2 * Kernel support for the ptrace() and syscall tracing interfaces.
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 * Derived from the x86 and Alpha versions.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20 #include <linux/signal.h>
21 #include <linux/regset.h>
22 #include <linux/elf.h>
23 #include <linux/tracehook.h>
25 #include <asm/pgtable.h>
26 #include <asm/processor.h>
27 #include <asm/ptrace_offsets.h>
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <asm/unwind.h>
33 #include <asm/perfmon.h>
39 * Bits in the PSR that we allow ptrace() to change:
40 * be, up, ac, mfl, mfh (the user mask; five bits total)
41 * db (debug breakpoint fault; one bit)
42 * id (instruction debug fault disable; one bit)
43 * dd (data debug fault disable; one bit)
44 * ri (restart instruction; two bits)
45 * is (instruction set; one bit)
47 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
48 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
50 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
51 #define PFM_MASK MASK(38)
53 #define PTRACE_DEBUG 0
56 # define dprintk(format...) printk(format)
59 # define dprintk(format...)
62 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
65 in_syscall (struct pt_regs
*pt
)
67 return (long) pt
->cr_ifs
>= 0;
71 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
72 * bitset where bit i is set iff the NaT bit of register i is set.
75 ia64_get_scratch_nat_bits (struct pt_regs
*pt
, unsigned long scratch_unat
)
77 # define GET_BITS(first, last, unat) \
79 unsigned long bit = ia64_unat_pos(&pt->r##first); \
80 unsigned long nbits = (last - first + 1); \
81 unsigned long mask = MASK(nbits) << first; \
84 dist = 64 + bit - first; \
87 ia64_rotr(unat, dist) & mask; \
92 * Registers that are stored consecutively in struct pt_regs
93 * can be handled in parallel. If the register order in
94 * struct_pt_regs changes, this code MUST be updated.
96 val
= GET_BITS( 1, 1, scratch_unat
);
97 val
|= GET_BITS( 2, 3, scratch_unat
);
98 val
|= GET_BITS(12, 13, scratch_unat
);
99 val
|= GET_BITS(14, 14, scratch_unat
);
100 val
|= GET_BITS(15, 15, scratch_unat
);
101 val
|= GET_BITS( 8, 11, scratch_unat
);
102 val
|= GET_BITS(16, 31, scratch_unat
);
109 * Set the NaT bits for the scratch registers according to NAT and
110 * return the resulting unat (assuming the scratch registers are
114 ia64_put_scratch_nat_bits (struct pt_regs
*pt
, unsigned long nat
)
116 # define PUT_BITS(first, last, nat) \
118 unsigned long bit = ia64_unat_pos(&pt->r##first); \
119 unsigned long nbits = (last - first + 1); \
120 unsigned long mask = MASK(nbits) << first; \
123 dist = 64 + bit - first; \
125 dist = bit - first; \
126 ia64_rotl(nat & mask, dist); \
128 unsigned long scratch_unat
;
131 * Registers that are stored consecutively in struct pt_regs
132 * can be handled in parallel. If the register order in
133 * struct_pt_regs changes, this code MUST be updated.
135 scratch_unat
= PUT_BITS( 1, 1, nat
);
136 scratch_unat
|= PUT_BITS( 2, 3, nat
);
137 scratch_unat
|= PUT_BITS(12, 13, nat
);
138 scratch_unat
|= PUT_BITS(14, 14, nat
);
139 scratch_unat
|= PUT_BITS(15, 15, nat
);
140 scratch_unat
|= PUT_BITS( 8, 11, nat
);
141 scratch_unat
|= PUT_BITS(16, 31, nat
);
148 #define IA64_MLX_TEMPLATE 0x2
149 #define IA64_MOVL_OPCODE 6
152 ia64_increment_ip (struct pt_regs
*regs
)
154 unsigned long w0
, ri
= ia64_psr(regs
)->ri
+ 1;
159 } else if (ri
== 2) {
160 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
161 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
163 * rfi'ing to slot 2 of an MLX bundle causes
164 * an illegal operation fault. We don't want
171 ia64_psr(regs
)->ri
= ri
;
175 ia64_decrement_ip (struct pt_regs
*regs
)
177 unsigned long w0
, ri
= ia64_psr(regs
)->ri
- 1;
179 if (ia64_psr(regs
)->ri
== 0) {
182 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
183 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
185 * rfi'ing to slot 2 of an MLX bundle causes
186 * an illegal operation fault. We don't want
192 ia64_psr(regs
)->ri
= ri
;
196 * This routine is used to read an rnat bits that are stored on the
197 * kernel backing store. Since, in general, the alignment of the user
198 * and kernel are different, this is not completely trivial. In
199 * essence, we need to construct the user RNAT based on up to two
200 * kernel RNAT values and/or the RNAT value saved in the child's
205 * +--------+ <-- lowest address
212 * | slot01 | > child_regs->ar_rnat
214 * | slot02 | / kernel rbs
215 * +--------+ +--------+
216 * <- child_regs->ar_bspstore | slot61 | <-- krbs
217 * +- - - - + +--------+
219 * +- - - - + +--------+
221 * +- - - - + +--------+
223 * +- - - - + +--------+
228 * | slot01 | > child_stack->ar_rnat
232 * <--- child_stack->ar_bspstore
234 * The way to think of this code is as follows: bit 0 in the user rnat
235 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
236 * value. The kernel rnat value holding this bit is stored in
237 * variable rnat0. rnat1 is loaded with the kernel rnat value that
238 * form the upper bits of the user rnat value.
242 * o when reading the rnat "below" the first rnat slot on the kernel
243 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
244 * merged in from pt->ar_rnat.
246 * o when reading the rnat "above" the last rnat slot on the kernel
247 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
250 get_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
251 unsigned long *krbs
, unsigned long *urnat_addr
,
252 unsigned long *urbs_end
)
254 unsigned long rnat0
= 0, rnat1
= 0, urnat
= 0, *slot0_kaddr
;
255 unsigned long umask
= 0, mask
, m
;
256 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
257 long num_regs
, nbits
;
260 pt
= task_pt_regs(task
);
261 kbsp
= (unsigned long *) sw
->ar_bspstore
;
262 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
264 if (urbs_end
< urnat_addr
)
265 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_end
);
270 * First, figure out which bit number slot 0 in user-land maps
271 * to in the kernel rnat. Do this by figuring out how many
272 * register slots we're beyond the user's backingstore and
273 * then computing the equivalent address in kernel space.
275 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
276 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
277 shift
= ia64_rse_slot_num(slot0_kaddr
);
278 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
279 rnat0_kaddr
= rnat1_kaddr
- 64;
281 if (ubspstore
+ 63 > urnat_addr
) {
282 /* some bits need to be merged in from pt->ar_rnat */
283 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
284 urnat
= (pt
->ar_rnat
& umask
);
291 if (rnat0_kaddr
>= kbsp
)
293 else if (rnat0_kaddr
> krbs
)
294 rnat0
= *rnat0_kaddr
;
295 urnat
|= (rnat0
& m
) >> shift
;
297 m
= mask
>> (63 - shift
);
298 if (rnat1_kaddr
>= kbsp
)
300 else if (rnat1_kaddr
> krbs
)
301 rnat1
= *rnat1_kaddr
;
302 urnat
|= (rnat1
& m
) << (63 - shift
);
307 * The reverse of get_rnat.
