hv: remove free_channel() from hyperv.h
[zen-stable.git] / drivers / net / cxgb4vf / t4vf_hw.c
blobfe3fd3dad6f712a91c5af9b314f6bad8a44a36a7
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
36 #include <linux/pci.h>
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4fw_api.h"
45 * Wait for the device to become ready (signified by our "who am I" register
46 * returning a value other than all 1's). Return an error if it doesn't
47 * become ready ...
49 int __devinit t4vf_wait_dev_ready(struct adapter *adapter)
51 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
52 const u32 notready1 = 0xffffffff;
53 const u32 notready2 = 0xeeeeeeee;
54 u32 val;
56 val = t4_read_reg(adapter, whoami);
57 if (val != notready1 && val != notready2)
58 return 0;
59 msleep(500);
60 val = t4_read_reg(adapter, whoami);
61 if (val != notready1 && val != notready2)
62 return 0;
63 else
64 return -EIO;
68 * Get the reply to a mailbox command and store it in @rpl in big-endian order
69 * (since the firmware data structures are specified in a big-endian layout).
71 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
72 u32 mbox_data)
74 for ( ; size; size -= 8, mbox_data += 8)
75 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
79 * Dump contents of mailbox with a leading tag.
81 static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
83 dev_err(adapter->pdev_dev,
84 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
85 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0),
86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8),
87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
95 /**
96 * t4vf_wr_mbox_core - send a command to FW through the mailbox
97 * @adapter: the adapter
98 * @cmd: the command to write
99 * @size: command length in bytes
100 * @rpl: where to optionally store the reply
101 * @sleep_ok: if true we may sleep while awaiting command completion
103 * Sends the given command to FW through the mailbox and waits for the
104 * FW to execute the command. If @rpl is not %NULL it is used to store
105 * the FW's reply to the command. The command and its optional reply
106 * are of the same length. FW can take up to 500 ms to respond.
107 * @sleep_ok determines whether we may sleep while awaiting the response.
108 * If sleeping is allowed we use progressive backoff otherwise we spin.
110 * The return value is 0 on success or a negative errno on failure. A
111 * failure can happen either because we are not able to execute the
112 * command or FW executes it but signals an error. In the latter case
113 * the return value is the error code indicated by FW (negated).
115 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
116 void *rpl, bool sleep_ok)
118 static const int delay[] = {
119 1, 1, 3, 5, 10, 10, 20, 50, 100
122 u32 v;
123 int i, ms, delay_idx;
124 const __be64 *p;
125 u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
126 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
129 * Commands must be multiples of 16 bytes in length and may not be
130 * larger than the size of the Mailbox Data register array.
132 if ((size % 16) != 0 ||
133 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
134 return -EINVAL;
137 * Loop trying to get ownership of the mailbox. Return an error
138 * if we can't gain ownership.
140 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
141 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
142 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
143 if (v != MBOX_OWNER_DRV)
144 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
147 * Write the command array into the Mailbox Data register array and
148 * transfer ownership of the mailbox to the firmware.
150 * For the VFs, the Mailbox Data "registers" are actually backed by
151 * T4's "MA" interface rather than PL Registers (as is the case for
152 * the PFs). Because these are in different coherency domains, the
153 * write to the VF's PL-register-backed Mailbox Control can race in
154 * front of the writes to the MA-backed VF Mailbox Data "registers".
155 * So we need to do a read-back on at least one byte of the VF Mailbox
156 * Data registers before doing the write to the VF Mailbox Control
157 * register.
159 for (i = 0, p = cmd; i < size; i += 8)
160 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
161 t4_read_reg(adapter, mbox_data); /* flush write */
163 t4_write_reg(adapter, mbox_ctl,
164 MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
165 t4_read_reg(adapter, mbox_ctl); /* flush write */
168 * Spin waiting for firmware to acknowledge processing our command.
170 delay_idx = 0;
171 ms = delay[0];
173 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
174 if (sleep_ok) {
175 ms = delay[delay_idx];
176 if (delay_idx < ARRAY_SIZE(delay) - 1)
177 delay_idx++;
178 msleep(ms);
179 } else
180 mdelay(ms);
183 * If we're the owner, see if this is the reply we wanted.
185 v = t4_read_reg(adapter, mbox_ctl);
186 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
188 * If the Message Valid bit isn't on, revoke ownership
189 * of the mailbox and continue waiting for our reply.
191 if ((v & MBMSGVALID) == 0) {
192 t4_write_reg(adapter, mbox_ctl,
193 MBOWNER(MBOX_OWNER_NONE));
194 continue;
198 * We now have our reply. Extract the command return
199 * value, copy the reply back to our caller's buffer
200 * (if specified) and revoke ownership of the mailbox.
