2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include <linux/pci.h>
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4fw_api.h"
45 * Wait for the device to become ready (signified by our "who am I" register
46 * returning a value other than all 1's). Return an error if it doesn't
49 int __devinit
t4vf_wait_dev_ready(struct adapter
*adapter
)
51 const u32 whoami
= T4VF_PL_BASE_ADDR
+ PL_VF_WHOAMI
;
52 const u32 notready1
= 0xffffffff;
53 const u32 notready2
= 0xeeeeeeee;
56 val
= t4_read_reg(adapter
, whoami
);
57 if (val
!= notready1
&& val
!= notready2
)
60 val
= t4_read_reg(adapter
, whoami
);
61 if (val
!= notready1
&& val
!= notready2
)
68 * Get the reply to a mailbox command and store it in @rpl in big-endian order
69 * (since the firmware data structures are specified in a big-endian layout).
71 static void get_mbox_rpl(struct adapter
*adapter
, __be64
*rpl
, int size
,
74 for ( ; size
; size
-= 8, mbox_data
+= 8)
75 *rpl
++ = cpu_to_be64(t4_read_reg64(adapter
, mbox_data
));
79 * Dump contents of mailbox with a leading tag.
81 static void dump_mbox(struct adapter
*adapter
, const char *tag
, u32 mbox_data
)
83 dev_err(adapter
->pdev_dev
,
84 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag
,
85 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 0),
86 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 8),
87 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 16),
88 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 24),
89 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 32),
90 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 40),
91 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 48),
92 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 56));
96 * t4vf_wr_mbox_core - send a command to FW through the mailbox
97 * @adapter: the adapter
98 * @cmd: the command to write
99 * @size: command length in bytes
100 * @rpl: where to optionally store the reply
101 * @sleep_ok: if true we may sleep while awaiting command completion
103 * Sends the given command to FW through the mailbox and waits for the
104 * FW to execute the command. If @rpl is not %NULL it is used to store
105 * the FW's reply to the command. The command and its optional reply
106 * are of the same length. FW can take up to 500 ms to respond.
107 * @sleep_ok determines whether we may sleep while awaiting the response.
108 * If sleeping is allowed we use progressive backoff otherwise we spin.
110 * The return value is 0 on success or a negative errno on failure. A
111 * failure can happen either because we are not able to execute the
112 * command or FW executes it but signals an error. In the latter case
113 * the return value is the error code indicated by FW (negated).
115 int t4vf_wr_mbox_core(struct adapter
*adapter
, const void *cmd
, int size
,
116 void *rpl
, bool sleep_ok
)
118 static const int delay
[] = {
119 1, 1, 3, 5, 10, 10, 20, 50, 100
123 int i
, ms
, delay_idx
;
125 u32 mbox_data
= T4VF_MBDATA_BASE_ADDR
;
126 u32 mbox_ctl
= T4VF_CIM_BASE_ADDR
+ CIM_VF_EXT_MAILBOX_CTRL
;
129 * Commands must be multiples of 16 bytes in length and may not be
130 * larger than the size of the Mailbox Data register array.
132 if ((size
% 16) != 0 ||
133 size
> NUM_CIM_VF_MAILBOX_DATA_INSTANCES
* 4)
137 * Loop trying to get ownership of the mailbox. Return an error
138 * if we can't gain ownership.
140 v
= MBOWNER_GET(t4_read_reg(adapter
, mbox_ctl
));
141 for (i
= 0; v
== MBOX_OWNER_NONE
&& i
< 3; i
++)
142 v
= MBOWNER_GET(t4_read_reg(adapter
, mbox_ctl
));
143 if (v
!= MBOX_OWNER_DRV
)
144 return v
== MBOX_OWNER_FW
? -EBUSY
: -ETIMEDOUT
;
147 * Write the command array into the Mailbox Data register array and
148 * transfer ownership of the mailbox to the firmware.
150 * For the VFs, the Mailbox Data "registers" are actually backed by
151 * T4's "MA" interface rather than PL Registers (as is the case for
152 * the PFs). Because these are in different coherency domains, the
153 * write to the VF's PL-register-backed Mailbox Control can race in
154 * front of the writes to the MA-backed VF Mailbox Data "registers".
155 * So we need to do a read-back on at least one byte of the VF Mailbox
156 * Data registers before doing the write to the VF Mailbox Control
159 for (i
= 0, p
= cmd
; i
< size
; i
+= 8)
160 t4_write_reg64(adapter
, mbox_data
+ i
, be64_to_cpu(*p
++));
161 t4_read_reg(adapter
, mbox_data
); /* flush write */
163 t4_write_reg(adapter
, mbox_ctl
,
164 MBMSGVALID
| MBOWNER(MBOX_OWNER_FW
));
165 t4_read_reg(adapter
, mbox_ctl
); /* flush write */
168 * Spin waiting for firmware to acknowledge processing our command.
173 for (i
= 0; i
< FW_CMD_MAX_TIMEOUT
; i
+= ms
) {
175 ms
= delay
[delay_idx
];
176 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
183 * If we're the owner, see if this is the reply we wanted.
185 v
= t4_read_reg(adapter
, mbox_ctl
);
186 if (MBOWNER_GET(v
) == MBOX_OWNER_DRV
) {
188 * If the Message Valid bit isn't on, revoke ownership
189 * of the mailbox and continue waiting for our reply.
