1 #ifndef _ASM_X86_SYSTEM_H
2 #define _ASM_X86_SYSTEM_H
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
10 #include <linux/kernel.h>
11 #include <linux/irqflags.h>
13 /* entries in ARCH_DLINFO: */
14 #if defined(CONFIG_IA32_EMULATION) || !defined(CONFIG_X86_64)
15 # define AT_VECTOR_SIZE_ARCH 2
16 #else /* else it's non-compat x86-64 */
17 # define AT_VECTOR_SIZE_ARCH 1
20 struct task_struct
; /* one of the stranger aspects of C forward declarations */
21 struct task_struct
*__switch_to(struct task_struct
*prev
,
22 struct task_struct
*next
);
24 void __switch_to_xtra(struct task_struct
*prev_p
, struct task_struct
*next_p
,
25 struct tss_struct
*tss
);
26 extern void show_regs_common(void);
30 #ifdef CONFIG_CC_STACKPROTECTOR
31 #define __switch_canary \
32 "movl %P[task_canary](%[next]), %%ebx\n\t" \
33 "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
34 #define __switch_canary_oparam \
35 , [stack_canary] "=m" (stack_canary.canary)
36 #define __switch_canary_iparam \
37 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
38 #else /* CC_STACKPROTECTOR */
39 #define __switch_canary
40 #define __switch_canary_oparam
41 #define __switch_canary_iparam
42 #endif /* CC_STACKPROTECTOR */
45 * Saving eflags is important. It switches not only IOPL between tasks,
46 * it also protects other tasks from NT leaking through sysenter etc.
48 #define switch_to(prev, next, last) \
51 * Context-switching clobbers all registers, so we clobber \
52 * them explicitly, via unused output variables. \
53 * (EAX and EBP is not listed because EBP is saved/restored \
54 * explicitly for wchan access and EAX is the return value of \
57 unsigned long ebx, ecx, edx, esi, edi; \
59 asm volatile("pushfl\n\t" /* save flags */ \
60 "pushl %%ebp\n\t" /* save EBP */ \
61 "movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
62 "movl %[next_sp],%%esp\n\t" /* restore ESP */ \
63 "movl $1f,%[prev_ip]\n\t" /* save EIP */ \
64 "pushl %[next_ip]\n\t" /* restore EIP */ \
66 "jmp __switch_to\n" /* regparm call */ \
68 "popl %%ebp\n\t" /* restore EBP */ \
69 "popfl\n" /* restore flags */ \
71 /* output parameters */ \
72 : [prev_sp] "=m" (prev->thread.sp), \
73 [prev_ip] "=m" (prev->thread.ip), \
76 /* clobbered output registers: */ \
77 "=b" (ebx), "=c" (ecx), "=d" (edx), \
78 "=S" (esi), "=D" (edi) \
80 __switch_canary_oparam \
82 /* input parameters: */ \
83 : [next_sp] "m" (next->thread.sp), \
84 [next_ip] "m" (next->thread.ip), \
86 /* regparm parameters for __switch_to(): */ \
90 __switch_canary_iparam \
92 : /* reloaded segment registers */ \
97 * disable hlt during certain critical i/o operations
99 #define HAVE_DISABLE_HLT
102 /* frame pointer must be last for get_wchan */
103 #define SAVE_CONTEXT "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
104 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
106 #define __EXTRA_CLOBBER \
107 , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
108 "r12", "r13", "r14", "r15"
110 #ifdef CONFIG_CC_STACKPROTECTOR
111 #define __switch_canary \
112 "movq %P[task_canary](%%rsi),%%r8\n\t" \
113 "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
114 #define __switch_canary_oparam \
115 , [gs_canary] "=m" (irq_stack_union.stack_canary)
116 #define __switch_canary_iparam \
117 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
118 #else /* CC_STACKPROTECTOR */
119 #define __switch_canary
120 #define __switch_canary_oparam
121 #define __switch_canary_iparam
122 #endif /* CC_STACKPROTECTOR */
124 /* Save restore flags to clear handle leaking NT */
125 #define switch_to(prev, next, last) \
126 asm volatile(SAVE_CONTEXT \
127 "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
128 "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
129 "call __switch_to\n\t" \
130 "movq "__percpu_arg([current_task])",%%rsi\n\t" \
132 "movq %P[thread_info](%%rsi),%%r8\n\t" \
133 "movq %%rax,%%rdi\n\t" \
134 "testl %[_tif_fork],%P[ti_flags](%%r8)\n\t" \
135 "jnz ret_from_fork\n\t" \
138 __switch_canary_oparam \
139 : [next] "S" (next), [prev] "D" (prev), \
140 [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
141 [ti_flags] "i" (offsetof(struct thread_info, flags)), \
142 [_tif_fork] "i" (_TIF_FORK), \
143 [thread_info] "i" (offsetof(struct task_struct, stack)), \
144 [current_task] "m" (current_task) \
145 __switch_canary_iparam \
146 : "memory", "cc" __EXTRA_CLOBBER)
151 extern void native_load_gs_index(unsigned);
154 * Load a segment. Fall back on loading the zero
155 * segment if something goes wrong..
