2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/signal.h>
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/perf_event.h>
20 #include <linux/interrupt.h>
21 #include <linux/kprobes.h>
22 #include <linux/kdebug.h>
23 #include <linux/percpu.h>
26 #include <asm/pgtable.h>
27 #include <asm/openprom.h>
28 #include <asm/oplib.h>
29 #include <asm/uaccess.h>
32 #include <asm/sections.h>
33 #include <asm/mmu_context.h>
35 int show_unhandled_signals
= 1;
37 static inline __kprobes
int notify_page_fault(struct pt_regs
*regs
)
41 /* kprobe_running() needs smp_processor_id() */
42 if (kprobes_built_in() && !user_mode(regs
)) {
44 if (kprobe_running() && kprobe_fault_handler(regs
, 0))
51 static void __kprobes
unhandled_fault(unsigned long address
,
52 struct task_struct
*tsk
,
55 if ((unsigned long) address
< PAGE_SIZE
) {
56 printk(KERN_ALERT
"Unable to handle kernel NULL "
57 "pointer dereference\n");
59 printk(KERN_ALERT
"Unable to handle kernel paging request "
60 "at virtual address %016lx\n", (unsigned long)address
);
62 printk(KERN_ALERT
"tsk->{mm,active_mm}->context = %016lx\n",
64 CTX_HWBITS(tsk
->mm
->context
) :
65 CTX_HWBITS(tsk
->active_mm
->context
)));
66 printk(KERN_ALERT
"tsk->{mm,active_mm}->pgd = %016lx\n",
67 (tsk
->mm
? (unsigned long) tsk
->mm
->pgd
:
68 (unsigned long) tsk
->active_mm
->pgd
));
69 die_if_kernel("Oops", regs
);
72 static void __kprobes
bad_kernel_pc(struct pt_regs
*regs
, unsigned long vaddr
)
74 printk(KERN_CRIT
"OOPS: Bogus kernel PC [%016lx] in fault handler\n",
76 printk(KERN_CRIT
"OOPS: RPC [%016lx]\n", regs
->u_regs
[15]);
77 printk("OOPS: RPC <%pS>\n", (void *) regs
->u_regs
[15]);
78 printk(KERN_CRIT
"OOPS: Fault was to vaddr[%lx]\n", vaddr
);
80 unhandled_fault(regs
->tpc
, current
, regs
);
84 * We now make sure that mmap_sem is held in all paths that call
85 * this. Additionally, to prevent kswapd from ripping ptes from
86 * under us, raise interrupts around the time that we look at the
87 * pte, kswapd will have to wait to get his smp ipi response from
88 * us. vmtruncate likewise. This saves us having to get pte lock.
90 static unsigned int get_user_insn(unsigned long tpc
)
92 pgd_t
*pgdp
= pgd_offset(current
->mm
, tpc
);
102 pudp
= pud_offset(pgdp
, tpc
);
105 pmdp
= pmd_offset(pudp
, tpc
);
109 /* This disables preemption for us as well. */
110 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
111 __asm__
__volatile__("wrpr %0, %1, %%pstate"
112 : : "r" (pstate
), "i" (PSTATE_IE
));
113 ptep
= pte_offset_map(pmdp
, tpc
);
115 if (!pte_present(pte
))
118 pa
= (pte_pfn(pte
) << PAGE_SHIFT
);
119 pa
+= (tpc
& ~PAGE_MASK
);
121 /* Use phys bypass so we don't pollute dtlb/dcache. */
122 __asm__
__volatile__("lduwa [%1] %2, %0"
124 : "r" (pa
), "i" (ASI_PHYS_USE_EC
));
128 __asm__
__volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate
));
134 show_signal_msg(struct pt_regs
*regs
, int sig
, int code
,
135 unsigned long address
, struct task_struct
*tsk
)
137 if (!unhandled_signal(tsk
, sig
))
140 if (!printk_ratelimit())
143 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
144 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
145 tsk
->comm
, task_pid_nr(tsk
), address
,
146 (void *)regs
->tpc
, (void *)regs
->u_regs
[UREG_I7
],
147 (void *)regs
->u_regs
[UREG_FP
], code
);
149 print_vma_addr(KERN_CONT
" in ", regs
->tpc
);
151 printk(KERN_CONT
"\n");
154 extern unsigned long compute_effective_address(struct pt_regs
*, unsigned int, unsigned int);
156 static void do_fault_siginfo(int code
, int sig
, struct pt_regs
*regs
,
157 unsigned int insn
, int fault_code
)
165 if (fault_code
& FAULT_CODE_ITLB
)
168 addr
= compute_effective_address(regs
, insn
, 0);
169 info
.si_addr
= (void __user
*) addr
;
172 if (unlikely(show_unhandled_signals
))
173 show_signal_msg(regs
, sig
, code