201 * We return the (negated) firmware command return
202 * code (this depends on FW_SUCCESS == 0).
205 /* return value in low-order little-endian word */
206 v = t4_read_reg(adapter, mbox_data);
207 if (FW_CMD_RETVAL_GET(v))
208 dump_mbox(adapter, "FW Error", mbox_data);
210 if (rpl) {
211 /* request bit in high-order BE word */
212 WARN_ON((be32_to_cpu(*(const u32 *)cmd)
213 & FW_CMD_REQUEST) == 0);
214 get_mbox_rpl(adapter, rpl, size, mbox_data);
215 WARN_ON((be32_to_cpu(*(u32 *)rpl)
216 & FW_CMD_REQUEST) != 0);
218 t4_write_reg(adapter, mbox_ctl,
219 MBOWNER(MBOX_OWNER_NONE));
220 return -FW_CMD_RETVAL_GET(v);
225 * We timed out. Return the error ...
227 dump_mbox(adapter, "FW Timeout", mbox_data);
228 return -ETIMEDOUT;
232 * hash_mac_addr - return the hash value of a MAC address
233 * @addr: the 48-bit Ethernet MAC address
235 * Hashes a MAC address according to the hash function used by hardware
236 * inexact (hash) address matching.
238 static int hash_mac_addr(const u8 *addr)
240 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
241 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
242 a ^= b;
243 a ^= (a >> 12);
244 a ^= (a >> 6);
245 return a & 0x3f;
249 * init_link_config - initialize a link's SW state
250 * @lc: structure holding the link state
251 * @caps: link capabilities
253 * Initializes the SW state maintained for each link, including the link's
254 * capabilities and default speed/flow-control/autonegotiation settings.
256 static void __devinit init_link_config(struct link_config *lc,
257 unsigned int caps)
259 lc->supported = caps;
260 lc->requested_speed = 0;
261 lc->speed = 0;
262 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
263 if (lc->supported & SUPPORTED_Autoneg) {
264 lc->advertising = lc->supported;
265 lc->autoneg = AUTONEG_ENABLE;
266 lc->requested_fc |= PAUSE_AUTONEG;
267 } else {
268 lc->advertising = 0;
269 lc->autoneg = AUTONEG_DISABLE;
274 * t4vf_port_init - initialize port hardware/software state
275 * @adapter: the adapter
276 * @pidx: the adapter port index
278 int __devinit t4vf_port_init(struct adapter *adapter, int pidx)
280 struct port_info *pi = adap2pinfo(adapter, pidx);
281 struct fw_vi_cmd vi_cmd, vi_rpl;
282 struct fw_port_cmd port_cmd, port_rpl;
283 int v;
284 u32 word;
287 * Execute a VI Read command to get our Virtual Interface information
288 * like MAC address, etc.
290 memset(&vi_cmd, 0, sizeof(vi_cmd));
291 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
292 FW_CMD_REQUEST |
293 FW_CMD_READ);
294 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
295 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid));
296 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
297 if (v)
298 return v;
300 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd));
301 pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd));
302 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
305 * If we don't have read access to our port information, we're done
306 * now. Otherwise, execute a PORT Read command to get it ...
308 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
309 return 0;
311 memset(&port_cmd, 0, sizeof(port_cmd));
312 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) |
313 FW_CMD_REQUEST |
314 FW_CMD_READ |
315 FW_PORT_CMD_PORTID(pi->port_id));
316 port_cmd.action_to_len16 =
317 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
318 FW_LEN16(port_cmd));
319 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
320 if (v)
321 return v;
323 v = 0;
324 word = be16_to_cpu(port_rpl.u.info.pcap);
325 if (word & FW_PORT_CAP_SPEED_100M)
326 v |= SUPPORTED_100baseT_Full;
327 if (word & FW_PORT_CAP_SPEED_1G)
328 v |= SUPPORTED_1000baseT_Full;
329 if (word & FW_PORT_CAP_SPEED_10G)
330 v |= SUPPORTED_10000baseT_Full;
331 if (word & FW_PORT_CAP_ANEG)
332 v |= SUPPORTED_Autoneg;
333 init_link_config(&pi->link_cfg, v);
335 return 0;
339 * t4vf_fw_reset - issue a reset to FW
340 * @adapter: the adapter
342 * Issues a reset command to FW. For a Physical Function this would
343 * result in the Firmware reseting all of its state. For a Virtual
344 * Function this just resets the state associated with the VF.
