
1504 for (i
= 0; i
< pall_ents
; i
++) {
1505 unsigned long phys_start
, phys_end
;
1507 phys_start
= pall
[i
].phys_addr
;
1508 phys_end
= phys_start
+ pall
[i
].reg_size
;
1510 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1514 printk("Allocated %ld bytes for kernel page tables.\n",
1517 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1518 flushi(&kvmap_linear_patch
[0]);
1524 #ifdef CONFIG_DEBUG_PAGEALLOC
1525 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1527 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1528 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1530 kernel_map_range(phys_start
, phys_end
,
1531 (enable
? PAGE_KERNEL
: __pgprot(0)));
1533 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1534 PAGE_OFFSET
+ phys_end
);
1536 /* we should perform an IPI and flush all tlbs,
1537 * but that can deadlock->flush only current cpu.
1539 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1540 PAGE_OFFSET
+ phys_end
);
1544 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1548 for (i
= 0; i
< pavail_ents
; i
++) {
1549 if (pavail
[i
].reg_size
>= size
)
1550 return pavail
[i
].phys_addr
;
1556 static void __init
tsb_phys_patch(void)
1558 struct tsb_ldquad_phys_patch_entry
*pquad
;
1559 struct tsb_phys_patch_entry
*p
;
1561 pquad
= &__tsb_ldquad_phys_patch
;
1562 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1563 unsigned long addr
= pquad
->addr
;
1565 if (tlb_type
== hypervisor
)
1566 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1568 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1570 __asm__
__volatile__("flush %0"
1577 p
= &__tsb_phys_patch
;
1578 while (p
< &__tsb_phys_patch_end
) {
1579 unsigned long addr
= p
->addr
;
1581 *(unsigned int *) addr
= p
->insn
;
1583 __asm__
__volatile__("flush %0"
1591 /* Don't mark as init, we give this to the Hypervisor. */
1592 #ifndef CONFIG_DEBUG_PAGEALLOC
1593 #define NUM_KTSB_DESCR 2
1595 #define NUM_KTSB_DESCR 1
1597 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1598 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
1600 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
1602 pa
>>= KTSB_PHYS_SHIFT
;
1604 while (start
< end
) {
1605 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
1607 ia
[0] = (ia
[0] & ~0x3fffff) | (pa
>> 10);
1608 __asm__
__volatile__("flush %0" : : "r" (ia
));
1610 ia
[1] = (ia
[1] & ~0x3ff) | (pa
& 0x3ff);
1611 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
1617 static void ktsb_phys_patch(void)
1619 extern unsigned int __swapper_tsb_phys_patch
;
1620 extern unsigned int __swapper_tsb_phys_patch_end
;
1621 unsigned long ktsb_pa
;
1623 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1624 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
1625 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
1626 #ifndef CONFIG_DEBUG_PAGEALLOC
1628 extern unsigned int __swapper_4m_tsb_phys_patch
;
1629 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
1630 ktsb_pa
= (kern_base
+
1631 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1632 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
1633 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
1638 static void __init
sun4v_ktsb_init(void)
1640 unsigned long ktsb_pa
;
1642 /* First KTSB for PAGE_SIZE mappings. */
1643 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1645 switch (PAGE_SIZE
) {
1648 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1649 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1653 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1654 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1658 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1659 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1662 case 4 * 1024 * 1024:
1663 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1664 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1668 ktsb_descr
[0].assoc
= 1;
1669 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1670 ktsb_descr
[0].ctx_idx
= 0;
1671 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1672 ktsb_descr
[0].resv
= 0;
1674 #ifndef CONFIG_DEBUG_PAGEALLOC
1675 /* Second KTSB for 4MB/256MB mappings. */
1676 ktsb_pa
= (kern_base
+
1677 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1679 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1680 ktsb_descr
[1].pgsz_mask
= (HV_PGSZ_MASK_4MB
|
1681 HV_PGSZ_MASK_256MB
);
1682 ktsb_descr
[1].assoc
= 1;
1683 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1684 ktsb_descr
[1].ctx_idx
= 0;
1685 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1686 ktsb_descr
[1].resv
= 0;
1690 void __cpuinit
sun4v_ktsb_register(void)
1692 unsigned long pa
, ret
;
1694 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1696 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
1698 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1699 "errors with %lx\n", pa
, ret
);
1704 /* paging_init() sets up the page tables */
1706 static unsigned long last_valid_pfn
;
1707 pgd_t swapper_pg_dir
[2048];
1709 static void sun4u_pgprot_init(void);
1710 static void sun4v_pgprot_init(void);
1712 void __init
paging_init(void)
1714 unsigned long end_pfn
, shift
, phys_base
;
1715 unsigned long real_end
, i
;
1717 /* These build time checkes make sure that the dcache_dirty_cpu()
1718 * page->flags usage will work.