310 put_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
311 unsigned long *krbs
, unsigned long *urnat_addr
, unsigned long urnat
,
312 unsigned long *urbs_end
)
314 unsigned long rnat0
= 0, rnat1
= 0, *slot0_kaddr
, umask
= 0, mask
, m
;
315 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
316 long num_regs
, nbits
;
318 unsigned long cfm
, *urbs_kargs
;
320 pt
= task_pt_regs(task
);
321 kbsp
= (unsigned long *) sw
->ar_bspstore
;
322 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
324 urbs_kargs
= urbs_end
;
325 if (in_syscall(pt
)) {
327 * If entered via syscall, don't allow user to set rnat bits
331 urbs_kargs
= ia64_rse_skip_regs(urbs_end
, -(cfm
& 0x7f));
334 if (urbs_kargs
>= urnat_addr
)
337 if ((urnat_addr
- 63) >= urbs_kargs
)
339 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_kargs
);
344 * First, figure out which bit number slot 0 in user-land maps
345 * to in the kernel rnat. Do this by figuring out how many
346 * register slots we're beyond the user's backingstore and
347 * then computing the equivalent address in kernel space.
349 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
350 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
351 shift
= ia64_rse_slot_num(slot0_kaddr
);
352 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
353 rnat0_kaddr
= rnat1_kaddr
- 64;
355 if (ubspstore
+ 63 > urnat_addr
) {
356 /* some bits need to be place in pt->ar_rnat: */
357 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
358 pt
->ar_rnat
= (pt
->ar_rnat
& ~umask
) | (urnat
& umask
);
364 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
365 * rnat slot is ignored. so we don't have to clear it here.
367 rnat0
= (urnat
<< shift
);
369 if (rnat0_kaddr
>= kbsp
)
370 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat0
& m
);
371 else if (rnat0_kaddr
> krbs
)
372 *rnat0_kaddr
= ((*rnat0_kaddr
& ~m
) | (rnat0
& m
));
374 rnat1
= (urnat
>> (63 - shift
));
375 m
= mask
>> (63 - shift
);
376 if (rnat1_kaddr
>= kbsp
)
377 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat1
& m
);
378 else if (rnat1_kaddr
> krbs
)
379 *rnat1_kaddr
= ((*rnat1_kaddr
& ~m
) | (rnat1
& m
));
383 on_kernel_rbs (unsigned long addr
, unsigned long bspstore
,
384 unsigned long urbs_end
)
386 unsigned long *rnat_addr
= ia64_rse_rnat_addr((unsigned long *)
388 return (addr
>= bspstore
&& addr
<= (unsigned long) rnat_addr
);
392 * Read a word from the user-level backing store of task CHILD. ADDR
393 * is the user-level address to read the word from, VAL a pointer to
394 * the return value, and USER_BSP gives the end of the user-level
395 * backing store (i.e., it's the address that would be in ar.bsp after
396 * the user executed a "cover" instruction).
398 * This routine takes care of accessing the kernel register backing
399 * store for those registers that got spilled there. It also takes
400 * care of calculating the appropriate RNaT collection words.
403 ia64_peek (struct task_struct
*child
, struct switch_stack
*child_stack
,
404 unsigned long user_rbs_end
, unsigned long addr
, long *val
)
406 unsigned long *bspstore
, *krbs
, regnum
, *laddr
, *urbs_end
, *rnat_addr
;
407 struct pt_regs
*child_regs
;
411 urbs_end
= (long *) user_rbs_end
;
412 laddr
= (unsigned long *) addr
;
413 child_regs
= task_pt_regs(child
);
414 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
415 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
416 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
417 (unsigned long) urbs_end
))
420 * Attempt to read the RBS in an area that's actually
421 * on the kernel RBS => read the corresponding bits in
424 rnat_addr
= ia64_rse_rnat_addr(laddr
);
425 ret
= get_rnat(child
, child_stack
, krbs
, rnat_addr
, urbs_end
);
427 if (laddr
== rnat_addr
) {
428 /* return NaT collection word itself */
433 if (((1UL << ia64_rse_slot_num(laddr
)) & ret
) != 0) {
435 * It is implementation dependent whether the
436 * data portion of a NaT value gets saved on a
437 * st8.spill or RSE spill (e.g., see EAS 2.6,
438 * 4.4.4.6 Register Spill and Fill). To get
439 * consistent behavior across all possible
440 * IA-64 implementations, we return zero in
447 if (laddr
< urbs_end
) {
449 * The desired word is on the kernel RBS and
452 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
453 *val
= *ia64_rse_skip_regs(krbs
, regnum
);
457 copied
= access_process_vm(child
, addr
, &ret
, sizeof(ret
), 0);
458 if (copied
!= sizeof(ret
))
465 ia64_poke (struct task_struct
*child
, struct switch_stack
*child_stack
,
466 unsigned long user_rbs_end
, unsigned long addr
, long val
)
468 unsigned long *bspstore
, *krbs
, regnum
, *laddr
;
469 unsigned long *urbs_end
= (long *) user_rbs_end
;
470 struct pt_regs
*child_regs
;
472 laddr
= (unsigned long *) addr
;
473 child_regs
= task_pt_regs(child
);
474 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
475 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
476 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
477 (unsigned long) urbs_end
))
480 * Attempt to write the RBS in an area that's actually
481 * on the kernel RBS => write the corresponding bits
484 if (ia64_rse_is_rnat_slot(laddr
))
485 put_rnat(child
, child_stack
, krbs
, laddr
, val
,
488 if (laddr
< urbs_end
) {
489 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
490 *ia64_rse_skip_regs(krbs
, regnum
) = val
;
493 } else if (access_process_vm(child
, addr
, &val
, sizeof(val
), 1)
500 * Calculate the address of the end of the user-level register backing
501 * store. This is the address that would have been stored in ar.bsp
502 * if the user had executed a "cover" instruction right before
503 * entering the kernel. If CFMP is not NULL, it is used to return the
504 * "current frame mask" that was active at the time the kernel was
508 ia64_get_user_rbs_end (struct task_struct
*child
, struct pt_regs
*pt
,
511 unsigned long *krbs
, *bspstore
, cfm
= pt
->cr_ifs
;
514 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
515 bspstore
= (unsigned long *) pt
->ar_bspstore
;
516 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
519 ndirty
+= (cfm
& 0x7f);
521 cfm
&= ~(1UL << 63); /* clear valid bit */
525 return (unsigned long) ia64_rse_skip_regs(bspstore
, ndirty
);
529 * Synchronize (i.e, write) the RSE backing store living in kernel
530 * space to the VM of the CHILD task. SW and PT are the pointers to
531 * the switch_stack and pt_regs structures, respectively.
532 * USER_RBS_END is the user-level address at which the backing store
536 ia64_sync_user_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
537 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
539 unsigned long addr
, val
;
542 /* now copy word for word from kernel rbs to user rbs: */
543 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
544 ret
= ia64_peek(child
, sw
, user_rbs_end
, addr
, &val
);
547 if (access_process_vm(child
, addr
, &val
, sizeof(val
), 1)
555 ia64_sync_kernel_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
556 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
558 unsigned long addr
, val
;
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
563 if (access_process_vm(child
, addr
, &val
, sizeof(val
), 0)
567 ret
= ia64_poke(child
, sw
, user_rbs_end
, addr
, val
);
574 typedef long (*syncfunc_t
)(struct task_struct
*, struct switch_stack
*,
575 unsigned long, unsigned long);
577 static void do_sync_rbs(struct unw_frame_info
*info
, void *arg
)
580 unsigned long urbs_end
;
583 if (unw_unwind_to_user(info
) < 0)
585 pt
= task_pt_regs(info
->task
);
586 urbs_end
= ia64_get_user_rbs_end(info
->task
, pt
, NULL
);
588 fn(info
->task
, info
->sw
, pt
->ar_bspstore
, urbs_end
);
592 * when a thread is stopped (ptraced), debugger might change thread's user
593 * stack (change memory directly), and we must avoid the RSE stored in kernel
594 * to override user stack (user space's RSE is newer than kernel's in the
595 * case). To workaround the issue, we copy kernel RSE to user RSE before the
596 * task is stopped, so user RSE has updated data. we then copy user RSE to
597 * kernel after the task is resummed from traced stop and kernel will use the
598 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
599 * synchronize user RSE to kernel.
