2 * linux/arch/arm/kernel/ptrace.c
5 * edited by Linus Torvalds
6 * ARM modifications Copyright (C) 2000 Russell King
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
28 #include <asm/pgtable.h>
29 #include <asm/system.h>
30 #include <asm/traps.h>
35 * does not yet catch signals sent when the child dies.
36 * in exit.c or in signal.c.
41 * Breakpoint SWI instruction: SWI &9F0001
43 #define BREAKINST_ARM 0xef9f0001
44 #define BREAKINST_THUMB 0xdf00 /* fill this in later */
47 * New breakpoints - use an undefined instruction. The ARM architecture
48 * reference manual guarantees that the following instruction space
49 * will produce an undefined instruction exception on all CPUs:
51 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
52 * Thumb: 1101 1110 xxxx xxxx
54 #define BREAKINST_ARM 0xe7f001f0
55 #define BREAKINST_THUMB 0xde01
58 struct pt_regs_offset
{
63 #define REG_OFFSET_NAME(r) \
64 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
65 #define REG_OFFSET_END {.name = NULL, .offset = 0}
67 static const struct pt_regs_offset regoffset_table
[] = {
84 REG_OFFSET_NAME(cpsr
),
85 REG_OFFSET_NAME(ORIG_r0
),
90 * regs_query_register_offset() - query register offset from its name
91 * @name: the name of a register
93 * regs_query_register_offset() returns the offset of a register in struct
94 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
96 int regs_query_register_offset(const char *name
)
98 const struct pt_regs_offset
*roff
;
99 for (roff
= regoffset_table
; roff
->name
!= NULL
; roff
++)
100 if (!strcmp(roff
->name
, name
))
106 * regs_query_register_name() - query register name from its offset
107 * @offset: the offset of a register in struct pt_regs.
109 * regs_query_register_name() returns the name of a register from its
110 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112 const char *regs_query_register_name(unsigned int offset
)
114 const struct pt_regs_offset
*roff
;
115 for (roff
= regoffset_table
; roff
->name
!= NULL
; roff
++)
116 if (roff
->offset
== offset
)
122 * regs_within_kernel_stack() - check the address in the stack
123 * @regs: pt_regs which contains kernel stack pointer.
124 * @addr: address which is checked.
126 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
127 * If @addr is within the kernel stack, it returns true. If not, returns false.
129 bool regs_within_kernel_stack(struct pt_regs
*regs
, unsigned long addr
)
131 return ((addr
& ~(THREAD_SIZE
- 1)) ==
132 (kernel_stack_pointer(regs
) & ~(THREAD_SIZE
- 1)));
136 * regs_get_kernel_stack_nth() - get Nth entry of the stack
137 * @regs: pt_regs which contains kernel stack pointer.
138 * @n: stack entry number.
140 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
141 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
144 unsigned long regs_get_kernel_stack_nth(struct pt_regs
*regs
, unsigned int n
)
146 unsigned long *addr
= (unsigned long *)kernel_stack_pointer(regs
);
148 if (regs_within_kernel_stack(regs
, (unsigned long)addr
))
155 * this routine will get a word off of the processes privileged stack.
156 * the offset is how far from the base addr as stored in the THREAD.
157 * this routine assumes that all the privileged stacks are in our
160 static inline long get_user_reg(struct task_struct
*task
, int offset
)
162 return task_pt_regs(task
)->uregs
[offset
];
166 * this routine will put a word on the processes privileged stack.
167 * the offset is how far from the base addr as stored in the THREAD.
168 * this routine assumes that all the privileged stacks are in our
172 put_user_reg(struct task_struct
*task
, int offset
, long data
)
174 struct pt_regs newregs
, *regs
= task_pt_regs(task
);
178 newregs
.uregs
[offset
] = data
;
180 if (valid_user_regs(&newregs
)) {
181 regs
->uregs
[offset
] = data
;
189 * Called by kernel/ptrace.c when detaching..