1720 * When a page gets marked as dcache-dirty, we store the
1721 * cpu number starting at bit 32 in the page->flags. Also,
1722 * functions like clear_dcache_dirty_cpu use the cpu mask
1723 * in 13-bit signed-immediate instruction fields.
1727 * Page flags must not reach into upper 32 bits that are used
1728 * for the cpu number
1730 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
1733 * The bit fields placed in the high range must not reach below
1734 * the 32 bit boundary. Otherwise we cannot place the cpu field
1735 * at the 32 bit boundary.
1737 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
1738 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
1740 BUILD_BUG_ON(NR_CPUS
> 4096);
1742 kern_base
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
1743 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
1745 /* Invalidate both kernel TSBs. */
1746 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
1747 #ifndef CONFIG_DEBUG_PAGEALLOC
1748 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1751 if (tlb_type
== hypervisor
)
1752 sun4v_pgprot_init();
1754 sun4u_pgprot_init();
1756 if (tlb_type
== cheetah_plus
||
1757 tlb_type
== hypervisor
) {
1762 if (tlb_type
== hypervisor
) {
1763 sun4v_patch_tlb_handlers();
1769 /* Find available physical memory...
1771 * Read it twice in order to work around a bug in openfirmware.
1772 * The call to grab this table itself can cause openfirmware to
1773 * allocate memory, which in turn can take away some space from
1774 * the list of available memory. Reading it twice makes sure
1775 * we really do get the final value.
1777 read_obp_translations();
1778 read_obp_memory("reg", &pall
[0], &pall_ents
);
1779 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1780 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1782 phys_base
= 0xffffffffffffffffUL
;
1783 for (i
= 0; i
< pavail_ents
; i
++) {
1784 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
1785 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
1788 memblock_reserve(kern_base
, kern_size
);
1790 find_ramdisk(phys_base
);
1792 memblock_enforce_memory_limit(cmdline_memory_size
);
1795 memblock_dump_all();
1797 set_bit(0, mmu_context_bmap
);
1799 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
1801 real_end
= (unsigned long)_end
;
1802 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << 22);
1803 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1804 num_kernel_image_mappings
);
1806 /* Set kernel pgd to upper alias so physical page computations
1809 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
1811 memset(swapper_low_pmd_dir
, 0, sizeof(swapper_low_pmd_dir
));
1813 /* Now can init the kernel/bad page tables. */
1814 pud_set(pud_offset(&swapper_pg_dir
[0], 0),
1815 swapper_low_pmd_dir
+ (shift
/ sizeof(pgd_t
)));
1817 inherit_prom_mappings();
1821 /* Ok, we can use our TLB miss and window trap handlers safely. */
1826 if (tlb_type
== hypervisor
)
1827 sun4v_ktsb_register();
1829 prom_build_devicetree();
1830 of_populate_present_mask();
1832 of_fill_in_cpu_data();
1835 if (tlb_type
== hypervisor
) {
1837 mdesc_populate_present_mask(cpu_all_mask
);
1839 mdesc_fill_in_cpu_data(cpu_all_mask
);
1843 /* Once the OF device tree and MDESC have been setup, we know
1844 * the list of possible cpus. Therefore we can allocate the
1847 for_each_possible_cpu(i
) {
1848 /* XXX Use node local allocations... XXX */
1849 softirq_stack
[i
] = __va(memblock_alloc(THREAD_SIZE
, THREAD_SIZE
));
1850 hardirq_stack
[i
] = __va(memblock_alloc(THREAD_SIZE
, THREAD_SIZE
));
1853 /* Setup bootmem... */
1854 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
1856 #ifndef CONFIG_NEED_MULTIPLE_NODES
1857 max_mapnr
= last_valid_pfn
;
1859 kernel_physical_mapping_init();
1862 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1864 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1866 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
1868 free_area_init_nodes(max_zone_pfns
);
1871 printk("Booting Linux...\n");
1874 int __devinit
page_in_phys_avail(unsigned long paddr
)
1880 for (i
= 0; i
< pavail_ents
; i
++) {
1881 unsigned long start
, end
;
1883 start
= pavail
[i
].phys_addr
;
1884 end
= start
+ pavail
[i
].reg_size
;
1886 if (paddr
>= start
&& paddr
< end
)
1889 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
1891 #ifdef CONFIG_BLK_DEV_INITRD
1892 if (paddr
>= __pa(initrd_start
) &&
1893 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
1900 static struct linux_prom64_registers pavail_rescan
[MAX_BANKS
] __initdata
;
1901 static int pavail_rescan_ents __initdata
;
1903 /* Certain OBP calls, such as fetching "available" properties, can
1904 * claim physical memory. So, along with initializing the valid
1905 * address bitmap, what we do here is refetch the physical available
1906 * memory list again, and make sure it provides at least as much
1907 * memory as 'pavail' does.