346 int t4vf_fw_reset(struct adapter *adapter)
348 struct fw_reset_cmd cmd;
350 memset(&cmd, 0, sizeof(cmd));
351 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) |
352 FW_CMD_WRITE);
353 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
354 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
358 * t4vf_query_params - query FW or device parameters
359 * @adapter: the adapter
360 * @nparams: the number of parameters
361 * @params: the parameter names
362 * @vals: the parameter values
364 * Reads the values of firmware or device parameters. Up to 7 parameters
365 * can be queried at once.
367 int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
368 const u32 *params, u32 *vals)
370 int i, ret;
371 struct fw_params_cmd cmd, rpl;
372 struct fw_params_param *p;
373 size_t len16;
375 if (nparams > 7)
376 return -EINVAL;
378 memset(&cmd, 0, sizeof(cmd));
379 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
380 FW_CMD_REQUEST |
381 FW_CMD_READ);
382 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
383 param[nparams].mnem), 16);
384 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
385 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
386 p->mnem = htonl(*params++);
388 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
389 if (ret == 0)
390 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
391 *vals++ = be32_to_cpu(p->val);
392 return ret;
396 * t4vf_set_params - sets FW or device parameters
397 * @adapter: the adapter
398 * @nparams: the number of parameters
399 * @params: the parameter names
400 * @vals: the parameter values
402 * Sets the values of firmware or device parameters. Up to 7 parameters
403 * can be specified at once.
405 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
406 const u32 *params, const u32 *vals)
408 int i;
409 struct fw_params_cmd cmd;
410 struct fw_params_param *p;
411 size_t len16;
413 if (nparams > 7)
414 return -EINVAL;
416 memset(&cmd, 0, sizeof(cmd));
417 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
418 FW_CMD_REQUEST |
419 FW_CMD_WRITE);
420 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
421 param[nparams]), 16);
422 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
423 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
424 p->mnem = cpu_to_be32(*params++);
425 p->val = cpu_to_be32(*vals++);
428 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
432 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
433 * @adapter: the adapter
435 * Retrieves various core SGE parameters in the form of hardware SGE
436 * register values. The caller is responsible for decoding these as
437 * needed. The SGE parameters are stored in @adapter->params.sge.
439 int t4vf_get_sge_params(struct adapter *adapter)
441 struct sge_params *sge_params = &adapter->params.sge;
442 u32 params[7], vals[7];
443 int v;
445 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
446 FW_PARAMS_PARAM_XYZ(SGE_CONTROL));
447 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
448 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE));
449 params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
450 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0));
451 params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
452 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1));
453 params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
454 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1));
455 params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
456 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3));
457 params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
458 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5));
459 v = t4vf_query_params(adapter, 7, params, vals);
460 if (v)
461 return v;
462 sge_params->sge_control = vals[0];
463 sge_params->sge_host_page_size = vals[1];
464 sge_params->sge_fl_buffer_size[0] = vals[2];
465 sge_params->sge_fl_buffer_size[1] = vals[3];
466 sge_params->sge_timer_value_0_and_1 = vals[4];
467 sge_params->sge_timer_value_2_and_3 = vals[5];
468 sge_params->sge_timer_value_4_and_5 = vals[6];
470 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
471 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD));
472 v = t4vf_query_params(adapter, 1, params, vals);
473 if (v)
474 return v;
475 sge_params->sge_ingress_rx_threshold = vals[0];
477 return 0;
481 * t4vf_get_vpd_params - retrieve device VPD paremeters
482 * @adapter: the adapter
484 * Retrives various device Vital Product Data parameters. The parameters
485 * are stored in @adapter->params.vpd.
487 int t4vf_get_vpd_params(struct adapter *adapter)
489 struct vpd_params *vpd_params = &adapter->params.vpd;
490 u32 params[7], vals[7];
491 int v;
493 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
494 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
495 v = t4vf_query_params(adapter, 1, params, vals);
496 if (v)
497 return v;
498 vpd_params->cclk = vals[0];
500 return 0;
504 * t4vf_get_dev_params - retrieve device paremeters
505 * @adapter: the adapter
507 * Retrives various device parameters. The parameters are stored in
508 * @adapter->params.dev.
510 int t4vf_get_dev_params(struct adapter *adapter)
512 struct dev_params *dev_params = &adapter->params.dev;
513 u32 params[7], vals[7];
514 int v;
516 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
517 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
518 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
519 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
520 v = t4vf_query_params(adapter, 2, params, vals);
521 if (v)
522 return v;
523 dev_params->fwrev = vals[0];
524 dev_params->tprev = vals[1];
526 return 0;
530 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
531 * @adapter: the adapter
533 * Retrieves global RSS mode and parameters with which we have to live
534 * and stores them in the @adapter's RSS parameters.
536 int t4vf_get_rss_glb_config(struct adapter *adapter)
538 struct rss_params *rss = &adapter->params.rss;
539 struct fw_rss_glb_config_cmd cmd, rpl;
540 int v;
543 * Execute an RSS Global Configuration read command to retrieve
544 * our RSS configuration.
