2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
29 #include <asm/stacktrace.h>
31 #include <asm/compat.h>
33 #include <asm/alternative.h>
35 #include "perf_event.h"
39 #define wrmsrl(msr, val) \
41 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
42 (unsigned long)(val)); \
43 native_write_msr((msr), (u32)((u64)(val)), \
44 (u32)((u64)(val) >> 32)); \
48 struct x86_pmu x86_pmu __read_mostly
;
50 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX
]
56 [PERF_COUNT_HW_CACHE_OP_MAX
]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX
]
60 [PERF_COUNT_HW_CACHE_OP_MAX
]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
68 u64
x86_perf_event_update(struct perf_event
*event
)
70 struct hw_perf_event
*hwc
= &event
->hw
;
71 int shift
= 64 - x86_pmu
.cntval_bits
;
72 u64 prev_raw_count
, new_raw_count
;
76 if (idx
== X86_PMC_IDX_FIXED_BTS
)
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
87 prev_raw_count
= local64_read(&hwc
->prev_count
);
88 rdmsrl(hwc
->event_base
, new_raw_count
);
90 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
91 new_raw_count
) != prev_raw_count
)
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
102 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
105 local64_add(delta
, &event
->count
);
106 local64_sub(delta
, &hwc
->period_left
);
108 return new_raw_count
;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config
, struct perf_event
*event
)
116 struct hw_perf_event_extra
*reg
;
117 struct extra_reg
*er
;
119 reg
= &event
->hw
.extra_reg
;
121 if (!x86_pmu
.extra_regs
)
124 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
125 if (er
->event
!= (config
& er
->config_mask
))
127 if (event
->attr
.config1
& ~er
->valid_mask
)
131 reg
->config
= event
->attr
.config1
;
138 static atomic_t active_events
;
139 static DEFINE_MUTEX(pmc_reserve_mutex
);
141 #ifdef CONFIG_X86_LOCAL_APIC
143 static bool reserve_pmc_hardware(void)
147 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i
)))
152 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i
)))
160 for (i
--; i
>= 0; i
--)
161 release_evntsel_nmi(x86_pmu_config_addr(i
));
163 i
= x86_pmu
.num_counters
;
166 for (i
--; i
>= 0; i
--)
167 release_perfctr_nmi(x86_pmu_event_addr(i
));
172 static void release_pmc_hardware(void)
176 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
177 release_perfctr_nmi(x86_pmu_event_addr(i
));
178 release_evntsel_nmi(x86_pmu_config_addr(i
));
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
189 static bool check_hw_exists(void)
191 u64 val
, val_new
= 0;
195 * Check to see if the BIOS enabled any of the counters, if so
198 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
199 reg
= x86_pmu_config_addr(i
);
200 ret
= rdmsrl_safe(reg
, &val
);
203 if (val
& ARCH_PERFMON_EVENTSEL_ENABLE
)
207 if (x86_pmu
.num_counters_fixed
) {
208 reg
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
209 ret
= rdmsrl_safe(reg
, &val
);
212 for (i
= 0; i
< x86_pmu
.num_counters_fixed
; i
++) {
213 if (val
& (0x03 << i
*4))
219 * Now write a value and read it back to see if it matches,
220 * this is needed to detect certain hardware emulators (qemu/kvm)
221 * that don't trap on the MSR access and always return 0s.
224 ret
= checking_wrmsrl(x86_pmu_event_addr(0), val
);
225 ret
|= rdmsrl_safe(x86_pmu_event_addr(0), &val_new
);
226 if (ret
|| val
!= val_new
)
233 * We still allow the PMU driver to operate:
235 printk(KERN_CONT
"Broken BIOS detected, complain to your hardware vendor.\n");
236 printk(KERN_ERR FW_BUG
"the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg
, val
);
241 printk(KERN_CONT
"Broken PMU hardware detected, using software events only.\n");
246 static void hw_perf_event_destroy(struct perf_event
*event
)
248 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_reserve_mutex
)) {
249 release_pmc_hardware();
250 release_ds_buffers();
251 mutex_unlock(&pmc_reserve_mutex
);
255 static inline int x86_pmu_initialized(void)
257 return x86_pmu
.handle_irq
!= NULL
;
261 set_ext_hw_attr(struct hw_perf_event
*hwc
, struct perf_event
*event
)
263 struct perf_event_attr
*attr
= &event
->attr
;
264 unsigned int cache_type
, cache_op
, cache_result
;
267 config
= attr
->config
;
269 cache_type
= (config
>> 0) & 0xff;
270 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
273 cache_op
= (config
>> 8) & 0xff;
274 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
277 cache_result
= (config
>> 16) & 0xff;