1909 static void __init
setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap
)
1913 read_obp_memory("available", &pavail_rescan
[0], &pavail_rescan_ents
);
1915 for (i
= 0; i
< pavail_ents
; i
++) {
1916 unsigned long old_start
, old_end
;
1918 old_start
= pavail
[i
].phys_addr
;
1919 old_end
= old_start
+ pavail
[i
].reg_size
;
1920 while (old_start
< old_end
) {
1923 for (n
= 0; n
< pavail_rescan_ents
; n
++) {
1924 unsigned long new_start
, new_end
;
1926 new_start
= pavail_rescan
[n
].phys_addr
;
1927 new_end
= new_start
+
1928 pavail_rescan
[n
].reg_size
;
1930 if (new_start
<= old_start
&&
1931 new_end
>= (old_start
+ PAGE_SIZE
)) {
1932 set_bit(old_start
>> 22, bitmap
);
1937 prom_printf("mem_init: Lost memory in pavail\n");
1938 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1939 pavail
[i
].phys_addr
,
1940 pavail
[i
].reg_size
);
1941 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1942 pavail_rescan
[i
].phys_addr
,
1943 pavail_rescan
[i
].reg_size
);
1944 prom_printf("mem_init: Cannot continue, aborting.\n");
1948 old_start
+= PAGE_SIZE
;
1953 static void __init
patch_tlb_miss_handler_bitmap(void)
1955 extern unsigned int valid_addr_bitmap_insn
[];
1956 extern unsigned int valid_addr_bitmap_patch
[];
1958 valid_addr_bitmap_insn
[1] = valid_addr_bitmap_patch
[1];
1960 valid_addr_bitmap_insn
[0] = valid_addr_bitmap_patch
[0];
1961 flushi(&valid_addr_bitmap_insn
[0]);
1964 void __init
mem_init(void)
1966 unsigned long codepages
, datapages
, initpages
;
1967 unsigned long addr
, last
;
1969 addr
= PAGE_OFFSET
+ kern_base
;
1970 last
= PAGE_ALIGN(kern_size
) + addr
;
1971 while (addr
< last
) {
1972 set_bit(__pa(addr
) >> 22, sparc64_valid_addr_bitmap
);
1976 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap
);
1977 patch_tlb_miss_handler_bitmap();
1979 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
1981 #ifdef CONFIG_NEED_MULTIPLE_NODES
1984 for_each_online_node(i
) {
1985 if (NODE_DATA(i
)->node_spanned_pages
!= 0) {
1987 free_all_bootmem_node(NODE_DATA(i
));
1992 totalram_pages
= free_all_bootmem();
1995 /* We subtract one to account for the mem_map_zero page
1998 totalram_pages
-= 1;
1999 num_physpages
= totalram_pages
;
2002 * Set up the zero page, mark it reserved, so that page count
2003 * is not manipulated when freeing the page from user ptes.
2005 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
2006 if (mem_map_zero
== NULL
) {
2007 prom_printf("paging_init: Cannot alloc zero page.\n");
2010 SetPageReserved(mem_map_zero
);
2012 codepages
= (((unsigned long) _etext
) - ((unsigned long) _start
));
2013 codepages
= PAGE_ALIGN(codepages
) >> PAGE_SHIFT
;
2014 datapages
= (((unsigned long) _edata
) - ((unsigned long) _etext
));
2015 datapages
= PAGE_ALIGN(datapages
) >> PAGE_SHIFT
;
2016 initpages
= (((unsigned long) __init_end
) - ((unsigned long) __init_begin
));
2017 initpages
= PAGE_ALIGN(initpages
) >> PAGE_SHIFT
;
2019 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2020 nr_free_pages() << (PAGE_SHIFT
-10),
2021 codepages
<< (PAGE_SHIFT
-10),
2022 datapages
<< (PAGE_SHIFT
-10),
2023 initpages
<< (PAGE_SHIFT
-10),
2024 PAGE_OFFSET
, (last_valid_pfn
<< PAGE_SHIFT
));
2026 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2027 cheetah_ecache_flush_init();
2030 void free_initmem(void)
2032 unsigned long addr
, initend
;
2035 /* If the physical memory maps were trimmed by kernel command
2036 * line options, don't even try freeing this initmem stuff up.
