ASoC: tlv312aic23: unbreak resume
[zen-stable.git] / drivers / dma / ste_dma40.c
blobcc5ecbc067a3d8a8d88c97190b0248fb0851593b
1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/err.h>
20 #include <linux/amba/bus.h>
22 #include <plat/ste_dma40.h>
24 #include "ste_dma40_ll.h"
26 #define D40_NAME "dma40"
28 #define D40_PHY_CHAN -1
30 /* For masking out/in 2 bit channel positions */
31 #define D40_CHAN_POS(chan) (2 * (chan / 2))
32 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
34 /* Maximum iterations taken before giving up suspending a channel */
35 #define D40_SUSPEND_MAX_IT 500
37 /* Milliseconds */
38 #define DMA40_AUTOSUSPEND_DELAY 100
40 /* Hardware requirement on LCLA alignment */
41 #define LCLA_ALIGNMENT 0x40000
43 /* Max number of links per event group */
44 #define D40_LCLA_LINK_PER_EVENT_GRP 128
45 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
47 /* Attempts before giving up to trying to get pages that are aligned */
48 #define MAX_LCLA_ALLOC_ATTEMPTS 256
50 /* Bit markings for allocation map */
51 #define D40_ALLOC_FREE (1 << 31)
52 #define D40_ALLOC_PHY (1 << 30)
53 #define D40_ALLOC_LOG_FREE 0
55 /**
56 * enum 40_command - The different commands and/or statuses.
58 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
59 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
60 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
61 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
63 enum d40_command {
64 D40_DMA_STOP = 0,
65 D40_DMA_RUN = 1,
66 D40_DMA_SUSPEND_REQ = 2,
67 D40_DMA_SUSPENDED = 3
71 * These are the registers that has to be saved and later restored
72 * when the DMA hw is powered off.
73 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
75 static u32 d40_backup_regs[] = {
76 D40_DREG_LCPA,
77 D40_DREG_LCLA,
78 D40_DREG_PRMSE,
79 D40_DREG_PRMSO,
80 D40_DREG_PRMOE,
81 D40_DREG_PRMOO,
84 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
86 /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
87 static u32 d40_backup_regs_v3[] = {
88 D40_DREG_PSEG1,
89 D40_DREG_PSEG2,
90 D40_DREG_PSEG3,
91 D40_DREG_PSEG4,
92 D40_DREG_PCEG1,
93 D40_DREG_PCEG2,
94 D40_DREG_PCEG3,
95 D40_DREG_PCEG4,
96 D40_DREG_RSEG1,
97 D40_DREG_RSEG2,
98 D40_DREG_RSEG3,
99 D40_DREG_RSEG4,
100 D40_DREG_RCEG1,
101 D40_DREG_RCEG2,
102 D40_DREG_RCEG3,
103 D40_DREG_RCEG4,
106 #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
108 static u32 d40_backup_regs_chan[] = {
109 D40_CHAN_REG_SSCFG,
110 D40_CHAN_REG_SSELT,
111 D40_CHAN_REG_SSPTR,
112 D40_CHAN_REG_SSLNK,
113 D40_CHAN_REG_SDCFG,
114 D40_CHAN_REG_SDELT,
115 D40_CHAN_REG_SDPTR,
116 D40_CHAN_REG_SDLNK,
120 * struct d40_lli_pool - Structure for keeping LLIs in memory
122 * @base: Pointer to memory area when the pre_alloc_lli's are not large
123 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
124 * pre_alloc_lli is used.
125 * @dma_addr: DMA address, if mapped
126 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
127 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
128 * one buffer to one buffer.
130 struct d40_lli_pool {
131 void *base;
132 int size;
133 dma_addr_t dma_addr;
134 /* Space for dst and src, plus an extra for padding */
135 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
139 * struct d40_desc - A descriptor is one DMA job.
141 * @lli_phy: LLI settings for physical channel. Both src and dst=
142 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
143 * lli_len equals one.
144 * @lli_log: Same as above but for logical channels.
145 * @lli_pool: The pool with two entries pre-allocated.
146 * @lli_len: Number of llis of current descriptor.
147 * @lli_current: Number of transferred llis.
148 * @lcla_alloc: Number of LCLA entries allocated.
149 * @txd: DMA engine struct. Used for among other things for communication
150 * during a transfer.
151 * @node: List entry.
152 * @is_in_client_list: true if the client owns this descriptor.
153 * @cyclic: true if this is a cyclic job
155 * This descriptor is used for both logical and physical transfers.
157 struct d40_desc {
158 /* LLI physical */
159 struct d40_phy_lli_bidir lli_phy;
160 /* LLI logical */
161 struct d40_log_lli_bidir lli_log;
163 struct d40_lli_pool lli_pool;
164 int lli_len;
165 int lli_current;
166 int lcla_alloc;
168 struct dma_async_tx_descriptor txd;
169 struct list_head node;
171 bool is_in_client_list;
172 bool cyclic;
176 * struct d40_lcla_pool - LCLA pool settings and data.
178 * @base: The virtual address of LCLA. 18 bit aligned.
179 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
180 * This pointer is only there for clean-up on error.
181 * @pages: The number of pages needed for all physical channels.
182 * Only used later for clean-up on error
183 * @lock: Lock to protect the content in this struct.
184 * @alloc_map: big map over which LCLA entry is own by which job.
186 struct d40_lcla_pool {
187 void *base;
188 dma_addr_t dma_addr;
189 void *base_unaligned;
190 int pages;
191 spinlock_t lock;
192 struct d40_desc **alloc_map;
196 * struct d40_phy_res - struct for handling eventlines mapped to physical
197 * channels.
199 * @lock: A lock protection this entity.
200 * @reserved: True if used by secure world or otherwise.
201 * @num: The physical channel number of this entity.
202 * @allocated_src: Bit mapped to show which src event line's are mapped to
203 * this physical channel. Can also be free or physically allocated.
204 * @allocated_dst: Same as for src but is dst.
205 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
206 * event line number.
208 struct d40_phy_res {
209 spinlock_t lock;
210 bool reserved;
211 int num;
212 u32 allocated_src;
213 u32 allocated_dst;
216 struct d40_base;
219 * struct d40_chan - Struct that describes a channel.
221 * @lock: A spinlock to protect this struct.
222 * @log_num: The logical number, if any of this channel.
223 * @completed: Starts with 1, after first interrupt it is set to dma engine's
224 * current cookie.
225 * @pending_tx: The number of pending transfers. Used between interrupt handler
226 * and tasklet.
227 * @busy: Set to true when transfer is ongoing on this channel.
228 * @phy_chan: Pointer to physical channel which this instance runs on. If this
229 * point is NULL, then the channel is not allocated.
230 * @chan: DMA engine handle.
231 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
232 * transfer and call client callback.
233 * @client: Cliented owned descriptor list.
234 * @pending_queue: Submitted jobs, to be issued by issue_pending()
235 * @active: Active descriptor.
236 * @queue: Queued jobs.
237 * @prepare_queue: Prepared jobs.
238 * @dma_cfg: The client configuration of this dma channel.
239 * @configured: whether the dma_cfg configuration is valid
240 * @base: Pointer to the device instance struct.
241 * @src_def_cfg: Default cfg register setting for src.
242 * @dst_def_cfg: Default cfg register setting for dst.
243 * @log_def: Default logical channel settings.
244 * @lcpa: Pointer to dst and src lcpa settings.
245 * @runtime_addr: runtime configured address.
246 * @runtime_direction: runtime configured direction.
248 * This struct can either "be" a logical or a physical channel.
250 struct d40_chan {
251 spinlock_t lock;
252 int log_num;
253 /* ID of the most recent completed transfer */
254 int completed;
255 int pending_tx;
256 bool busy;
257 struct d40_phy_res *phy_chan;
258 struct dma_chan chan;
259 struct tasklet_struct tasklet;
260 struct list_head client;
261 struct list_head pending_queue;
262 struct list_head active;
263 struct list_head queue;
264 struct list_head prepare_queue;
265 struct stedma40_chan_cfg dma_cfg;
266 bool configured;
267 struct d40_base *base;
268 /* Default register configurations */
269 u32 src_def_cfg;
270 u32 dst_def_cfg;
271 struct d40_def_lcsp log_def;
272 struct d40_log_lli_full *lcpa;
273 /* Runtime reconfiguration */
274 dma_addr_t runtime_addr;
275 enum dma_transfer_direction runtime_direction;
279 * struct d40_base - The big global struct, one for each probe'd instance.
281 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
282 * @execmd_lock: Lock for execute command usage since several channels share
283 * the same physical register.
284 * @dev: The device structure.
285 * @virtbase: The virtual base address of the DMA's register.
286 * @rev: silicon revision detected.
287 * @clk: Pointer to the DMA clock structure.
288 * @phy_start: Physical memory start of the DMA registers.
289 * @phy_size: Size of the DMA register map.
290 * @irq: The IRQ number.
291 * @num_phy_chans: The number of physical channels. Read from HW. This
292 * is the number of available channels for this driver, not counting "Secure
293 * mode" allocated physical channels.
294 * @num_log_chans: The number of logical channels. Calculated from
295 * num_phy_chans.
296 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
297 * @dma_slave: dma_device channels that can do only do slave transfers.
298 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
299 * @phy_chans: Room for all possible physical channels in system.
300 * @log_chans: Room for all possible logical channels in system.
301 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
302 * to log_chans entries.
303 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
304 * to phy_chans entries.
305 * @plat_data: Pointer to provided platform_data which is the driver
306 * configuration.
307 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
308 * @phy_res: Vector containing all physical channels.
309 * @lcla_pool: lcla pool settings and data.
310 * @lcpa_base: The virtual mapped address of LCPA.
311 * @phy_lcpa: The physical address of the LCPA.
312 * @lcpa_size: The size of the LCPA area.
313 * @desc_slab: cache for descriptors.
314 * @reg_val_backup: Here the values of some hardware registers are stored
315 * before the DMA is powered off. They are restored when the power is back on.
316 * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
317 * later.
318 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
319 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
320 * @initialized: true if the dma has been initialized
322 struct d40_base {
323 spinlock_t interrupt_lock;
324 spinlock_t execmd_lock;
325 struct device *dev;
326 void __iomem *virtbase;
327 u8 rev:4;
328 struct clk *clk;
329 phys_addr_t phy_start;
330 resource_size_t phy_size;
331 int irq;
332 int num_phy_chans;
333 int num_log_chans;
334 struct dma_device dma_both;
335 struct dma_device dma_slave;
336 struct dma_device dma_memcpy;
337 struct d40_chan *phy_chans;
338 struct d40_chan *log_chans;
339 struct d40_chan **lookup_log_chans;
340 struct d40_chan **lookup_phy_chans;
341 struct stedma40_platform_data *plat_data;
342 struct regulator *lcpa_regulator;
343 /* Physical half channels */
344 struct d40_phy_res *phy_res;
345 struct d40_lcla_pool lcla_pool;
346 void *lcpa_base;
347 dma_addr_t phy_lcpa;
348 resource_size_t lcpa_size;
349 struct kmem_cache *desc_slab;
350 u32 reg_val_backup[BACKUP_REGS_SZ];
351 u32 reg_val_backup_v3[BACKUP_REGS_SZ_V3];
352 u32 *reg_val_backup_chan;
353 u16 gcc_pwr_off_mask;
354 bool initialized;
358 * struct d40_interrupt_lookup - lookup table for interrupt handler
360 * @src: Interrupt mask register.