546 memset(&cmd, 0, sizeof(cmd));
547 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
548 FW_CMD_REQUEST |
549 FW_CMD_READ);
550 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
551 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
552 if (v)
553 return v;
556 * Transate the big-endian RSS Global Configuration into our
557 * cpu-endian format based on the RSS mode. We also do first level
558 * filtering at this point to weed out modes which don't support
559 * VF Drivers ...
561 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET(
562 be32_to_cpu(rpl.u.manual.mode_pkd));
563 switch (rss->mode) {
564 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
565 u32 word = be32_to_cpu(
566 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
568 rss->u.basicvirtual.synmapen =
569 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
570 rss->u.basicvirtual.syn4tupenipv6 =
571 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
572 rss->u.basicvirtual.syn2tupenipv6 =
573 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
574 rss->u.basicvirtual.syn4tupenipv4 =
575 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
576 rss->u.basicvirtual.syn2tupenipv4 =
577 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
579 rss->u.basicvirtual.ofdmapen =
580 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
582 rss->u.basicvirtual.tnlmapen =
583 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
584 rss->u.basicvirtual.tnlalllookup =
585 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
587 rss->u.basicvirtual.hashtoeplitz =
588 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
590 /* we need at least Tunnel Map Enable to be set */
591 if (!rss->u.basicvirtual.tnlmapen)
592 return -EINVAL;
593 break;
596 default:
597 /* all unknown/unsupported RSS modes result in an error */
598 return -EINVAL;
601 return 0;
605 * t4vf_get_vfres - retrieve VF resource limits
606 * @adapter: the adapter
608 * Retrieves configured resource limits and capabilities for a virtual
609 * function. The results are stored in @adapter->vfres.
611 int t4vf_get_vfres(struct adapter *adapter)
613 struct vf_resources *vfres = &adapter->params.vfres;
614 struct fw_pfvf_cmd cmd, rpl;
615 int v;
616 u32 word;
619 * Execute PFVF Read command to get VF resource limits; bail out early
620 * with error on command failure.
622 memset(&cmd, 0, sizeof(cmd));
623 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) |
624 FW_CMD_REQUEST |
625 FW_CMD_READ);
626 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
627 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
628 if (v)
629 return v;
632 * Extract VF resource limits and return success.
634 word = be32_to_cpu(rpl.niqflint_niq);
635 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word);
636 vfres->niq = FW_PFVF_CMD_NIQ_GET(word);
638 word = be32_to_cpu(rpl.type_to_neq);
639 vfres->neq = FW_PFVF_CMD_NEQ_GET(word);
640 vfres->pmask = FW_PFVF_CMD_PMASK_GET(word);
642 word = be32_to_cpu(rpl.tc_to_nexactf);
643 vfres->tc = FW_PFVF_CMD_TC_GET(word);
644 vfres->nvi = FW_PFVF_CMD_NVI_GET(word);
645 vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word);
647 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
648 vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word);
649 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word);
650 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word);
652 return 0;
656 * t4vf_read_rss_vi_config - read a VI's RSS configuration
657 * @adapter: the adapter
658 * @viid: Virtual Interface ID
659 * @config: pointer to host-native VI RSS Configuration buffer
661 * Reads the Virtual Interface's RSS configuration information and
662 * translates it into CPU-native format.
664 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
665 union rss_vi_config *config)
667 struct fw_rss_vi_config_cmd cmd, rpl;
668 int v;
670 memset(&cmd, 0, sizeof(cmd));
671 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
672 FW_CMD_REQUEST |
673 FW_CMD_READ |
674 FW_RSS_VI_CONFIG_CMD_VIID(viid));
675 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
676 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
677 if (v)
678 return v;
680 switch (adapter->params.rss.mode) {
681 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
682 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
684 config->basicvirtual.ip6fourtupen =
685 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0);
686 config->basicvirtual.ip6twotupen =
687 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0);
688 config->basicvirtual.ip4fourtupen =
689 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0);
690 config->basicvirtual.ip4twotupen =
691 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0);
692 config->basicvirtual.udpen =
693 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0);
694 config->basicvirtual.defaultq =
695 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word);
696 break;
699 default:
700 return -EINVAL;
703 return 0;
707 * t4vf_write_rss_vi_config - write a VI's RSS configuration
708 * @adapter: the adapter
709 * @viid: Virtual Interface ID
710 * @config: pointer to host-native VI RSS Configuration buffer
712 * Write the Virtual Interface's RSS configuration information
713 * (translating it into firmware-native format before writing).