601 void ia64_ptrace_stop(void)
603 if (test_and_set_tsk_thread_flag(current
, TIF_RESTORE_RSE
))
605 set_notify_resume(current
);
606 unw_init_running(do_sync_rbs
, ia64_sync_user_rbs
);
610 * This is called to read back the register backing store.
612 void ia64_sync_krbs(void)
614 clear_tsk_thread_flag(current
, TIF_RESTORE_RSE
);
616 unw_init_running(do_sync_rbs
, ia64_sync_kernel_rbs
);
620 * After PTRACE_ATTACH, a thread's register backing store area in user
621 * space is assumed to contain correct data whenever the thread is
622 * stopped. arch_ptrace_stop takes care of this on tracing stops.
623 * But if the child was already stopped for job control when we attach
624 * to it, then it might not ever get into ptrace_stop by the time we
625 * want to examine the user memory containing the RBS.
628 ptrace_attach_sync_user_rbs (struct task_struct
*child
)
631 struct unw_frame_info info
;
634 * If the child is in TASK_STOPPED, we need to change that to
635 * TASK_TRACED momentarily while we operate on it. This ensures
636 * that the child won't be woken up and return to user mode while
637 * we are doing the sync. (It can only be woken up for SIGKILL.)
640 read_lock(&tasklist_lock
);
641 if (child
->sighand
) {
642 spin_lock_irq(&child
->sighand
->siglock
);
643 if (child
->state
== TASK_STOPPED
&&
644 !test_and_set_tsk_thread_flag(child
, TIF_RESTORE_RSE
)) {
645 set_notify_resume(child
);
647 child
->state
= TASK_TRACED
;
650 spin_unlock_irq(&child
->sighand
->siglock
);
652 read_unlock(&tasklist_lock
);
657 unw_init_from_blocked_task(&info
, child
);
658 do_sync_rbs(&info
, ia64_sync_user_rbs
);
661 * Now move the child back into TASK_STOPPED if it should be in a
662 * job control stop, so that SIGCONT can be used to wake it up.
664 read_lock(&tasklist_lock
);
665 if (child
->sighand
) {
666 spin_lock_irq(&child
->sighand
->siglock
);
667 if (child
->state
== TASK_TRACED
&&
668 (child
->signal
->flags
& SIGNAL_STOP_STOPPED
)) {
669 child
->state
= TASK_STOPPED
;
671 spin_unlock_irq(&child
->sighand
->siglock
);
673 read_unlock(&tasklist_lock
);
677 thread_matches (struct task_struct
*thread
, unsigned long addr
)
679 unsigned long thread_rbs_end
;
680 struct pt_regs
*thread_regs
;
682 if (ptrace_check_attach(thread
, 0) < 0)
684 * If the thread is not in an attachable state, we'll
685 * ignore it. The net effect is that if ADDR happens
686 * to overlap with the portion of the thread's
687 * register backing store that is currently residing
688 * on the thread's kernel stack, then ptrace() may end
689 * up accessing a stale value. But if the thread
690 * isn't stopped, that's a problem anyhow, so we're
691 * doing as well as we can...
695 thread_regs
= task_pt_regs(thread
);
696 thread_rbs_end
= ia64_get_user_rbs_end(thread
, thread_regs
, NULL
);
697 if (!on_kernel_rbs(addr
, thread_regs
->ar_bspstore
, thread_rbs_end
))
700 return 1; /* looks like we've got a winner */
704 * Write f32-f127 back to task->thread.fph if it has been modified.
707 ia64_flush_fph (struct task_struct
*task
)
709 struct ia64_psr
*psr
= ia64_psr(task_pt_regs(task
));
712 * Prevent migrating this task while
713 * we're fiddling with the FPU state
716 if (ia64_is_local_fpu_owner(task
) && psr
->mfh
) {
718 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
719 ia64_save_fpu(&task
->thread
.fph
[0]);
725 * Sync the fph state of the task so that it can be manipulated
726 * through thread.fph. If necessary, f32-f127 are written back to
727 * thread.fph or, if the fph state hasn't been used before, thread.fph
728 * is cleared to zeroes. Also, access to f32-f127 is disabled to
729 * ensure that the task picks up the state from thread.fph when it
733 ia64_sync_fph (struct task_struct
*task
)
735 struct ia64_psr
*psr
= ia64_psr(task_pt_regs(task
));
737 ia64_flush_fph(task
);
738 if (!(task
->thread
.flags
& IA64_THREAD_FPH_VALID
)) {
739 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
740 memset(&task
->thread
.fph
, 0, sizeof(task
->thread
.fph
));
747 * Change the machine-state of CHILD such that it will return via the normal
748 * kernel exit-path, rather than the syscall-exit path.
751 convert_to_non_syscall (struct task_struct
*child
, struct pt_regs
*pt
,
754 struct unw_frame_info info
, prev_info
;
755 unsigned long ip
, sp
, pr
;
757 unw_init_from_blocked_task(&info
, child
);
760 if (unw_unwind(&info
) < 0)
763 unw_get_sp(&info
, &sp
);
764 if ((long)((unsigned long)child
+ IA64_STK_OFFSET
- sp
)
765 < IA64_PT_REGS_SIZE
) {
766 dprintk("ptrace.%s: ran off the top of the kernel "
767 "stack\n", __func__
);
770 if (unw_get_pr (&prev_info
, &pr
) < 0) {
771 unw_get_rp(&prev_info
, &ip
);
772 dprintk("ptrace.%s: failed to read "
773 "predicate register (ip=0x%lx)\n",
777 if (unw_is_intr_frame(&info
)
778 && (pr
& (1UL << PRED_USER_STACK
)))
783 * Note: at the time of this call, the target task is blocked
784 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
785 * (aka, "pLvSys") we redirect execution from
786 * .work_pending_syscall_end to .work_processed_kernel.
