2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10 * Copyright (C) 1999 VA Linux Systems
11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/memblock.h>
21 #include <linux/nmi.h>
22 #include <linux/swap.h>
24 #include <asm/meminit.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/sections.h>
30 #ifdef CONFIG_VIRTUAL_MEM_MAP
31 static unsigned long max_gap
;
35 * show_mem - give short summary of memory stats
37 * Shows a simple page count of reserved and used pages in the system.
38 * For discontig machines, it does this on a per-pgdat basis.
40 void show_mem(unsigned int filter
)
42 int i
, total_reserved
= 0;
43 int total_shared
= 0, total_cached
= 0;
44 unsigned long total_present
= 0;
47 printk(KERN_INFO
"Mem-info:\n");
48 show_free_areas(filter
);
49 printk(KERN_INFO
"Node memory in pages:\n");
50 for_each_online_pgdat(pgdat
) {
51 unsigned long present
;
53 int shared
= 0, cached
= 0, reserved
= 0;
54 int nid
= pgdat
->node_id
;
56 if (skip_free_areas_node(filter
, nid
))
58 pgdat_resize_lock(pgdat
, &flags
);
59 present
= pgdat
->node_present_pages
;
60 for(i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
62 if (unlikely(i
% MAX_ORDER_NR_PAGES
== 0))
64 if (pfn_valid(pgdat
->node_start_pfn
+ i
))
65 page
= pfn_to_page(pgdat
->node_start_pfn
+ i
);
67 #ifdef CONFIG_VIRTUAL_MEM_MAP
68 if (max_gap
< LARGE_GAP
)
71 i
= vmemmap_find_next_valid_pfn(nid
, i
) - 1;
74 if (PageReserved(page
))
76 else if (PageSwapCache(page
))
78 else if (page_count(page
))
79 shared
+= page_count(page
)-1;
81 pgdat_resize_unlock(pgdat
, &flags
);
82 total_present
+= present
;
83 total_reserved
+= reserved
;
84 total_cached
+= cached
;
85 total_shared
+= shared
;
86 printk(KERN_INFO
"Node %4d: RAM: %11ld, rsvd: %8d, "
87 "shrd: %10d, swpd: %10d\n", nid
,
88 present
, reserved
, shared
, cached
);
90 printk(KERN_INFO
"%ld pages of RAM\n", total_present
);
91 printk(KERN_INFO
"%d reserved pages\n", total_reserved
);
92 printk(KERN_INFO
"%d pages shared\n", total_shared
);
93 printk(KERN_INFO
"%d pages swap cached\n", total_cached
);
94 printk(KERN_INFO
"Total of %ld pages in page table cache\n",
95 quicklist_total_size());
96 printk(KERN_INFO
"%d free buffer pages\n", nr_free_buffer_pages());
100 /* physical address where the bootmem map is located */
101 unsigned long bootmap_start
;
104 * find_bootmap_location - callback to find a memory area for the bootmap
105 * @start: start of region
106 * @end: end of region
107 * @arg: unused callback data
109 * Find a place to put the bootmap and return its starting address in
110 * bootmap_start. This address must be page-aligned.
113 find_bootmap_location (u64 start
, u64 end
, void *arg
)
115 u64 needed
= *(unsigned long *)arg
;
116 u64 range_start
, range_end
, free_start
;
120 if (start
== PAGE_OFFSET
) {
127 free_start
= PAGE_OFFSET
;
129 for (i
= 0; i
< num_rsvd_regions
; i
++) {
130 range_start
= max(start
, free_start
);
131 range_end
= min(end
, rsvd_region
[i
].start
& PAGE_MASK
);
133 free_start
= PAGE_ALIGN(rsvd_region
[i
].end
);
135 if (range_end
<= range_start
)
136 continue; /* skip over empty range */
138 if (range_end
- range_start
>= needed
) {
139 bootmap_start
= __pa(range_start
);
140 return -1; /* done */
143 /* nothing more available in this segment */
144 if (range_end
== end
)
151 static void *cpu_data
;
153 * per_cpu_init - setup per-cpu variables
155 * Allocate and setup per-cpu data areas.
160 static bool first_time
= true;
161 void *cpu0_data
= __cpu0_per_cpu
;
169 * get_free_pages() cannot be used before cpu_init() done.
170 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
171 * to avoid that AP calls get_zeroed_page().
173 for_each_possible_cpu(cpu
) {
174 void *src
= cpu
== 0 ? cpu0_data
: __phys_per_cpu_start
;
176 memcpy(cpu_data
, src
, __per_cpu_end
- __per_cpu_start
);
177 __per_cpu_offset
[cpu
] = (char *)cpu_data
- __per_cpu_start
;
178 per_cpu(local_per_cpu_offset
, cpu
) = __per_cpu_offset
[cpu
];
181 * percpu area for cpu0 is moved from the __init area
182 * which is setup by head.S and used till this point.
183 * Update ar.k3. This move is ensures that percpu
184 * area for cpu0 is on the correct node and its
185 * virtual address isn't insanely far from other
186 * percpu areas which is important for congruent
190 ia64_set_kr(IA64_KR_PER_CPU_DATA
, __pa(cpu_data
) -
191 (unsigned long)__per_cpu_start
);
193 cpu_data
+= PERCPU_PAGE_SIZE
;
196 return __per_cpu_start
+ __per_cpu_offset
[smp_processor_id()];
200 alloc_per_cpu_data(void)
202 cpu_data
= __alloc_bootmem(PERCPU_PAGE_SIZE
* num_possible_cpus(),
203 PERCPU_PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
207 * setup_per_cpu_areas - setup percpu areas
209 * Arch code has already allocated and initialized percpu areas. All
210 * this function has to do is to teach the determined layout to the
211 * dynamic percpu allocator, which happens to be more complex than
212 * creating whole new ones using helpers.
