1 /* arch/sparc64/mm/tsb.c
3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/system.h>
11 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/pgtable.h>
16 #include <asm/oplib.h>
18 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
20 static inline unsigned long tsb_hash(unsigned long vaddr
, unsigned long hash_shift
, unsigned long nentries
)
23 return vaddr
& (nentries
- 1);
26 static inline int tag_compare(unsigned long tag
, unsigned long vaddr
)
28 return (tag
== (vaddr
>> 22));
31 /* TSB flushes need only occur on the processor initiating the address
32 * space modification, not on each cpu the address space has run on.
33 * Only the TLB flush needs that treatment.
36 void flush_tsb_kernel_range(unsigned long start
, unsigned long end
)
40 for (v
= start
; v
< end
; v
+= PAGE_SIZE
) {
41 unsigned long hash
= tsb_hash(v
, PAGE_SHIFT
,
43 struct tsb
*ent
= &swapper_tsb
[hash
];
45 if (tag_compare(ent
->tag
, v
))
46 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
50 static void __flush_tsb_one(struct tlb_batch
*tb
, unsigned long hash_shift
,
51 unsigned long tsb
, unsigned long nentries
)
55 for (i
= 0; i
< tb
->tlb_nr
; i
++) {
56 unsigned long v
= tb
->vaddrs
[i
];
57 unsigned long tag
, ent
, hash
;
61 hash
= tsb_hash(v
, hash_shift
, nentries
);
62 ent
= tsb
+ (hash
* sizeof(struct tsb
));
69 void flush_tsb_user(struct tlb_batch
*tb
)
71 struct mm_struct
*mm
= tb
->mm
;
72 unsigned long nentries
, base
, flags
;
74 spin_lock_irqsave(&mm
->context
.lock
, flags
);
76 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_BASE
].tsb
;
77 nentries
= mm
->context
.tsb_block
[MM_TSB_BASE
].tsb_nentries
;
78 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
80 __flush_tsb_one(tb
, PAGE_SHIFT
, base
, nentries
);
82 #ifdef CONFIG_HUGETLB_PAGE
83 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
) {
84 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
;
85 nentries
= mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb_nentries
;
86 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
88 __flush_tsb_one(tb
, HPAGE_SHIFT
, base
, nentries
);
91 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
94 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
95 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
96 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
97 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
98 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
99 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
101 #error Broken base page size setting...
104 #ifdef CONFIG_HUGETLB_PAGE
105 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
106 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
107 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
108 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
109 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
110 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
111 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
112 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
113 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
115 #error Broken huge page size setting...
119 static void setup_tsb_params(struct mm_struct
*mm
, unsigned long tsb_idx
, unsigned long tsb_bytes
)
121 unsigned long tsb_reg
, base
, tsb_paddr
;
122 unsigned long page_sz
, tte
;
124 mm
->context
.tsb_block
[tsb_idx
].tsb_nentries
=
125 tsb_bytes
/ sizeof(struct tsb
);
128 tte
= pgprot_val(PAGE_KERNEL_LOCKED
);
129 tsb_paddr
= __pa(mm
->context
.tsb_block
[tsb_idx
].tsb
);
130 BUG_ON(tsb_paddr
& (tsb_bytes
- 1UL));
132 /* Use the smallest page size that can map the whole TSB
138 #ifdef DCACHE_ALIASING_POSSIBLE
139 base
+= (tsb_paddr
& 8192);
161 page_sz
= 512 * 1024;
166 page_sz
= 512 * 1024;
171 page_sz
= 512 * 1024;
176 page_sz
= 4 * 1024 * 1024;
180 printk(KERN_ERR
"TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
181 current
->comm
, current
->pid
, tsb_bytes
);
184 tte
|= pte_sz_bits(page_sz
);
186 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
) {
187 /* Physical mapping, no locked TLB entry for TSB. */
188 tsb_reg
|= tsb_paddr
;
190 mm
->context
.tsb_block
[tsb_idx
].tsb_reg_val
= tsb_reg
;
191 mm
->context
.tsb_block
[tsb_idx
].tsb_map_vaddr