361 * @clr: Interrupt clear register.
362 * @is_error: true if this is an error interrupt.
363 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
364 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
366 struct d40_interrupt_lookup {
367 u32 src;
368 u32 clr;
369 bool is_error;
370 int offset;
374 * struct d40_reg_val - simple lookup struct
376 * @reg: The register.
377 * @val: The value that belongs to the register in reg.
379 struct d40_reg_val {
380 unsigned int reg;
381 unsigned int val;
384 static struct device *chan2dev(struct d40_chan *d40c)
386 return &d40c->chan.dev->device;
389 static bool chan_is_physical(struct d40_chan *chan)
391 return chan->log_num == D40_PHY_CHAN;
394 static bool chan_is_logical(struct d40_chan *chan)
396 return !chan_is_physical(chan);
399 static void __iomem *chan_base(struct d40_chan *chan)
401 return chan->base->virtbase + D40_DREG_PCBASE +
402 chan->phy_chan->num * D40_DREG_PCDELTA;
405 #define d40_err(dev, format, arg...) \
406 dev_err(dev, "[%s] " format, __func__, ## arg)
408 #define chan_err(d40c, format, arg...) \
409 d40_err(chan2dev(d40c), format, ## arg)
411 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
412 int lli_len)
414 bool is_log = chan_is_logical(d40c);
415 u32 align;
416 void *base;
418 if (is_log)
419 align = sizeof(struct d40_log_lli);
420 else
421 align = sizeof(struct d40_phy_lli);
423 if (lli_len == 1) {
424 base = d40d->lli_pool.pre_alloc_lli;
425 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
426 d40d->lli_pool.base = NULL;
427 } else {
428 d40d->lli_pool.size = lli_len * 2 * align;
430 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
431 d40d->lli_pool.base = base;
433 if (d40d->lli_pool.base == NULL)
434 return -ENOMEM;
437 if (is_log) {
438 d40d->lli_log.src = PTR_ALIGN(base, align);
439 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
441 d40d->lli_pool.dma_addr = 0;
442 } else {
443 d40d->lli_phy.src = PTR_ALIGN(base, align);
444 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
446 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
447 d40d->lli_phy.src,
448 d40d->lli_pool.size,
449 DMA_TO_DEVICE);
451 if (dma_mapping_error(d40c->base->dev,
452 d40d->lli_pool.dma_addr)) {
453 kfree(d40d->lli_pool.base);
454 d40d->lli_pool.base = NULL;
455 d40d->lli_pool.dma_addr = 0;
456 return -ENOMEM;
460 return 0;
463 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
465 if (d40d->lli_pool.dma_addr)
466 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
467 d40d->lli_pool.size, DMA_TO_DEVICE);
469 kfree(d40d->lli_pool.base);
470 d40d->lli_pool.base = NULL;
471 d40d->lli_pool.size = 0;
472 d40d->lli_log.src = NULL;
473 d40d->lli_log.dst = NULL;
474 d40d->lli_phy.src = NULL;
475 d40d->lli_phy.dst = NULL;
478 static int d40_lcla_alloc_one(struct d40_chan *d40c,
479 struct d40_desc *d40d)
481 unsigned long flags;
482 int i;
483 int ret = -EINVAL;
484 int p;
486 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
488 p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
491 * Allocate both src and dst at the same time, therefore the half
492 * start on 1 since 0 can't be used since zero is used as end marker.
494 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
495 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
496 d40c->base->lcla_pool.alloc_map[p + i] = d40d;
497 d40d->lcla_alloc++;
498 ret = i;
499 break;
503 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
505 return ret;
508 static int d40_lcla_free_all(struct d40_chan *d40c,
509 struct d40_desc *d40d)
511 unsigned long flags;
512 int i;
513 int ret = -EINVAL;
515 if (chan_is_physical(d40c))
516 return 0;
518 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
520 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
521 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
522 D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
523 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
524 D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
525 d40d->lcla_alloc--;
526 if (d40d->lcla_alloc == 0) {
527 ret = 0;
528 break;
533 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
535 return ret;
539 static void d40_desc_remove(struct d40_desc *d40d)
541 list_del(&d40d->node);
544 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
546 struct d40_desc *desc = NULL;
548 if (!list_empty(&d40c->client)) {
549 struct d40_desc *d;
550 struct d40_desc *_d;
552 list_for_each_entry_safe(d, _d, &d40c->client, node) {
553 if (async_tx_test_ack(&d->txd)) {
554 d40_desc_remove(d);
555 desc = d;
556 memset(desc, 0, sizeof(*desc));
557 break;
562 if (!desc)
563 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
565 if (desc)
566 INIT_LIST_HEAD(&desc->node);
568 return desc;
571 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
574 d40_pool_lli_free(d40c, d40d);
575 d40_lcla_free_all(d40c, d40d);
576 kmem_cache_free(d40c->base->desc_slab, d40d);
579 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
581 list_add_tail(&desc->node, &d40c->active);
584 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
586 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
587 struct d40_phy_lli *lli_src = desc->lli_phy.src;
588 void __iomem *base = chan_base(chan);
590 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
591 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
592 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
593 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
595 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
596 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
597 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
598 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
601 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
603 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
604 struct d40_log_lli_bidir *lli = &desc->lli_log;
605 int lli_current = desc->lli_current;
606 int lli_len = desc->lli_len;
607 bool cyclic = desc->cyclic;
608 int curr_lcla = -EINVAL;
609 int first_lcla = 0;
610 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
611 bool linkback;
614 * We may have partially running cyclic transfers, in case we did't get
615 * enough LCLA entries.
617 linkback = cyclic && lli_current == 0;
620 * For linkback, we need one LCLA even with only one link, because we
621 * can't link back to the one in LCPA space
623 if (linkback || (lli_len - lli_current > 1)) {
624 curr_lcla = d40_lcla_alloc_one(chan, desc);
625 first_lcla = curr_lcla;
629 * For linkback, we normally load the LCPA in the loop since we need to
630 * link it to the second LCLA and not the first. However, if we
631 * couldn't even get a first LCLA, then we have to run in LCPA and
632 * reload manually.
634 if (!linkback || curr_lcla == -EINVAL) {
635 unsigned int flags = 0;
637 if (curr_lcla == -EINVAL)
638 flags |= LLI_TERM_INT;
640 d40_log_lli_lcpa_write(chan->lcpa,
641 &lli->dst[lli_current],
642 &lli->src[lli_current],
643 curr_lcla,
644 flags);
645 lli_current++;
648 if (curr_lcla < 0)
649 goto out;
651 for (; lli_current < lli_len; lli_current++) {
652 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
653 8 * curr_lcla * 2;
654 struct d40_log_lli *lcla = pool->base + lcla_offset;
655 unsigned int flags = 0;
656 int next_lcla;
658 if (lli_current + 1 < lli_len)
659 next_lcla = d40_lcla_alloc_one(chan, desc);
660 else
661 next_lcla = linkback ? first_lcla : -EINVAL;
663 if (cyclic || next_lcla == -EINVAL)
664 flags |= LLI_TERM_INT;
666 if (linkback && curr_lcla == first_lcla) {
667 /* First link goes in both LCPA and LCLA */
668 d40_log_lli_lcpa_write(chan->lcpa,
669 &lli->dst[lli_current],
670 &lli->src[lli_current],
671 next_lcla, flags);
675 * One unused LCLA in the cyclic case if the very first
676 * next_lcla fails...
678 d40_log_lli_lcla_write(lcla,
679 &lli->dst[lli_current],
680 &lli->src[lli_current],
681 next_lcla, flags);
684 * Cache maintenance is not needed if lcla is
685 * mapped in esram
687 if (!use_esram_lcla) {
688 dma_sync_single_range_for_device(chan->base->dev,
689 pool->dma_addr, lcla_offset,
690 2 * sizeof(struct d40_log_lli),
691 DMA_TO_DEVICE);
693 curr_lcla = next_lcla;
695 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
696 lli_current++;
697 break;
701 out:
702 desc->lli_current = lli_current;
705 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
707 if (chan_is_physical(d40c)) {
708 d40_phy_lli_load(d40c, d40d);
709 d40d->lli_current = d40d->lli_len;
710 } else
711 d40_log_lli_to_lcxa(d40c, d40d);
714 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
716 struct d40_desc *d;
718 if (list_empty(&d40c->active))
719 return NULL;
721 d = list_first_entry(&d40c->active,
722 struct d40_desc,
723 node);
724 return d;
727 /* remove desc from current queue and add it to the pending_queue */
728 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
730 d40_desc_remove(desc);
731 desc->is_in_client_list = false;
732 list_add_tail(&desc->node, &d40c->pending_queue);
735 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
737 struct d40_desc *d;
739 if (list_empty(&d40c->pending_queue))
740 return NULL;
742 d = list_first_entry(&d40c->pending_queue,
743 struct d40_desc,
744 node);
745 return d;
748 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
750 struct d40_desc *d;
752 if (list_empty(&d40c->queue))
753 return NULL;
755 d = list_first_entry(&d40c->queue,
756 struct d40_desc,
757 node);
758 return d;
761 static int d40_psize_2_burst_size(bool is_log, int psize)
763 if (is_log) {
764 if (psize == STEDMA40_PSIZE_LOG_1)
765 return 1;
766 } else {
767 if (psize == STEDMA40_PSIZE_PHY_1)
768 return 1;
771 return 2 << psize;
775 * The dma only supports transmitting packages up to
776 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
777 * dma elements required to send the entire sg list
779 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
781 int dmalen;
782 u32 max_w = max(data_width1, data_width2);
783 u32 min_w = min(data_width1, data_width2);
784 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
786 if (seg_max > STEDMA40_MAX_SEG_SIZE)
787 seg_max -= (1 << max_w);
789 if (!IS_ALIGNED(size, 1 << max_w))
790 return -EINVAL;
792 if (size <= seg_max)
793 dmalen = 1;
794 else {
795 dmalen = size / seg_max;
796 if (dmalen * seg_max < size)
797 dmalen++;
799 return dmalen;
802 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
803 u32 data_width1, u32 data_width2)
805 struct scatterlist *sg;
806 int i;
807 int len = 0;
808 int ret;
810 for_each_sg(sgl, sg, sg_len, i) {
811 ret = d40_size_2_dmalen(sg_dma_len(sg),
812 data_width1, data_width2);
813 if (ret < 0)
814 return ret;
815 len += ret;
817 return len;
821 #ifdef CONFIG_PM
822 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
823 u32 *regaddr, int num, bool save)
825 int i;
827 for (i = 0; i < num; i++) {
828 void __iomem *addr = baseaddr + regaddr[i];
830 if (save)
831 backup[i] = readl_relaxed(addr);
832 else
833 writel_relaxed(backup[i], addr);
837 static void d40_save_restore_registers(struct d40_base *base, bool save)
839 int i;
841 /* Save/Restore channel specific registers */
842 for (i = 0; i < base->num_phy_chans; i++) {
843 void __iomem *addr;
844 int idx;
846 if (base->phy_res[i].reserved)
847 continue;
849 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
850 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
852 dma40_backup(addr, &base->reg_val_backup_chan[idx],
853 d40_backup_regs_chan,
854 ARRAY_SIZE(d40_backup_regs_chan),
855 save);
858 /* Save/Restore global registers */
859 dma40_backup(base->virtbase, base->reg_val_backup,
860 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
861 save);
863 /* Save/Restore registers only existing on dma40 v3 and later */
864 if (base->rev >= 3)
865 dma40_backup(base->virtbase, base->reg_val_backup_v3,
866 d40_backup_regs_v3,
867 ARRAY_SIZE(d40_backup_regs_v3),
868 save);
870 #else
871 static void d40_save_restore_registers(struct d40_base *base, bool save)
874 #endif
876 static int d40_channel_execute_command(struct d40_chan *d40c,
877 enum d40_command command)
879 u32 status;
880 int i;
881 void __iomem *active_reg;
882 int ret = 0;
883 unsigned long flags;
884 u32 wmask;
886 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
888 if (d40c->phy_chan->num % 2 == 0)
889 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
890 else
891 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
893 if (command == D40_DMA_SUSPEND_REQ) {
894 status = (readl(active_reg) &
895 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
896 D40_CHAN_POS(d40c->phy_chan->num);
898 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
899 goto done;
902 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
903 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
904 active_reg);
906 if (command == D40_DMA_SUSPEND_REQ) {
908 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
909 status = (readl(active_reg) &
910 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
911 D40_CHAN_POS(d40c->phy_chan->num);
913 cpu_relax();
915 * Reduce the number of bus accesses while
916 * waiting for the DMA to suspend.