191 void ptrace_disable(struct task_struct
*child
)
197 * Handle hitting a breakpoint.
199 void ptrace_break(struct task_struct
*tsk
, struct pt_regs
*regs
)
203 info
.si_signo
= SIGTRAP
;
205 info
.si_code
= TRAP_BRKPT
;
206 info
.si_addr
= (void __user
*)instruction_pointer(regs
);
208 force_sig_info(SIGTRAP
, &info
, tsk
);
211 static int break_trap(struct pt_regs
*regs
, unsigned int instr
)
213 ptrace_break(current
, regs
);
217 static struct undef_hook arm_break_hook
= {
218 .instr_mask
= 0x0fffffff,
219 .instr_val
= 0x07f001f0,
220 .cpsr_mask
= PSR_T_BIT
,
225 static struct undef_hook thumb_break_hook
= {
226 .instr_mask
= 0xffff,
228 .cpsr_mask
= PSR_T_BIT
,
229 .cpsr_val
= PSR_T_BIT
,
233 static struct undef_hook thumb2_break_hook
= {
234 .instr_mask
= 0xffffffff,
235 .instr_val
= 0xf7f0a000,
236 .cpsr_mask
= PSR_T_BIT
,
237 .cpsr_val
= PSR_T_BIT
,
241 static int __init
ptrace_break_init(void)
243 register_undef_hook(&arm_break_hook
);
244 register_undef_hook(&thumb_break_hook
);
245 register_undef_hook(&thumb2_break_hook
);
249 core_initcall(ptrace_break_init
);
252 * Read the word at offset "off" into the "struct user". We
253 * actually access the pt_regs stored on the kernel stack.
255 static int ptrace_read_user(struct task_struct
*tsk
, unsigned long off
,
256 unsigned long __user
*ret
)
260 if (off
& 3 || off
>= sizeof(struct user
))
264 if (off
== PT_TEXT_ADDR
)
265 tmp
= tsk
->mm
->start_code
;
266 else if (off
== PT_DATA_ADDR
)
267 tmp
= tsk
->mm
->start_data
;
268 else if (off
== PT_TEXT_END_ADDR
)
269 tmp
= tsk
->mm
->end_code
;
270 else if (off
< sizeof(struct pt_regs
))
271 tmp
= get_user_reg(tsk
, off
>> 2);
273 return put_user(tmp
, ret
);
277 * Write the word at offset "off" into "struct user". We
278 * actually access the pt_regs stored on the kernel stack.
280 static int ptrace_write_user(struct task_struct
*tsk
, unsigned long off
,
283 if (off
& 3 || off
>= sizeof(struct user
))
286 if (off
>= sizeof(struct pt_regs
))
289 return put_user_reg(tsk
, off
>> 2, val
);
295 * Get the child iWMMXt state.
297 static int ptrace_getwmmxregs(struct task_struct
*tsk
, void __user
*ufp
)
299 struct thread_info
*thread
= task_thread_info(tsk
);
301 if (!test_ti_thread_flag(thread
, TIF_USING_IWMMXT
))
303 iwmmxt_task_disable(thread
); /* force it to ram */
304 return copy_to_user(ufp
, &thread
->fpstate
.iwmmxt
, IWMMXT_SIZE
)
309 * Set the child iWMMXt state.
311 static int ptrace_setwmmxregs(struct task_struct
*tsk
, void __user
*ufp
)
313 struct thread_info
*thread
= task_thread_info(tsk
);
315 if (!test_ti_thread_flag(thread
, TIF_USING_IWMMXT
))
317 iwmmxt_task_release(thread
); /* force a reload */
318 return copy_from_user(&thread
->fpstate
.iwmmxt
, ufp
, IWMMXT_SIZE
)
326 * Get the child Crunch state.
328 static int ptrace_getcrunchregs(struct task_struct
*tsk
, void __user
*ufp
)
330 struct thread_info
*thread
= task_thread_info(tsk
);
332 crunch_task_disable(thread
); /* force it to ram */
333 return copy_to_user(ufp
, &thread
->crunchstate
, CRUNCH_SIZE
)
338 * Set the child Crunch state.