157 #define loadsegment(seg, value) \
159 unsigned short __val = (value); \
162 "1: movl %k0,%%" #seg " \n" \
164 ".section .fixup,\"ax\" \n" \
165 "2: xorl %k0,%k0 \n" \
169 _ASM_EXTABLE(1b, 2b) \
171 : "+r" (__val) : : "memory"); \
175 * Save a segment register away
177 #define savesegment(seg, value) \
178 asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
181 * x86_32 user gs accessors.
184 #ifdef CONFIG_X86_32_LAZY_GS
185 #define get_user_gs(regs) (u16)({unsigned long v; savesegment(gs, v); v;})
186 #define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
187 #define task_user_gs(tsk) ((tsk)->thread.gs)
188 #define lazy_save_gs(v) savesegment(gs, (v))
189 #define lazy_load_gs(v) loadsegment(gs, (v))
190 #else /* X86_32_LAZY_GS */
191 #define get_user_gs(regs) (u16)((regs)->gs)
192 #define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
193 #define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
194 #define lazy_save_gs(v) do { } while (0)
195 #define lazy_load_gs(v) do { } while (0)
196 #endif /* X86_32_LAZY_GS */
199 static inline unsigned long get_limit(unsigned long segment
)
201 unsigned long __limit
;
202 asm("lsll %1,%0" : "=r" (__limit
) : "r" (segment
));
206 static inline void native_clts(void)
208 asm volatile("clts");
212 * Volatile isn't enough to prevent the compiler from reordering the
213 * read/write functions for the control registers and messing everything up.
214 * A memory clobber would solve the problem, but would prevent reordering of
215 * all loads stores around it, which can hurt performance. Solution is to
216 * use a variable and mimic reads and writes to it to enforce serialization
218 static unsigned long __force_order
;
220 static inline unsigned long native_read_cr0(void)
223 asm volatile("mov %%cr0,%0\n\t" : "=r" (val
), "=m" (__force_order
));
227 static inline void native_write_cr0(unsigned long val
)
229 asm volatile("mov %0,%%cr0": : "r" (val
), "m" (__force_order
));
232 static inline unsigned long native_read_cr2(void)
235 asm volatile("mov %%cr2,%0\n\t" : "=r" (val
), "=m" (__force_order
));
239 static inline void native_write_cr2(unsigned long val
)
241 asm volatile("mov %0,%%cr2": : "r" (val
), "m" (__force_order
));
244 static inline unsigned long native_read_cr3(void)
247 asm volatile("mov %%cr3,%0\n\t" : "=r" (val
), "=m" (__force_order
));
251 static inline void native_write_cr3(unsigned long val
)
253 asm volatile("mov %0,%%cr3": : "r" (val
), "m" (__force_order
));
256 static inline unsigned long native_read_cr4(void)
259 asm volatile("mov %%cr4,%0\n\t" : "=r" (val
), "=m" (__force_order
));
263 static inline unsigned long native_read_cr4_safe(void)
266 /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
267 * exists, so it will never fail. */
269 asm volatile("1: mov %%cr4, %0\n"
272 : "=r" (val
), "=m" (__force_order
) : "0" (0));
274 val
= native_read_cr4();
279 static inline void native_write_cr4(unsigned long val
)
281 asm volatile("mov %0,%%cr4": : "r" (val
), "m" (__force_order
));
285 static inline unsigned long native_read_cr8(void)
288 asm volatile("movq %%cr8,%0" : "=r" (cr8
));
292 static inline void native_write_cr8(unsigned long val
)
294 asm volatile("movq %0,%%cr8" :: "r" (val
) : "memory");
298 static inline void native_wbinvd(void)
300 asm volatile("wbinvd": : :"memory");
303 #ifdef CONFIG_PARAVIRT
304 #include <asm/paravirt.h>
307 static inline unsigned long read_cr0(void)
309 return native_read_cr0();
312 static inline void write_cr0(unsigned long x
)
317 static inline unsigned long read_cr2(void)
319 return native_read_cr2();
322 static inline void write_cr2(unsigned long x
)
327 static inline unsigned long read_cr3(void)
329 return native_read_cr3();
332 static inline void write_cr3(unsigned long x
)
337 static inline unsigned long read_cr4(void)
339 return native_read_cr4();
342 static inline unsigned long read_cr4_safe(void)
344 return native_read_cr4_safe();
347 static inline void write_cr4(unsigned long x
)
352 static inline void wbinvd(void)
359 static inline unsigned long read_cr8(void)
361 return native_read_cr8();