2037 * The kernel image could have been in the trimmed out region
2038 * and if so the freeing below will free invalid page structs.
2040 if (cmdline_memory_size
)
2044 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2046 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2047 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2048 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2053 ((unsigned long) __va(kern_base
)) -
2054 ((unsigned long) KERNBASE
));
2055 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2058 p
= virt_to_page(page
);
2060 ClearPageReserved(p
);
2069 #ifdef CONFIG_BLK_DEV_INITRD
2070 void free_initrd_mem(unsigned long start
, unsigned long end
)
2073 printk ("Freeing initrd memory: %ldk freed\n", (end
- start
) >> 10);
2074 for (; start
< end
; start
+= PAGE_SIZE
) {
2075 struct page
*p
= virt_to_page(start
);
2077 ClearPageReserved(p
);
2086 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2087 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2088 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2089 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2090 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2091 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2093 pgprot_t PAGE_KERNEL __read_mostly
;
2094 EXPORT_SYMBOL(PAGE_KERNEL
);
2096 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2097 pgprot_t PAGE_COPY __read_mostly
;
2099 pgprot_t PAGE_SHARED __read_mostly
;
2100 EXPORT_SYMBOL(PAGE_SHARED
);
2102 unsigned long pg_iobits __read_mostly
;
2104 unsigned long _PAGE_IE __read_mostly
;
2105 EXPORT_SYMBOL(_PAGE_IE
);
2107 unsigned long _PAGE_E __read_mostly
;
2108 EXPORT_SYMBOL(_PAGE_E
);
2110 unsigned long _PAGE_CACHE __read_mostly
;
2111 EXPORT_SYMBOL(_PAGE_CACHE
);
2113 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2114 unsigned long vmemmap_table
[VMEMMAP_SIZE
];
2116 int __meminit
vmemmap_populate(struct page
*start
, unsigned long nr
, int node
)
2118 unsigned long vstart
= (unsigned long) start
;
2119 unsigned long vend
= (unsigned long) (start
+ nr
);
2120 unsigned long phys_start
= (vstart
- VMEMMAP_BASE
);
2121 unsigned long phys_end
= (vend
- VMEMMAP_BASE
);
2122 unsigned long addr
= phys_start
& VMEMMAP_CHUNK_MASK
;
2123 unsigned long end
= VMEMMAP_ALIGN(phys_end
);
2124 unsigned long pte_base
;
2126 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2127 _PAGE_CP_4U
| _PAGE_CV_4U
|
2128 _PAGE_P_4U
| _PAGE_W_4U
);
2129 if (tlb_type
== hypervisor
)
2130 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2131 _PAGE_CP_4V
| _PAGE_CV_4V
|
2132 _PAGE_P_4V
| _PAGE_W_4V
);
2134 for (; addr
< end
; addr
+= VMEMMAP_CHUNK
) {
2135 unsigned long *vmem_pp
=
2136 vmemmap_table
+ (addr
>> VMEMMAP_CHUNK_SHIFT
);
2139 if (!(*vmem_pp
& _PAGE_VALID
)) {
2140 block
= vmemmap_alloc_block(1UL << 22, node
);
2144 *vmem_pp
= pte_base
| __pa(block
);
2146 printk(KERN_INFO
"[%p-%p] page_structs=%lu "
2147 "node=%d entry=%lu/%lu\n", start
, block
, nr
,
2149 addr
>> VMEMMAP_CHUNK_SHIFT
,
2155 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2157 static void prot_init_common(unsigned long page_none
,
2158 unsigned long page_shared
,
2159 unsigned long page_copy
,
2160 unsigned long page_readonly
,
2161 unsigned long page_exec_bit
)
2163 PAGE_COPY
= __pgprot(page_copy
);
2164 PAGE_SHARED
= __pgprot(page_shared
);
2166 protection_map
[0x0] = __pgprot(page_none
);
2167 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2168 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2169 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2170 protection_map
[0x4] = __pgprot(page_readonly
);
2171 protection_map
[0x5] = __pgprot(page_readonly
);
2172 protection_map
[0x6] = __pgprot(page_copy
);
2173 protection_map
[0x7] = __pgprot(page_copy
);
2174 protection_map
[0x8] = __pgprot(page_none
);
2175 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2176 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2177 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2178 protection_map
[0xc] = __pgprot(page_readonly
);
2179 protection_map
[0xd] = __pgprot(page_readonly
);
2180 protection_map
[0xe] = __pgprot(page_shared
);
2181 protection_map
[0xf] = __pgprot(page_shared
);
2184 static void __init
sun4u_pgprot_init(void)
2186 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2187 unsigned long page_exec_bit
;
2189 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2190 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2191 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2193 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2194 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2195 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2196 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2198 _PAGE_IE
= _PAGE_IE_4U
;
2199 _PAGE_E
= _PAGE_E_4U
;
2200 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2202 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2203 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2205 #ifdef CONFIG_DEBUG_PAGEALLOC
2206 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4U
) ^
2207 0xfffff80000000000UL
;
2209 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2210 0xfffff80000000000UL
;
2212 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2213 _PAGE_P_4U