191 if ((v
& MBMSGVALID
) == 0) {
192 t4_write_reg(adapter
, mbox_ctl
,
193 MBOWNER(MBOX_OWNER_NONE
));
198 * We now have our reply. Extract the command return
199 * value, copy the reply back to our caller's buffer
200 * (if specified) and revoke ownership of the mailbox.
201 * We return the (negated) firmware command return
202 * code (this depends on FW_SUCCESS == 0).
205 /* return value in low-order little-endian word */
206 v
= t4_read_reg(adapter
, mbox_data
);
207 if (FW_CMD_RETVAL_GET(v
))
208 dump_mbox(adapter
, "FW Error", mbox_data
);
211 /* request bit in high-order BE word */
212 WARN_ON((be32_to_cpu(*(const u32
*)cmd
)
213 & FW_CMD_REQUEST
) == 0);
214 get_mbox_rpl(adapter
, rpl
, size
, mbox_data
);
215 WARN_ON((be32_to_cpu(*(u32
*)rpl
)
216 & FW_CMD_REQUEST
) != 0);
218 t4_write_reg(adapter
, mbox_ctl
,
219 MBOWNER(MBOX_OWNER_NONE
));
220 return -FW_CMD_RETVAL_GET(v
);
225 * We timed out. Return the error ...
227 dump_mbox(adapter
, "FW Timeout", mbox_data
);
232 * hash_mac_addr - return the hash value of a MAC address
233 * @addr: the 48-bit Ethernet MAC address
235 * Hashes a MAC address according to the hash function used by hardware
236 * inexact (hash) address matching.
238 static int hash_mac_addr(const u8
*addr
)
240 u32 a
= ((u32
)addr
[0] << 16) | ((u32
)addr
[1] << 8) | addr
[2];
241 u32 b
= ((u32
)addr
[3] << 16) | ((u32
)addr
[4] << 8) | addr
[5];
249 * init_link_config - initialize a link's SW state
250 * @lc: structure holding the link state
251 * @caps: link capabilities
253 * Initializes the SW state maintained for each link, including the link's
254 * capabilities and default speed/flow-control/autonegotiation settings.
256 static void __devinit
init_link_config(struct link_config
*lc
,
259 lc
->supported
= caps
;
260 lc
->requested_speed
= 0;
262 lc
->requested_fc
= lc
->fc
= PAUSE_RX
| PAUSE_TX
;
263 if (lc
->supported
& SUPPORTED_Autoneg
) {
264 lc
->advertising
= lc
->supported
;
265 lc
->autoneg
= AUTONEG_ENABLE
;
266 lc
->requested_fc
|= PAUSE_AUTONEG
;
269 lc
->autoneg
= AUTONEG_DISABLE
;
274 * t4vf_port_init - initialize port hardware/software state
275 * @adapter: the adapter
276 * @pidx: the adapter port index
278 int __devinit
t4vf_port_init(struct adapter
*adapter
, int pidx
)
280 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
281 struct fw_vi_cmd vi_cmd
, vi_rpl
;
282 struct fw_port_cmd port_cmd
, port_rpl
;
287 * Execute a VI Read command to get our Virtual Interface information
288 * like MAC address, etc.
290 memset(&vi_cmd
, 0, sizeof(vi_cmd
));
291 vi_cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
294 vi_cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(vi_cmd
));
295 vi_cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID(pi
->viid
));
296 v
= t4vf_wr_mbox(adapter
, &vi_cmd
, sizeof(vi_cmd
), &vi_rpl
);
300 BUG_ON(pi
->port_id
!= FW_VI_CMD_PORTID_GET(vi_rpl
.portid_pkd
));
301 pi
->rss_size
= FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl
.rsssize_pkd
));
302 t4_os_set_hw_addr(adapter
, pidx
, vi_rpl
.mac
);
305 * If we don't have read access to our port information, we're done
306 * now. Otherwise, execute a PORT Read command to get it ...
308 if (!(adapter
->params
.vfres
.r_caps
& FW_CMD_CAP_PORT
))
311 memset(&port_cmd
, 0, sizeof(port_cmd
));
312 port_cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP(FW_PORT_CMD
) |
315 FW_PORT_CMD_PORTID(pi
->port_id
));
316 port_cmd
.action_to_len16
=
317 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO
) |
319 v
= t4vf_wr_mbox(adapter
, &port_cmd
, sizeof(port_cmd
), &port_rpl
);
324 word
= be16_to_cpu(port_rpl
.u
.info
.pcap
);
325 if (word
& FW_PORT_CAP_SPEED_100M
)
326 v
|= SUPPORTED_100baseT_Full
;
327 if (word
& FW_PORT_CAP_SPEED_1G
)
328 v
|= SUPPORTED_1000baseT_Full
;
329 if (word
& FW_PORT_CAP_SPEED_10G
)
330 v
|= SUPPORTED_10000baseT_Full
;
331 if (word
& FW_PORT_CAP_ANEG
)
332 v
|= SUPPORTED_Autoneg
;
333 init_link_config(&pi
->link_cfg
, v
);
339 * t4vf_fw_reset - issue a reset to FW
340 * @adapter: the adapter
342 * Issues a reset command to FW. For a Physical Function this would
343 * result in the Firmware reseting all of its state. For a Virtual
344 * Function this just resets the state associated with the VF.