715 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
716 union rss_vi_config *config)
718 struct fw_rss_vi_config_cmd cmd, rpl;
720 memset(&cmd, 0, sizeof(cmd));
721 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
722 FW_CMD_REQUEST |
723 FW_CMD_WRITE |
724 FW_RSS_VI_CONFIG_CMD_VIID(viid));
725 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
726 switch (adapter->params.rss.mode) {
727 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
728 u32 word = 0;
730 if (config->basicvirtual.ip6fourtupen)
731 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
732 if (config->basicvirtual.ip6twotupen)
733 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
734 if (config->basicvirtual.ip4fourtupen)
735 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
736 if (config->basicvirtual.ip4twotupen)
737 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
738 if (config->basicvirtual.udpen)
739 word |= FW_RSS_VI_CONFIG_CMD_UDPEN;
740 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
741 config->basicvirtual.defaultq);
742 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
743 break;
746 default:
747 return -EINVAL;
750 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
754 * t4vf_config_rss_range - configure a portion of the RSS mapping table
755 * @adapter: the adapter
756 * @viid: Virtual Interface of RSS Table Slice
757 * @start: starting entry in the table to write
758 * @n: how many table entries to write
759 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
760 * @nrspq: number of values in @rspq
762 * Programs the selected part of the VI's RSS mapping table with the
763 * provided values. If @nrspq < @n the supplied values are used repeatedly
764 * until the full table range is populated.
766 * The caller must ensure the values in @rspq are in the range 0..1023.
768 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
769 int start, int n, const u16 *rspq, int nrspq)
771 const u16 *rsp = rspq;
772 const u16 *rsp_end = rspq+nrspq;
773 struct fw_rss_ind_tbl_cmd cmd;
776 * Initialize firmware command template to write the RSS table.
778 memset(&cmd, 0, sizeof(cmd));
779 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
780 FW_CMD_REQUEST |
781 FW_CMD_WRITE |
782 FW_RSS_IND_TBL_CMD_VIID(viid));
783 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
786 * Each firmware RSS command can accommodate up to 32 RSS Ingress
787 * Queue Identifiers. These Ingress Queue IDs are packed three to
788 * a 32-bit word as 10-bit values with the upper remaining 2 bits
789 * reserved.
791 while (n > 0) {
792 __be32 *qp = &cmd.iq0_to_iq2;
793 int nq = min(n, 32);
794 int ret;
797 * Set up the firmware RSS command header to send the next
798 * "nq" Ingress Queue IDs to the firmware.
800 cmd.niqid = cpu_to_be16(nq);
801 cmd.startidx = cpu_to_be16(start);
804 * "nq" more done for the start of the next loop.
806 start += nq;
807 n -= nq;
810 * While there are still Ingress Queue IDs to stuff into the
811 * current firmware RSS command, retrieve them from the
812 * Ingress Queue ID array and insert them into the command.
814 while (nq > 0) {
816 * Grab up to the next 3 Ingress Queue IDs (wrapping
817 * around the Ingress Queue ID array if necessary) and
818 * insert them into the firmware RSS command at the
819 * current 3-tuple position within the commad.
821 u16 qbuf[3];
822 u16 *qbp = qbuf;
823 int nqbuf = min(3, nq);
825 nq -= nqbuf;
826 qbuf[0] = qbuf[1] = qbuf[2] = 0;
827 while (nqbuf) {
828 nqbuf--;
829 *qbp++ = *rsp++;
830 if (rsp >= rsp_end)
831 rsp = rspq;
833 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
834 FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
835 FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
839 * Send this portion of the RRS table update to the firmware;
840 * bail out on any errors.
842 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
843 if (ret)
844 return ret;
846 return 0;
850 * t4vf_alloc_vi - allocate a virtual interface on a port
851 * @adapter: the adapter
852 * @port_id: physical port associated with the VI
854 * Allocate a new Virtual Interface and bind it to the indicated
855 * physical port. Return the new Virtual Interface Identifier on
856 * success, or a [negative] error number on failure.
858 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
860 struct fw_vi_cmd cmd, rpl;
861 int v;
864 * Execute a VI command to allocate Virtual Interface and return its
865 * VIID.
867 memset(&cmd, 0, sizeof(cmd));
868 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
869 FW_CMD_REQUEST |
870 FW_CMD_WRITE |
871 FW_CMD_EXEC);
872 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
873 FW_VI_CMD_ALLOC);
874 cmd.portid_pkd = FW_VI_CMD_PORTID(port_id);
875 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
876 if (v)
877 return v;
879 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid));
883 * t4vf_free_vi -- free a virtual interface
884 * @adapter: the adapter
885 * @viid: the virtual interface identifier
887 * Free a previously allocated Virtual Interface. Return an error on
888 * failure.