215 setup_per_cpu_areas(void)
217 struct pcpu_alloc_info
*ai
;
218 struct pcpu_group_info
*gi
;
220 ssize_t static_size
, reserved_size
, dyn_size
;
223 ai
= pcpu_alloc_alloc_info(1, num_possible_cpus());
225 panic("failed to allocate pcpu_alloc_info");
228 /* units are assigned consecutively to possible cpus */
229 for_each_possible_cpu(cpu
)
230 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
233 static_size
= __per_cpu_end
- __per_cpu_start
;
234 reserved_size
= PERCPU_MODULE_RESERVE
;
235 dyn_size
= PERCPU_PAGE_SIZE
- static_size
- reserved_size
;
237 panic("percpu area overflow static=%zd reserved=%zd\n",
238 static_size
, reserved_size
);
240 ai
->static_size
= static_size
;
241 ai
->reserved_size
= reserved_size
;
242 ai
->dyn_size
= dyn_size
;
243 ai
->unit_size
= PERCPU_PAGE_SIZE
;
244 ai
->atom_size
= PAGE_SIZE
;
245 ai
->alloc_size
= PERCPU_PAGE_SIZE
;
247 rc
= pcpu_setup_first_chunk(ai
, __per_cpu_start
+ __per_cpu_offset
[0]);
249 panic("failed to setup percpu area (err=%d)", rc
);
251 pcpu_free_alloc_info(ai
);
254 #define alloc_per_cpu_data() do { } while (0)
255 #endif /* CONFIG_SMP */
258 * find_memory - setup memory map
260 * Walk the EFI memory map and find usable memory for the system, taking
261 * into account reserved areas.
266 unsigned long bootmap_size
;
270 /* first find highest page frame number */
273 efi_memmap_walk(find_max_min_low_pfn
, NULL
);
274 max_pfn
= max_low_pfn
;
275 /* how many bytes to cover all the pages */
276 bootmap_size
= bootmem_bootmap_pages(max_pfn
) << PAGE_SHIFT
;
278 /* look for a location to hold the bootmap */
279 bootmap_start
= ~0UL;
280 efi_memmap_walk(find_bootmap_location
, &bootmap_size
);
281 if (bootmap_start
== ~0UL)
282 panic("Cannot find %ld bytes for bootmap\n", bootmap_size
);
284 bootmap_size
= init_bootmem_node(NODE_DATA(0),
285 (bootmap_start
>> PAGE_SHIFT
), 0, max_pfn
);
287 /* Free all available memory, then mark bootmem-map as being in use. */
288 efi_memmap_walk(filter_rsvd_memory
, free_bootmem
);
289 reserve_bootmem(bootmap_start
, bootmap_size
, BOOTMEM_DEFAULT
);
293 alloc_per_cpu_data();
296 static int count_pages(u64 start
, u64 end
, void *arg
)
298 unsigned long *count
= arg
;
300 *count
+= (end
- start
) >> PAGE_SHIFT
;
305 * Set up the page tables.
311 unsigned long max_dma
;
312 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
315 efi_memmap_walk(count_pages
, &num_physpages
);
317 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
318 #ifdef CONFIG_ZONE_DMA
319 max_dma
= virt_to_phys((void *) MAX_DMA_ADDRESS
) >> PAGE_SHIFT
;
320 max_zone_pfns
[ZONE_DMA
] = max_dma
;
322 max_zone_pfns
[ZONE_NORMAL
] = max_low_pfn
;
324 #ifdef CONFIG_VIRTUAL_MEM_MAP
325 efi_memmap_walk(filter_memory
, register_active_ranges
);
326 efi_memmap_walk(find_largest_hole
, (u64
*)&max_gap
);
327 if (max_gap
< LARGE_GAP
) {
328 vmem_map
= (struct page
*) 0;
329 free_area_init_nodes(max_zone_pfns
);
331 unsigned long map_size
;
333 /* allocate virtual_mem_map */
335 map_size
= PAGE_ALIGN(ALIGN(max_low_pfn
, MAX_ORDER_NR_PAGES
) *
336 sizeof(struct page
));
337 VMALLOC_END
-= map_size
;
338 vmem_map
= (struct page
*) VMALLOC_END
;
339 efi_memmap_walk(create_mem_map_page_table
, NULL
);
342 * alloc_node_mem_map makes an adjustment for mem_map
343 * which isn't compatible with vmem_map.
345 NODE_DATA(0)->node_mem_map
= vmem_map
+
346 find_min_pfn_with_active_regions();
347 free_area_init_nodes(max_zone_pfns
);
349 printk("Virtual mem_map starts at 0x%p\n", mem_map
);
351 #else /* !CONFIG_VIRTUAL_MEM_MAP */
352 memblock_add_node(0, PFN_PHYS(max_low_pfn
), 0);
353 free_area_init_nodes(max_zone_pfns
);
354 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
355 zero_page_memmap_ptr
= virt_to_page(ia64_imva(empty_zero_page
));