346 int t4vf_fw_reset(struct adapter
*adapter
)
348 struct fw_reset_cmd cmd
;
350 memset(&cmd
, 0, sizeof(cmd
));
351 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP(FW_RESET_CMD
) |
353 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
354 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
358 * t4vf_query_params - query FW or device parameters
359 * @adapter: the adapter
360 * @nparams: the number of parameters
361 * @params: the parameter names
362 * @vals: the parameter values
364 * Reads the values of firmware or device parameters. Up to 7 parameters
365 * can be queried at once.
367 int t4vf_query_params(struct adapter
*adapter
, unsigned int nparams
,
368 const u32
*params
, u32
*vals
)
371 struct fw_params_cmd cmd
, rpl
;
372 struct fw_params_param
*p
;
378 memset(&cmd
, 0, sizeof(cmd
));
379 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD
) |
382 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
383 param
[nparams
].mnem
), 16);
384 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
385 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++)
386 p
->mnem
= htonl(*params
++);
388 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
390 for (i
= 0, p
= &rpl
.param
[0]; i
< nparams
; i
++, p
++)
391 *vals
++ = be32_to_cpu(p
->val
);
396 * t4vf_set_params - sets FW or device parameters
397 * @adapter: the adapter
398 * @nparams: the number of parameters
399 * @params: the parameter names
400 * @vals: the parameter values
402 * Sets the values of firmware or device parameters. Up to 7 parameters
403 * can be specified at once.
405 int t4vf_set_params(struct adapter
*adapter
, unsigned int nparams
,
406 const u32
*params
, const u32
*vals
)
409 struct fw_params_cmd cmd
;
410 struct fw_params_param
*p
;
416 memset(&cmd
, 0, sizeof(cmd
));
417 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD
) |
420 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
421 param
[nparams
]), 16);
422 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
423 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++) {
424 p
->mnem
= cpu_to_be32(*params
++);
425 p
->val
= cpu_to_be32(*vals
++);
428 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
432 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
433 * @adapter: the adapter
435 * Retrieves various core SGE parameters in the form of hardware SGE
436 * register values. The caller is responsible for decoding these as
437 * needed. The SGE parameters are stored in @adapter->params.sge.
439 int t4vf_get_sge_params(struct adapter
*adapter
)
441 struct sge_params
*sge_params
= &adapter
->params
.sge
;
442 u32 params
[7], vals
[7];
445 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
446 FW_PARAMS_PARAM_XYZ(SGE_CONTROL
));
447 params
[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
448 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE
));
449 params
[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
450 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0
));
451 params
[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
452 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1
));
453 params
[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
454 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1
));
455 params
[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
456 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3
));
457 params
[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
458 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5
));
459 v
= t4vf_query_params(adapter
, 7, params
, vals
);
462 sge_params
->sge_control
= vals
[0];
463 sge_params
->sge_host_page_size
= vals
[1];
464 sge_params
->sge_fl_buffer_size
[0] = vals
[2];
465 sge_params
->sge_fl_buffer_size
[1] = vals
[3];
466 sge_params
->sge_timer_value_0_and_1
= vals
[4];
467 sge_params
->sge_timer_value_2_and_3
= vals
[5];
468 sge_params
->sge_timer_value_4_and_5
= vals
[6];
470 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
471 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD
));
472 v
= t4vf_query_params(adapter
, 1, params
, vals
);
475 sge_params
->sge_ingress_rx_threshold
= vals
[0];
481 * t4vf_get_vpd_params - retrieve device VPD paremeters
482 * @adapter: the adapter
484 * Retrives various device Vital Product Data parameters. The parameters
485 * are stored in @adapter->params.vpd.
487 int t4vf_get_vpd_params(struct adapter
*adapter
)
489 struct vpd_params
*vpd_params
= &adapter
->params
.vpd
;
490 u32 params
[7], vals
[7];
493 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
494 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK
));
495 v
= t4vf_query_params(adapter
, 1, params
, vals
);
498 vpd_params
->cclk
= vals
[0];
504 * t4vf_get_dev_params - retrieve device paremeters
505 * @adapter: the adapter
507 * Retrives various device parameters. The parameters are stored in
508 * @adapter->params.dev.
510 int t4vf_get_dev_params(struct adapter
*adapter
)
512 struct dev_params
*dev_params
= &adapter
->params
.dev
;
513 u32 params
[7], vals
[7];
516 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
517 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV
));
518 params
[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
519 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV
));
520 v
= t4vf_query_params(adapter
, 2, params
, vals
);
523 dev_params
->fwrev
= vals
[0];
524 dev_params
->tprev
= vals
[1];
530 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
531 * @adapter: the adapter
533 * Retrieves global RSS mode and parameters with which we have to live
534 * and stores them in the @adapter's RSS parameters.
536 int t4vf_get_rss_glb_config(struct adapter
*adapter
)
538 struct rss_params
*rss
= &adapter
->params
.rss
;
539 struct fw_rss_glb_config_cmd cmd
, rpl
;
543 * Execute an RSS Global Configuration read command to retrieve
544 * our RSS configuration.