890 int t4vf_free_vi(struct adapter *adapter, int viid)
892 struct fw_vi_cmd cmd;
895 * Execute a VI command to free the Virtual Interface.
897 memset(&cmd, 0, sizeof(cmd));
898 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
899 FW_CMD_REQUEST |
900 FW_CMD_EXEC);
901 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
902 FW_VI_CMD_FREE);
903 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid));
904 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
908 * t4vf_enable_vi - enable/disable a virtual interface
909 * @adapter: the adapter
910 * @viid: the Virtual Interface ID
911 * @rx_en: 1=enable Rx, 0=disable Rx
912 * @tx_en: 1=enable Tx, 0=disable Tx
914 * Enables/disables a virtual interface.
916 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
917 bool rx_en, bool tx_en)
919 struct fw_vi_enable_cmd cmd;
921 memset(&cmd, 0, sizeof(cmd));
922 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
923 FW_CMD_REQUEST |
924 FW_CMD_EXEC |
925 FW_VI_ENABLE_CMD_VIID(viid));
926 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) |
927 FW_VI_ENABLE_CMD_EEN(tx_en) |
928 FW_LEN16(cmd));
929 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
933 * t4vf_identify_port - identify a VI's port by blinking its LED
934 * @adapter: the adapter
935 * @viid: the Virtual Interface ID
936 * @nblinks: how many times to blink LED at 2.5 Hz
938 * Identifies a VI's port by blinking its LED.
940 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
941 unsigned int nblinks)
943 struct fw_vi_enable_cmd cmd;
945 memset(&cmd, 0, sizeof(cmd));
946 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
947 FW_CMD_REQUEST |
948 FW_CMD_EXEC |
949 FW_VI_ENABLE_CMD_VIID(viid));
950 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED |
951 FW_LEN16(cmd));
952 cmd.blinkdur = cpu_to_be16(nblinks);
953 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
957 * t4vf_set_rxmode - set Rx properties of a virtual interface
958 * @adapter: the adapter
959 * @viid: the VI id
960 * @mtu: the new MTU or -1 for no change
961 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
962 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
963 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
964 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
965 * -1 no change
967 * Sets Rx properties of a virtual interface.
969 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
970 int mtu, int promisc, int all_multi, int bcast, int vlanex,
971 bool sleep_ok)
973 struct fw_vi_rxmode_cmd cmd;
975 /* convert to FW values */
976 if (mtu < 0)
977 mtu = FW_VI_RXMODE_CMD_MTU_MASK;
978 if (promisc < 0)
979 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
980 if (all_multi < 0)
981 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
982 if (bcast < 0)
983 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
984 if (vlanex < 0)
985 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
987 memset(&cmd, 0, sizeof(cmd));
988 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) |
989 FW_CMD_REQUEST |
990 FW_CMD_WRITE |
991 FW_VI_RXMODE_CMD_VIID(viid));
992 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
993 cmd.mtu_to_vlanexen =
994 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) |
995 FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
996 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
997 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
998 FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
999 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1003 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1004 * @adapter: the adapter
1005 * @viid: the Virtual Interface Identifier
1006 * @free: if true any existing filters for this VI id are first removed
1007 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1008 * @addr: the MAC address(es)
1009 * @idx: where to store the index of each allocated filter
1010 * @hash: pointer to hash address filter bitmap
1011 * @sleep_ok: call is allowed to sleep
1013 * Allocates an exact-match filter for each of the supplied addresses and
1014 * sets it to the corresponding address. If @idx is not %NULL it should
1015 * have at least @naddr entries, each of which will be set to the index of
1016 * the filter allocated for the corresponding MAC address. If a filter
1017 * could not be allocated for an address its index is set to 0xffff.
1018 * If @hash is not %NULL addresses that fail to allocate an exact filter
1019 * are hashed and update the hash filter bitmap pointed at by @hash.
1021 * Returns a negative error number or the number of filters allocated.