918 udelay(3);
920 if (status == D40_DMA_STOP ||
921 status == D40_DMA_SUSPENDED)
922 break;
925 if (i == D40_SUSPEND_MAX_IT) {
926 chan_err(d40c,
927 "unable to suspend the chl %d (log: %d) status %x\n",
928 d40c->phy_chan->num, d40c->log_num,
929 status);
930 dump_stack();
931 ret = -EBUSY;
935 done:
936 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
937 return ret;
940 static void d40_term_all(struct d40_chan *d40c)
942 struct d40_desc *d40d;
943 struct d40_desc *_d;
945 /* Release active descriptors */
946 while ((d40d = d40_first_active_get(d40c))) {
947 d40_desc_remove(d40d);
948 d40_desc_free(d40c, d40d);
951 /* Release queued descriptors waiting for transfer */
952 while ((d40d = d40_first_queued(d40c))) {
953 d40_desc_remove(d40d);
954 d40_desc_free(d40c, d40d);
957 /* Release pending descriptors */
958 while ((d40d = d40_first_pending(d40c))) {
959 d40_desc_remove(d40d);
960 d40_desc_free(d40c, d40d);
963 /* Release client owned descriptors */
964 if (!list_empty(&d40c->client))
965 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
966 d40_desc_remove(d40d);
967 d40_desc_free(d40c, d40d);
970 /* Release descriptors in prepare queue */
971 if (!list_empty(&d40c->prepare_queue))
972 list_for_each_entry_safe(d40d, _d,
973 &d40c->prepare_queue, node) {
974 d40_desc_remove(d40d);
975 d40_desc_free(d40c, d40d);
978 d40c->pending_tx = 0;
979 d40c->busy = false;
982 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
983 u32 event, int reg)
985 void __iomem *addr = chan_base(d40c) + reg;
986 int tries;
988 if (!enable) {
989 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
990 | ~D40_EVENTLINE_MASK(event), addr);
991 return;
995 * The hardware sometimes doesn't register the enable when src and dst
996 * event lines are active on the same logical channel. Retry to ensure
997 * it does. Usually only one retry is sufficient.
999 tries = 100;
1000 while (--tries) {
1001 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1002 | ~D40_EVENTLINE_MASK(event), addr);
1004 if (readl(addr) & D40_EVENTLINE_MASK(event))
1005 break;
1008 if (tries != 99)
1009 dev_dbg(chan2dev(d40c),
1010 "[%s] workaround enable S%cLNK (%d tries)\n",
1011 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1012 100 - tries);
1014 WARN_ON(!tries);
1017 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
1019 unsigned long flags;
1021 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1023 /* Enable event line connected to device (or memcpy) */
1024 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
1025 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
1026 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1028 __d40_config_set_event(d40c, do_enable, event,
1029 D40_CHAN_REG_SSLNK);
1032 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
1033 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1035 __d40_config_set_event(d40c, do_enable, event,
1036 D40_CHAN_REG_SDLNK);
1039 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1042 static u32 d40_chan_has_events(struct d40_chan *d40c)
1044 void __iomem *chanbase = chan_base(d40c);
1045 u32 val;
1047 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1048 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1050 return val;
1053 static u32 d40_get_prmo(struct d40_chan *d40c)
1055 static const unsigned int phy_map[] = {
1056 [STEDMA40_PCHAN_BASIC_MODE]
1057 = D40_DREG_PRMO_PCHAN_BASIC,
1058 [STEDMA40_PCHAN_MODULO_MODE]
1059 = D40_DREG_PRMO_PCHAN_MODULO,
1060 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1061 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1063 static const unsigned int log_map[] = {
1064 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1065 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1066 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1067 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1068 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1069 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1072 if (chan_is_physical(d40c))
1073 return phy_map[d40c->dma_cfg.mode_opt];
1074 else
1075 return log_map[d40c->dma_cfg.mode_opt];
1078 static void d40_config_write(struct d40_chan *d40c)
1080 u32 addr_base;
1081 u32 var;
1083 /* Odd addresses are even addresses + 4 */
1084 addr_base = (d40c->phy_chan->num % 2) * 4;
1085 /* Setup channel mode to logical or physical */
1086 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1087 D40_CHAN_POS(d40c->phy_chan->num);
1088 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1090 /* Setup operational mode option register */
1091 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1093 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1095 if (chan_is_logical(d40c)) {
1096 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1097 & D40_SREG_ELEM_LOG_LIDX_MASK;
1098 void __iomem *chanbase = chan_base(d40c);
1100 /* Set default config for CFG reg */
1101 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1102 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1104 /* Set LIDX for lcla */
1105 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1106 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1108 /* Clear LNK which will be used by d40_chan_has_events() */
1109 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1110 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1114 static u32 d40_residue(struct d40_chan *d40c)
1116 u32 num_elt;
1118 if (chan_is_logical(d40c))
1119 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1120 >> D40_MEM_LCSP2_ECNT_POS;
1121 else {
1122 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1123 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1124 >> D40_SREG_ELEM_PHY_ECNT_POS;
1127 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1130 static bool d40_tx_is_linked(struct d40_chan *d40c)
1132 bool is_link;
1134 if (chan_is_logical(d40c))
1135 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1136 else
1137 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1138 & D40_SREG_LNK_PHYS_LNK_MASK;
1140 return is_link;
1143 static int d40_pause(struct d40_chan *d40c)
1145 int res = 0;
1146 unsigned long flags;
1148 if (!d40c->busy)
1149 return 0;
1151 pm_runtime_get_sync(d40c->base->dev);
1152 spin_lock_irqsave(&d40c->lock, flags);
1154 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1155 if (res == 0) {
1156 if (chan_is_logical(d40c)) {
1157 d40_config_set_event(d40c, false);
1158 /* Resume the other logical channels if any */
1159 if (d40_chan_has_events(d40c))
1160 res = d40_channel_execute_command(d40c,
1161 D40_DMA_RUN);
1164 pm_runtime_mark_last_busy(d40c->base->dev);
1165 pm_runtime_put_autosuspend(d40c->base->dev);
1166 spin_unlock_irqrestore(&d40c->lock, flags);
1167 return res;
1170 static int d40_resume(struct d40_chan *d40c)
1172 int res = 0;
1173 unsigned long flags;
1175 if (!d40c->busy)
1176 return 0;
1178 spin_lock_irqsave(&d40c->lock, flags);
1179 pm_runtime_get_sync(d40c->base->dev);
1180 if (d40c->base->rev == 0)
1181 if (chan_is_logical(d40c)) {
1182 res = d40_channel_execute_command(d40c,
1183 D40_DMA_SUSPEND_REQ);
1184 goto no_suspend;
1187 /* If bytes left to transfer or linked tx resume job */
1188 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1190 if (chan_is_logical(d40c))
1191 d40_config_set_event(d40c, true);
1193 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1196 no_suspend:
1197 pm_runtime_mark_last_busy(d40c->base->dev);
1198 pm_runtime_put_autosuspend(d40c->base->dev);
1199 spin_unlock_irqrestore(&d40c->lock, flags);
1200 return res;
1203 static int d40_terminate_all(struct d40_chan *chan)
1205 unsigned long flags;
1206 int ret = 0;
1208 ret = d40_pause(chan);
1209 if (!ret && chan_is_physical(chan))
1210 ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1212 spin_lock_irqsave(&chan->lock, flags);
1213 d40_term_all(chan);
1214 spin_unlock_irqrestore(&chan->lock, flags);
1216 return ret;
1219 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1221 struct d40_chan *d40c = container_of(tx->chan,
1222 struct d40_chan,
1223 chan);
1224 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1225 unsigned long flags;
1227 spin_lock_irqsave(&d40c->lock, flags);
1229 d40c->chan.cookie++;
1231 if (d40c->chan.cookie < 0)
1232 d40c->chan.cookie = 1;
1234 d40d->txd.cookie = d40c->chan.cookie;
1236 d40_desc_queue(d40c, d40d);
1238 spin_unlock_irqrestore(&d40c->lock, flags);
1240 return tx->cookie;
1243 static int d40_start(struct d40_chan *d40c)
1245 if (d40c->base->rev == 0) {
1246 int err;
1248 if (chan_is_logical(d40c)) {
1249 err = d40_channel_execute_command(d40c,
1250 D40_DMA_SUSPEND_REQ);
1251 if (err)
1252 return err;
1256 if (chan_is_logical(d40c))
1257 d40_config_set_event(d40c, true);
1259 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1262 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1264 struct d40_desc *d40d;
1265 int err;
1267 /* Start queued jobs, if any */
1268 d40d = d40_first_queued(d40c);
1270 if (d40d != NULL) {
1271 if (!d40c->busy)
1272 d40c->busy = true;
1274 pm_runtime_get_sync(d40c->base->dev);
1276 /* Remove from queue */
1277 d40_desc_remove(d40d);
1279 /* Add to active queue */
1280 d40_desc_submit(d40c, d40d);
1282 /* Initiate DMA job */
1283 d40_desc_load(d40c, d40d);
1285 /* Start dma job */
1286 err = d40_start(d40c);
1288 if (err)
1289 return NULL;
1292 return d40d;
1295 /* called from interrupt context */
1296 static void dma_tc_handle(struct d40_chan *d40c)
1298 struct d40_desc *d40d;
1300 /* Get first active entry from list */
1301 d40d = d40_first_active_get(d40c);
1303 if (d40d == NULL)
1304 return;
1306 if (d40d->cyclic) {
1308 * If this was a paritially loaded list, we need to reloaded
1309 * it, and only when the list is completed. We need to check
1310 * for done because the interrupt will hit for every link, and
1311 * not just the last one.