340 static int ptrace_setcrunchregs(struct task_struct
*tsk
, void __user
*ufp
)
342 struct thread_info
*thread
= task_thread_info(tsk
);
344 crunch_task_release(thread
); /* force a reload */
345 return copy_from_user(&thread
->crunchstate
, ufp
, CRUNCH_SIZE
)
350 #ifdef CONFIG_HAVE_HW_BREAKPOINT
352 * Convert a virtual register number into an index for a thread_info
353 * breakpoint array. Breakpoints are identified using positive numbers
354 * whilst watchpoints are negative. The registers are laid out as pairs
355 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
356 * Register 0 is reserved for describing resource information.
358 static int ptrace_hbp_num_to_idx(long num
)
361 num
= (ARM_MAX_BRP
<< 1) - num
;
362 return (num
- 1) >> 1;
366 * Returns the virtual register number for the address of the
367 * breakpoint at index idx.
369 static long ptrace_hbp_idx_to_num(int idx
)
371 long mid
= ARM_MAX_BRP
<< 1;
372 long num
= (idx
<< 1) + 1;
373 return num
> mid
? mid
- num
: num
;
377 * Handle hitting a HW-breakpoint.
379 static void ptrace_hbptriggered(struct perf_event
*bp
,
380 struct perf_sample_data
*data
,
381 struct pt_regs
*regs
)
383 struct arch_hw_breakpoint
*bkpt
= counter_arch_bp(bp
);
388 for (i
= 0; i
< ARM_MAX_HBP_SLOTS
; ++i
)
389 if (current
->thread
.debug
.hbp
[i
] == bp
)
392 num
= (i
== ARM_MAX_HBP_SLOTS
) ? 0 : ptrace_hbp_idx_to_num(i
);
394 info
.si_signo
= SIGTRAP
;
395 info
.si_errno
= (int)num
;
396 info
.si_code
= TRAP_HWBKPT
;
397 info
.si_addr
= (void __user
*)(bkpt
->trigger
);
399 force_sig_info(SIGTRAP
, &info
, current
);
403 * Set ptrace breakpoint pointers to zero for this task.
404 * This is required in order to prevent child processes from unregistering
405 * breakpoints held by their parent.
407 void clear_ptrace_hw_breakpoint(struct task_struct
*tsk
)
409 memset(tsk
->thread
.debug
.hbp
, 0, sizeof(tsk
->thread
.debug
.hbp
));
413 * Unregister breakpoints from this task and reset the pointers in
416 void flush_ptrace_hw_breakpoint(struct task_struct
*tsk
)
419 struct thread_struct
*t
= &tsk
->thread
;
421 for (i
= 0; i
< ARM_MAX_HBP_SLOTS
; i
++) {
422 if (t
->debug
.hbp
[i
]) {
423 unregister_hw_breakpoint(t
->debug
.hbp
[i
]);
424 t
->debug
.hbp
[i
] = NULL
;
429 static u32
ptrace_get_hbp_resource_info(void)
431 u8 num_brps
, num_wrps
, debug_arch
, wp_len
;
434 num_brps
= hw_breakpoint_slots(TYPE_INST
);
435 num_wrps
= hw_breakpoint_slots(TYPE_DATA
);
436 debug_arch
= arch_get_debug_arch();
437 wp_len
= arch_get_max_wp_len();
450 static struct perf_event
*ptrace_hbp_create(struct task_struct
*tsk
, int type
)
452 struct perf_event_attr attr
;
454 ptrace_breakpoint_init(&attr
);
456 /* Initialise fields to sane defaults. */
458 attr
.bp_len
= HW_BREAKPOINT_LEN_4
;
462 return register_user_hw_breakpoint(&attr
, ptrace_hbptriggered
, NULL
,
466 static int ptrace_gethbpregs(struct task_struct
*tsk
, long num
,
467 unsigned long __user
*data
)
471 struct perf_event
*bp
;
472 struct arch_hw_breakpoint_ctrl arch_ctrl
;
475 reg
= ptrace_get_hbp_resource_info();
477 idx
= ptrace_hbp_num_to_idx(num
);
478 if (idx
< 0 || idx
>= ARM_MAX_HBP_SLOTS
) {
483 bp
= tsk
->thread
.debug
.hbp
[idx
];
489 arch_ctrl
= counter_arch_bp(bp
)->ctrl
;
492 * Fix up the len because we may have adjusted it
493 * to compensate for an unaligned address.