788 unw_get_pr(&prev_info
, &pr
);
789 pr
&= ~((1UL << PRED_SYSCALL
) | (1UL << PRED_LEAVE_SYSCALL
));
790 pr
|= (1UL << PRED_NON_SYSCALL
);
791 unw_set_pr(&prev_info
, pr
);
793 pt
->cr_ifs
= (1UL << 63) | cfm
;
795 * Clear the memory that is NOT written on syscall-entry to
796 * ensure we do not leak kernel-state to user when execution
802 memset(&pt
->r16
, 0, 16*8); /* clear r16-r31 */
803 memset(&pt
->f6
, 0, 6*16); /* clear f6-f11 */
811 access_nat_bits (struct task_struct
*child
, struct pt_regs
*pt
,
812 struct unw_frame_info
*info
,
813 unsigned long *data
, int write_access
)
815 unsigned long regnum
, nat_bits
, scratch_unat
, dummy
= 0;
820 scratch_unat
= ia64_put_scratch_nat_bits(pt
, nat_bits
);
821 if (unw_set_ar(info
, UNW_AR_UNAT
, scratch_unat
) < 0) {
822 dprintk("ptrace: failed to set ar.unat\n");
825 for (regnum
= 4; regnum
<= 7; ++regnum
) {
826 unw_get_gr(info
, regnum
, &dummy
, &nat
);
827 unw_set_gr(info
, regnum
, dummy
,
828 (nat_bits
>> regnum
) & 1);
831 if (unw_get_ar(info
, UNW_AR_UNAT
, &scratch_unat
) < 0) {
832 dprintk("ptrace: failed to read ar.unat\n");
835 nat_bits
= ia64_get_scratch_nat_bits(pt
, scratch_unat
);
836 for (regnum
= 4; regnum
<= 7; ++regnum
) {
837 unw_get_gr(info
, regnum
, &dummy
, &nat
);
838 nat_bits
|= (nat
!= 0) << regnum
;
846 access_uarea (struct task_struct
*child
, unsigned long addr
,
847 unsigned long *data
, int write_access
);
850 ptrace_getregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
852 unsigned long psr
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
;
853 struct unw_frame_info info
;
854 struct ia64_fpreg fpval
;
855 struct switch_stack
*sw
;
857 long ret
, retval
= 0;
861 if (!access_ok(VERIFY_WRITE
, ppr
, sizeof(struct pt_all_user_regs
)))
864 pt
= task_pt_regs(child
);
865 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
866 unw_init_from_blocked_task(&info
, child
);
867 if (unw_unwind_to_user(&info
) < 0) {
871 if (((unsigned long) ppr
& 0x7) != 0) {
872 dprintk("ptrace:unaligned register address %p\n", ppr
);
876 if (access_uarea(child
, PT_CR_IPSR
, &psr
, 0) < 0
877 || access_uarea(child
, PT_AR_EC
, &ec
, 0) < 0
878 || access_uarea(child
, PT_AR_LC
, &lc
, 0) < 0
879 || access_uarea(child
, PT_AR_RNAT
, &rnat
, 0) < 0
880 || access_uarea(child
, PT_AR_BSP
, &bsp
, 0) < 0
881 || access_uarea(child
, PT_CFM
, &cfm
, 0)
882 || access_uarea(child
, PT_NAT_BITS
, &nat_bits
, 0))
887 retval
|= __put_user(pt
->cr_iip
, &ppr
->cr_iip
);
888 retval
|= __put_user(psr
, &ppr
->cr_ipsr
);
892 retval
|= __put_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
893 retval
|= __put_user(pt
->ar_rsc
, &ppr
->ar
[PT_AUR_RSC
]);
894 retval
|= __put_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
895 retval
|= __put_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
896 retval
|= __put_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
897 retval
|= __put_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
899 retval
|= __put_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
900 retval
|= __put_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
901 retval
|= __put_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
902 retval
|= __put_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
903 retval
|= __put_user(cfm
, &ppr
->cfm
);
907 retval
|= __copy_to_user(&ppr
->gr
[1], &pt
->r1
, sizeof(long));
908 retval
|= __copy_to_user(&ppr
->gr
[2], &pt
->r2
, sizeof(long) *2);
912 for (i
= 4; i
< 8; i
++) {
913 if (unw_access_gr(&info
, i
, &val
, &nat
, 0) < 0)
915 retval
|= __put_user(val
, &ppr
->gr
[i
]);
920 retval
|= __copy_to_user(&ppr
->gr
[8], &pt
->r8
, sizeof(long) * 4);
924 retval
|= __copy_to_user(&ppr
->gr
[12], &pt
->r12
, sizeof(long) * 2);
925 retval
|= __copy_to_user(&ppr
->gr
[14], &pt
->r14
, sizeof(long));
926 retval
|= __copy_to_user(&ppr
->gr
[15], &pt
->r15
, sizeof(long));
930 retval
|= __copy_to_user(&ppr
->gr
[16], &pt
->r16
, sizeof(long) * 16);
934 retval
|= __put_user(pt
->b0
, &ppr
->br
[0]);
938 for (i
= 1; i
< 6; i
++) {
939 if (unw_access_br(&info
, i
, &val
, 0) < 0)
941 __put_user(val
, &ppr
->br
[i
]);
946 retval
|= __put_user(pt
->b6
, &ppr
->br
[6]);
947 retval
|= __put_user(pt
->b7
, &ppr
->br
[7]);
951 for (i
= 2; i
< 6; i
++) {
952 if (unw_get_fr(&info
, i
, &fpval
) < 0)
954 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
959 retval
|= __copy_to_user(&ppr
->fr
[6], &pt
->f6
,
960 sizeof(struct ia64_fpreg
) * 6);
962 /* fp scratch regs(12-15) */
964 retval
|= __copy_to_user(&ppr
->fr
[12], &sw
->f12
,
965 sizeof(struct ia64_fpreg
) * 4);
969 for (i
= 16; i
< 32; i
++) {
970 if (unw_get_fr(&info
, i
, &fpval
) < 0)
972 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
977 ia64_flush_fph(child
);
978 retval
|= __copy_to_user(&ppr
->fr
[32], &child
->thread
.fph
,
979 sizeof(ppr
->fr
[32]) * 96);
983 retval
|= __put_user(pt
->pr
, &ppr
->pr
);
987 retval
|= __put_user(nat_bits
, &ppr
->nat
);
989 ret
= retval
? -EIO
: 0;
994 ptrace_setregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
996 unsigned long psr
, rsc
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
= 0;
997 struct unw_frame_info info
;
998 struct switch_stack
*sw
;
999 struct ia64_fpreg fpval
;
1001 long ret
, retval
= 0;
1004 memset(&fpval
, 0, sizeof(fpval
));
1006 if (!access_ok(VERIFY_READ
, ppr
, sizeof(struct pt_all_user_regs
)))
1009 pt
= task_pt_regs(child
);
1010 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
1011 unw_init_from_blocked_task(&info
, child
);
1012 if (unw_unwind_to_user(&info
) < 0) {
1016 if (((unsigned long) ppr
& 0x7) != 0) {
1017 dprintk("ptrace:unaligned register address %p\n", ppr
);
1023 retval
|= __get_user(pt
->cr_iip
, &ppr
->cr_iip
);
1024 retval
|= __get_user(psr
, &ppr
->cr_ipsr
);
1028 retval
|= __get_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
1029 retval
|= __get_user(rsc
, &ppr
->ar
[PT_AUR_RSC
]);
1030 retval
|= __get_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
1031 retval
|= __get_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
1032 retval
|= __get_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
1033 retval
|= __get_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
1035 retval
|= __get_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
1036 retval
|= __get_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
1037 retval
|= __get_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
1038 retval
|= __get_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
1039 retval
|= __get_user(cfm
, &ppr
->cfm
);
1043 retval
|= __copy_from_user(&pt
->r1
, &ppr
->gr
[1], sizeof(long));
1044 retval
|= __copy_from_user(&pt
->r2
, &ppr
->gr
[2], sizeof(long) * 2);
1048 for (i
= 4; i
< 8; i
++) {
1049 retval
|= __get_user(val
, &ppr
->gr
[i
]);
1050 /* NaT bit will be set via PT_NAT_BITS: */
1051 if (unw_set_gr(&info
, i
, val
, 0) < 0)
1057 retval
|= __copy_from_user(&pt
->r8
, &ppr
->gr
[8], sizeof(long) * 4);
1061 retval
|= __copy_from_user(&pt
->r12
, &ppr
->gr
[12], sizeof(long) * 2);
1062 retval
|= __copy_from_user(&pt
->r14
, &ppr
->gr
[14], sizeof(long));
1063 retval
|= __copy_from_user(&pt
->r15
, &ppr
->gr
[15], sizeof(long));
1067 retval
|= __copy_from_user(&pt
->r16
, &ppr
->gr
[16], sizeof(long) * 16);
1071 retval
|= __get_user(pt
->b0
, &ppr
->br
[0]);
1075 for (i
= 1; i
< 6; i
++) {
1076 retval
|= __get_user(val
, &ppr
->br
[i
]);
1077 unw_set_br(&info
, i
, val
);
1082 retval
|= __get_user(pt
->b6
, &ppr
->br
[6]);
1083 retval
|= __get_user(pt
->b7
, &ppr
->br
[7]);
1087 for (i
= 2; i
< 6; i
++) {
1088 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
], sizeof(fpval
));
1089 if (unw_set_fr(&info
, i
, fpval
) < 0)
1095 retval
|= __copy_from_user(&pt
->f6
, &ppr
->fr
[6],
1096 sizeof(ppr
->fr
[6]) * 6);
1098 /* fp scratch regs(12-15) */
1100 retval
|= __copy_from_user(&sw
->f12
, &ppr
->fr
[12],
1101 sizeof(ppr
->fr
[12]) * 4);
1105 for (i
= 16; i
< 32; i
++) {
1106 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
],
1108 if (unw_set_fr(&info
, i
, fpval
) < 0)
1114 ia64_sync_fph(child
);
1115 retval
|= __copy_from_user(&child
->thread
.fph
, &ppr
->fr
[32],
1116 sizeof(ppr
->fr
[32]) * 96);
1120 retval
|= __get_user(pt
->pr
, &ppr
->pr
);
1124 retval
|= __get_user(nat_bits
, &ppr
->nat
);
1126 retval
|= access_uarea(child
, PT_CR_IPSR
, &psr
, 1);
1127 retval
|= access_uarea(child
, PT_AR_RSC
, &rsc
, 1);
1128 retval
|= access_uarea(child
, PT_AR_EC
, &ec
, 1);
1129 retval
|= access_uarea(child
, PT_AR_LC
, &lc
, 1);
1130 retval
|= access_uarea(child
, PT_AR_RNAT
, &rnat
, 1);
1131 retval
|= access_uarea(child
, PT_AR_BSP
, &bsp
, 1);
1132 retval
|= access_uarea(child
, PT_CFM
, &cfm
, 1);
1133 retval
|= access_uarea(child
, PT_NAT_BITS
, &nat_bits
, 1);
1135 ret
= retval
? -EIO
: 0;
1140 user_enable_single_step (struct task_struct
*child
)
1142 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1144 set_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1149 user_enable_block_step (struct task_struct
*child
)
1151 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1153 set_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1158 user_disable_single_step (struct task_struct
*child
)
1160 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1162 /* make sure the single step/taken-branch trap bits are not set: */
1163 clear_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1169 * Called by kernel/ptrace.c when detaching..