1313 if (d40d->lli_current < d40d->lli_len
1314 && !d40_tx_is_linked(d40c)
1315 && !d40_residue(d40c)) {
1316 d40_lcla_free_all(d40c, d40d);
1317 d40_desc_load(d40c, d40d);
1318 (void) d40_start(d40c);
1320 if (d40d->lli_current == d40d->lli_len)
1321 d40d->lli_current = 0;
1323 } else {
1324 d40_lcla_free_all(d40c, d40d);
1326 if (d40d->lli_current < d40d->lli_len) {
1327 d40_desc_load(d40c, d40d);
1328 /* Start dma job */
1329 (void) d40_start(d40c);
1330 return;
1333 if (d40_queue_start(d40c) == NULL)
1334 d40c->busy = false;
1335 pm_runtime_mark_last_busy(d40c->base->dev);
1336 pm_runtime_put_autosuspend(d40c->base->dev);
1339 d40c->pending_tx++;
1340 tasklet_schedule(&d40c->tasklet);
1344 static void dma_tasklet(unsigned long data)
1346 struct d40_chan *d40c = (struct d40_chan *) data;
1347 struct d40_desc *d40d;
1348 unsigned long flags;
1349 dma_async_tx_callback callback;
1350 void *callback_param;
1352 spin_lock_irqsave(&d40c->lock, flags);
1354 /* Get first active entry from list */
1355 d40d = d40_first_active_get(d40c);
1356 if (d40d == NULL)
1357 goto err;
1359 if (!d40d->cyclic)
1360 d40c->completed = d40d->txd.cookie;
1363 * If terminating a channel pending_tx is set to zero.
1364 * This prevents any finished active jobs to return to the client.
1366 if (d40c->pending_tx == 0) {
1367 spin_unlock_irqrestore(&d40c->lock, flags);
1368 return;
1371 /* Callback to client */
1372 callback = d40d->txd.callback;
1373 callback_param = d40d->txd.callback_param;
1375 if (!d40d->cyclic) {
1376 if (async_tx_test_ack(&d40d->txd)) {
1377 d40_desc_remove(d40d);
1378 d40_desc_free(d40c, d40d);
1379 } else {
1380 if (!d40d->is_in_client_list) {
1381 d40_desc_remove(d40d);
1382 d40_lcla_free_all(d40c, d40d);
1383 list_add_tail(&d40d->node, &d40c->client);
1384 d40d->is_in_client_list = true;
1389 d40c->pending_tx--;
1391 if (d40c->pending_tx)
1392 tasklet_schedule(&d40c->tasklet);
1394 spin_unlock_irqrestore(&d40c->lock, flags);
1396 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1397 callback(callback_param);
1399 return;
1401 err:
1402 /* Rescue manoeuvre if receiving double interrupts */
1403 if (d40c->pending_tx > 0)
1404 d40c->pending_tx--;
1405 spin_unlock_irqrestore(&d40c->lock, flags);
1408 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1410 static const struct d40_interrupt_lookup il[] = {
1411 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
1412 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1413 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1414 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1415 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
1416 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
1417 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
1418 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
1419 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
1420 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
1423 int i;
1424 u32 regs[ARRAY_SIZE(il)];
1425 u32 idx;
1426 u32 row;
1427 long chan = -1;
1428 struct d40_chan *d40c;
1429 unsigned long flags;
1430 struct d40_base *base = data;
1432 spin_lock_irqsave(&base->interrupt_lock, flags);
1434 /* Read interrupt status of both logical and physical channels */
1435 for (i = 0; i < ARRAY_SIZE(il); i++)
1436 regs[i] = readl(base->virtbase + il[i].src);
1438 for (;;) {
1440 chan = find_next_bit((unsigned long *)regs,
1441 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1443 /* No more set bits found? */
1444 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1445 break;
1447 row = chan / BITS_PER_LONG;
1448 idx = chan & (BITS_PER_LONG - 1);
1450 /* ACK interrupt */
1451 writel(1 << idx, base->virtbase + il[row].clr);
1453 if (il[row].offset == D40_PHY_CHAN)
1454 d40c = base->lookup_phy_chans[idx];
1455 else
1456 d40c = base->lookup_log_chans[il[row].offset + idx];
1457 spin_lock(&d40c->lock);
1459 if (!il[row].is_error)
1460 dma_tc_handle(d40c);
1461 else
1462 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1463 chan, il[row].offset, idx);
1465 spin_unlock(&d40c->lock);
1468 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1470 return IRQ_HANDLED;
1473 static int d40_validate_conf(struct d40_chan *d40c,
1474 struct stedma40_chan_cfg *conf)
1476 int res = 0;
1477 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1478 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1479 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1481 if (!conf->dir) {
1482 chan_err(d40c, "Invalid direction.\n");
1483 res = -EINVAL;
1486 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1487 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1488 d40c->runtime_addr == 0) {
1490 chan_err(d40c, "Invalid TX channel address (%d)\n",
1491 conf->dst_dev_type);
1492 res = -EINVAL;
1495 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1496 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1497 d40c->runtime_addr == 0) {
1498 chan_err(d40c, "Invalid RX channel address (%d)\n",
1499 conf->src_dev_type);
1500 res = -EINVAL;
1503 if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1504 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1505 chan_err(d40c, "Invalid dst\n");
1506 res = -EINVAL;
1509 if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1510 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1511 chan_err(d40c, "Invalid src\n");
1512 res = -EINVAL;
1515 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1516 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1517 chan_err(d40c, "No event line\n");
1518 res = -EINVAL;
1521 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1522 (src_event_group != dst_event_group)) {
1523 chan_err(d40c, "Invalid event group\n");
1524 res = -EINVAL;
1527 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1529 * DMAC HW supports it. Will be added to this driver,
1530 * in case any dma client requires it.
1532 chan_err(d40c, "periph to periph not supported\n");
1533 res = -EINVAL;
1536 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1537 (1 << conf->src_info.data_width) !=
1538 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1539 (1 << conf->dst_info.data_width)) {
1541 * The DMAC hardware only supports
1542 * src (burst x width) == dst (burst x width)
1545 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1546 res = -EINVAL;
1549 return res;
1552 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1553 bool is_src, int log_event_line, bool is_log,
1554 bool *first_user)
1556 unsigned long flags;
1557 spin_lock_irqsave(&phy->lock, flags);
1559 *first_user = ((phy->allocated_src | phy->allocated_dst)
1560 == D40_ALLOC_FREE);
1562 if (!is_log) {
1563 /* Physical interrupts are masked per physical full channel */
1564 if (phy->allocated_src == D40_ALLOC_FREE &&
1565 phy->allocated_dst == D40_ALLOC_FREE) {
1566 phy->allocated_dst = D40_ALLOC_PHY;
1567 phy->allocated_src = D40_ALLOC_PHY;
1568 goto found;
1569 } else
1570 goto not_found;
1573 /* Logical channel */
1574 if (is_src) {
1575 if (phy->allocated_src == D40_ALLOC_PHY)
1576 goto not_found;
1578 if (phy->allocated_src == D40_ALLOC_FREE)
1579 phy->allocated_src = D40_ALLOC_LOG_FREE;
1581 if (!(phy->allocated_src & (1 << log_event_line))) {
1582 phy->allocated_src |= 1 << log_event_line;
1583 goto found;
1584 } else
1585 goto not_found;
1586 } else {
1587 if (phy->allocated_dst == D40_ALLOC_PHY)
1588 goto not_found;
1590 if (phy->allocated_dst == D40_ALLOC_FREE)
1591 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1593 if (!(phy->allocated_dst & (1 << log_event_line))) {
1594 phy->allocated_dst |= 1 << log_event_line;
1595 goto found;
1596 } else
1597 goto not_found;
1600 not_found:
1601 spin_unlock_irqrestore(&phy->lock, flags);
1602 return false;
1603 found:
1604 spin_unlock_irqrestore(&phy->lock, flags);
1605 return true;
1608 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1609 int log_event_line)
1611 unsigned long flags;
1612 bool is_free = false;
1614 spin_lock_irqsave(&phy->lock, flags);
1615 if (!log_event_line) {
1616 phy->allocated_dst = D40_ALLOC_FREE;
1617 phy->allocated_src = D40_ALLOC_FREE;
1618 is_free = true;
1619 goto out;
1622 /* Logical channel */
1623 if (is_src) {
1624 phy->allocated_src &= ~(1 << log_event_line);
1625 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1626 phy->allocated_src = D40_ALLOC_FREE;
1627 } else {
1628 phy->allocated_dst &= ~(1 << log_event_line);
1629 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1630 phy->allocated_dst = D40_ALLOC_FREE;
1633 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1634 D40_ALLOC_FREE);
1636 out:
1637 spin_unlock_irqrestore(&phy->lock, flags);
1639 return is_free;
1642 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1644 int dev_type;
1645 int event_group;
1646 int event_line;
1647 struct d40_phy_res *phys;
1648 int i;
1649 int j;
1650 int log_num;
1651 bool is_src;
1652 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1654 phys = d40c->base->phy_res;
1656 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1657 dev_type = d40c->dma_cfg.src_dev_type;
1658 log_num = 2 * dev_type;
1659 is_src = true;
1660 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1661 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1662 /* dst event lines are used for logical memcpy */
1663 dev_type = d40c->dma_cfg.dst_dev_type;
1664 log_num = 2 * dev_type + 1;
1665 is_src = false;
1666 } else
1667 return -EINVAL;
1669 event_group = D40_TYPE_TO_GROUP(dev_type);
1670 event_line = D40_TYPE_TO_EVENT(dev_type);
1672 if (!is_log) {
1673 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1674 /* Find physical half channel */
1675 for (i = 0; i < d40c->base->num_phy_chans; i++) {
1677 if (d40_alloc_mask_set(&phys[i], is_src,
1678 0, is_log,
1679 first_phy_user))
1680 goto found_phy;
1682 } else
1683 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1684 int phy_num = j + event_group * 2;
1685 for (i = phy_num; i < phy_num + 2; i++) {
1686 if (d40_alloc_mask_set(&phys[i],
1687 is_src,
1689 is_log,
1690 first_phy_user))
1691 goto found_phy;
1694 return -EINVAL;
1695 found_phy:
1696 d40c->phy_chan = &phys[i];
1697 d40c->log_num = D40_PHY_CHAN;
1698 goto out;
1700 if (dev_type == -1)
1701 return -EINVAL;
1703 /* Find logical channel */
1704 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1705 int phy_num = j + event_group * 2;
1707 if (d40c->dma_cfg.use_fixed_channel) {
1708 i = d40c->dma_cfg.phy_channel;
1710 if ((i != phy_num) && (i != phy_num + 1)) {
1711 dev_err(chan2dev(d40c),
1712 "invalid fixed phy channel %d\n", i);
1713 return -EINVAL;
1716 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1717 is_log, first_phy_user))
1718 goto found_log;
1720 dev_err(chan2dev(d40c),
1721 "could not allocate fixed phy channel %d\n", i);
1722 return -EINVAL;
1726 * Spread logical channels across all available physical rather
1727 * than pack every logical channel at the first available phy
1728 * channels.