1023 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1024 unsigned int naddr, const u8 **addr, u16 *idx,
1025 u64 *hash, bool sleep_ok)
1027 int offset, ret = 0;
1028 unsigned nfilters = 0;
1029 unsigned int rem = naddr;
1030 struct fw_vi_mac_cmd cmd, rpl;
1032 if (naddr > FW_CLS_TCAM_NUM_ENTRIES)
1033 return -EINVAL;
1035 for (offset = 0; offset < naddr; /**/) {
1036 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1037 ? rem
1038 : ARRAY_SIZE(cmd.u.exact));
1039 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1040 u.exact[fw_naddr]), 16);
1041 struct fw_vi_mac_exact *p;
1042 int i;
1044 memset(&cmd, 0, sizeof(cmd));
1045 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1046 FW_CMD_REQUEST |
1047 FW_CMD_WRITE |
1048 (free ? FW_CMD_EXEC : 0) |
1049 FW_VI_MAC_CMD_VIID(viid));
1050 cmd.freemacs_to_len16 =
1051 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) |
1052 FW_CMD_LEN16(len16));
1054 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1055 p->valid_to_idx = cpu_to_be16(
1056 FW_VI_MAC_CMD_VALID |
1057 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
1058 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1062 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1063 sleep_ok);
1064 if (ret && ret != -ENOMEM)
1065 break;
1067 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1068 u16 index = FW_VI_MAC_CMD_IDX_GET(
1069 be16_to_cpu(p->valid_to_idx));
1071 if (idx)
1072 idx[offset+i] =
1073 (index >= FW_CLS_TCAM_NUM_ENTRIES
1074 ? 0xffff
1075 : index);
1076 if (index < FW_CLS_TCAM_NUM_ENTRIES)
1077 nfilters++;
1078 else if (hash)
1079 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1082 free = false;
1083 offset += fw_naddr;
1084 rem -= fw_naddr;
1088 * If there were no errors or we merely ran out of room in our MAC
1089 * address arena, return the number of filters actually written.
1091 if (ret == 0 || ret == -ENOMEM)
1092 ret = nfilters;
1093 return ret;
1097 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1098 * @adapter: the adapter
1099 * @viid: the Virtual Interface ID
1100 * @idx: index of existing filter for old value of MAC address, or -1
1101 * @addr: the new MAC address value
1102 * @persist: if idx < 0, the new MAC allocation should be persistent
1104 * Modifies an exact-match filter and sets it to the new MAC address.
1105 * Note that in general it is not possible to modify the value of a given
1106 * filter so the generic way to modify an address filter is to free the
1107 * one being used by the old address value and allocate a new filter for
1108 * the new address value. @idx can be -1 if the address is a new
1109 * addition.
1111 * Returns a negative error number or the index of the filter with the new
1112 * MAC value.
1114 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1115 int idx, const u8 *addr, bool persist)
1117 int ret;
1118 struct fw_vi_mac_cmd cmd, rpl;
1119 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1120 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1121 u.exact[1]), 16);
1124 * If this is a new allocation, determine whether it should be
1125 * persistent (across a "freemacs" operation) or not.
1127 if (idx < 0)
1128 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1130 memset(&cmd, 0, sizeof(cmd));
1131 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1132 FW_CMD_REQUEST |
1133 FW_CMD_WRITE |
1134 FW_VI_MAC_CMD_VIID(viid));
1135 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1136 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID |
1137 FW_VI_MAC_CMD_IDX(idx));
1138 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1140 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1141 if (ret == 0) {
1142 p = &rpl.u.exact[0];
1143 ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
1144 if (ret >= FW_CLS_TCAM_NUM_ENTRIES)
1145 ret = -ENOMEM;
1147 return ret;
1151 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1152 * @adapter: the adapter
1153 * @viid: the Virtual Interface Identifier
1154 * @ucast: whether the hash filter should also match unicast addresses
1155 * @vec: the value to be written to the hash filter
1156 * @sleep_ok: call is allowed to sleep
1158 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1160 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1161 bool ucast, u64 vec, bool sleep_ok)
1163 struct fw_vi_mac_cmd cmd;
1164 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1165 u.exact[0]), 16);
1167 memset(&cmd, 0, sizeof(cmd));
1168 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1169 FW_CMD_REQUEST |
1170 FW_CMD_WRITE |
1171 FW_VI_ENABLE_CMD_VIID(viid));
1172 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN |
1173 FW_VI_MAC_CMD_HASHUNIEN(ucast) |
1174 FW_CMD_LEN16(len16));
1175 cmd.u.hash.hashvec = cpu_to_be64(vec);
1176 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1180 * t4vf_get_port_stats - collect "port" statistics
1181 * @adapter: the adapter
1182 * @pidx: the port index
1183 * @s: the stats structure to fill
1185 * Collect statistics for the "port"'s Virtual Interface.
1187 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1188 struct t4vf_port_stats *s)
1190 struct port_info *pi = adap2pinfo(adapter, pidx);
1191 struct fw_vi_stats_vf fwstats;
1192 unsigned int rem = VI_VF_NUM_STATS;
1193 __be64 *fwsp = (__be64 *)&fwstats;
1196 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1197 * commands. We could use a Work Request and get all of them at once
1198 * but that's an asynchronous interface which is awkward to use.