1171 * Make sure the single step bit is not set.
1174 ptrace_disable (struct task_struct
*child
)
1176 user_disable_single_step(child
);
1180 arch_ptrace (struct task_struct
*child
, long request
,
1181 unsigned long addr
, unsigned long data
)
1184 case PTRACE_PEEKTEXT
:
1185 case PTRACE_PEEKDATA
:
1186 /* read word at location addr */
1187 if (access_process_vm(child
, addr
, &data
, sizeof(data
), 0)
1190 /* ensure return value is not mistaken for error code */
1191 force_successful_syscall_return();
1194 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1195 * by the generic ptrace_request().
1198 case PTRACE_PEEKUSR
:
1199 /* read the word at addr in the USER area */
1200 if (access_uarea(child
, addr
, &data
, 0) < 0)
1202 /* ensure return value is not mistaken for error code */
1203 force_successful_syscall_return();
1206 case PTRACE_POKEUSR
:
1207 /* write the word at addr in the USER area */
1208 if (access_uarea(child
, addr
, &data
, 1) < 0)
1212 case PTRACE_OLD_GETSIGINFO
:
1213 /* for backwards-compatibility */
1214 return ptrace_request(child
, PTRACE_GETSIGINFO
, addr
, data
);
1216 case PTRACE_OLD_SETSIGINFO
:
1217 /* for backwards-compatibility */
1218 return ptrace_request(child
, PTRACE_SETSIGINFO
, addr
, data
);
1220 case PTRACE_GETREGS
:
1221 return ptrace_getregs(child
,
1222 (struct pt_all_user_regs __user
*) data
);
1224 case PTRACE_SETREGS
:
1225 return ptrace_setregs(child
,
1226 (struct pt_all_user_regs __user
*) data
);
1229 return ptrace_request(child
, request
, addr
, data
);
1234 /* "asmlinkage" so the input arguments are preserved... */
1237 syscall_trace_enter (long arg0
, long arg1
, long arg2
, long arg3
,
1238 long arg4
, long arg5
, long arg6
, long arg7
,
1239 struct pt_regs regs
)
1241 if (test_thread_flag(TIF_SYSCALL_TRACE
))
1242 if (tracehook_report_syscall_entry(®s
))
1245 /* copy user rbs to kernel rbs */
1246 if (test_thread_flag(TIF_RESTORE_RSE
))
1250 audit_syscall_entry(AUDIT_ARCH_IA64
, regs
.r15
, arg0
, arg1
, arg2
, arg3
);
1255 /* "asmlinkage" so the input arguments are preserved... */
1258 syscall_trace_leave (long arg0
, long arg1
, long arg2
, long arg3
,
1259 long arg4
, long arg5
, long arg6
, long arg7
,
1260 struct pt_regs regs
)
1264 audit_syscall_exit(®s
);
1266 step
= test_thread_flag(TIF_SINGLESTEP
);
1267 if (step
|| test_thread_flag(TIF_SYSCALL_TRACE
))
1268 tracehook_report_syscall_exit(®s
, step
);
1270 /* copy user rbs to kernel rbs */
1271 if (test_thread_flag(TIF_RESTORE_RSE
))
1275 /* Utrace implementation starts here */
1283 const void __user
*ubuf
;
1286 struct regset_getset
{
1287 struct task_struct
*target
;
1288 const struct user_regset
*regset
;
1290 struct regset_get get
;
1291 struct regset_set set
;
1299 access_elf_gpreg(struct task_struct
*target
, struct unw_frame_info
*info
,
1300 unsigned long addr
, unsigned long *data
, int write_access
)
1303 unsigned long *ptr
= NULL
;
1307 pt
= task_pt_regs(target
);
1309 case ELF_GR_OFFSET(1):
1312 case ELF_GR_OFFSET(2):
1313 case ELF_GR_OFFSET(3):
1314 ptr
= (void *)&pt
->r2
+ (addr
- ELF_GR_OFFSET(2));
1316 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1318 /* read NaT bit first: */
1319 unsigned long dummy
;
1321 ret
= unw_get_gr(info
, addr
/8, &dummy
, &nat
);
1325 return unw_access_gr(info
, addr
/8, data
, &nat
, write_access
);
1326 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1327 ptr
= (void *)&pt
->r8
+ addr
- ELF_GR_OFFSET(8);
1329 case ELF_GR_OFFSET(12):
1330 case ELF_GR_OFFSET(13):
1331 ptr
= (void *)&pt
->r12
+ addr
- ELF_GR_OFFSET(12);
1333 case ELF_GR_OFFSET(14):
1336 case ELF_GR_OFFSET(15):
1347 access_elf_breg(struct task_struct
*target
, struct unw_frame_info
*info
,
1348 unsigned long addr
, unsigned long *data
, int write_access
)
1351 unsigned long *ptr
= NULL
;
1353 pt
= task_pt_regs(target
);
1355 case ELF_BR_OFFSET(0):
1358 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1359 return unw_access_br(info
, (addr
- ELF_BR_OFFSET(0))/8,
1360 data
, write_access
);
1361 case ELF_BR_OFFSET(6):
1364 case ELF_BR_OFFSET(7):
1375 access_elf_areg(struct task_struct
*target
, struct unw_frame_info
*info
,
1376 unsigned long addr
, unsigned long *data
, int write_access
)
1379 unsigned long cfm
, urbs_end
;
1380 unsigned long *ptr
= NULL
;
1382 pt
= task_pt_regs(target
);
1383 if (addr
>= ELF_AR_RSC_OFFSET
&& addr
<= ELF_AR_SSD_OFFSET
) {
1385 case ELF_AR_RSC_OFFSET
:
1388 pt
->ar_rsc
= *data
| (3 << 2);
1392 case ELF_AR_BSP_OFFSET
:
1394 * By convention, we use PT_AR_BSP to refer to
1395 * the end of the user-level backing store.
1396 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1397 * to get the real value of ar.bsp at the time
1398 * the kernel was entered.