1730 if (is_src) {
1731 for (i = phy_num; i < phy_num + 2; i++) {
1732 if (d40_alloc_mask_set(&phys[i], is_src,
1733 event_line, is_log,
1734 first_phy_user))
1735 goto found_log;
1737 } else {
1738 for (i = phy_num + 1; i >= phy_num; i--) {
1739 if (d40_alloc_mask_set(&phys[i], is_src,
1740 event_line, is_log,
1741 first_phy_user))
1742 goto found_log;
1746 return -EINVAL;
1748 found_log:
1749 d40c->phy_chan = &phys[i];
1750 d40c->log_num = log_num;
1751 out:
1753 if (is_log)
1754 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1755 else
1756 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1758 return 0;
1762 static int d40_config_memcpy(struct d40_chan *d40c)
1764 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1766 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1767 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1768 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1769 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1770 memcpy[d40c->chan.chan_id];
1772 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1773 dma_has_cap(DMA_SLAVE, cap)) {
1774 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1775 } else {
1776 chan_err(d40c, "No memcpy\n");
1777 return -EINVAL;
1780 return 0;
1784 static int d40_free_dma(struct d40_chan *d40c)
1787 int res = 0;
1788 u32 event;
1789 struct d40_phy_res *phy = d40c->phy_chan;
1790 bool is_src;
1792 /* Terminate all queued and active transfers */
1793 d40_term_all(d40c);
1795 if (phy == NULL) {
1796 chan_err(d40c, "phy == null\n");
1797 return -EINVAL;
1800 if (phy->allocated_src == D40_ALLOC_FREE &&
1801 phy->allocated_dst == D40_ALLOC_FREE) {
1802 chan_err(d40c, "channel already free\n");
1803 return -EINVAL;
1806 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1807 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1808 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1809 is_src = false;
1810 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1811 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1812 is_src = true;
1813 } else {
1814 chan_err(d40c, "Unknown direction\n");
1815 return -EINVAL;
1818 pm_runtime_get_sync(d40c->base->dev);
1819 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1820 if (res) {
1821 chan_err(d40c, "suspend failed\n");
1822 goto out;
1825 if (chan_is_logical(d40c)) {
1826 /* Release logical channel, deactivate the event line */
1828 d40_config_set_event(d40c, false);
1829 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1832 * Check if there are more logical allocation
1833 * on this phy channel.
1835 if (!d40_alloc_mask_free(phy, is_src, event)) {
1836 /* Resume the other logical channels if any */
1837 if (d40_chan_has_events(d40c)) {
1838 res = d40_channel_execute_command(d40c,
1839 D40_DMA_RUN);
1840 if (res)
1841 chan_err(d40c,
1842 "Executing RUN command\n");
1844 goto out;
1846 } else {
1847 (void) d40_alloc_mask_free(phy, is_src, 0);
1850 /* Release physical channel */
1851 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1852 if (res) {
1853 chan_err(d40c, "Failed to stop channel\n");
1854 goto out;
1857 if (d40c->busy) {
1858 pm_runtime_mark_last_busy(d40c->base->dev);
1859 pm_runtime_put_autosuspend(d40c->base->dev);
1862 d40c->busy = false;
1863 d40c->phy_chan = NULL;
1864 d40c->configured = false;
1865 d40c->base->lookup_phy_chans[phy->num] = NULL;
1866 out:
1868 pm_runtime_mark_last_busy(d40c->base->dev);
1869 pm_runtime_put_autosuspend(d40c->base->dev);
1870 return res;
1873 static bool d40_is_paused(struct d40_chan *d40c)
1875 void __iomem *chanbase = chan_base(d40c);
1876 bool is_paused = false;
1877 unsigned long flags;
1878 void __iomem *active_reg;
1879 u32 status;
1880 u32 event;
1882 spin_lock_irqsave(&d40c->lock, flags);
1884 if (chan_is_physical(d40c)) {
1885 if (d40c->phy_chan->num % 2 == 0)
1886 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1887 else
1888 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1890 status = (readl(active_reg) &
1891 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1892 D40_CHAN_POS(d40c->phy_chan->num);
1893 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1894 is_paused = true;
1896 goto _exit;
1899 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1900 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1901 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1902 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1903 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1904 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1905 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1906 } else {
1907 chan_err(d40c, "Unknown direction\n");
1908 goto _exit;
1911 status = (status & D40_EVENTLINE_MASK(event)) >>
1912 D40_EVENTLINE_POS(event);
1914 if (status != D40_DMA_RUN)
1915 is_paused = true;
1916 _exit:
1917 spin_unlock_irqrestore(&d40c->lock, flags);
1918 return is_paused;
1923 static u32 stedma40_residue(struct dma_chan *chan)
1925 struct d40_chan *d40c =
1926 container_of(chan, struct d40_chan, chan);
1927 u32 bytes_left;
1928 unsigned long flags;
1930 spin_lock_irqsave(&d40c->lock, flags);
1931 bytes_left = d40_residue(d40c);
1932 spin_unlock_irqrestore(&d40c->lock, flags);
1934 return bytes_left;
1937 static int
1938 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1939 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1940 unsigned int sg_len, dma_addr_t src_dev_addr,
1941 dma_addr_t dst_dev_addr)
1943 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1944 struct stedma40_half_channel_info *src_info = &cfg->src_info;
1945 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1946 int ret;
1948 ret = d40_log_sg_to_lli(sg_src, sg_len,
1949 src_dev_addr,
1950 desc->lli_log.src,
1951 chan->log_def.lcsp1,
1952 src_info->data_width,
1953 dst_info->data_width);
1955 ret = d40_log_sg_to_lli(sg_dst, sg_len,
1956 dst_dev_addr,
1957 desc->lli_log.dst,
1958 chan->log_def.lcsp3,
1959 dst_info->data_width,
1960 src_info->data_width);
1962 return ret < 0 ? ret : 0;
1965 static int
1966 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1967 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1968 unsigned int sg_len, dma_addr_t src_dev_addr,
1969 dma_addr_t dst_dev_addr)
1971 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1972 struct stedma40_half_channel_info *src_info = &cfg->src_info;
1973 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1974 unsigned long flags = 0;
1975 int ret;
1977 if (desc->cyclic)
1978 flags |= LLI_CYCLIC | LLI_TERM_INT;
1980 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1981 desc->lli_phy.src,
1982 virt_to_phys(desc->lli_phy.src),
1983 chan->src_def_cfg,
1984 src_info, dst_info, flags);
1986 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1987 desc->lli_phy.dst,
1988 virt_to_phys(desc->lli_phy.dst),
1989 chan->dst_def_cfg,
1990 dst_info, src_info, flags);
1992 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1993 desc->lli_pool.size, DMA_TO_DEVICE);
1995 return ret < 0 ? ret : 0;
1999 static struct d40_desc *
2000 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2001 unsigned int sg_len, unsigned long dma_flags)
2003 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2004 struct d40_desc *desc;
2005 int ret;
2007 desc = d40_desc_get(chan);
2008 if (!desc)
2009 return NULL;
2011 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2012 cfg->dst_info.data_width);
2013 if (desc->lli_len < 0) {
2014 chan_err(chan, "Unaligned size\n");
2015 goto err;
2018 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2019 if (ret < 0) {
2020 chan_err(chan, "Could not allocate lli\n");
2021 goto err;
2025 desc->lli_current = 0;
2026 desc->txd.flags = dma_flags;
2027 desc->txd.tx_submit = d40_tx_submit;
2029 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2031 return desc;
2033 err:
2034 d40_desc_free(chan, desc);
2035 return NULL;
2038 static dma_addr_t
2039 d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2041 struct stedma40_platform_data *plat = chan->base->plat_data;
2042 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2043 dma_addr_t addr = 0;
2045 if (chan->runtime_addr)
2046 return chan->runtime_addr;
2048 if (direction == DMA_DEV_TO_MEM)
2049 addr = plat->dev_rx[cfg->src_dev_type];
2050 else if (direction == DMA_MEM_TO_DEV)
2051 addr = plat->dev_tx[cfg->dst_dev_type];
2053 return addr;
2056 static struct dma_async_tx_descriptor *
2057 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2058 struct scatterlist *sg_dst, unsigned int sg_len,
2059 enum dma_transfer_direction direction, unsigned long dma_flags)
2061 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2062 dma_addr_t src_dev_addr = 0;
2063 dma_addr_t dst_dev_addr = 0;
2064 struct d40_desc *desc;
2065 unsigned long flags;
2066 int ret;
2068 if (!chan->phy_chan) {
2069 chan_err(chan, "Cannot prepare unallocated channel\n");
2070 return NULL;
2074 spin_lock_irqsave(&chan->lock, flags);
2076 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2077 if (desc == NULL)
2078 goto err;
2080 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2081 desc->cyclic = true;
2083 if (direction != DMA_NONE) {
2084 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
2086 if (direction == DMA_DEV_TO_MEM)
2087 src_dev_addr = dev_addr;
2088 else if (direction == DMA_MEM_TO_DEV)
2089 dst_dev_addr = dev_addr;
2092 if (chan_is_logical(chan))
2093 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2094 sg_len, src_dev_addr, dst_dev_addr);
2095 else
2096 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2097 sg_len, src_dev_addr, dst_dev_addr);
2099 if (ret) {
2100 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2101 chan_is_logical(chan) ? "log" : "phy", ret);
2102 goto err;
2106 * add descriptor to the prepare queue in order to be able
2107 * to free them later in terminate_all
2109 list_add_tail(&desc->node, &chan->prepare_queue);
2111 spin_unlock_irqrestore(&chan->lock, flags);
2113 return &desc->txd;
2115 err:
2116 if (desc)
2117 d40_desc_free(chan, desc);
2118 spin_unlock_irqrestore(&chan->lock, flags);
2119 return NULL;
2122 bool stedma40_filter(struct dma_chan *chan, void *data)
2124 struct stedma40_chan_cfg *info = data;
2125 struct d40_chan *d40c =
2126 container_of(chan, struct d40_chan, chan);
2127 int err;
2129 if (data) {
2130 err = d40_validate_conf(d40c, info);
2131 if (!err)
2132 d40c->dma_cfg = *info;
2133 } else
2134 err = d40_config_memcpy(d40c);
2136 if (!err)
2137 d40c->configured = true;
2139 return err == 0;
2141 EXPORT_SYMBOL(stedma40_filter);
2143 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2145 bool realtime = d40c->dma_cfg.realtime;
2146 bool highprio = d40c->dma_cfg.high_priority;
2147 u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
2148 u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
2149 u32 event = D40_TYPE_TO_EVENT(dev_type);
2150 u32 group = D40_TYPE_TO_GROUP(dev_type);
2151 u32 bit = 1 << event;
2153 /* Destination event lines are stored in the upper halfword */
2154 if (!src)
2155 bit <<= 16;
2157 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2158 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2161 static void d40_set_prio_realtime(struct d40_chan *d40c)
2163 if (d40c->base->rev < 3)
2164 return;
2166 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
2167 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2168 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
2170 if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
2171 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2172 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
2175 /* DMA ENGINE functions */
2176 static int d40_alloc_chan_resources(struct dma_chan *chan)
2178 int err;
2179 unsigned long flags;
2180 struct d40_chan *d40c =
2181 container_of(chan, struct d40_chan, chan);
2182 bool is_free_phy;
2183 spin_lock_irqsave(&d40c->lock, flags);
2185 d40c->completed = chan->cookie = 1;
2187 /* If no dma configuration is set use default configuration (memcpy) */
2188 if (!d40c->configured) {
2189 err = d40_config_memcpy(d40c);
2190 if (err) {
2191 chan_err(d40c, "Failed to configure memcpy channel\n");
2192 goto fail;
2196 err = d40_allocate_channel(d40c, &is_free_phy);
2197 if (err) {
2198 chan_err(d40c, "Failed to allocate channel\n");
2199 d40c->configured = false;
2200 goto fail;
2203 pm_runtime_get_sync(d40c->base->dev);
2204 /* Fill in basic CFG register values */
2205 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2206 &d40c->dst_def_cfg, chan_is_logical(d40c));
2208 d40_set_prio_realtime(d40c);
2210 if (chan_is_logical(d40c)) {
2211 d40_log_cfg(&d40c->dma_cfg,
2212 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2214 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2215 d40c->lcpa = d40c->base->lcpa_base +
2216 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2217 else
2218 d40c->lcpa = d40c->base->lcpa_base +
2219 d40c->dma_cfg.dst_dev_type *
2220 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2223 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2224 chan_is_logical(d40c) ? "logical" : "physical",
2225 d40c->phy_chan->num,
2226 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2230 * Only write channel configuration to the DMA if the physical
2231 * resource is free. In case of multiple logical channels
2232 * on the same physical resource, only the first write is necessary.
