3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
36 #include <asm/firmware.h>
38 #include <asm/pgtable.h>
40 #include <asm/mmu_context.h>
41 #include <asm/system.h>
42 #include <asm/uaccess.h>
43 #include <asm/tlbflush.h>
44 #include <asm/siginfo.h>
45 #include <mm/mmu_decl.h>
50 static inline int notify_page_fault(struct pt_regs
*regs
)
54 /* kprobe_running() needs smp_processor_id() */
55 if (!user_mode(regs
)) {
57 if (kprobe_running() && kprobe_fault_handler(regs
, 11))
65 static inline int notify_page_fault(struct pt_regs
*regs
)
72 * Check whether the instruction at regs->nip is a store using
73 * an update addressing form which will update r1.
75 static int store_updates_sp(struct pt_regs
*regs
)
79 if (get_user(inst
, (unsigned int __user
*)regs
->nip
))
81 /* check for 1 in the rA field */
82 if (((inst
>> 16) & 0x1f) != 1)
84 /* check major opcode */
92 case 62: /* std or stdu */
93 return (inst
& 3) == 1;
95 /* check minor opcode */
96 switch ((inst
>> 1) & 0x3ff) {
100 case 439: /* sthux */
101 case 695: /* stfsux */
102 case 759: /* stfdux */
110 * For 600- and 800-family processors, the error_code parameter is DSISR
111 * for a data fault, SRR1 for an instruction fault. For 400-family processors
112 * the error_code parameter is ESR for a data fault, 0 for an instruction
114 * For 64-bit processors, the error_code parameter is
115 * - DSISR for a non-SLB data access fault,
116 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
119 * The return value is 0 if the fault was handled, or the signal
120 * number if this is a kernel fault that can't be handled here.
122 int __kprobes
do_page_fault(struct pt_regs
*regs
, unsigned long address
,
123 unsigned long error_code
)
125 struct vm_area_struct
* vma
;
126 struct mm_struct
*mm
= current
->mm
;
128 int code
= SEGV_MAPERR
;
129 int is_write
= 0, ret
;
130 int trap
= TRAP(regs
);
131 int is_exec
= trap
== 0x400;
133 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
135 * Fortunately the bit assignments in SRR1 for an instruction
136 * fault and DSISR for a data fault are mostly the same for the
137 * bits we are interested in. But there are some bits which
138 * indicate errors in DSISR but can validly be set in SRR1.
141 error_code
&= 0x48200000;
143 is_write
= error_code
& DSISR_ISSTORE
;
145 is_write
= error_code
& ESR_DST
;
146 #endif /* CONFIG_4xx || CONFIG_BOOKE */
148 #ifdef CONFIG_PPC_ICSWX
150 * we need to do this early because this "data storage
151 * interrupt" does not update the DAR/DEAR so we don't want to
154 if (error_code
& ICSWX_DSI_UCT
) {
157 ret
= acop_handle_fault(regs
, address
, error_code
);
163 if (notify_page_fault(regs
))
166 if (unlikely(debugger_fault_handler(regs
)))
169 /* On a kernel SLB miss we can only check for a valid exception entry */
170 if (!user_mode(regs
) && (address
>= TASK_SIZE
))
173 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
174 defined(CONFIG_PPC_BOOK3S_64))
175 if (error_code
& DSISR_DABRMATCH
) {
177 do_dabr(regs
, address
, error_code
);
182 if (in_atomic() || mm
== NULL
) {
183 if (!user_mode(regs
))
185 /* in_atomic() in user mode is really bad,
186 as is current->mm == NULL. */
187 printk(KERN_EMERG
"Page fault in user mode with "
188 "in_atomic() = %d mm = %p\n", in_atomic(), mm
);
189 printk(KERN_EMERG
"NIP = %lx MSR = %lx\n",
190 regs
->nip
, regs
->msr
);
191 die("Weird page fault", regs
, SIGSEGV
);
194 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
196 /* When running in the kernel we expect faults to occur only to
197 * addresses in user space. All other faults represent errors in the
198 * kernel and should generate an OOPS. Unfortunately, in the case of an
199 * erroneous fault occurring in a code path which already holds mmap_sem
200 * we will deadlock attempting to validate the fault against the
201 * address space. Luckily the kernel only validly references user
202 * space from well defined areas of code, which are listed in the
205 * As the vast majority of faults will be valid we will only perform
206 * the source reference check when there is a possibility of a deadlock.
207 * Attempt to lock the address space, if we cannot we then validate the
208 * source. If this is invalid we can skip the address space check,
209 * thus avoiding the deadlock.
211 if (!down_read_trylock(&mm
->mmap_sem
)) {
212 if (!user_mode(regs
) && !search_exception_tables(regs
->nip
))
213 goto bad_area_nosemaphore
;
215 down_read(&mm
->mmap_sem
);
218 vma
= find_vma(mm
, address
);
221 if (vma
->vm_start
<= address
)
223 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
227 * N.B. The POWER/Open ABI allows programs to access up to
228 * 288 bytes below the stack pointer.
229 * The kernel signal delivery code writes up to about 1.5kB
230 * below the stack pointer (r1) before decrementing it.
231 * The exec code can write slightly over 640kB to the stack
232 * before setting the user r1. Thus we allow the stack to
233 * expand to 1MB without further checks.
235 if (address
+ 0x100000 < vma
->vm_end
) {
236 /* get user regs even if this fault is in kernel mode */
237 struct pt_regs
*uregs
= current
->thread
.regs
;
242 * A user-mode access to an address a long way below
243 * the stack pointer is only valid if the instruction
244 * is one which would update the stack pointer to the
245 * address accessed if the instruction completed,
246 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
247 * (or the byte, halfword, float or double forms).