1400 * Furthermore, when changing the contents of
1401 * PT_AR_BSP (or PT_CFM) while the task is
1402 * blocked in a system call, convert the state
1403 * so that the non-system-call exit
1404 * path is used. This ensures that the proper
1405 * state will be picked up when resuming
1406 * execution. However, it *also* means that
1407 * once we write PT_AR_BSP/PT_CFM, it won't be
1408 * possible to modify the syscall arguments of
1409 * the pending system call any longer. This
1410 * shouldn't be an issue because modifying
1411 * PT_AR_BSP/PT_CFM generally implies that
1412 * we're either abandoning the pending system
1413 * call or that we defer it's re-execution
1414 * (e.g., due to GDB doing an inferior
1417 urbs_end
= ia64_get_user_rbs_end(target
, pt
, &cfm
);
1419 if (*data
!= urbs_end
) {
1421 convert_to_non_syscall(target
,
1425 * Simulate user-level write
1429 pt
->ar_bspstore
= *data
;
1434 case ELF_AR_BSPSTORE_OFFSET
:
1435 ptr
= &pt
->ar_bspstore
;
1437 case ELF_AR_RNAT_OFFSET
:
1440 case ELF_AR_CCV_OFFSET
:
1443 case ELF_AR_UNAT_OFFSET
:
1446 case ELF_AR_FPSR_OFFSET
:
1449 case ELF_AR_PFS_OFFSET
:
1452 case ELF_AR_LC_OFFSET
:
1453 return unw_access_ar(info
, UNW_AR_LC
, data
,
1455 case ELF_AR_EC_OFFSET
:
1456 return unw_access_ar(info
, UNW_AR_EC
, data
,
1458 case ELF_AR_CSD_OFFSET
:
1461 case ELF_AR_SSD_OFFSET
:
1464 } else if (addr
>= ELF_CR_IIP_OFFSET
&& addr
<= ELF_CR_IPSR_OFFSET
) {
1466 case ELF_CR_IIP_OFFSET
:
1469 case ELF_CFM_OFFSET
:
1470 urbs_end
= ia64_get_user_rbs_end(target
, pt
, &cfm
);
1472 if (((cfm
^ *data
) & PFM_MASK
) != 0) {
1474 convert_to_non_syscall(target
,
1477 pt
->cr_ifs
= ((pt
->cr_ifs
& ~PFM_MASK
)
1478 | (*data
& PFM_MASK
));
1483 case ELF_CR_IPSR_OFFSET
:
1485 unsigned long tmp
= *data
;
1486 /* psr.ri==3 is a reserved value: SDM 2:25 */
1487 if ((tmp
& IA64_PSR_RI
) == IA64_PSR_RI
)
1488 tmp
&= ~IA64_PSR_RI
;
1489 pt
->cr_ipsr
= ((tmp
& IPSR_MASK
)
1490 | (pt
->cr_ipsr
& ~IPSR_MASK
));
1492 *data
= (pt
->cr_ipsr
& IPSR_MASK
);
1495 } else if (addr
== ELF_NAT_OFFSET
)
1496 return access_nat_bits(target
, pt
, info
,
1497 data
, write_access
);
1498 else if (addr
== ELF_PR_OFFSET
)
1512 access_elf_reg(struct task_struct
*target
, struct unw_frame_info
*info
,
1513 unsigned long addr
, unsigned long *data
, int write_access
)
1515 if (addr
>= ELF_GR_OFFSET(1) && addr
<= ELF_GR_OFFSET(15))
1516 return access_elf_gpreg(target
, info
, addr
, data
, write_access
);
1517 else if (addr
>= ELF_BR_OFFSET(0) && addr
<= ELF_BR_OFFSET(7))
1518 return access_elf_breg(target
, info
, addr
, data
, write_access
);
1520 return access_elf_areg(target
, info
, addr
, data
, write_access
);
1523 void do_gpregs_get(struct unw_frame_info
*info
, void *arg
)
1526 struct regset_getset
*dst
= arg
;
1528 unsigned int i
, index
, min_copy
;
1530 if (unw_unwind_to_user(info
) < 0)
1536 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1537 * predicate registers (p0-p63)
1540 * ar.rsc ar.bsp ar.bspstore ar.rnat
1541 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1546 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(1)) {
1547 dst
->ret
= user_regset_copyout_zero(&dst
->pos
, &dst
->count
,
1550 0, ELF_GR_OFFSET(1));
1551 if (dst
->ret
|| dst
->count
== 0)
1556 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(16)) {
1557 index
= (dst
->pos
- ELF_GR_OFFSET(1)) / sizeof(elf_greg_t
);
1558 min_copy
= ELF_GR_OFFSET(16) > (dst
->pos
+ dst
->count
) ?
1559 (dst
->pos
+ dst
->count
) : ELF_GR_OFFSET(16);
1560 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1562 if (access_elf_reg(dst
->target
, info
, i
,
1563 &tmp
[index
], 0) < 0) {
1567 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1568 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1569 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1570 if (dst
->ret
|| dst
->count
== 0)
1575 if (dst
->count
> 0 && dst
->pos
< ELF_NAT_OFFSET
) {
1576 pt
= task_pt_regs(dst
->target
);
1577 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1578 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, &pt
->r16
,
1579 ELF_GR_OFFSET(16), ELF_NAT_OFFSET
);
1580 if (dst
->ret
|| dst
->count
== 0)
1584 /* nat, pr, b0 - b7 */
1585 if (dst
->count
> 0 && dst
->pos
< ELF_CR_IIP_OFFSET
) {
1586 index
= (dst
->pos
- ELF_NAT_OFFSET
) / sizeof(elf_greg_t
);
1587 min_copy
= ELF_CR_IIP_OFFSET
> (dst
->pos
+ dst
->count
) ?
1588 (dst
->pos
+ dst
->count
) : ELF_CR_IIP_OFFSET
;
1589 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1591 if (access_elf_reg(dst
->target
, info
, i
,
1592 &tmp
[index
], 0) < 0) {
1596 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1597 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1598 ELF_NAT_OFFSET
, ELF_CR_IIP_OFFSET
);
1599 if (dst
->ret
|| dst
->count
== 0)
1603 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1604 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1606 if (dst
->count
> 0 && dst
->pos
< (ELF_AR_END_OFFSET
)) {
1607 index
= (dst
->pos
- ELF_CR_IIP_OFFSET
) / sizeof(elf_greg_t
);
1608 min_copy
= ELF_AR_END_OFFSET
> (dst
->pos
+ dst
->count
) ?