2234 if (is_free_phy)
2235 d40_config_write(d40c);
2236 fail:
2237 pm_runtime_mark_last_busy(d40c->base->dev);
2238 pm_runtime_put_autosuspend(d40c->base->dev);
2239 spin_unlock_irqrestore(&d40c->lock, flags);
2240 return err;
2243 static void d40_free_chan_resources(struct dma_chan *chan)
2245 struct d40_chan *d40c =
2246 container_of(chan, struct d40_chan, chan);
2247 int err;
2248 unsigned long flags;
2250 if (d40c->phy_chan == NULL) {
2251 chan_err(d40c, "Cannot free unallocated channel\n");
2252 return;
2256 spin_lock_irqsave(&d40c->lock, flags);
2258 err = d40_free_dma(d40c);
2260 if (err)
2261 chan_err(d40c, "Failed to free channel\n");
2262 spin_unlock_irqrestore(&d40c->lock, flags);
2265 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2266 dma_addr_t dst,
2267 dma_addr_t src,
2268 size_t size,
2269 unsigned long dma_flags)
2271 struct scatterlist dst_sg;
2272 struct scatterlist src_sg;
2274 sg_init_table(&dst_sg, 1);
2275 sg_init_table(&src_sg, 1);
2277 sg_dma_address(&dst_sg) = dst;
2278 sg_dma_address(&src_sg) = src;
2280 sg_dma_len(&dst_sg) = size;
2281 sg_dma_len(&src_sg) = size;
2283 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2286 static struct dma_async_tx_descriptor *
2287 d40_prep_memcpy_sg(struct dma_chan *chan,
2288 struct scatterlist *dst_sg, unsigned int dst_nents,
2289 struct scatterlist *src_sg, unsigned int src_nents,
2290 unsigned long dma_flags)
2292 if (dst_nents != src_nents)
2293 return NULL;
2295 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2298 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2299 struct scatterlist *sgl,
2300 unsigned int sg_len,
2301 enum dma_transfer_direction direction,
2302 unsigned long dma_flags)
2304 if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
2305 return NULL;
2307 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2310 static struct dma_async_tx_descriptor *
2311 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2312 size_t buf_len, size_t period_len,
2313 enum dma_transfer_direction direction)
2315 unsigned int periods = buf_len / period_len;
2316 struct dma_async_tx_descriptor *txd;
2317 struct scatterlist *sg;
2318 int i;
2320 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2321 for (i = 0; i < periods; i++) {
2322 sg_dma_address(&sg[i]) = dma_addr;
2323 sg_dma_len(&sg[i]) = period_len;
2324 dma_addr += period_len;
2327 sg[periods].offset = 0;
2328 sg[periods].length = 0;
2329 sg[periods].page_link =
2330 ((unsigned long)sg | 0x01) & ~0x02;
2332 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2333 DMA_PREP_INTERRUPT);
2335 kfree(sg);
2337 return txd;
2340 static enum dma_status d40_tx_status(struct dma_chan *chan,
2341 dma_cookie_t cookie,
2342 struct dma_tx_state *txstate)
2344 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2345 dma_cookie_t last_used;
2346 dma_cookie_t last_complete;
2347 int ret;
2349 if (d40c->phy_chan == NULL) {
2350 chan_err(d40c, "Cannot read status of unallocated channel\n");
2351 return -EINVAL;
2354 last_complete = d40c->completed;
2355 last_used = chan->cookie;
2357 if (d40_is_paused(d40c))
2358 ret = DMA_PAUSED;
2359 else
2360 ret = dma_async_is_complete(cookie, last_complete, last_used);
2362 dma_set_tx_state(txstate, last_complete, last_used,
2363 stedma40_residue(chan));
2365 return ret;
2368 static void d40_issue_pending(struct dma_chan *chan)
2370 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2371 unsigned long flags;
2373 if (d40c->phy_chan == NULL) {
2374 chan_err(d40c, "Channel is not allocated!\n");
2375 return;
2378 spin_lock_irqsave(&d40c->lock, flags);
2380 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2382 /* Busy means that queued jobs are already being processed */
2383 if (!d40c->busy)
2384 (void) d40_queue_start(d40c);
2386 spin_unlock_irqrestore(&d40c->lock, flags);
2389 static int
2390 dma40_config_to_halfchannel(struct d40_chan *d40c,
2391 struct stedma40_half_channel_info *info,
2392 enum dma_slave_buswidth width,
2393 u32 maxburst)
2395 enum stedma40_periph_data_width addr_width;
2396 int psize;
2398 switch (width) {
2399 case DMA_SLAVE_BUSWIDTH_1_BYTE:
2400 addr_width = STEDMA40_BYTE_WIDTH;
2401 break;
2402 case DMA_SLAVE_BUSWIDTH_2_BYTES:
2403 addr_width = STEDMA40_HALFWORD_WIDTH;
2404 break;
2405 case DMA_SLAVE_BUSWIDTH_4_BYTES:
2406 addr_width = STEDMA40_WORD_WIDTH;
2407 break;
2408 case DMA_SLAVE_BUSWIDTH_8_BYTES:
2409 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2410 break;
2411 default:
2412 dev_err(d40c->base->dev,
2413 "illegal peripheral address width "
2414 "requested (%d)\n",
2415 width);
2416 return -EINVAL;
2419 if (chan_is_logical(d40c)) {
2420 if (maxburst >= 16)
2421 psize = STEDMA40_PSIZE_LOG_16;
2422 else if (maxburst >= 8)
2423 psize = STEDMA40_PSIZE_LOG_8;
2424 else if (maxburst >= 4)
2425 psize = STEDMA40_PSIZE_LOG_4;
2426 else
2427 psize = STEDMA40_PSIZE_LOG_1;
2428 } else {
2429 if (maxburst >= 16)
2430 psize = STEDMA40_PSIZE_PHY_16;
2431 else if (maxburst >= 8)
2432 psize = STEDMA40_PSIZE_PHY_8;
2433 else if (maxburst >= 4)
2434 psize = STEDMA40_PSIZE_PHY_4;
2435 else
2436 psize = STEDMA40_PSIZE_PHY_1;
2439 info->data_width = addr_width;
2440 info->psize = psize;
2441 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2443 return 0;
2446 /* Runtime reconfiguration extension */
2447 static int d40_set_runtime_config(struct dma_chan *chan,
2448 struct dma_slave_config *config)
2450 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2451 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2452 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2453 dma_addr_t config_addr;
2454 u32 src_maxburst, dst_maxburst;
2455 int ret;
2457 src_addr_width = config->src_addr_width;
2458 src_maxburst = config->src_maxburst;
2459 dst_addr_width = config->dst_addr_width;
2460 dst_maxburst = config->dst_maxburst;
2462 if (config->direction == DMA_DEV_TO_MEM) {
2463 dma_addr_t dev_addr_rx =
2464 d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2466 config_addr = config->src_addr;
2467 if (dev_addr_rx)
2468 dev_dbg(d40c->base->dev,
2469 "channel has a pre-wired RX address %08x "
2470 "overriding with %08x\n",
2471 dev_addr_rx, config_addr);
2472 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2473 dev_dbg(d40c->base->dev,
2474 "channel was not configured for peripheral "
2475 "to memory transfer (%d) overriding\n",
2476 cfg->dir);
2477 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2479 /* Configure the memory side */
2480 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2481 dst_addr_width = src_addr_width;
2482 if (dst_maxburst == 0)
2483 dst_maxburst = src_maxburst;
2485 } else if (config->direction == DMA_MEM_TO_DEV) {
2486 dma_addr_t dev_addr_tx =
2487 d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2489 config_addr = config->dst_addr;
2490 if (dev_addr_tx)
2491 dev_dbg(d40c->base->dev,
2492 "channel has a pre-wired TX address %08x "
2493 "overriding with %08x\n",
2494 dev_addr_tx, config_addr);
2495 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2496 dev_dbg(d40c->base->dev,
2497 "channel was not configured for memory "
2498 "to peripheral transfer (%d) overriding\n",
2499 cfg->dir);
2500 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2502 /* Configure the memory side */
2503 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2504 src_addr_width = dst_addr_width;
2505 if (src_maxburst == 0)
2506 src_maxburst = dst_maxburst;
2507 } else {
2508 dev_err(d40c->base->dev,
2509 "unrecognized channel direction %d\n",
2510 config->direction);
2511 return -EINVAL;
2514 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2515 dev_err(d40c->base->dev,
2516 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2517 src_maxburst,
2518 src_addr_width,
2519 dst_maxburst,
2520 dst_addr_width);
2521 return -EINVAL;
2524 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2525 src_addr_width,
2526 src_maxburst);
2527 if (ret)
2528 return ret;
2530 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2531 dst_addr_width,
2532 dst_maxburst);
2533 if (ret)
2534 return ret;
2536 /* Fill in register values */
2537 if (chan_is_logical(d40c))
2538 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2539 else
2540 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2541 &d40c->dst_def_cfg, false);
2543 /* These settings will take precedence later */
2544 d40c->runtime_addr = config_addr;
2545 d40c->runtime_direction = config->direction;
2546 dev_dbg(d40c->base->dev,
2547 "configured channel %s for %s, data width %d/%d, "