546 memset(&cmd
, 0, sizeof(cmd
));
547 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD
) |
550 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
551 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
556 * Transate the big-endian RSS Global Configuration into our
557 * cpu-endian format based on the RSS mode. We also do first level
558 * filtering at this point to weed out modes which don't support
561 rss
->mode
= FW_RSS_GLB_CONFIG_CMD_MODE_GET(
562 be32_to_cpu(rpl
.u
.manual
.mode_pkd
));
564 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
565 u32 word
= be32_to_cpu(
566 rpl
.u
.basicvirtual
.synmapen_to_hashtoeplitz
);
568 rss
->u
.basicvirtual
.synmapen
=
569 ((word
& FW_RSS_GLB_CONFIG_CMD_SYNMAPEN
) != 0);
570 rss
->u
.basicvirtual
.syn4tupenipv6
=
571 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6
) != 0);
572 rss
->u
.basicvirtual
.syn2tupenipv6
=
573 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6
) != 0);
574 rss
->u
.basicvirtual
.syn4tupenipv4
=
575 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4
) != 0);
576 rss
->u
.basicvirtual
.syn2tupenipv4
=
577 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4
) != 0);
579 rss
->u
.basicvirtual
.ofdmapen
=
580 ((word
& FW_RSS_GLB_CONFIG_CMD_OFDMAPEN
) != 0);
582 rss
->u
.basicvirtual
.tnlmapen
=
583 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLMAPEN
) != 0);
584 rss
->u
.basicvirtual
.tnlalllookup
=
585 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLALLLKP
) != 0);
587 rss
->u
.basicvirtual
.hashtoeplitz
=
588 ((word
& FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ
) != 0);
590 /* we need at least Tunnel Map Enable to be set */
591 if (!rss
->u
.basicvirtual
.tnlmapen
)
597 /* all unknown/unsupported RSS modes result in an error */
605 * t4vf_get_vfres - retrieve VF resource limits
606 * @adapter: the adapter
608 * Retrieves configured resource limits and capabilities for a virtual
609 * function. The results are stored in @adapter->vfres.
611 int t4vf_get_vfres(struct adapter
*adapter
)
613 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
614 struct fw_pfvf_cmd cmd
, rpl
;
619 * Execute PFVF Read command to get VF resource limits; bail out early
620 * with error on command failure.
622 memset(&cmd
, 0, sizeof(cmd
));
623 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD
) |
626 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
627 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
632 * Extract VF resource limits and return success.
634 word
= be32_to_cpu(rpl
.niqflint_niq
);
635 vfres
->niqflint
= FW_PFVF_CMD_NIQFLINT_GET(word
);
636 vfres
->niq
= FW_PFVF_CMD_NIQ_GET(word
);
638 word
= be32_to_cpu(rpl
.type_to_neq
);
639 vfres
->neq
= FW_PFVF_CMD_NEQ_GET(word
);
640 vfres
->pmask
= FW_PFVF_CMD_PMASK_GET(word
);
642 word
= be32_to_cpu(rpl
.tc_to_nexactf
);
643 vfres
->tc
= FW_PFVF_CMD_TC_GET(word
);
644 vfres
->nvi
= FW_PFVF_CMD_NVI_GET(word
);
645 vfres
->nexactf
= FW_PFVF_CMD_NEXACTF_GET(word
);
647 word
= be32_to_cpu(rpl
.r_caps_to_nethctrl
);
648 vfres
->r_caps
= FW_PFVF_CMD_R_CAPS_GET(word
);
649 vfres
->wx_caps
= FW_PFVF_CMD_WX_CAPS_GET(word
);
650 vfres
->nethctrl
= FW_PFVF_CMD_NETHCTRL_GET(word
);
656 * t4vf_read_rss_vi_config - read a VI's RSS configuration
657 * @adapter: the adapter
658 * @viid: Virtual Interface ID
659 * @config: pointer to host-native VI RSS Configuration buffer
661 * Reads the Virtual Interface's RSS configuration information and
662 * translates it into CPU-native format.
664 int t4vf_read_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
665 union rss_vi_config
*config
)
667 struct fw_rss_vi_config_cmd cmd
, rpl
;
670 memset(&cmd
, 0, sizeof(cmd
));
671 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD
) |
674 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
675 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
676 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
680 switch (adapter
->params
.rss
.mode
) {
681 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
682 u32 word
= be32_to_cpu(rpl
.u
.basicvirtual
.defaultq_to_udpen
);
684 config
->basicvirtual
.ip6fourtupen
=
685 ((word
& FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN
) != 0);
686 config
->basicvirtual
.ip6twotupen
=
687 ((word
& FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN
) != 0);
688 config
->basicvirtual
.ip4fourtupen
=
689 ((word
& FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN
) != 0);
690 config
->basicvirtual
.ip4twotupen
=
691 ((word
& FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN
) != 0);
692 config
->basicvirtual
.udpen
=
693 ((word
& FW_RSS_VI_CONFIG_CMD_UDPEN
) != 0);
694 config
->basicvirtual
.defaultq
=
695 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word
);
707 * t4vf_write_rss_vi_config - write a VI's RSS configuration
708 * @adapter: the adapter
709 * @viid: Virtual Interface ID
710 * @config: pointer to host-native VI RSS Configuration buffer
712 * Write the Virtual Interface's RSS configuration information
713 * (translating it into firmware-native format before writing).