| _PAGE_W_4U
);
2215 /* XXX Should use 256MB on Panther. XXX */
2216 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
2218 _PAGE_SZBITS
= _PAGE_SZBITS_4U
;
2219 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2220 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2221 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2224 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2225 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2226 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2227 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2228 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2229 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2230 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2232 page_exec_bit
= _PAGE_EXEC_4U
;
2234 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2238 static void __init
sun4v_pgprot_init(void)
2240 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2241 unsigned long page_exec_bit
;
2243 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2244 _PAGE_CACHE_4V
| _PAGE_P_4V
|
2245 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2247 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2249 _PAGE_IE
= _PAGE_IE_4V
;
2250 _PAGE_E
= _PAGE_E_4V
;
2251 _PAGE_CACHE
= _PAGE_CACHE_4V
;
2253 #ifdef CONFIG_DEBUG_PAGEALLOC
2254 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
2255 0xfffff80000000000UL
;
2257 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2258 0xfffff80000000000UL
;
2260 kern_linear_pte_xor
[0] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2261 _PAGE_P_4V
| _PAGE_W_4V
);
2263 #ifdef CONFIG_DEBUG_PAGEALLOC
2264 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
2265 0xfffff80000000000UL
;
2267 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
2268 0xfffff80000000000UL
;
2270 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2271 _PAGE_P_4V
| _PAGE_W_4V
);
2273 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2274 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2276 _PAGE_SZBITS
= _PAGE_SZBITS_4V
;
2277 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2278 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2279 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2280 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2282 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| _PAGE_CACHE_4V
;
2283 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2284 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2285 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2286 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2287 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2288 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2290 page_exec_bit
= _PAGE_EXEC_4V
;
2292 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2296 unsigned long pte_sz_bits(unsigned long sz
)
2298 if (tlb_type
== hypervisor
) {
2302 return _PAGE_SZ8K_4V
;
2304 return _PAGE_SZ64K_4V
;
2306 return _PAGE_SZ512K_4V
;
2307 case 4 * 1024 * 1024:
2308 return _PAGE_SZ4MB_4V
;
2314 return _PAGE_SZ8K_4U
;
2316 return _PAGE_SZ64K_4U
;
2318 return _PAGE_SZ512K_4U
;
2319 case 4 * 1024 * 1024:
2320 return _PAGE_SZ4MB_4U
;
2325 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2329 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2330 pte_val(pte
) |= (((unsigned long)space
) << 32);
2331 pte_val(pte
) |= pte_sz_bits(page_size
);
2336 static unsigned long kern_large_tte(unsigned long paddr
)
2340 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2341 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2342 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2343 if (tlb_type
== hypervisor
)
2344 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2345 _PAGE_CP_4V
| _PAGE_CV_4V
| _PAGE_P_4V
|
2346 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2351 /* If not locked, zap it. */
2352 void __flush_tlb_all(void)
2354 unsigned long pstate
;
2357 __asm__
__volatile__("flushw\n\t"
2358 "rdpr %%pstate, %0\n\t"
2359 "wrpr %0, %1, %%pstate"
2362 if (tlb_type
== hypervisor
) {
2363 sun4v_mmu_demap_all();
2364 } else if (tlb_type
== spitfire
) {
2365 for (i
= 0; i
< 64; i
++) {
2366 /* Spitfire Errata #32 workaround */
2367 /* NOTE: Always runs on spitfire, so no
2368 * cheetah+ page size encodings.
2370 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2374 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2376 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2377 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2380 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2381 spitfire_put_dtlb_data(i
, 0x0UL
);
2384 /* Spitfire Errata #32 workaround */
2385 /* NOTE: Always runs on spitfire, so no
2386 * cheetah+ page size encodings.
2388 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2392 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2394 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2395 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2398 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2399 spitfire_put_itlb_data(i
, 0x0UL
);
2402 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2403 cheetah_flush_dtlb_all();
2404 cheetah_flush_itlb_all();
2406 __asm__
__volatile__("wrpr %0, 0, %%pstate"