2548 "maxburst %d/%d elements, LE, no flow control\n",
2549 dma_chan_name(chan),
2550 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2551 src_addr_width, dst_addr_width,
2552 src_maxburst, dst_maxburst);
2554 return 0;
2557 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2558 unsigned long arg)
2560 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2562 if (d40c->phy_chan == NULL) {
2563 chan_err(d40c, "Channel is not allocated!\n");
2564 return -EINVAL;
2567 switch (cmd) {
2568 case DMA_TERMINATE_ALL:
2569 return d40_terminate_all(d40c);
2570 case DMA_PAUSE:
2571 return d40_pause(d40c);
2572 case DMA_RESUME:
2573 return d40_resume(d40c);
2574 case DMA_SLAVE_CONFIG:
2575 return d40_set_runtime_config(chan,
2576 (struct dma_slave_config *) arg);
2577 default:
2578 break;
2581 /* Other commands are unimplemented */
2582 return -ENXIO;
2585 /* Initialization functions */
2587 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2588 struct d40_chan *chans, int offset,
2589 int num_chans)
2591 int i = 0;
2592 struct d40_chan *d40c;
2594 INIT_LIST_HEAD(&dma->channels);
2596 for (i = offset; i < offset + num_chans; i++) {
2597 d40c = &chans[i];
2598 d40c->base = base;
2599 d40c->chan.device = dma;
2601 spin_lock_init(&d40c->lock);
2603 d40c->log_num = D40_PHY_CHAN;
2605 INIT_LIST_HEAD(&d40c->active);
2606 INIT_LIST_HEAD(&d40c->queue);
2607 INIT_LIST_HEAD(&d40c->pending_queue);
2608 INIT_LIST_HEAD(&d40c->client);
2609 INIT_LIST_HEAD(&d40c->prepare_queue);
2611 tasklet_init(&d40c->tasklet, dma_tasklet,
2612 (unsigned long) d40c);
2614 list_add_tail(&d40c->chan.device_node,
2615 &dma->channels);
2619 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2621 if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2622 dev->device_prep_slave_sg = d40_prep_slave_sg;
2624 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2625 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2628 * This controller can only access address at even
2629 * 32bit boundaries, i.e. 2^2
2631 dev->copy_align = 2;
2634 if (dma_has_cap(DMA_SG, dev->cap_mask))
2635 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2637 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2638 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2640 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2641 dev->device_free_chan_resources = d40_free_chan_resources;
2642 dev->device_issue_pending = d40_issue_pending;
2643 dev->device_tx_status = d40_tx_status;
2644 dev->device_control = d40_control;
2645 dev->dev = base->dev;
2648 static int __init d40_dmaengine_init(struct d40_base *base,
2649 int num_reserved_chans)
2651 int err ;
2653 d40_chan_init(base, &base->dma_slave, base->log_chans,
2654 0, base->num_log_chans);
2656 dma_cap_zero(base->dma_slave.cap_mask);
2657 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2658 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2660 d40_ops_init(base, &base->dma_slave);
2662 err = dma_async_device_register(&base->dma_slave);
2664 if (err) {
2665 d40_err(base->dev, "Failed to register slave channels\n");
2666 goto failure1;
2669 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2670 base->num_log_chans, base->plat_data->memcpy_len);
2672 dma_cap_zero(base->dma_memcpy.cap_mask);
2673 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2674 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2676 d40_ops_init(base, &base->dma_memcpy);
2678 err = dma_async_device_register(&base->dma_memcpy);
2680 if (err) {
2681 d40_err(base->dev,
2682 "Failed to regsiter memcpy only channels\n");
2683 goto failure2;
2686 d40_chan_init(base, &base->dma_both, base->phy_chans,
2687 0, num_reserved_chans);
2689 dma_cap_zero(base->dma_both.cap_mask);
2690 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2691 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2692 dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2693 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2695 d40_ops_init(base, &base->dma_both);
2696 err = dma_async_device_register(&base->dma_both);
2698 if (err) {
2699 d40_err(base->dev,
2700 "Failed to register logical and physical capable channels\n");
2701 goto failure3;
2703 return 0;
2704 failure3:
2705 dma_async_device_unregister(&base->dma_memcpy);
2706 failure2:
2707 dma_async_device_unregister(&base->dma_slave);
2708 failure1:
2709 return err;
2712 /* Suspend resume functionality */
2713 #ifdef CONFIG_PM
2714 static int dma40_pm_suspend(struct device *dev)
2716 struct platform_device *pdev = to_platform_device(dev);
2717 struct d40_base *base = platform_get_drvdata(pdev);
2718 int ret = 0;
2719 if (!pm_runtime_suspended(dev))
2720 return -EBUSY;
2722 if (base->lcpa_regulator)
2723 ret = regulator_disable(base->lcpa_regulator);
2724 return ret;
2727 static int dma40_runtime_suspend(struct device *dev)
2729 struct platform_device *pdev = to_platform_device(dev);
2730 struct d40_base *base = platform_get_drvdata(pdev);
2732 d40_save_restore_registers(base, true);
2734 /* Don't disable/enable clocks for v1 due to HW bugs */
2735 if (base->rev != 1)
2736 writel_relaxed(base->gcc_pwr_off_mask,
2737 base->virtbase + D40_DREG_GCC);
2739 return 0;
2742 static int dma40_runtime_resume(struct device *dev)
2744 struct platform_device *pdev = to_platform_device(dev);
2745 struct d40_base *base = platform_get_drvdata(pdev);
2747 if (base->initialized)
2748 d40_save_restore_registers(base, false);
2750 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2751 base->virtbase + D40_DREG_GCC);
2752 return 0;
2755 static int dma40_resume(struct device *dev)
2757 struct platform_device *pdev = to_platform_device(dev);
2758 struct d40_base *base = platform_get_drvdata(pdev);
2759 int ret = 0;
2761 if (base->lcpa_regulator)
2762 ret = regulator_enable(base->lcpa_regulator);
2764 return ret;
2767 static const struct dev_pm_ops dma40_pm_ops = {
2768 .suspend = dma40_pm_suspend,
2769 .runtime_suspend = dma40_runtime_suspend,
2770 .runtime_resume = dma40_runtime_resume,
2771 .resume = dma40_resume,
2773 #define DMA40_PM_OPS (&dma40_pm_ops)
2774 #else
2775 #define DMA40_PM_OPS NULL
2776 #endif
2778 /* Initialization functions. */
2780 static int __init d40_phy_res_init(struct d40_base *base)
2782 int i;
2783 int num_phy_chans_avail = 0;
2784 u32 val[2];
2785 int odd_even_bit = -2;
2786 int gcc = D40_DREG_GCC_ENA;
2788 val[0] = readl(base->virtbase + D40_DREG_PRSME);
2789 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2791 for (i = 0; i < base->num_phy_chans; i++) {
2792 base->phy_res[i].num = i;
2793 odd_even_bit += 2 * ((i % 2) == 0);
2794 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2795 /* Mark security only channels as occupied */
2796 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2797 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2798 base->phy_res[i].reserved = true;
2799 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2800 D40_DREG_GCC_SRC);
2801 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2802 D40_DREG_GCC_DST);
2805 } else {
2806 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2807 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2808 base->phy_res[i].reserved = false;
2809 num_phy_chans_avail++;
2811 spin_lock_init(&base->phy_res[i].lock);
2814 /* Mark disabled channels as occupied */
2815 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2816 int chan = base->plat_data->disabled_channels[i];
2818 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2819 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2820 base->phy_res[chan].reserved = true;
2821 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2822 D40_DREG_GCC_SRC);
2823 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2824 D40_DREG_GCC_DST);
2825 num_phy_chans_avail--;
2828 dev_info(base->dev, "%d of %d physical DMA channels available\n",
2829 num_phy_chans_avail, base->num_phy_chans);
2831 /* Verify settings extended vs standard */
2832 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2834 for (i = 0; i < base->num_phy_chans; i++) {
2836 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2837 (val[0] & 0x3) != 1)
2838 dev_info(base->dev,
2839 "[%s] INFO: channel %d is misconfigured (%d)\n",
2840 __func__, i, val[0] & 0x3);
2842 val[0] = val[0] >> 2;
2846 * To keep things simple, Enable all clocks initially.
2847 * The clocks will get managed later post channel allocation.
2848 * The clocks for the event lines on which reserved channels exists
2849 * are not managed here.