715 int t4vf_write_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
716 union rss_vi_config
*config
)
718 struct fw_rss_vi_config_cmd cmd
, rpl
;
720 memset(&cmd
, 0, sizeof(cmd
));
721 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD
) |
724 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
725 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
726 switch (adapter
->params
.rss
.mode
) {
727 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
730 if (config
->basicvirtual
.ip6fourtupen
)
731 word
|= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN
;
732 if (config
->basicvirtual
.ip6twotupen
)
733 word
|= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN
;
734 if (config
->basicvirtual
.ip4fourtupen
)
735 word
|= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN
;
736 if (config
->basicvirtual
.ip4twotupen
)
737 word
|= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN
;
738 if (config
->basicvirtual
.udpen
)
739 word
|= FW_RSS_VI_CONFIG_CMD_UDPEN
;
740 word
|= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
741 config
->basicvirtual
.defaultq
);
742 cmd
.u
.basicvirtual
.defaultq_to_udpen
= cpu_to_be32(word
);
750 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
754 * t4vf_config_rss_range - configure a portion of the RSS mapping table
755 * @adapter: the adapter
756 * @viid: Virtual Interface of RSS Table Slice
757 * @start: starting entry in the table to write
758 * @n: how many table entries to write
759 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
760 * @nrspq: number of values in @rspq
762 * Programs the selected part of the VI's RSS mapping table with the
763 * provided values. If @nrspq < @n the supplied values are used repeatedly
764 * until the full table range is populated.
766 * The caller must ensure the values in @rspq are in the range 0..1023.
768 int t4vf_config_rss_range(struct adapter
*adapter
, unsigned int viid
,
769 int start
, int n
, const u16
*rspq
, int nrspq
)
771 const u16
*rsp
= rspq
;
772 const u16
*rsp_end
= rspq
+nrspq
;
773 struct fw_rss_ind_tbl_cmd cmd
;
776 * Initialize firmware command template to write the RSS table.
778 memset(&cmd
, 0, sizeof(cmd
));
779 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD
) |
782 FW_RSS_IND_TBL_CMD_VIID(viid
));
783 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
786 * Each firmware RSS command can accommodate up to 32 RSS Ingress
787 * Queue Identifiers. These Ingress Queue IDs are packed three to
788 * a 32-bit word as 10-bit values with the upper remaining 2 bits
792 __be32
*qp
= &cmd
.iq0_to_iq2
;
797 * Set up the firmware RSS command header to send the next
798 * "nq" Ingress Queue IDs to the firmware.
800 cmd
.niqid
= cpu_to_be16(nq
);
801 cmd
.startidx
= cpu_to_be16(start
);
804 * "nq" more done for the start of the next loop.
810 * While there are still Ingress Queue IDs to stuff into the
811 * current firmware RSS command, retrieve them from the
812 * Ingress Queue ID array and insert them into the command.
816 * Grab up to the next 3 Ingress Queue IDs (wrapping
817 * around the Ingress Queue ID array if necessary) and
818 * insert them into the firmware RSS command at the
819 * current 3-tuple position within the commad.
823 int nqbuf
= min(3, nq
);
826 qbuf
[0] = qbuf
[1] = qbuf
[2] = 0;
833 *qp
++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf
[0]) |
834 FW_RSS_IND_TBL_CMD_IQ1(qbuf
[1]) |
835 FW_RSS_IND_TBL_CMD_IQ2(qbuf
[2]));
839 * Send this portion of the RRS table update to the firmware;
840 * bail out on any errors.
842 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
850 * t4vf_alloc_vi - allocate a virtual interface on a port
851 * @adapter: the adapter
852 * @port_id: physical port associated with the VI
854 * Allocate a new Virtual Interface and bind it to the indicated
855 * physical port. Return the new Virtual Interface Identifier on
856 * success, or a [negative] error number on failure.
858 int t4vf_alloc_vi(struct adapter
*adapter
, int port_id
)
860 struct fw_vi_cmd cmd
, rpl
;
864 * Execute a VI command to allocate Virtual Interface and return its
867 memset(&cmd
, 0, sizeof(cmd
));
868 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
872 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
874 cmd
.portid_pkd
= FW_VI_CMD_PORTID(port_id
);
875 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
879 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl
.type_viid
));
883 * t4vf_free_vi -- free a virtual interface
884 * @adapter: the adapter
885 * @viid: the virtual interface identifier
887 * Free a previously allocated Virtual Interface. Return an error on
890 int t4vf_free_vi(struct adapter
*adapter
, int viid
)
892 struct fw_vi_cmd cmd
;
895 * Execute a VI command to free the Virtual Interface.
897 memset(&cmd
, 0, sizeof(cmd
));
898 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
901 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
903 cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID(viid
));
904 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
908 * t4vf_enable_vi - enable/disable a virtual interface
909 * @adapter: the adapter
910 * @viid: the Virtual Interface ID
911 * @rx_en: 1=enable Rx, 0=disable Rx
912 * @tx_en: 1=enable Tx, 0=disable Tx
914 * Enables/disables a virtual interface.
916 int t4vf_enable_vi(struct adapter
*adapter
, unsigned int viid
,
917 bool rx_en
, bool tx_en
)
919 struct fw_vi_enable_cmd cmd
;
921 memset(&cmd
, 0, sizeof(cmd
));
922 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD
) |
925 FW_VI_ENABLE_CMD_VIID(viid
));
926 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en
) |
927 FW_VI_ENABLE_CMD_EEN(tx_en
) |
929 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
933 * t4vf_identify_port - identify a VI's port by blinking its LED
934 * @adapter: the adapter
935 * @viid: the Virtual Interface ID
936 * @nblinks: how many times to blink LED at 2.5 Hz
938 * Identifies a VI's port by blinking its LED.