495 while (!(arch_ctrl
.len
& 0x1))
499 reg
= bp
->attr
.bp_addr
;
501 reg
= encode_ctrl_reg(arch_ctrl
);
505 if (put_user(reg
, data
))
512 static int ptrace_sethbpregs(struct task_struct
*tsk
, long num
,
513 unsigned long __user
*data
)
515 int idx
, gen_len
, gen_type
, implied_type
, ret
= 0;
517 struct perf_event
*bp
;
518 struct arch_hw_breakpoint_ctrl ctrl
;
519 struct perf_event_attr attr
;
524 implied_type
= HW_BREAKPOINT_RW
;
526 implied_type
= HW_BREAKPOINT_X
;
528 idx
= ptrace_hbp_num_to_idx(num
);
529 if (idx
< 0 || idx
>= ARM_MAX_HBP_SLOTS
) {
534 if (get_user(user_val
, data
)) {
539 bp
= tsk
->thread
.debug
.hbp
[idx
];
541 bp
= ptrace_hbp_create(tsk
, implied_type
);
546 tsk
->thread
.debug
.hbp
[idx
] = bp
;
553 attr
.bp_addr
= user_val
;
556 decode_ctrl_reg(user_val
, &ctrl
);
557 ret
= arch_bp_generic_fields(ctrl
, &gen_len
, &gen_type
);
561 if ((gen_type
& implied_type
) != gen_type
) {
566 attr
.bp_len
= gen_len
;
567 attr
.bp_type
= gen_type
;
568 attr
.disabled
= !ctrl
.enabled
;
571 ret
= modify_user_hw_breakpoint(bp
, &attr
);
577 /* regset get/set implementations */
579 static int gpr_get(struct task_struct
*target
,
580 const struct user_regset
*regset
,
581 unsigned int pos
, unsigned int count
,
582 void *kbuf
, void __user
*ubuf
)
584 struct pt_regs
*regs
= task_pt_regs(target
);
586 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
591 static int gpr_set(struct task_struct
*target
,
592 const struct user_regset
*regset
,
593 unsigned int pos
, unsigned int count
,
594 const void *kbuf
, const void __user
*ubuf
)
597 struct pt_regs newregs
;
599 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
605 if (!valid_user_regs(&newregs
))
608 *task_pt_regs(target
) = newregs
;
612 static int fpa_get(struct task_struct
*target
,
613 const struct user_regset
*regset
,
614 unsigned int pos
, unsigned int count
,
615 void *kbuf
, void __user
*ubuf
)
617 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
618 &task_thread_info(target
)->fpstate
,
619 0, sizeof(struct user_fp
));
622 static int fpa_set(struct task_struct
*target
,
623 const struct user_regset
*regset
,
624 unsigned int pos
, unsigned int count
,
625 const void *kbuf
, const void __user
*ubuf
)
627 struct thread_info
*thread
= task_thread_info(target
);
629 thread
->used_cp
[1] = thread
->used_cp
[2] = 1;
631 return user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
633 0, sizeof(struct user_fp
));
638 * VFP register get/set implementations.
640 * With respect to the kernel, struct user_fp is divided into three chunks:
641 * 16 or 32 real VFP registers (d0-d15 or d0-31)
642 * These are transferred to/from the real registers in the task's
643 * vfp_hard_struct. The number of registers depends on the kernel
646 * 16 or 0 fake VFP registers (d16-d31 or empty)
647 * i.e., the user_vfp structure has space for 32 registers even if
648 * the kernel doesn't have them all.