278 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
281 val
= hw_cache_event_ids
[cache_type
][cache_op
][cache_result
];
290 attr
->config1
= hw_cache_extra_regs
[cache_type
][cache_op
][cache_result
];
291 return x86_pmu_extra_regs(val
, event
);
294 int x86_setup_perfctr(struct perf_event
*event
)
296 struct perf_event_attr
*attr
= &event
->attr
;
297 struct hw_perf_event
*hwc
= &event
->hw
;
300 if (!is_sampling_event(event
)) {
301 hwc
->sample_period
= x86_pmu
.max_period
;
302 hwc
->last_period
= hwc
->sample_period
;
303 local64_set(&hwc
->period_left
, hwc
->sample_period
);
306 * If we have a PMU initialized but no APIC
307 * interrupts, we cannot sample hardware
308 * events (user-space has to fall back and
309 * sample via a hrtimer based software event):
315 if (attr
->type
== PERF_TYPE_RAW
)
316 return x86_pmu_extra_regs(event
->attr
.config
, event
);
318 if (attr
->type
== PERF_TYPE_HW_CACHE
)
319 return set_ext_hw_attr(hwc
, event
);
321 if (attr
->config
>= x86_pmu
.max_events
)
327 config
= x86_pmu
.event_map(attr
->config
);
338 if (attr
->config
== PERF_COUNT_HW_BRANCH_INSTRUCTIONS
&&
339 !attr
->freq
&& hwc
->sample_period
== 1) {
340 /* BTS is not supported by this architecture. */
341 if (!x86_pmu
.bts_active
)
344 /* BTS is currently only allowed for user-mode. */
345 if (!attr
->exclude_kernel
)
349 hwc
->config
|= config
;
354 int x86_pmu_hw_config(struct perf_event
*event
)
356 if (event
->attr
.precise_ip
) {
359 /* Support for constant skid */
360 if (x86_pmu
.pebs_active
) {
363 /* Support for IP fixup */
368 if (event
->attr
.precise_ip
> precise
)
374 * (keep 'enabled' bit clear for now)
376 event
->hw
.config
= ARCH_PERFMON_EVENTSEL_INT
;
379 * Count user and OS events unless requested not to
381 if (!event
->attr
.exclude_user
)
382 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_USR
;
383 if (!event
->attr
.exclude_kernel
)
384 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_OS
;
386 if (event
->attr
.type
== PERF_TYPE_RAW
)
387 event
->hw
.config
|= event
->attr
.config
& X86_RAW_EVENT_MASK
;
389 return x86_setup_perfctr(event
);
393 * Setup the hardware configuration for a given attr_type
395 static int __x86_pmu_event_init(struct perf_event
*event
)
399 if (!x86_pmu_initialized())
403 if (!atomic_inc_not_zero(&active_events
)) {
404 mutex_lock(&pmc_reserve_mutex
);
405 if (atomic_read(&active_events
) == 0) {
406 if (!reserve_pmc_hardware())
409 reserve_ds_buffers();
412 atomic_inc(&active_events
);
413 mutex_unlock(&pmc_reserve_mutex
);
418 event
->destroy
= hw_perf_event_destroy
;
421 event
->hw
.last_cpu
= -1;
422 event
->hw
.last_tag
= ~0ULL;
425 event
->hw
.extra_reg
.idx
= EXTRA_REG_NONE
;
427 return x86_pmu
.hw_config(event
);
430 void x86_pmu_disable_all(void)
432 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
435 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
438 if (!test_bit(idx
, cpuc
->active_mask
))
440 rdmsrl(x86_pmu_config_addr(idx
), val
);
441 if (!(val
& ARCH_PERFMON_EVENTSEL_ENABLE
))
443 val
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
444 wrmsrl(x86_pmu_config_addr(idx
), val
);
448 static void x86_pmu_disable(struct pmu
*pmu
)
450 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
452 if (!x86_pmu_initialized())
462 x86_pmu
.disable_all();
465 void x86_pmu_enable_all(int added
)
467 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
470 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
471 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
473 if (!test_bit(idx
, cpuc
->active_mask
))
476 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
480 static struct pmu pmu
;
482 static inline int is_x86_event(struct perf_event
*event
)
484 return event
->pmu
== &pmu
;
488 * Event scheduler state:
490 * Assign events iterating over all events and counters, beginning
491 * with events with least weights first. Keep the current iterator
492 * state in struct sched_state.
496 int event
; /* event index */
497 int counter
; /* counter index */
498 int unassigned
; /* number of events to be assigned left */
499 unsigned long used
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
502 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
503 #define SCHED_STATES_MAX 2
508 struct event_constraint
**constraints
;
509 struct sched_state state
;
511 struct sched_state saved
[SCHED_STATES_MAX
];
515 * Initialize interator that runs through all events and counters.