1200 while (rem) {
1201 unsigned int ix = VI_VF_NUM_STATS - rem;
1202 unsigned int nstats = min(6U, rem);
1203 struct fw_vi_stats_cmd cmd, rpl;
1204 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1205 sizeof(struct fw_vi_stats_ctl));
1206 size_t len16 = DIV_ROUND_UP(len, 16);
1207 int ret;
1209 memset(&cmd, 0, sizeof(cmd));
1210 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) |
1211 FW_VI_STATS_CMD_VIID(pi->viid) |
1212 FW_CMD_REQUEST |
1213 FW_CMD_READ);
1214 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1215 cmd.u.ctl.nstats_ix =
1216 cpu_to_be16(FW_VI_STATS_CMD_IX(ix) |
1217 FW_VI_STATS_CMD_NSTATS(nstats));
1218 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1219 if (ret)
1220 return ret;
1222 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1224 rem -= nstats;
1225 fwsp += nstats;
1229 * Translate firmware statistics into host native statistics.
1231 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1232 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1233 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1234 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1235 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1236 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1237 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1238 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1239 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1241 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1242 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1243 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1244 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1245 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1246 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1248 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1250 return 0;
1254 * t4vf_iq_free - free an ingress queue and its free lists
1255 * @adapter: the adapter
1256 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1257 * @iqid: ingress queue ID
1258 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1259 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1261 * Frees an ingress queue and its associated free lists, if any.
1263 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1264 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1266 struct fw_iq_cmd cmd;
1268 memset(&cmd, 0, sizeof(cmd));
1269 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
1270 FW_CMD_REQUEST |
1271 FW_CMD_EXEC);
1272 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE |
1273 FW_LEN16(cmd));
1274 cmd.type_to_iqandstindex =
1275 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype));
1277 cmd.iqid = cpu_to_be16(iqid);
1278 cmd.fl0id = cpu_to_be16(fl0id);
1279 cmd.fl1id = cpu_to_be16(fl1id);
1280 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1284 * t4vf_eth_eq_free - free an Ethernet egress queue
1285 * @adapter: the adapter
1286 * @eqid: egress queue ID
1288 * Frees an Ethernet egress queue.
1290 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1292 struct fw_eq_eth_cmd cmd;
1294 memset(&cmd, 0, sizeof(cmd));
1295 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
1296 FW_CMD_REQUEST |
1297 FW_CMD_EXEC);
1298 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE |
1299 FW_LEN16(cmd));
1300 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid));
1301 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1305 * t4vf_handle_fw_rpl - process a firmware reply message
1306 * @adapter: the adapter
1307 * @rpl: start of the firmware message
1309 * Processes a firmware message, such as link state change messages.
1311 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1313 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1314 u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi));
1316 switch (opcode) {
1317 case FW_PORT_CMD: {
1319 * Link/module state change message.
1321 const struct fw_port_cmd *port_cmd =
1322 (const struct fw_port_cmd *)rpl;
1323 u32 word;
1324 int action, port_id, link_ok, speed, fc, pidx;
1327 * Extract various fields from port status change message.
1329 action = FW_PORT_CMD_ACTION_GET(
1330 be32_to_cpu(port_cmd->action_to_len16));
1331 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1332 dev_err(adapter->pdev_dev,
1333 "Unknown firmware PORT reply action %x\n",
1334 action);
1335 break;
1338 port_id = FW_PORT_CMD_PORTID_GET(
1339 be32_to_cpu(port_cmd->op_to_portid));
1341 word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1342 link_ok = (word & FW_PORT_CMD_LSTATUS) != 0;
1343 speed = 0;
1344 fc = 0;
1345 if (word & FW_PORT_CMD_RXPAUSE)
1346 fc |= PAUSE_RX;
1347 if (word & FW_PORT_CMD_TXPAUSE)
1348 fc |= PAUSE_TX;
1349 if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
1350 speed = SPEED_100;
1351 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
1352 speed = SPEED_1000;
1353 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
1354 speed = SPEED_10000;
1357 * Scan all of our "ports" (Virtual Interfaces) looking for
1358 * those bound to the physical port which has changed. If
1359 * our recorded state doesn't match the current state,
1360 * signal that change to the OS code.
1362 for_each_port(adapter, pidx) {
1363 struct port_info *pi = adap2pinfo(adapter, pidx);
1364 struct link_config *lc;
1366 if (pi->port_id != port_id)
1367 continue;
1369 lc = &pi->link_cfg;
1370 if (link_ok != lc->link_ok || speed != lc->speed ||
1371 fc != lc->fc) {
1372 /* something changed */
1373 lc->link_ok = link_ok;
1374 lc->speed = speed;
1375 lc->fc = fc;
1376 t4vf_os_link_changed(adapter, pidx, link_ok);
1379 break;
1382 default:
1383 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1384 opcode);
1386 return 0;