1609 (dst
->pos
+ dst
->count
) : ELF_AR_END_OFFSET
;
1610 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_greg_t
),
1612 if (access_elf_reg(dst
->target
, info
, i
,
1613 &tmp
[index
], 0) < 0) {
1617 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1618 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1619 ELF_CR_IIP_OFFSET
, ELF_AR_END_OFFSET
);
1623 void do_gpregs_set(struct unw_frame_info
*info
, void *arg
)
1626 struct regset_getset
*dst
= arg
;
1628 unsigned int i
, index
;
1630 if (unw_unwind_to_user(info
) < 0)
1634 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(1)) {
1635 dst
->ret
= user_regset_copyin_ignore(&dst
->pos
, &dst
->count
,
1638 0, ELF_GR_OFFSET(1));
1639 if (dst
->ret
|| dst
->count
== 0)
1644 if (dst
->count
> 0 && dst
->pos
< ELF_GR_OFFSET(16)) {
1646 index
= (dst
->pos
- ELF_GR_OFFSET(1)) / sizeof(elf_greg_t
);
1647 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1648 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1649 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1652 for ( ; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1653 if (access_elf_reg(dst
->target
, info
, i
,
1654 &tmp
[index
], 1) < 0) {
1658 if (dst
->count
== 0)
1663 if (dst
->count
> 0 && dst
->pos
< ELF_NAT_OFFSET
) {
1664 pt
= task_pt_regs(dst
->target
);
1665 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1666 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, &pt
->r16
,
1667 ELF_GR_OFFSET(16), ELF_NAT_OFFSET
);
1668 if (dst
->ret
|| dst
->count
== 0)
1672 /* nat, pr, b0 - b7 */
1673 if (dst
->count
> 0 && dst
->pos
< ELF_CR_IIP_OFFSET
) {
1675 index
= (dst
->pos
- ELF_NAT_OFFSET
) / sizeof(elf_greg_t
);
1676 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1677 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1678 ELF_NAT_OFFSET
, ELF_CR_IIP_OFFSET
);
1681 for (; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1682 if (access_elf_reg(dst
->target
, info
, i
,
1683 &tmp
[index
], 1) < 0) {
1687 if (dst
->count
== 0)
1691 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1692 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1694 if (dst
->count
> 0 && dst
->pos
< (ELF_AR_END_OFFSET
)) {
1696 index
= (dst
->pos
- ELF_CR_IIP_OFFSET
) / sizeof(elf_greg_t
);
1697 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1698 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1699 ELF_CR_IIP_OFFSET
, ELF_AR_END_OFFSET
);
1702 for ( ; i
< dst
->pos
; i
+= sizeof(elf_greg_t
), index
++)
1703 if (access_elf_reg(dst
->target
, info
, i
,
1704 &tmp
[index
], 1) < 0) {
1711 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1713 void do_fpregs_get(struct unw_frame_info
*info
, void *arg
)
1715 struct regset_getset
*dst
= arg
;
1716 struct task_struct
*task
= dst
->target
;
1717 elf_fpreg_t tmp
[30];
1718 int index
, min_copy
, i
;
1720 if (unw_unwind_to_user(info
) < 0)
1723 /* Skip pos 0 and 1 */
1724 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(2)) {
1725 dst
->ret
= user_regset_copyout_zero(&dst
->pos
, &dst
->count
,
1728 0, ELF_FP_OFFSET(2));
1729 if (dst
->count
== 0 || dst
->ret
)
1734 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(32)) {
1735 index
= (dst
->pos
- ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t
);
1737 min_copy
= min(((unsigned int)ELF_FP_OFFSET(32)),
1738 dst
->pos
+ dst
->count
);
1739 for (i
= dst
->pos
; i
< min_copy
; i
+= sizeof(elf_fpreg_t
),
1741 if (unw_get_fr(info
, i
/ sizeof(elf_fpreg_t
),
1746 dst
->ret
= user_regset_copyout(&dst
->pos
, &dst
->count
,
1747 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
, tmp
,
1748 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1749 if (dst
->count
== 0 || dst
->ret
)
1754 if (dst
->count
> 0) {
1755 ia64_flush_fph(dst
->target
);
1756 if (task
->thread
.flags
& IA64_THREAD_FPH_VALID
)
1757 dst
->ret
= user_regset_copyout(
1758 &dst
->pos
, &dst
->count
,
1759 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
,
1760 &dst
->target
->thread
.fph
,
1761 ELF_FP_OFFSET(32), -1);
1763 /* Zero fill instead. */
1764 dst
->ret
= user_regset_copyout_zero(
1765 &dst
->pos
, &dst
->count
,
1766 &dst
->u
.get
.kbuf
, &dst
->u
.get
.ubuf
,
1767 ELF_FP_OFFSET(32), -1);
1771 void do_fpregs_set(struct unw_frame_info
*info
, void *arg
)
1773 struct regset_getset
*dst
= arg
;
1774 elf_fpreg_t fpreg
, tmp
[30];
1775 int index
, start
, end
;
1777 if (unw_unwind_to_user(info
) < 0)
1780 /* Skip pos 0 and 1 */
1781 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(2)) {
1782 dst
->ret
= user_regset_copyin_ignore(&dst
->pos
, &dst
->count
,
1785 0, ELF_FP_OFFSET(2));
1786 if (dst
->count
== 0 || dst
->ret
)
1791 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(32)) {
1793 end
= min(((unsigned int)ELF_FP_OFFSET(32)),
1794 dst
->pos
+ dst
->count
);
1795 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1796 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1797 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1801 if (start
& 0xF) { /* only write high part */
1802 if (unw_get_fr(info
, start
/ sizeof(elf_fpreg_t
),
1807 tmp
[start
/ sizeof(elf_fpreg_t
) - 2].u
.bits
[0]
1811 if (end
& 0xF) { /* only write low part */
1812 if (unw_get_fr(info
, end
/ sizeof(elf_fpreg_t
),
1817 tmp
[end
/ sizeof(elf_fpreg_t
) - 2].u
.bits
[1]
1819 end
= (end
+ 0xF) & ~0xFUL
;
1822 for ( ; start
< end
; start
+= sizeof(elf_fpreg_t
)) {
1823 index
= start
/ sizeof(elf_fpreg_t
);
1824 if (unw_set_fr(info
, index
, tmp
[index
- 2])) {
1829 if (dst
->ret
|| dst
->count
== 0)
1834 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(128)) {
1835 ia64_sync_fph(dst
->target
);
1836 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1839 &dst
->target
->thread
.fph
,
1840 ELF_FP_OFFSET(32), -1);
1845 do_regset_call(void (*call
)(struct unw_frame_info
*, void *),
1846 struct task_struct
*target
,
1847 const struct user_regset
*regset
,
1848 unsigned int pos
, unsigned int count
,
1849 const void *kbuf
, const void __user
*ubuf
)
1851 struct regset_getset info
= { .target
= target
, .regset
= regset
,
1852 .pos
= pos
, .count
= count
,
1853 .u
.set
= { .kbuf
= kbuf
, .ubuf
= ubuf
},
1856 if (target
== current
)
1857 unw_init_running(call
, &info
);
1859 struct unw_frame_info ufi
;
1860 memset(&ufi
, 0, sizeof(ufi
));
1861 unw_init_from_blocked_task(&ufi
, target
);
1862 (*call
)(&ufi
, &info
);
1869 gpregs_get(struct task_struct
*target
,
1870 const struct user_regset
*regset
,
1871 unsigned int pos
, unsigned int count
,
1872 void *kbuf
, void __user
*ubuf
)
1874 return do_regset_call(do_gpregs_get
, target
, regset
, pos
, count
,
1878 static int gpregs_set(struct task_struct
*target
,
1879 const struct user_regset
*regset
,
1880 unsigned int pos
, unsigned int count
,
1881 const void *kbuf
, const void __user
*ubuf
)
1883 return do_regset_call(do_gpregs_set
, target
, regset
, pos
, count
,
1887 static void do_gpregs_writeback(struct unw_frame_info
*info
, void *arg
)
1889 do_sync_rbs(info
, ia64_sync_user_rbs
);
1893 * This is called to write back the register backing store.
1894 * ptrace does this before it stops, so that a tracer reading the user
1895 * memory after the thread stops will get the current register data.