249 * If we don't check this then any write to the area
250 * between the last mapped region and the stack will
251 * expand the stack rather than segfaulting.
253 if (address
+ 2048 < uregs
->gpr
[1]
254 && (!user_mode(regs
) || !store_updates_sp(regs
)))
257 if (expand_stack(vma
, address
))
262 #if defined(CONFIG_6xx)
263 if (error_code
& 0x95700000)
264 /* an error such as lwarx to I/O controller space,
265 address matching DABR, eciwx, etc. */
267 #endif /* CONFIG_6xx */
268 #if defined(CONFIG_8xx)
269 /* 8xx sometimes need to load a invalid/non-present TLBs.
270 * These must be invalidated separately as linux mm don't.
272 if (error_code
& 0x40000000) /* no translation? */
273 _tlbil_va(address
, 0, 0, 0);
275 /* The MPC8xx seems to always set 0x80000000, which is
276 * "undefined". Of those that can be set, this is the only
277 * one which seems bad.
279 if (error_code
& 0x10000000)
280 /* Guarded storage error. */
282 #endif /* CONFIG_8xx */
285 #ifdef CONFIG_PPC_STD_MMU
286 /* Protection fault on exec go straight to failure on
287 * Hash based MMUs as they either don't support per-page
288 * execute permission, or if they do, it's handled already
289 * at the hash level. This test would probably have to
290 * be removed if we change the way this works to make hash
291 * processors use the same I/D cache coherency mechanism
294 if (error_code
& DSISR_PROTFAULT
)
296 #endif /* CONFIG_PPC_STD_MMU */
299 * Allow execution from readable areas if the MMU does not
300 * provide separate controls over reading and executing.
302 * Note: That code used to not be enabled for 4xx/BookE.
303 * It is now as I/D cache coherency for these is done at
304 * set_pte_at() time and I see no reason why the test
305 * below wouldn't be valid on those processors. This -may-
306 * break programs compiled with a really old ABI though.
308 if (!(vma
->vm_flags
& VM_EXEC
) &&
309 (cpu_has_feature(CPU_FTR_NOEXECUTE
) ||
310 !(vma
->vm_flags
& (VM_READ
| VM_WRITE
))))
313 } else if (is_write
) {
314 if (!(vma
->vm_flags
& VM_WRITE
))
318 /* protection fault */
319 if (error_code
& 0x08000000)
321 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
326 * If for any reason at all we couldn't handle the fault,
327 * make sure we exit gracefully rather than endlessly redo
330 ret
= handle_mm_fault(mm
, vma
, address
, is_write
? FAULT_FLAG_WRITE
: 0);
331 if (unlikely(ret
& VM_FAULT_ERROR
)) {
332 if (ret
& VM_FAULT_OOM
)
334 else if (ret
& VM_FAULT_SIGBUS
)
338 if (ret
& VM_FAULT_MAJOR
) {
340 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1,
342 #ifdef CONFIG_PPC_SMLPAR
343 if (firmware_has_feature(FW_FEATURE_CMO
)) {
345 get_lppaca()->page_ins
+= (1 << PAGE_FACTOR
);
351 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1,
354 up_read(&mm
->mmap_sem
);
358 up_read(&mm
->mmap_sem
);
360 bad_area_nosemaphore
:
361 /* User mode accesses cause a SIGSEGV */
362 if (user_mode(regs
)) {
363 _exception(SIGSEGV
, regs
, code
, address
);
367 if (is_exec
&& (error_code
& DSISR_PROTFAULT
))
368 printk_ratelimited(KERN_CRIT
"kernel tried to execute NX-protected"
369 " page (%lx) - exploit attempt? (uid: %d)\n",
370 address
, current_uid());
375 * We ran out of memory, or some other thing happened to us that made
376 * us unable to handle the page fault gracefully.
379 up_read(&mm
->mmap_sem
);
380 if (!user_mode(regs
))
382 pagefault_out_of_memory();
386 up_read(&mm
->mmap_sem
);
387 if (user_mode(regs
)) {
388 info
.si_signo
= SIGBUS
;
390 info
.si_code
= BUS_ADRERR
;
391 info
.si_addr
= (void __user
*)address
;
392 force_sig_info(SIGBUS
, &info
, current
);
399 * bad_page_fault is called when we have a bad access from the kernel.
400 * It is called from the DSI and ISI handlers in head.S and from some
401 * of the procedures in traps.c.
403 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
405 const struct exception_table_entry
*entry
;
406 unsigned long *stackend
;
408 /* Are we prepared to handle this fault? */
409 if ((entry
= search_exception_tables(regs
->nip
)) != NULL
) {
410 regs
->nip
= entry
->fixup
;
414 /* kernel has accessed a bad area */
416 switch (regs
->trap
) {
419 printk(KERN_ALERT
"Unable to handle kernel paging request for "
420 "data at address 0x%08lx\n", regs
->dar
);
424 printk(KERN_ALERT
"Unable to handle kernel paging request for "
425 "instruction fetch\n");
428 printk(KERN_ALERT
"Unable to handle kernel paging request for "
432 printk(KERN_ALERT
"Faulting instruction address: 0x%08lx\n",
435 stackend
= end_of_stack(current
);
436 if (current
!= &init_task
&& *stackend
!= STACK_END_MAGIC
)
437 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
439 die("Kernel access of bad area", regs
, sig
);