= 0;
192 mm
->context
.tsb_block
[tsb_idx
].tsb_map_pte
= 0;
195 tsb_reg
|= (tsb_paddr
& (page_sz
- 1UL));
196 tte
|= (tsb_paddr
& ~(page_sz
- 1UL));
198 mm
->context
.tsb_block
[tsb_idx
].tsb_reg_val
= tsb_reg
;
199 mm
->context
.tsb_block
[tsb_idx
].tsb_map_vaddr
= base
;
200 mm
->context
.tsb_block
[tsb_idx
].tsb_map_pte
= tte
;
203 /* Setup the Hypervisor TSB descriptor. */
204 if (tlb_type
== hypervisor
) {
205 struct hv_tsb_descr
*hp
= &mm
->context
.tsb_descr
[tsb_idx
];
209 hp
->pgsz_idx
= HV_PGSZ_IDX_BASE
;
211 #ifdef CONFIG_HUGETLB_PAGE
213 hp
->pgsz_idx
= HV_PGSZ_IDX_HUGE
;
220 hp
->num_ttes
= tsb_bytes
/ 16;
224 hp
->pgsz_mask
= HV_PGSZ_MASK_BASE
;
226 #ifdef CONFIG_HUGETLB_PAGE
228 hp
->pgsz_mask
= HV_PGSZ_MASK_HUGE
;
234 hp
->tsb_base
= tsb_paddr
;
239 struct kmem_cache
*pgtable_cache __read_mostly
;
241 static struct kmem_cache
*tsb_caches
[8] __read_mostly
;
243 static const char *tsb_cache_names
[8] = {
254 void __init
pgtable_cache_init(void)
258 pgtable_cache
= kmem_cache_create("pgtable_cache",
259 PAGE_SIZE
, PAGE_SIZE
,
262 if (!pgtable_cache
) {
263 prom_printf("pgtable_cache_init(): Could not create!\n");
267 for (i
= 0; i
< 8; i
++) {
268 unsigned long size
= 8192 << i
;
269 const char *name
= tsb_cache_names
[i
];
271 tsb_caches
[i
] = kmem_cache_create(name
,
274 if (!tsb_caches
[i
]) {
275 prom_printf("Could not create %s cache\n", name
);
281 int sysctl_tsb_ratio
= -2;
283 static unsigned long tsb_size_to_rss_limit(unsigned long new_size
)
285 unsigned long num_ents
= (new_size
/ sizeof(struct tsb
));
287 if (sysctl_tsb_ratio
< 0)
288 return num_ents
- (num_ents
>> -sysctl_tsb_ratio
);
290 return num_ents
+ (num_ents
>> sysctl_tsb_ratio
);
293 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
294 * do_sparc64_fault() invokes this routine to try and grow it.
296 * When we reach the maximum TSB size supported, we stick ~0UL into
297 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
298 * will not trigger any longer.
300 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
301 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
302 * must be 512K aligned. It also must be physically contiguous, so we
303 * cannot use vmalloc().
305 * The idea here is to grow the TSB when the RSS of the process approaches
306 * the number of entries that the current TSB can hold at once. Currently,
307 * we trigger when the RSS hits 3/4 of the TSB capacity.
309 void tsb_grow(struct mm_struct
*mm
, unsigned long tsb_index
, unsigned long rss
)
311 unsigned long max_tsb_size
= 1 * 1024 * 1024;
312 unsigned long new_size
, old_size
, flags
;
313 struct tsb
*old_tsb
, *new_tsb
;
314 unsigned long new_cache_index
, old_cache_index
;
315 unsigned long new_rss_limit
;
318 if (max_tsb_size
> (PAGE_SIZE
<< MAX_ORDER
))
319 max_tsb_size
= (PAGE_SIZE
<< MAX_ORDER
);
322 for (new_size
= 8192; new_size
< max_tsb_size
; new_size
<<= 1UL) {
323 new_rss_limit
= tsb_size_to_rss_limit(new_size
);
324 if (new_rss_limit
> rss
)
329 if (new_size
== max_tsb_size
)
330 new_rss_limit
= ~0UL;
333 gfp_flags
= GFP_KERNEL
;
334 if (new_size
> (PAGE_SIZE
* 2))
335 gfp_flags
= __GFP_NOWARN
| __GFP_NORETRY
;
337 new_tsb
= kmem_cache_alloc_node(tsb_caches
[new_cache_index
],
338 gfp_flags
, numa_node_id());
339 if (unlikely(!new_tsb
)) {
340 /* Not being able to fork due to a high-order TSB
341 * allocation failure is very bad behavior. Just back
342 * down to a 0-order allocation and force no TSB
343 * growing for this address space.
345 if (mm
->context
.tsb_block
[tsb_index
].tsb
== NULL
&&
346 new_cache_index
> 0) {
349 new_rss_limit
= ~0UL;
350 goto retry_tsb_alloc
;
353 /* If we failed on a TSB grow, we are under serious
354 * memory pressure so don't try to grow any more.
356 if (mm
->context
.tsb_block
[tsb_index
].tsb
!= NULL
)
357 mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
= ~0UL;
361 /* Mark all tags as invalid. */
362 tsb_init(new_tsb
, new_size
);
364 /* Ok, we are about to commit the changes. If we are
365 * growing an existing TSB the locking is very tricky,
368 * We have to hold mm->context.lock while committing to the
369 * new TSB, this synchronizes us with processors in
370 * flush_tsb_user() and switch_mm() for this address space.