, addr
, current
);
175 force_sig_info(sig
, &info
, current
);
178 extern int handle_ldf_stq(u32
, struct pt_regs
*);
179 extern int handle_ld_nf(u32
, struct pt_regs
*);
181 static unsigned int get_fault_insn(struct pt_regs
*regs
, unsigned int insn
)
184 if (!regs
->tpc
|| (regs
->tpc
& 0x3))
186 if (regs
->tstate
& TSTATE_PRIV
) {
187 insn
= *(unsigned int *) regs
->tpc
;
189 insn
= get_user_insn(regs
->tpc
);
195 static void __kprobes
do_kernel_fault(struct pt_regs
*regs
, int si_code
,
196 int fault_code
, unsigned int insn
,
197 unsigned long address
)
199 unsigned char asi
= ASI_P
;
201 if ((!insn
) && (regs
->tstate
& TSTATE_PRIV
))
204 /* If user insn could be read (thus insn is zero), that
205 * is fine. We will just gun down the process with a signal
209 if (!(fault_code
& (FAULT_CODE_WRITE
|FAULT_CODE_ITLB
)) &&
210 (insn
& 0xc0800000) == 0xc0800000) {
212 asi
= (regs
->tstate
>> 24);
215 if ((asi
& 0xf2) == 0x82) {
216 if (insn
& 0x1000000) {
217 handle_ldf_stq(insn
, regs
);
219 /* This was a non-faulting load. Just clear the
220 * destination register(s) and continue with the next
223 handle_ld_nf(insn
, regs
);
229 /* Is this in ex_table? */
230 if (regs
->tstate
& TSTATE_PRIV
) {
231 const struct exception_table_entry
*entry
;
233 entry
= search_exception_tables(regs
->tpc
);
235 regs
->tpc
= entry
->fixup
;
236 regs
->tnpc
= regs
->tpc
+ 4;
240 /* The si_code was set to make clear whether
241 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
243 do_fault_siginfo(si_code
, SIGSEGV
, regs
, insn
, fault_code
);
248 unhandled_fault (address
, current
, regs
);
251 static void noinline __kprobes
bogus_32bit_fault_tpc(struct pt_regs
*regs
)
256 printk(KERN_ERR
"FAULT[%s:%d]: 32-bit process reports "
257 "64-bit TPC [%lx]\n",
258 current
->comm
, current
->pid
,
263 static void noinline __kprobes
bogus_32bit_fault_address(struct pt_regs
*regs
,
269 printk(KERN_ERR
"FAULT[%s:%d]: 32-bit process "
270 "reports 64-bit fault address [%lx]\n",
271 current
->comm
, current
->pid
, addr
);
275 asmlinkage
void __kprobes
do_sparc64_fault(struct pt_regs
*regs
)
277 struct mm_struct
*mm
= current
->mm
;
278 struct vm_area_struct
*vma
;
279 unsigned int insn
= 0;
280 int si_code
, fault_code
, fault
;
281 unsigned long address
, mm_rss
;
283 fault_code
= get_thread_fault_code();
285 if (notify_page_fault(regs
))
288 si_code
= SEGV_MAPERR
;
289 address
= current_thread_info()->fault_address
;
291 if ((fault_code
& FAULT_CODE_ITLB
) &&
292 (fault_code
& FAULT_CODE_DTLB
))
295 if (test_thread_flag(TIF_32BIT
)) {
296 if (!(regs
->tstate
& TSTATE_PRIV
)) {
297 if (unlikely((regs
->tpc
>> 32) != 0)) {
298 bogus_32bit_fault_tpc(regs
);
302 if (unlikely((address
>> 32) != 0)) {
303 bogus_32bit_fault_address(regs
, address
);
308 if (regs
->tstate
& TSTATE_PRIV
) {
309 unsigned long tpc
= regs
->tpc
;
311 /* Sanity check the PC. */
312 if ((tpc
>= KERNBASE
&& tpc
< (unsigned long) __init_end
) ||
313 (tpc
>= MODULES_VADDR
&& tpc
< MODULES_END
)) {
314 /* Valid, no problems... */
316 bad_kernel_pc(regs
, address
);
322 * If we're in an interrupt or have no user
323 * context, we must not take the fault..
325 if (in_atomic() || !mm
)
328 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
330 if (!down_read_trylock(&mm
->mmap_sem
)) {
331 if ((regs
->tstate
& TSTATE_PRIV
) &&
332 !search_exception_tables(regs
->tpc
)) {
333 insn
= get_fault_insn(regs
, insn
);
334 goto handle_kernel_fault
;
336 down_read(&mm
->mmap_sem
);
339 vma
= find_vma(mm
, address
);
343 /* Pure DTLB misses do not tell us whether the fault causing
344 * load/store/atomic was a write or not, it only says that there
345 * was no match. So in such a case we (carefully) read the
346 * instruction to try and figure this out. It's an optimization
347 * so it's ok if we can't do this.