940 int t4vf_identify_port(struct adapter
*adapter
, unsigned int viid
,
941 unsigned int nblinks
)
943 struct fw_vi_enable_cmd cmd
;
945 memset(&cmd
, 0, sizeof(cmd
));
946 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD
) |
949 FW_VI_ENABLE_CMD_VIID(viid
));
950 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_LED
|
952 cmd
.blinkdur
= cpu_to_be16(nblinks
);
953 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
957 * t4vf_set_rxmode - set Rx properties of a virtual interface
958 * @adapter: the adapter
960 * @mtu: the new MTU or -1 for no change
961 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
962 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
963 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
964 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
967 * Sets Rx properties of a virtual interface.
969 int t4vf_set_rxmode(struct adapter
*adapter
, unsigned int viid
,
970 int mtu
, int promisc
, int all_multi
, int bcast
, int vlanex
,
973 struct fw_vi_rxmode_cmd cmd
;
975 /* convert to FW values */
977 mtu
= FW_VI_RXMODE_CMD_MTU_MASK
;
979 promisc
= FW_VI_RXMODE_CMD_PROMISCEN_MASK
;
981 all_multi
= FW_VI_RXMODE_CMD_ALLMULTIEN_MASK
;
983 bcast
= FW_VI_RXMODE_CMD_BROADCASTEN_MASK
;
985 vlanex
= FW_VI_RXMODE_CMD_VLANEXEN_MASK
;
987 memset(&cmd
, 0, sizeof(cmd
));
988 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD
) |
991 FW_VI_RXMODE_CMD_VIID(viid
));
992 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
993 cmd
.mtu_to_vlanexen
=
994 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu
) |
995 FW_VI_RXMODE_CMD_PROMISCEN(promisc
) |
996 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi
) |
997 FW_VI_RXMODE_CMD_BROADCASTEN(bcast
) |
998 FW_VI_RXMODE_CMD_VLANEXEN(vlanex
));
999 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1003 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1004 * @adapter: the adapter
1005 * @viid: the Virtual Interface Identifier
1006 * @free: if true any existing filters for this VI id are first removed
1007 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1008 * @addr: the MAC address(es)
1009 * @idx: where to store the index of each allocated filter
1010 * @hash: pointer to hash address filter bitmap
1011 * @sleep_ok: call is allowed to sleep
1013 * Allocates an exact-match filter for each of the supplied addresses and
1014 * sets it to the corresponding address. If @idx is not %NULL it should
1015 * have at least @naddr entries, each of which will be set to the index of
1016 * the filter allocated for the corresponding MAC address. If a filter
1017 * could not be allocated for an address its index is set to 0xffff.
1018 * If @hash is not %NULL addresses that fail to allocate an exact filter
1019 * are hashed and update the hash filter bitmap pointed at by @hash.
1021 * Returns a negative error number or the number of filters allocated.
1023 int t4vf_alloc_mac_filt(struct adapter
*adapter
, unsigned int viid
, bool free
,
1024 unsigned int naddr
, const u8
**addr
, u16
*idx
,
1025 u64
*hash
, bool sleep_ok
)
1027 int offset
, ret
= 0;
1028 unsigned nfilters
= 0;
1029 unsigned int rem
= naddr
;
1030 struct fw_vi_mac_cmd cmd
, rpl
;
1032 if (naddr
> FW_CLS_TCAM_NUM_ENTRIES
)
1035 for (offset
= 0; offset
< naddr
; /**/) {
1036 unsigned int fw_naddr
= (rem
< ARRAY_SIZE(cmd
.u
.exact
)
1038 : ARRAY_SIZE(cmd
.u
.exact
));
1039 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1040 u
.exact
[fw_naddr
]), 16);
1041 struct fw_vi_mac_exact
*p
;
1044 memset(&cmd
, 0, sizeof(cmd
));
1045 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1048 (free
? FW_CMD_EXEC
: 0) |
1049 FW_VI_MAC_CMD_VIID(viid
));
1050 cmd
.freemacs_to_len16
=
1051 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free
) |
1052 FW_CMD_LEN16(len16
));
1054 for (i
= 0, p
= cmd
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1055 p
->valid_to_idx
= cpu_to_be16(
1056 FW_VI_MAC_CMD_VALID
|
1057 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC
));
1058 memcpy(p
->macaddr
, addr
[offset
+i
], sizeof(p
->macaddr
));
1062 ret
= t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), &rpl
,
1064 if (ret
&& ret
!= -ENOMEM
)
1067 for (i
= 0, p
= rpl
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1068 u16 index
= FW_VI_MAC_CMD_IDX_GET(
1069 be16_to_cpu(p
->valid_to_idx
));
1073 (index
>= FW_CLS_TCAM_NUM_ENTRIES
1076 if (index
< FW_CLS_TCAM_NUM_ENTRIES
)
1079 *hash
|= (1ULL << hash_mac_addr(addr
[offset
+i
]));
1088 * If there were no errors or we merely ran out of room in our MAC
1089 * address arena, return the number of filters actually written.