372 * But even with that lock held, processors run asynchronously
373 * accessing the old TSB via TLB miss handling. This is OK
374 * because those actions are just propagating state from the
375 * Linux page tables into the TSB, page table mappings are not
376 * being changed. If a real fault occurs, the processor will
377 * synchronize with us when it hits flush_tsb_user(), this is
378 * also true for the case where vmscan is modifying the page
379 * tables. The only thing we need to be careful with is to
380 * skip any locked TSB entries during copy_tsb().
382 * When we finish committing to the new TSB, we have to drop
383 * the lock and ask all other cpus running this address space
384 * to run tsb_context_switch() to see the new TSB table.
386 spin_lock_irqsave(&mm
->context
.lock
, flags
);
388 old_tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
390 (mm
->context
.tsb_block
[tsb_index
].tsb_reg_val
& 0x7UL
);
391 old_size
= (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
*
395 /* Handle multiple threads trying to grow the TSB at the same time.
396 * One will get in here first, and bump the size and the RSS limit.
397 * The others will get in here next and hit this check.
399 if (unlikely(old_tsb
&&
400 (rss
< mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
))) {
401 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
403 kmem_cache_free(tsb_caches
[new_cache_index
], new_tsb
);
407 mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
= new_rss_limit
;
410 extern void copy_tsb(unsigned long old_tsb_base
,
411 unsigned long old_tsb_size
,
412 unsigned long new_tsb_base
,
413 unsigned long new_tsb_size
);
414 unsigned long old_tsb_base
= (unsigned long) old_tsb
;
415 unsigned long new_tsb_base
= (unsigned long) new_tsb
;
417 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
) {
418 old_tsb_base
= __pa(old_tsb_base
);
419 new_tsb_base
= __pa(new_tsb_base
);
421 copy_tsb(old_tsb_base
, old_size
, new_tsb_base
, new_size
);
424 mm
->context
.tsb_block
[tsb_index
].tsb
= new_tsb
;
425 setup_tsb_params(mm
, tsb_index
, new_size
);
427 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
429 /* If old_tsb is NULL, we're being invoked for the first time
430 * from init_new_context().
433 /* Reload it on the local cpu. */
434 tsb_context_switch(mm
);
436 /* Now force other processors to do the same. */
441 /* Now it is safe to free the old tsb. */
442 kmem_cache_free(tsb_caches
[old_cache_index
], old_tsb
);
446 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
448 #ifdef CONFIG_HUGETLB_PAGE
449 unsigned long huge_pte_count
;
453 spin_lock_init(&mm
->context
.lock
);
455 mm
->context
.sparc64_ctx_val
= 0UL;
457 #ifdef CONFIG_HUGETLB_PAGE
458 /* We reset it to zero because the fork() page copying
459 * will re-increment the counters as the parent PTEs are
460 * copied into the child address space.
462 huge_pte_count
= mm
->context
.huge_pte_count
;
463 mm
->context
.huge_pte_count
= 0;
466 /* copy_mm() copies over the parent's mm_struct before calling
467 * us, so we need to zero out the TSB pointer or else tsb_grow()
468 * will be confused and think there is an older TSB to free up.
470 for (i
= 0; i
< MM_NUM_TSBS
; i
++)
471 mm
->context
.tsb_block
[i
].tsb
= NULL
;
473 /* If this is fork, inherit the parent's TSB size. We would
474 * grow it to that size on the first page fault anyways.
476 tsb_grow(mm
, MM_TSB_BASE
, get_mm_rss(mm
));
478 #ifdef CONFIG_HUGETLB_PAGE
479 if (unlikely(huge_pte_count
))
480 tsb_grow(mm
, MM_TSB_HUGE
, huge_pte_count
);
483 if (unlikely(!mm
->context
.tsb_block
[MM_TSB_BASE
].tsb
))
489 static void tsb_destroy_one(struct tsb_config
*tp
)
491 unsigned long cache_index
;
495 cache_index
= tp
->tsb_reg_val
& 0x7UL
;
496 kmem_cache_free(tsb_caches
[cache_index
], tp
->tsb
);
498 tp
->tsb_reg_val
= 0UL;
501 void destroy_context(struct mm_struct
*mm
)
503 unsigned long flags
, i
;
505 for (i
= 0; i
< MM_NUM_TSBS
; i
++)
506 tsb_destroy_one(&mm
->context
.tsb_block
[i
]);
508 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
510 if (CTX_VALID(mm
->context
)) {
511 unsigned long nr
= CTX_NRBITS(mm
->context
);
512 mmu_context_bmap
[nr
>>6] &= ~(1UL << (nr
& 63));
515 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);