650 * vfp_get() reads this chunk as zero where applicable
651 * vfp_set() ignores this chunk
653 * 1 word for the FPSCR
655 * The bounds-checking logic built into user_regset_copyout and friends
656 * means that we can make a simple sequence of calls to map the relevant data
657 * to/from the specified slice of the user regset structure.
659 static int vfp_get(struct task_struct
*target
,
660 const struct user_regset
*regset
,
661 unsigned int pos
, unsigned int count
,
662 void *kbuf
, void __user
*ubuf
)
665 struct thread_info
*thread
= task_thread_info(target
);
666 struct vfp_hard_struct
const *vfp
= &thread
->vfpstate
.hard
;
667 const size_t user_fpregs_offset
= offsetof(struct user_vfp
, fpregs
);
668 const size_t user_fpscr_offset
= offsetof(struct user_vfp
, fpscr
);
670 vfp_sync_hwstate(thread
);
672 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
675 user_fpregs_offset
+ sizeof(vfp
->fpregs
));
679 ret
= user_regset_copyout_zero(&pos
, &count
, &kbuf
, &ubuf
,
680 user_fpregs_offset
+ sizeof(vfp
->fpregs
),
685 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
688 user_fpscr_offset
+ sizeof(vfp
->fpscr
));
692 * For vfp_set() a read-modify-write is done on the VFP registers,
693 * in order to avoid writing back a half-modified set of registers on
696 static int vfp_set(struct task_struct
*target
,
697 const struct user_regset
*regset
,
698 unsigned int pos
, unsigned int count
,
699 const void *kbuf
, const void __user
*ubuf
)
702 struct thread_info
*thread
= task_thread_info(target
);
703 struct vfp_hard_struct new_vfp
;
704 const size_t user_fpregs_offset
= offsetof(struct user_vfp
, fpregs
);
705 const size_t user_fpscr_offset
= offsetof(struct user_vfp
, fpscr
);
707 vfp_sync_hwstate(thread
);
708 new_vfp
= thread
->vfpstate
.hard
;
710 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
713 user_fpregs_offset
+ sizeof(new_vfp
.fpregs
));
717 ret
= user_regset_copyin_ignore(&pos
, &count
, &kbuf
, &ubuf
,
718 user_fpregs_offset
+ sizeof(new_vfp
.fpregs
),
723 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
726 user_fpscr_offset
+ sizeof(new_vfp
.fpscr
));
730 vfp_flush_hwstate(thread
);
731 thread
->vfpstate
.hard
= new_vfp
;
735 #endif /* CONFIG_VFP */
745 static const struct user_regset arm_regsets
[] = {
747 .core_note_type
= NT_PRSTATUS
,
750 .align
= sizeof(u32
),
756 * For the FPA regs in fpstate, the real fields are a mixture
757 * of sizes, so pretend that the registers are word-sized:
759 .core_note_type
= NT_PRFPREG
,
760 .n
= sizeof(struct user_fp
) / sizeof(u32
),
762 .align
= sizeof(u32
),
769 * Pretend that the VFP regs are word-sized, since the FPSCR is
770 * a single word dangling at the end of struct user_vfp:
772 .core_note_type
= NT_ARM_VFP
,
773 .n
= ARM_VFPREGS_SIZE
/ sizeof(u32
),
775 .align
= sizeof(u32
),
779 #endif /* CONFIG_VFP */
782 static const struct user_regset_view user_arm_view
= {
783 .name
= "arm", .e_machine
= ELF_ARCH
, .ei_osabi
= ELF_OSABI
,
784 .regsets
= arm_regsets
, .n