1091 if (ret
== 0 || ret
== -ENOMEM
)
1097 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1098 * @adapter: the adapter
1099 * @viid: the Virtual Interface ID
1100 * @idx: index of existing filter for old value of MAC address, or -1
1101 * @addr: the new MAC address value
1102 * @persist: if idx < 0, the new MAC allocation should be persistent
1104 * Modifies an exact-match filter and sets it to the new MAC address.
1105 * Note that in general it is not possible to modify the value of a given
1106 * filter so the generic way to modify an address filter is to free the
1107 * one being used by the old address value and allocate a new filter for
1108 * the new address value. @idx can be -1 if the address is a new
1111 * Returns a negative error number or the index of the filter with the new
1114 int t4vf_change_mac(struct adapter
*adapter
, unsigned int viid
,
1115 int idx
, const u8
*addr
, bool persist
)
1118 struct fw_vi_mac_cmd cmd
, rpl
;
1119 struct fw_vi_mac_exact
*p
= &cmd
.u
.exact
[0];
1120 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1124 * If this is a new allocation, determine whether it should be
1125 * persistent (across a "freemacs" operation) or not.
1128 idx
= persist
? FW_VI_MAC_ADD_PERSIST_MAC
: FW_VI_MAC_ADD_MAC
;
1130 memset(&cmd
, 0, sizeof(cmd
));
1131 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1134 FW_VI_MAC_CMD_VIID(viid
));
1135 cmd
.freemacs_to_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
1136 p
->valid_to_idx
= cpu_to_be16(FW_VI_MAC_CMD_VALID
|
1137 FW_VI_MAC_CMD_IDX(idx
));
1138 memcpy(p
->macaddr
, addr
, sizeof(p
->macaddr
));
1140 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1142 p
= &rpl
.u
.exact
[0];
1143 ret
= FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p
->valid_to_idx
));
1144 if (ret
>= FW_CLS_TCAM_NUM_ENTRIES
)
1151 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1152 * @adapter: the adapter
1153 * @viid: the Virtual Interface Identifier
1154 * @ucast: whether the hash filter should also match unicast addresses
1155 * @vec: the value to be written to the hash filter
1156 * @sleep_ok: call is allowed to sleep
1158 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1160 int t4vf_set_addr_hash(struct adapter
*adapter
, unsigned int viid
,
1161 bool ucast
, u64 vec
, bool sleep_ok
)
1163 struct fw_vi_mac_cmd cmd
;
1164 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1167 memset(&cmd
, 0, sizeof(cmd
));
1168 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1171 FW_VI_ENABLE_CMD_VIID(viid
));
1172 cmd
.freemacs_to_len16
= cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN
|
1173 FW_VI_MAC_CMD_HASHUNIEN(ucast
) |
1174 FW_CMD_LEN16(len16
));
1175 cmd
.u
.hash
.hashvec
= cpu_to_be64(vec
);
1176 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1180 * t4vf_get_port_stats - collect "port" statistics
1181 * @adapter: the adapter
1182 * @pidx: the port index
1183 * @s: the stats structure to fill
1185 * Collect statistics for the "port"'s Virtual Interface.
1187 int t4vf_get_port_stats(struct adapter
*adapter
, int pidx
,
1188 struct t4vf_port_stats
*s
)
1190 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
1191 struct fw_vi_stats_vf fwstats
;
1192 unsigned int rem
= VI_VF_NUM_STATS
;
1193 __be64
*fwsp
= (__be64
*)&fwstats
;
1196 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1197 * commands. We could use a Work Request and get all of them at once
1198 * but that's an asynchronous interface which is awkward to use.
1201 unsigned int ix
= VI_VF_NUM_STATS
- rem
;
1202 unsigned int nstats
= min(6U, rem
);
1203 struct fw_vi_stats_cmd cmd
, rpl
;
1204 size_t len
= (offsetof(struct fw_vi_stats_cmd
, u
) +
1205 sizeof(struct fw_vi_stats_ctl
));
1206 size_t len16
= DIV_ROUND_UP(len
, 16);
1209 memset(&cmd
, 0, sizeof(cmd
));
1210 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD
) |
1211 FW_VI_STATS_CMD_VIID(pi
->viid
) |
1214 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
1215 cmd
.u
.ctl
.nstats_ix
=
1216 cpu_to_be16(FW_VI_STATS_CMD_IX(ix
) |
1217 FW_VI_STATS_CMD_NSTATS(nstats
));
1218 ret
= t4vf_wr_mbox_ns(adapter
, &cmd
, len
, &rpl
);
1222 memcpy(fwsp
, &rpl
.u
.ctl
.stat0
, sizeof(__be64
) * nstats
);
1229 * Translate firmware statistics into host native statistics.