1898 gpregs_writeback(struct task_struct
*target
,
1899 const struct user_regset
*regset
,
1902 if (test_and_set_tsk_thread_flag(target
, TIF_RESTORE_RSE
))
1904 set_notify_resume(target
);
1905 return do_regset_call(do_gpregs_writeback
, target
, regset
, 0, 0,
1910 fpregs_active(struct task_struct
*target
, const struct user_regset
*regset
)
1912 return (target
->thread
.flags
& IA64_THREAD_FPH_VALID
) ? 128 : 32;
1915 static int fpregs_get(struct task_struct
*target
,
1916 const struct user_regset
*regset
,
1917 unsigned int pos
, unsigned int count
,
1918 void *kbuf
, void __user
*ubuf
)
1920 return do_regset_call(do_fpregs_get
, target
, regset
, pos
, count
,
1924 static int fpregs_set(struct task_struct
*target
,
1925 const struct user_regset
*regset
,
1926 unsigned int pos
, unsigned int count
,
1927 const void *kbuf
, const void __user
*ubuf
)
1929 return do_regset_call(do_fpregs_set
, target
, regset
, pos
, count
,
1934 access_uarea(struct task_struct
*child
, unsigned long addr
,
1935 unsigned long *data
, int write_access
)
1937 unsigned int pos
= -1; /* an invalid value */
1939 unsigned long *ptr
, regnum
;
1941 if ((addr
& 0x7) != 0) {
1942 dprintk("ptrace: unaligned register address 0x%lx\n", addr
);
1945 if ((addr
>= PT_NAT_BITS
+ 8 && addr
< PT_F2
) ||
1946 (addr
>= PT_R7
+ 8 && addr
< PT_B1
) ||
1947 (addr
>= PT_AR_LC
+ 8 && addr
< PT_CR_IPSR
) ||
1948 (addr
>= PT_AR_SSD
+ 8 && addr
< PT_DBR
)) {
1949 dprintk("ptrace: rejecting access to register "
1950 "address 0x%lx\n", addr
);
1955 case PT_F32
... (PT_F127
+ 15):
1956 pos
= addr
- PT_F32
+ ELF_FP_OFFSET(32);
1958 case PT_F2
... (PT_F5
+ 15):
1959 pos
= addr
- PT_F2
+ ELF_FP_OFFSET(2);
1961 case PT_F10
... (PT_F31
+ 15):
1962 pos
= addr
- PT_F10
+ ELF_FP_OFFSET(10);
1964 case PT_F6
... (PT_F9
+ 15):
1965 pos
= addr
- PT_F6
+ ELF_FP_OFFSET(6);
1971 ret
= fpregs_set(child
, NULL
, pos
,
1972 sizeof(unsigned long), data
, NULL
);
1974 ret
= fpregs_get(child
, NULL
, pos
,
1975 sizeof(unsigned long), data
, NULL
);
1983 pos
= ELF_NAT_OFFSET
;
1985 case PT_R4
... PT_R7
:
1986 pos
= addr
- PT_R4
+ ELF_GR_OFFSET(4);
1988 case PT_B1
... PT_B5
:
1989 pos
= addr
- PT_B1
+ ELF_BR_OFFSET(1);
1992 pos
= ELF_AR_EC_OFFSET
;
1995 pos
= ELF_AR_LC_OFFSET
;
1998 pos
= ELF_CR_IPSR_OFFSET
;
2001 pos
= ELF_CR_IIP_OFFSET
;
2004 pos
= ELF_CFM_OFFSET
;
2007 pos
= ELF_AR_UNAT_OFFSET
;
2010 pos
= ELF_AR_PFS_OFFSET
;
2013 pos
= ELF_AR_RSC_OFFSET
;
2016 pos
= ELF_AR_RNAT_OFFSET
;
2018 case PT_AR_BSPSTORE
:
2019 pos
= ELF_AR_BSPSTORE_OFFSET
;
2022 pos
= ELF_PR_OFFSET
;
2025 pos
= ELF_BR_OFFSET(6);
2028 pos
= ELF_AR_BSP_OFFSET
;
2030 case PT_R1
... PT_R3
:
2031 pos
= addr
- PT_R1
+ ELF_GR_OFFSET(1);
2033 case PT_R12
... PT_R15
:
2034 pos
= addr
- PT_R12
+ ELF_GR_OFFSET(12);
2036 case PT_R8
... PT_R11
:
2037 pos
= addr
- PT_R8
+ ELF_GR_OFFSET(8);
2039 case PT_R16
... PT_R31
:
2040 pos
= addr
- PT_R16
+ ELF_GR_OFFSET(16);
2043 pos
= ELF_AR_CCV_OFFSET
;
2046 pos
= ELF_AR_FPSR_OFFSET
;
2049 pos
= ELF_BR_OFFSET(0);
2052 pos
= ELF_BR_OFFSET(7);
2055 pos
= ELF_AR_CSD_OFFSET
;
2058 pos
= ELF_AR_SSD_OFFSET
;
2064 ret
= gpregs_set(child
, NULL
, pos
,
2065 sizeof(unsigned long), data
, NULL
);
2067 ret
= gpregs_get(child
, NULL
, pos
,
2068 sizeof(unsigned long), data
, NULL
);
2074 /* access debug registers */
2075 if (addr
>= PT_IBR
) {
2076 regnum
= (addr
- PT_IBR
) >> 3;
2077 ptr
= &child
->thread
.ibr
[0];
2079 regnum
= (addr
- PT_DBR
) >> 3;
2080 ptr
= &child
->thread
.dbr
[0];
2084 dprintk("ptrace: rejecting access to register "
2085 "address 0x%lx\n", addr
);
2088 #ifdef CONFIG_PERFMON
2090 * Check if debug registers are used by perfmon. This
2091 * test must be done once we know that we can do the
2092 * operation, i.e. the arguments are all valid, but
2093 * before we start modifying the state.
2095 * Perfmon needs to keep a count of how many processes
2096 * are trying to modify the debug registers for system
2097 * wide monitoring sessions.
2099 * We also include read access here, because they may
2100 * cause the PMU-installed debug register state
2101 * (dbr[], ibr[]) to be reset. The two arrays are also
2102 * used by perfmon, but we do not use
2103 * IA64_THREAD_DBG_VALID. The registers are restored
2104 * by the PMU context switch code.
2106 if (pfm_use_debug_registers(child
))
2110 if (!(child
->thread
.flags
& IA64_THREAD_DBG_VALID
)) {
2111 child
->thread
.flags
|= IA64_THREAD_DBG_VALID
;
2112 memset(child
->thread
.dbr
, 0,
2113 sizeof(child
->thread
.dbr
));
2114 memset(child
->thread
.ibr
, 0,
2115 sizeof(child
->thread
.ibr
));
2120 if ((regnum
& 1) && write_access
) {
2121 /* don't let the user set kernel-level breakpoints: */
2122 *ptr
= *data
& ~(7UL << 56);
2132 static const struct user_regset native_regsets
[] = {
2134 .core_note_type
= NT_PRSTATUS
,
2136 .size
= sizeof(elf_greg_t
), .align
= sizeof(elf_greg_t
),
2137 .get
= gpregs_get
, .set
= gpregs_set
,
2138 .writeback
= gpregs_writeback
2141 .core_note_type
= NT_PRFPREG
,
2143 .size
= sizeof(elf_fpreg_t
), .align
= sizeof(elf_fpreg_t
),
2144 .get
= fpregs_get
, .set
= fpregs_set
, .active
= fpregs_active
2148 static const struct user_regset_view user_ia64_view
= {
2150 .e_machine
= EM_IA_64
,
2151 .regsets
= native_regsets
, .n
= ARRAY_SIZE(native_regsets
)
2154 const struct user_regset_view
*task_user_regset_view(struct task_struct
*tsk
)
2156 return &user_ia64_view
;
2159 struct syscall_get_set_args
{
2162 unsigned long *args
;
2163 struct pt_regs
*regs
;
2167 static void syscall_get_set_args_cb(struct unw_frame_info
*info
, void *data
)
2169 struct syscall_get_set_args
*args
= data
;
2170 struct pt_regs
*pt
= args
->regs
;
2171 unsigned long *krbs
, cfm
, ndirty
;
2174 if (unw_unwind_to_user(info
) < 0)
2178 krbs
= (unsigned long *)info
->task
+ IA64_RBS_OFFSET
/8;
2179 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
2183 count
= min_t(int, args
->n
, cfm
& 0x7f);
2185 for (i
= 0; i
< count
; i
++) {
2187 *ia64_rse_skip_regs(krbs
, ndirty
+ i
+ args
->i
) =
2190 args
->args
[i
] = *ia64_rse_skip_regs(krbs
,
2191 ndirty
+ i
+ args
->i
);
2195 while (i
< args
->n
) {
2202 void ia64_syscall_get_set_arguments(struct task_struct
*task
,
2203 struct pt_regs
*regs
, unsigned int i
, unsigned int n
,
2204 unsigned long *args
, int rw
)
2206 struct syscall_get_set_args data
= {
2214 if (task
== current
)
2215 unw_init_running(syscall_get_set_args_cb
, &data
);
2217 struct unw_frame_info ufi
;
2218 memset(&ufi
, 0, sizeof(ufi
));
2219 unw_init_from_blocked_task(&ufi
, task
);
2220 syscall_get_set_args_cb(&ufi
, &data
);