349 * Special hack, window spill/fill knows the exact fault type.
352 (FAULT_CODE_DTLB
| FAULT_CODE_WRITE
| FAULT_CODE_WINFIXUP
)) == FAULT_CODE_DTLB
) &&
353 (vma
->vm_flags
& VM_WRITE
) != 0) {
354 insn
= get_fault_insn(regs
, 0);
357 /* All loads, stores and atomics have bits 30 and 31 both set
358 * in the instruction. Bit 21 is set in all stores, but we
359 * have to avoid prefetches which also have bit 21 set.
361 if ((insn
& 0xc0200000) == 0xc0200000 &&
362 (insn
& 0x01780000) != 0x01680000) {
363 /* Don't bother updating thread struct value,
364 * because update_mmu_cache only cares which tlb
365 * the access came from.
367 fault_code
|= FAULT_CODE_WRITE
;
372 if (vma
->vm_start
<= address
)
374 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
376 if (!(fault_code
& FAULT_CODE_WRITE
)) {
377 /* Non-faulting loads shouldn't expand stack. */
378 insn
= get_fault_insn(regs
, insn
);
379 if ((insn
& 0xc0800000) == 0xc0800000) {
383 asi
= (regs
->tstate
>> 24);
386 if ((asi
& 0xf2) == 0x82)
390 if (expand_stack(vma
, address
))
393 * Ok, we have a good vm_area for this memory access, so
397 si_code
= SEGV_ACCERR
;
399 /* If we took a ITLB miss on a non-executable page, catch
402 if ((fault_code
& FAULT_CODE_ITLB
) && !(vma
->vm_flags
& VM_EXEC
)) {
403 BUG_ON(address
!= regs
->tpc
);
404 BUG_ON(regs
->tstate
& TSTATE_PRIV
);
408 if (fault_code
& FAULT_CODE_WRITE
) {
409 if (!(vma
->vm_flags
& VM_WRITE
))
412 /* Spitfire has an icache which does not snoop
413 * processor stores. Later processors do...
415 if (tlb_type
== spitfire
&&
416 (vma
->vm_flags
& VM_EXEC
) != 0 &&
417 vma
->vm_file
!= NULL
)
418 set_thread_fault_code(fault_code
|
419 FAULT_CODE_BLKCOMMIT
);
421 /* Allow reads even for write-only mappings */
422 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
)))
426 fault
= handle_mm_fault(mm
, vma
, address
, (fault_code
& FAULT_CODE_WRITE
) ? FAULT_FLAG_WRITE
: 0);
427 if (unlikely(fault
& VM_FAULT_ERROR
)) {
428 if (fault
& VM_FAULT_OOM
)
430 else if (fault
& VM_FAULT_SIGBUS
)
434 if (fault
& VM_FAULT_MAJOR
) {
436 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
439 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
441 up_read(&mm
->mmap_sem
);
443 mm_rss
= get_mm_rss(mm
);
444 #ifdef CONFIG_HUGETLB_PAGE
445 mm_rss
-= (mm
->context
.huge_pte_count
* (HPAGE_SIZE
/ PAGE_SIZE
));
447 if (unlikely(mm_rss
>
448 mm
->context
.tsb_block
[MM_TSB_BASE
].tsb_rss_limit
))
449 tsb_grow(mm
, MM_TSB_BASE
, mm_rss
);
450 #ifdef CONFIG_HUGETLB_PAGE
451 mm_rss
= mm
->context
.huge_pte_count
;
452 if (unlikely(mm_rss
>
453 mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb_rss_limit
))
454 tsb_grow(mm
, MM_TSB_HUGE
, mm_rss
);
459 * Something tried to access memory that isn't in our memory map..
460 * Fix it, but check if it's kernel or user first..
463 insn
= get_fault_insn(regs
, insn
);
464 up_read(&mm
->mmap_sem
);
467 do_kernel_fault(regs
, si_code
, fault_code
, insn
, address
);
471 * We ran out of memory, or some other thing happened to us that made
472 * us unable to handle the page fault gracefully.
475 insn
= get_fault_insn(regs
, insn
);
476 up_read(&mm
->mmap_sem
);
477 if (!(regs
->tstate
& TSTATE_PRIV
)) {
478 pagefault_out_of_memory();
481 goto handle_kernel_fault
;
484 insn
= get_fault_insn(regs
, 0);
485 goto handle_kernel_fault
;
488 insn
= get_fault_insn(regs
, insn
);
489 up_read(&mm
->mmap_sem
);
492 * Send a sigbus, regardless of whether we were in kernel
495 do_fault_siginfo(BUS_ADRERR
, SIGBUS
, regs
, insn
, fault_code
);
497 /* Kernel mode? Handle exceptions or die */
498 if (regs
->tstate
& TSTATE_PRIV
)
499 goto handle_kernel_fault
;