Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / arch / hexagon / include / asm / bitops.h
blobd23461e080ffa65abd64f81de09fc3bad2568746
1 /*
2 * Bit operations for the Hexagon architecture
4 * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 and
9 * only version 2 as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 * 02110-1301, USA.
22 #ifndef _ASM_BITOPS_H
23 #define _ASM_BITOPS_H
25 #include <linux/compiler.h>
26 #include <asm/byteorder.h>
27 #include <asm/system.h>
28 #include <asm/atomic.h>
30 #ifdef __KERNEL__
32 #define smp_mb__before_clear_bit() barrier()
33 #define smp_mb__after_clear_bit() barrier()
36 * The offset calculations for these are based on BITS_PER_LONG == 32
37 * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
38 * mask by 0x0000001F)
40 * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
43 /**
44 * test_and_clear_bit - clear a bit and return its old value
45 * @nr: bit number to clear
46 * @addr: pointer to memory
48 static inline int test_and_clear_bit(int nr, volatile void *addr)
50 int oldval;
52 __asm__ __volatile__ (
53 " {R10 = %1; R11 = asr(%2,#5); }\n"
54 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
55 "1: R12 = memw_locked(R10);\n"
56 " { P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
57 " memw_locked(R10,P1) = R12;\n"
58 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
59 : "=&r" (oldval)
60 : "r" (addr), "r" (nr)
61 : "r10", "r11", "r12", "p0", "p1", "memory"
64 return oldval;
67 /**
68 * test_and_set_bit - set a bit and return its old value
69 * @nr: bit number to set
70 * @addr: pointer to memory
72 static inline int test_and_set_bit(int nr, volatile void *addr)
74 int oldval;
76 __asm__ __volatile__ (
77 " {R10 = %1; R11 = asr(%2,#5); }\n"
78 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
79 "1: R12 = memw_locked(R10);\n"
80 " { P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
81 " memw_locked(R10,P1) = R12;\n"
82 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
83 : "=&r" (oldval)
84 : "r" (addr), "r" (nr)
85 : "r10", "r11", "r12", "p0", "p1", "memory"
89 return oldval;
93 /**
94 * test_and_change_bit - toggle a bit and return its old value
95 * @nr: bit number to set
96 * @addr: pointer to memory
98 static inline int test_and_change_bit(int nr, volatile void *addr)
100 int oldval;
102 __asm__ __volatile__ (
103 " {R10 = %1; R11 = asr(%2,#5); }\n"
104 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
105 "1: R12 = memw_locked(R10);\n"
106 " { P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
107 " memw_locked(R10,P1) = R12;\n"
108 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
109 : "=&r" (oldval)
110 : "r" (addr), "r" (nr)
111 : "r10", "r11", "r12", "p0", "p1", "memory"
114 return oldval;
119 * Atomic, but doesn't care about the return value.
120 * Rewrite later to save a cycle or two.
123 static inline void clear_bit(int nr, volatile void *addr)
125 test_and_clear_bit(nr, addr);
128 static inline void set_bit(int nr, volatile void *addr)
130 test_and_set_bit(nr, addr);
133 static inline void change_bit(int nr, volatile void *addr)
135 test_and_change_bit(nr, addr);
140 * These are allowed to be non-atomic. In fact the generic flavors are
141 * in non-atomic.h. Would it be better to use intrinsics for this?
143 * OK, writes in our architecture do not invalidate LL/SC, so this has to
144 * be atomic, particularly for things like slab_lock and slab_unlock.
147 static inline void __clear_bit(int nr, volatile unsigned long *addr)
149 test_and_clear_bit(nr, addr);
152 static inline void __set_bit(int nr, volatile unsigned long *addr)
154 test_and_set_bit(nr, addr);
157 static inline void __change_bit(int nr, volatile unsigned long *addr)
159 test_and_change_bit(nr, addr);
162 /* Apparently, at least some of these are allowed to be non-atomic */
163 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
165 return test_and_clear_bit(nr, addr);
168 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
170 return test_and_set_bit(nr, addr);
173 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
175 return test_and_change_bit(nr, addr);
178 static inline int __test_bit(int nr, const volatile unsigned long *addr)
180 int retval;
182 asm volatile(
183 "{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
184 : "=&r" (retval)
185 : "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
186 : "p0"
189 return retval;
192 #define test_bit(nr, addr) __test_bit(nr, addr)
195 * ffz - find first zero in word.
196 * @word: The word to search
198 * Undefined if no zero exists, so code should check against ~0UL first.
200 static inline long ffz(int x)
202 int r;
204 asm("%0 = ct1(%1);\n"
205 : "=&r" (r)
206 : "r" (x));
207 return r;
211 * fls - find last (most-significant) bit set
212 * @x: the word to search
214 * This is defined the same way as ffs.
215 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
217 static inline long fls(int x)
219 int r;
221 asm("{ %0 = cl0(%1);}\n"
222 "%0 = sub(#32,%0);\n"
223 : "=&r" (r)
224 : "r" (x)
225 : "p0");
227 return r;
231 * ffs - find first bit set
232 * @x: the word to search
234 * This is defined the same way as
235 * the libc and compiler builtin ffs routines, therefore
236 * differs in spirit from the above ffz (man ffs).
238 static inline long ffs(int x)
240 int r;
242 asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
243 "{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n"
244 : "=&r" (r)
245 : "r" (x)
246 : "p0");
248 return r;
252 * __ffs - find first bit in word.
253 * @word: The word to search
255 * Undefined if no bit exists, so code should check against 0 first.
257 * bits_per_long assumed to be 32
258 * numbering starts at 0 I think (instead of 1 like ffs)
260 static inline unsigned long __ffs(unsigned long word)
262 int num;
264 asm("%0 = ct0(%1);\n"
265 : "=&r" (num)
266 : "r" (word));
268 return num;
272 * __fls - find last (most-significant) set bit in a long word
273 * @word: the word to search
275 * Undefined if no set bit exists, so code should check against 0 first.
276 * bits_per_long assumed to be 32
278 static inline unsigned long __fls(unsigned long word)
280 int num;
282 asm("%0 = cl0(%1);\n"
283 "%0 = sub(#31,%0);\n"
284 : "=&r" (num)
285 : "r" (word));
287 return num;
290 #include <asm-generic/bitops/lock.h>
291 #include <asm-generic/bitops/find.h>
293 #include <asm-generic/bitops/fls64.h>
294 #include <asm-generic/bitops/sched.h>
295 #include <asm-generic/bitops/hweight.h>
297 #include <asm-generic/bitops/le.h>
298 #include <asm-generic/bitops/ext2-atomic.h>
300 #endif /* __KERNEL__ */
301 #endif