= ARRAY_SIZE(arm_regsets
)
787 const struct user_regset_view
*task_user_regset_view(struct task_struct
*task
)
789 return &user_arm_view
;
792 long arch_ptrace(struct task_struct
*child
, long request
,
793 unsigned long addr
, unsigned long data
)
796 unsigned long __user
*datap
= (unsigned long __user
*) data
;
800 ret
= ptrace_read_user(child
, addr
, datap
);
804 ret
= ptrace_write_user(child
, addr
, data
);
808 ret
= copy_regset_to_user(child
,
809 &user_arm_view
, REGSET_GPR
,
810 0, sizeof(struct pt_regs
),
815 ret
= copy_regset_from_user(child
,
816 &user_arm_view
, REGSET_GPR
,
817 0, sizeof(struct pt_regs
),
821 case PTRACE_GETFPREGS
:
822 ret
= copy_regset_to_user(child
,
823 &user_arm_view
, REGSET_FPR
,
824 0, sizeof(union fp_state
),
828 case PTRACE_SETFPREGS
:
829 ret
= copy_regset_from_user(child
,
830 &user_arm_view
, REGSET_FPR
,
831 0, sizeof(union fp_state
),
836 case PTRACE_GETWMMXREGS
:
837 ret
= ptrace_getwmmxregs(child
, datap
);
840 case PTRACE_SETWMMXREGS
:
841 ret
= ptrace_setwmmxregs(child
, datap
);
845 case PTRACE_GET_THREAD_AREA
:
846 ret
= put_user(task_thread_info(child
)->tp_value
,
850 case PTRACE_SET_SYSCALL
:
851 task_thread_info(child
)->syscall
= data
;
856 case PTRACE_GETCRUNCHREGS
:
857 ret
= ptrace_getcrunchregs(child
, datap
);
860 case PTRACE_SETCRUNCHREGS
:
861 ret
= ptrace_setcrunchregs(child
, datap
);
866 case PTRACE_GETVFPREGS
:
867 ret
= copy_regset_to_user(child
,
868 &user_arm_view
, REGSET_VFP
,
873 case PTRACE_SETVFPREGS
:
874 ret
= copy_regset_from_user(child
,
875 &user_arm_view
, REGSET_VFP
,
881 #ifdef CONFIG_HAVE_HW_BREAKPOINT
882 case PTRACE_GETHBPREGS
:
883 if (ptrace_get_breakpoints(child
) < 0)
886 ret
= ptrace_gethbpregs(child
, addr
,
887 (unsigned long __user
*)data
);
888 ptrace_put_breakpoints(child
);
890 case PTRACE_SETHBPREGS
:
891 if (ptrace_get_breakpoints(child
) < 0)
894 ret
= ptrace_sethbpregs(child
, addr
,
895 (unsigned long __user
*)data
);
896 ptrace_put_breakpoints(child
);
901 ret
= ptrace_request(child
, request
, addr
, data
);
908 asmlinkage
int syscall_trace(int why
, struct pt_regs
*regs
, int scno
)
913 audit_syscall_exit(regs
);
915 audit_syscall_entry(AUDIT_ARCH_ARM
, scno
, regs
->ARM_r0
,
916 regs
->ARM_r1
, regs
->ARM_r2
, regs
->ARM_r3
);
918 if (!test_thread_flag(TIF_SYSCALL_TRACE
))
920 if (!(current
->ptrace
& PT_PTRACED
))
923 current_thread_info()->syscall
= scno
;
926 * IP is used to denote syscall entry/exit:
927 * IP = 0 -> entry, =1 -> exit
932 /* the 0x80 provides a way for the tracing parent to distinguish
933 between a syscall stop and SIGTRAP delivery */
934 ptrace_notify(SIGTRAP
| ((current
->ptrace
& PT_TRACESYSGOOD
)
937 * this isn't the same as continuing with a signal, but it will do
938 * for normal use. strace only continues with a signal if the
939 * stopping signal is not SIGTRAP. -brl
941 if (current
->exit_code
) {
942 send_sig(current
->exit_code
, current
, 1);
943 current
->exit_code
= 0;
947 return current_thread_info()->syscall
;