1231 s
->tx_bcast_bytes
= be64_to_cpu(fwstats
.tx_bcast_bytes
);
1232 s
->tx_bcast_frames
= be64_to_cpu(fwstats
.tx_bcast_frames
);
1233 s
->tx_mcast_bytes
= be64_to_cpu(fwstats
.tx_mcast_bytes
);
1234 s
->tx_mcast_frames
= be64_to_cpu(fwstats
.tx_mcast_frames
);
1235 s
->tx_ucast_bytes
= be64_to_cpu(fwstats
.tx_ucast_bytes
);
1236 s
->tx_ucast_frames
= be64_to_cpu(fwstats
.tx_ucast_frames
);
1237 s
->tx_drop_frames
= be64_to_cpu(fwstats
.tx_drop_frames
);
1238 s
->tx_offload_bytes
= be64_to_cpu(fwstats
.tx_offload_bytes
);
1239 s
->tx_offload_frames
= be64_to_cpu(fwstats
.tx_offload_frames
);
1241 s
->rx_bcast_bytes
= be64_to_cpu(fwstats
.rx_bcast_bytes
);
1242 s
->rx_bcast_frames
= be64_to_cpu(fwstats
.rx_bcast_frames
);
1243 s
->rx_mcast_bytes
= be64_to_cpu(fwstats
.rx_mcast_bytes
);
1244 s
->rx_mcast_frames
= be64_to_cpu(fwstats
.rx_mcast_frames
);
1245 s
->rx_ucast_bytes
= be64_to_cpu(fwstats
.rx_ucast_bytes
);
1246 s
->rx_ucast_frames
= be64_to_cpu(fwstats
.rx_ucast_frames
);
1248 s
->rx_err_frames
= be64_to_cpu(fwstats
.rx_err_frames
);
1254 * t4vf_iq_free - free an ingress queue and its free lists
1255 * @adapter: the adapter
1256 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1257 * @iqid: ingress queue ID
1258 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1259 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1261 * Frees an ingress queue and its associated free lists, if any.
1263 int t4vf_iq_free(struct adapter
*adapter
, unsigned int iqtype
,
1264 unsigned int iqid
, unsigned int fl0id
, unsigned int fl1id
)
1266 struct fw_iq_cmd cmd
;
1268 memset(&cmd
, 0, sizeof(cmd
));
1269 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_IQ_CMD
) |
1272 cmd
.alloc_to_len16
= cpu_to_be32(FW_IQ_CMD_FREE
|
1274 cmd
.type_to_iqandstindex
=
1275 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype
));
1277 cmd
.iqid
= cpu_to_be16(iqid
);
1278 cmd
.fl0id
= cpu_to_be16(fl0id
);
1279 cmd
.fl1id
= cpu_to_be16(fl1id
);
1280 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1284 * t4vf_eth_eq_free - free an Ethernet egress queue
1285 * @adapter: the adapter
1286 * @eqid: egress queue ID
1288 * Frees an Ethernet egress queue.
1290 int t4vf_eth_eq_free(struct adapter
*adapter
, unsigned int eqid
)
1292 struct fw_eq_eth_cmd cmd
;
1294 memset(&cmd
, 0, sizeof(cmd
));
1295 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD
) |
1298 cmd
.alloc_to_len16
= cpu_to_be32(FW_EQ_ETH_CMD_FREE
|
1300 cmd
.eqid_pkd
= cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid
));
1301 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1305 * t4vf_handle_fw_rpl - process a firmware reply message
1306 * @adapter: the adapter
1307 * @rpl: start of the firmware message
1309 * Processes a firmware message, such as link state change messages.
1311 int t4vf_handle_fw_rpl(struct adapter
*adapter
, const __be64
*rpl
)
1313 const struct fw_cmd_hdr
*cmd_hdr
= (const struct fw_cmd_hdr
*)rpl
;
1314 u8 opcode
= FW_CMD_OP_GET(be32_to_cpu(cmd_hdr
->hi
));
1319 * Link/module state change message.
1321 const struct fw_port_cmd
*port_cmd
=
1322 (const struct fw_port_cmd
*)rpl
;
1324 int action
, port_id
, link_ok
, speed
, fc
, pidx
;
1327 * Extract various fields from port status change message.
1329 action
= FW_PORT_CMD_ACTION_GET(
1330 be32_to_cpu(port_cmd
->action_to_len16
));
1331 if (action
!= FW_PORT_ACTION_GET_PORT_INFO
) {
1332 dev_err(adapter
->pdev_dev
,
1333 "Unknown firmware PORT reply action %x\n",
1338 port_id
= FW_PORT_CMD_PORTID_GET(
1339 be32_to_cpu(port_cmd
->op_to_portid
));
1341 word
= be32_to_cpu(port_cmd
->u
.info
.lstatus_to_modtype
);
1342 link_ok
= (word
& FW_PORT_CMD_LSTATUS
) != 0;
1345 if (word
& FW_PORT_CMD_RXPAUSE
)
1347 if (word
& FW_PORT_CMD_TXPAUSE
)
1349 if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M
))
1351 else if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G
))
1353 else if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G
))
1354 speed
= SPEED_10000
;
1357 * Scan all of our "ports" (Virtual Interfaces) looking for
1358 * those bound to the physical port which has changed. If
1359 * our recorded state doesn't match the current state,
1360 * signal that change to the OS code.
1362 for_each_port(adapter
, pidx
) {
1363 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
1364 struct link_config
*lc
;
1366 if (pi
->port_id
!= port_id
)
1370 if (link_ok
!= lc
->link_ok
|| speed
!= lc
->speed
||
1372 /* something changed */
1373 lc
->link_ok
= link_ok
;
1376 t4vf_os_link_changed(adapter
, pidx
, link_ok
);
1383 dev_err(adapter
->pdev_dev
, "Unknown firmware reply %X\n",