2851 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
2852 base->gcc_pwr_off_mask = gcc;
2854 return num_phy_chans_avail;
2857 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2859 struct stedma40_platform_data *plat_data;
2860 struct clk *clk = NULL;
2861 void __iomem *virtbase = NULL;
2862 struct resource *res = NULL;
2863 struct d40_base *base = NULL;
2864 int num_log_chans = 0;
2865 int num_phy_chans;
2866 int i;
2867 u32 pid;
2868 u32 cid;
2869 u8 rev;
2871 clk = clk_get(&pdev->dev, NULL);
2873 if (IS_ERR(clk)) {
2874 d40_err(&pdev->dev, "No matching clock found\n");
2875 goto failure;
2878 clk_enable(clk);
2880 /* Get IO for DMAC base address */
2881 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2882 if (!res)
2883 goto failure;
2885 if (request_mem_region(res->start, resource_size(res),
2886 D40_NAME " I/O base") == NULL)
2887 goto failure;
2889 virtbase = ioremap(res->start, resource_size(res));
2890 if (!virtbase)
2891 goto failure;
2893 /* This is just a regular AMBA PrimeCell ID actually */
2894 for (pid = 0, i = 0; i < 4; i++)
2895 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2896 & 255) << (i * 8);
2897 for (cid = 0, i = 0; i < 4; i++)
2898 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2899 & 255) << (i * 8);
2901 if (cid != AMBA_CID) {
2902 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2903 goto failure;
2905 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2906 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2907 AMBA_MANF_BITS(pid),
2908 AMBA_VENDOR_ST);
2909 goto failure;
2912 * HW revision:
2913 * DB8500ed has revision 0
2914 * ? has revision 1
2915 * DB8500v1 has revision 2
2916 * DB8500v2 has revision 3
2918 rev = AMBA_REV_BITS(pid);
2920 /* The number of physical channels on this HW */
2921 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2923 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2924 rev, res->start);
2926 plat_data = pdev->dev.platform_data;
2928 /* Count the number of logical channels in use */
2929 for (i = 0; i < plat_data->dev_len; i++)
2930 if (plat_data->dev_rx[i] != 0)
2931 num_log_chans++;
2933 for (i = 0; i < plat_data->dev_len; i++)
2934 if (plat_data->dev_tx[i] != 0)
2935 num_log_chans++;
2937 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2938 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2939 sizeof(struct d40_chan), GFP_KERNEL);
2941 if (base == NULL) {
2942 d40_err(&pdev->dev, "Out of memory\n");
2943 goto failure;
2946 base->rev = rev;
2947 base->clk = clk;
2948 base->num_phy_chans = num_phy_chans;
2949 base->num_log_chans = num_log_chans;
2950 base->phy_start = res->start;
2951 base->phy_size = resource_size(res);
2952 base->virtbase = virtbase;
2953 base->plat_data = plat_data;
2954 base->dev = &pdev->dev;
2955 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2956 base->log_chans = &base->phy_chans[num_phy_chans];
2958 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2959 GFP_KERNEL);
2960 if (!base->phy_res)
2961 goto failure;
2963 base->lookup_phy_chans = kzalloc(num_phy_chans *
2964 sizeof(struct d40_chan *),
2965 GFP_KERNEL);
2966 if (!base->lookup_phy_chans)
2967 goto failure;
2969 if (num_log_chans + plat_data->memcpy_len) {
2971 * The max number of logical channels are event lines for all
2972 * src devices and dst devices
2974 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2975 sizeof(struct d40_chan *),
2976 GFP_KERNEL);
2977 if (!base->lookup_log_chans)
2978 goto failure;
2981 base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
2982 sizeof(d40_backup_regs_chan),
2983 GFP_KERNEL);
2984 if (!base->reg_val_backup_chan)
2985 goto failure;
2987 base->lcla_pool.alloc_map =
2988 kzalloc(num_phy_chans * sizeof(struct d40_desc *)
2989 * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
2990 if (!base->lcla_pool.alloc_map)
2991 goto failure;
2993 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2994 0, SLAB_HWCACHE_ALIGN,
2995 NULL);
2996 if (base->desc_slab == NULL)
2997 goto failure;
2999 return base;
3001 failure:
3002 if (!IS_ERR(clk)) {
3003 clk_disable(clk);
3004 clk_put(clk);
3006 if (virtbase)
3007 iounmap(virtbase);
3008 if (res)
3009 release_mem_region(res->start,
3010 resource_size(res));
3011 if (virtbase)
3012 iounmap(virtbase);
3014 if (base) {
3015 kfree(base->lcla_pool.alloc_map);
3016 kfree(base->lookup_log_chans);
3017 kfree(base->lookup_phy_chans);
3018 kfree(base->phy_res);
3019 kfree(base);
3022 return NULL;
3025 static void __init d40_hw_init(struct d40_base *base)
3028 static struct d40_reg_val dma_init_reg[] = {
3029 /* Clock every part of the DMA block from start */
3030 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
3032 /* Interrupts on all logical channels */
3033 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
3034 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
3035 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
3036 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
3037 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
3038 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
3039 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
3040 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
3041 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
3042 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
3043 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
3044 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
3046 int i;
3047 u32 prmseo[2] = {0, 0};
3048 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3049 u32 pcmis = 0;
3050 u32 pcicr = 0;
3052 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
3053 writel(dma_init_reg[i].val,
3054 base->virtbase + dma_init_reg[i].reg);
3056 /* Configure all our dma channels to default settings */
3057 for (i = 0; i < base->num_phy_chans; i++) {
3059 activeo[i % 2] = activeo[i % 2] << 2;
3061 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3062 == D40_ALLOC_PHY) {
3063 activeo[i % 2] |= 3;
3064 continue;
3067 /* Enable interrupt # */
3068 pcmis = (pcmis << 1) | 1;
3070 /* Clear interrupt # */
3071 pcicr = (pcicr << 1) | 1;
3073 /* Set channel to physical mode */
3074 prmseo[i % 2] = prmseo[i % 2] << 2;
3075 prmseo[i % 2] |= 1;
3079 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3080 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3081 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3082 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3084 /* Write which interrupt to enable */
3085 writel(pcmis, base->virtbase + D40_DREG_PCMIS);
3087 /* Write which interrupt to clear */
3088 writel(pcicr, base->virtbase + D40_DREG_PCICR);
3092 static int __init d40_lcla_allocate(struct d40_base *base)
3094 struct d40_lcla_pool *pool = &base->lcla_pool;
3095 unsigned long *page_list;
3096 int i, j;
3097 int ret = 0;
3100 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3101 * To full fill this hardware requirement without wasting 256 kb
3102 * we allocate pages until we get an aligned one.
3104 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3105 GFP_KERNEL);
3107 if (!page_list) {
3108 ret = -ENOMEM;
3109 goto failure;
3112 /* Calculating how many pages that are required */
3113 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3115 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3116 page_list[i] = __get_free_pages(GFP_KERNEL,
3117 base->lcla_pool.pages);
3118 if (!page_list[i]) {
3120 d40_err(base->dev, "Failed to allocate %d pages.\n",
3121 base->lcla_pool.pages);
3123 for (j = 0; j < i; j++)
3124 free_pages(page_list[j], base->lcla_pool.pages);
3125 goto failure;
3128 if ((virt_to_phys((void *)page_list[i]) &
3129 (LCLA_ALIGNMENT - 1)) == 0)
3130 break;
3133 for (j = 0; j < i; j++)
3134 free_pages(page_list[j], base->lcla_pool.pages);
3136 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3137 base->lcla_pool.base = (void *)page_list[i];
3138 } else {
3140 * After many attempts and no succees with finding the correct
3141 * alignment, try with allocating a big buffer.
3143 dev_warn(base->dev,
3144 "[%s] Failed to get %d pages @ 18 bit align.\n",
3145 __func__, base->lcla_pool.pages);
3146 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3147 base->num_phy_chans +
3148 LCLA_ALIGNMENT,
3149 GFP_KERNEL);
3150 if (!base->lcla_pool.base_unaligned) {
3151 ret = -ENOMEM;
3152 goto failure;
3155 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3156 LCLA_ALIGNMENT);
3159 pool->dma_addr = dma_map_single(base->dev, pool->base,
3160 SZ_1K * base->num_phy_chans,
3161 DMA_TO_DEVICE);
3162 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3163 pool->dma_addr = 0;
3164 ret = -ENOMEM;
3165 goto failure;
3168 writel(virt_to_phys(base->lcla_pool.base),
3169 base->virtbase + D40_DREG_LCLA);
3170 failure:
3171 kfree(page_list);
3172 return ret;
3175 static int __init d40_probe(struct platform_device *pdev)
3177 int err;
3178 int ret = -ENOENT;
3179 struct d40_base *base;
3180 struct resource *res = NULL;
3181 int num_reserved_chans;
3182 u32 val;
3184 base = d40_hw_detect_init(pdev);
3186 if (!base)
3187 goto failure;
3189 num_reserved_chans = d40_phy_res_init(base);
3191 platform_set_drvdata(pdev, base);
3193 spin_lock_init(&base->interrupt_lock);
3194 spin_lock_init(&base->execmd_lock);
3196 /* Get IO for logical channel parameter address */
3197 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3198 if (!res) {
3199 ret = -ENOENT;
3200 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3201 goto failure;
3203 base->lcpa_size = resource_size(res);
3204 base->phy_lcpa = res->start;
3206 if (request_mem_region(res->start, resource_size(res),
3207 D40_NAME " I/O lcpa") == NULL) {
3208 ret = -EBUSY;
3209 d40_err(&pdev->dev,
3210 "Failed to request LCPA region 0x%x-0x%x\n",
3211 res->start, res->end);
3212 goto failure;
3215 /* We make use of ESRAM memory for this. */
3216 val = readl(base->virtbase + D40_DREG_LCPA);
3217 if (res->start != val && val != 0) {
3218 dev_warn(&pdev->dev,
3219 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3220 __func__, val, res->start);
3221 } else
3222 writel(res->start, base->virtbase + D40_DREG_LCPA);
3224 base->lcpa_base = ioremap(res->start, resource_size(res));
3225 if (!base->lcpa_base) {
3226 ret = -ENOMEM;
3227 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3228 goto failure;
3230 /* If lcla has to be located in ESRAM we don't need to allocate */
3231 if (base->plat_data->use_esram_lcla) {
3232 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3233 "lcla_esram");
3234 if (!res) {
3235 ret = -ENOENT;
3236 d40_err(&pdev->dev,
3237 "No \"lcla_esram\" memory resource\n");
3238 goto failure;
3240 base->lcla_pool.base = ioremap(res->start,
3241 resource_size(res));
3242 if (!base->lcla_pool.base) {
3243 ret = -ENOMEM;
3244 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3245 goto failure;
3247 writel(res->start, base->virtbase + D40_DREG_LCLA);
3249 } else {
3250 ret = d40_lcla_allocate(base);
3251 if (ret) {
3252 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3253 goto failure;
3257 spin_lock_init(&base->lcla_pool.lock);
3259 base->irq = platform_get_irq(pdev, 0);
3261 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3262 if (ret) {
3263 d40_err(&pdev->dev, "No IRQ defined\n");
3264 goto failure;
3267 pm_runtime_irq_safe(base->dev);
3268 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3269 pm_runtime_use_autosuspend(base->dev);
3270 pm_runtime_enable(base->dev);
3271 pm_runtime_resume(base->dev);
3273 if (base->plat_data->use_esram_lcla) {
3275 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3276 if (IS_ERR(base->lcpa_regulator)) {
3277 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3278 base->lcpa_regulator = NULL;
3279 goto failure;
3282 ret = regulator_enable(base->lcpa_regulator);
3283 if (ret) {
3284 d40_err(&pdev->dev,
3285 "Failed to enable lcpa_regulator\n");
3286 regulator_put(base->lcpa_regulator);
3287 base->lcpa_regulator = NULL;
3288 goto failure;
3292 base->initialized = true;
3293 err = d40_dmaengine_init(base, num_reserved_chans);
3294 if (err)
3295 goto failure;
3297 d40_hw_init(base);
3299 dev_info(base->dev, "initialized\n");
3300 return 0;
3302 failure:
3303 if (base) {
3304 if (base->desc_slab)
3305 kmem_cache_destroy(base->desc_slab);
3306 if (base->virtbase)
3307 iounmap(base->virtbase);
3309 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3310 iounmap(base->lcla_pool.base);
3311 base->lcla_pool.base = NULL;
3314 if (base->lcla_pool.dma_addr)
3315 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3316 SZ_1K * base->num_phy_chans,
3317 DMA_TO_DEVICE);
3319 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3320 free_pages((unsigned long)base->lcla_pool.base,
3321 base->lcla_pool.pages);
3323 kfree(base->lcla_pool.base_unaligned);
3325 if (base->phy_lcpa)
3326 release_mem_region(base->phy_lcpa,
3327 base->lcpa_size);
3328 if (base->phy_start)
3329 release_mem_region(base->phy_start,
3330 base->phy_size);
3331 if (base->clk) {
3332 clk_disable(base->clk);
3333 clk_put(base->clk);
3336 if (base->lcpa_regulator) {
3337 regulator_disable(base->lcpa_regulator);
3338 regulator_put(base->lcpa_regulator);
3341 kfree(base->lcla_pool.alloc_map);
3342 kfree(base->lookup_log_chans);
3343 kfree(base->lookup_phy_chans);
3344 kfree(base->phy_res);
3345 kfree(base);
3348 d40_err(&pdev->dev, "probe failed\n");
3349 return ret;
3352 static struct platform_driver d40_driver = {
3353 .driver = {
3354 .owner = THIS_MODULE,
3355 .name = D40_NAME,
3356 .pm = DMA40_PM_OPS,
3360 static int __init stedma40_init(void)
3362 return platform_driver_probe(&d40_driver, d40_probe);
3364 subsys_initcall(stedma40_init);