364 static inline void write_cr8(unsigned long x
)
369 static inline void load_gs_index(unsigned selector
)
371 native_load_gs_index(selector
);
376 /* Clear the 'TS' bit */
377 static inline void clts(void)
382 #endif/* CONFIG_PARAVIRT */
384 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
386 #endif /* __KERNEL__ */
388 static inline void clflush(volatile void *__p
)
390 asm volatile("clflush %0" : "+m" (*(volatile char __force
*)__p
));
393 #define nop() asm volatile ("nop")
395 void disable_hlt(void);
396 void enable_hlt(void);
398 void cpu_idle_wait(void);
400 extern unsigned long arch_align_stack(unsigned long sp
);
401 extern void free_init_pages(char *what
, unsigned long begin
, unsigned long end
);
403 void default_idle(void);
404 bool set_pm_idle_to_default(void);
406 void stop_this_cpu(void *dummy
);
409 * Force strict CPU ordering.
410 * And yes, this is required on UP too when we're talking
415 * Some non-Intel clones support out of order store. wmb() ceases to be a
418 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
419 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
420 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
422 #define mb() asm volatile("mfence":::"memory")
423 #define rmb() asm volatile("lfence":::"memory")
424 #define wmb() asm volatile("sfence" ::: "memory")
428 * read_barrier_depends - Flush all pending reads that subsequents reads
431 * No data-dependent reads from memory-like regions are ever reordered
432 * over this barrier. All reads preceding this primitive are guaranteed
433 * to access memory (but not necessarily other CPUs' caches) before any
434 * reads following this primitive that depend on the data return by
435 * any of the preceding reads. This primitive is much lighter weight than
436 * rmb() on most CPUs, and is never heavier weight than is
439 * These ordering constraints are respected by both the local CPU
442 * Ordering is not guaranteed by anything other than these primitives,
443 * not even by data dependencies. See the documentation for
444 * memory_barrier() for examples and URLs to more information.
446 * For example, the following code would force ordering (the initial
447 * value of "a" is zero, "b" is one, and "p" is "&a"):
455 * read_barrier_depends();
459 * because the read of "*q" depends on the read of "p" and these
460 * two reads are separated by a read_barrier_depends(). However,
461 * the following code, with the same initial values for "a" and "b":
469 * read_barrier_depends();
473 * does not enforce ordering, since there is no data dependency between
474 * the read of "a" and the read of "b". Therefore, on some CPUs, such
475 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
476 * in cases like this where there are no data dependencies.
479 #define read_barrier_depends() do { } while (0)
482 #define smp_mb() mb()
483 #ifdef CONFIG_X86_PPRO_FENCE
484 # define smp_rmb() rmb()
486 # define smp_rmb() barrier()
488 #ifdef CONFIG_X86_OOSTORE
489 # define smp_wmb() wmb()
491 # define smp_wmb() barrier()
493 #define smp_read_barrier_depends() read_barrier_depends()
494 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
496 #define smp_mb() barrier()
497 #define smp_rmb() barrier()
498 #define smp_wmb() barrier()
499 #define smp_read_barrier_depends() do { } while (0)
500 #define set_mb(var, value) do { var = value; barrier(); } while (0)
504 * Stop RDTSC speculation. This is needed when you need to use RDTSC
505 * (or get_cycles or vread that possibly accesses the TSC) in a defined
508 * (Could use an alternative three way for this if there was one.)
510 static __always_inline
void rdtsc_barrier(void)
512 alternative(ASM_NOP3
, "mfence", X86_FEATURE_MFENCE_RDTSC
);
513 alternative(ASM_NOP3
, "lfence", X86_FEATURE_LFENCE_RDTSC
);
517 * We handle most unaligned accesses in hardware. On the other hand
518 * unaligned DMA can be quite expensive on some Nehalem processors.
520 * Based on this we disable the IP header alignment in network drivers.
522 #define NET_IP_ALIGN 0
523 #endif /* _ASM_X86_SYSTEM_H */