517 static void perf_sched_init(struct perf_sched
*sched
, struct event_constraint
**c
,
518 int num
, int wmin
, int wmax
)
522 memset(sched
, 0, sizeof(*sched
));
523 sched
->max_events
= num
;
524 sched
->max_weight
= wmax
;
525 sched
->constraints
= c
;
527 for (idx
= 0; idx
< num
; idx
++) {
528 if (c
[idx
]->weight
== wmin
)
532 sched
->state
.event
= idx
; /* start with min weight */
533 sched
->state
.weight
= wmin
;
534 sched
->state
.unassigned
= num
;
537 static void perf_sched_save_state(struct perf_sched
*sched
)
539 if (WARN_ON_ONCE(sched
->saved_states
>= SCHED_STATES_MAX
))
542 sched
->saved
[sched
->saved_states
] = sched
->state
;
543 sched
->saved_states
++;
546 static bool perf_sched_restore_state(struct perf_sched
*sched
)
548 if (!sched
->saved_states
)
551 sched
->saved_states
--;
552 sched
->state
= sched
->saved
[sched
->saved_states
];
554 /* continue with next counter: */
555 clear_bit(sched
->state
.counter
++, sched
->state
.used
);
561 * Select a counter for the current event to schedule. Return true on
564 static bool __perf_sched_find_counter(struct perf_sched
*sched
)
566 struct event_constraint
*c
;
569 if (!sched
->state
.unassigned
)
572 if (sched
->state
.event
>= sched
->max_events
)
575 c
= sched
->constraints
[sched
->state
.event
];
577 /* Prefer fixed purpose counters */
578 if (x86_pmu
.num_counters_fixed
) {
579 idx
= X86_PMC_IDX_FIXED
;
580 for_each_set_bit_cont(idx
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
581 if (!__test_and_set_bit(idx
, sched
->state
.used
))
585 /* Grab the first unused counter starting with idx */
586 idx
= sched
->state
.counter
;
587 for_each_set_bit_cont(idx
, c
->idxmsk
, X86_PMC_IDX_FIXED
) {
588 if (!__test_and_set_bit(idx
, sched
->state
.used
))
595 sched
->state
.counter
= idx
;
598 perf_sched_save_state(sched
);
603 static bool perf_sched_find_counter(struct perf_sched
*sched
)
605 while (!__perf_sched_find_counter(sched
)) {
606 if (!perf_sched_restore_state(sched
))
614 * Go through all unassigned events and find the next one to schedule.
615 * Take events with the least weight first. Return true on success.
617 static bool perf_sched_next_event(struct perf_sched
*sched
)
619 struct event_constraint
*c
;
621 if (!sched
->state
.unassigned
|| !--sched
->state
.unassigned
)
626 sched
->state
.event
++;
627 if (sched
->state
.event
>= sched
->max_events
) {
629 sched
->state
.event
= 0;
630 sched
->state
.weight
++;
631 if (sched
->state
.weight
> sched
->max_weight
)
634 c
= sched
->constraints
[sched
->state
.event
];
635 } while (c
->weight
!= sched
->state
.weight
);
637 sched
->state
.counter
= 0; /* start with first counter */
643 * Assign a counter for each event.
645 static int perf_assign_events(struct event_constraint
**constraints
, int n
,
646 int wmin
, int wmax
, int *assign
)
648 struct perf_sched sched
;
650 perf_sched_init(&sched
, constraints
, n
, wmin
, wmax
);
653 if (!perf_sched_find_counter(&sched
))
656 assign
[sched
.state
.event
] = sched
.state
.counter
;
657 } while (perf_sched_next_event(&sched
));
659 return sched
.state
.unassigned
;
662 int x86_schedule_events(struct cpu_hw_events
*cpuc
, int n
, int *assign
)
664 struct event_constraint
*c
, *constraints
[X86_PMC_IDX_MAX
];
665 unsigned long used_mask
[BITS_TO_LONGS(X86_PMC_IDX_MAX
)];
666 int i
, wmin
, wmax
, num
= 0;
667 struct hw_perf_event
*hwc
;
669 bitmap_zero(used_mask
, X86_PMC_IDX_MAX
);
671 for (i
= 0, wmin
= X86_PMC_IDX_MAX
, wmax
= 0; i
< n
; i
++) {
672 c
= x86_pmu
.get_event_constraints(cpuc
, cpuc
->event_list
[i
]);
674 wmin
= min(wmin
, c
->weight
);
675 wmax
= max(wmax
, c
->weight
);
679 * fastpath, try to reuse previous register
681 for (i
= 0; i
< n
; i
++) {
682 hwc
= &cpuc
->event_list
[i
]->hw
;
689 /* constraint still honored */
690 if (!test_bit(hwc
->idx
, c
->idxmsk
))
693 /* not already used */
694 if (test_bit(hwc
->idx
, used_mask
))
697 __set_bit(hwc
->idx
, used_mask
);
699 assign
[i
] = hwc
->idx
;
704 num
= perf_assign_events(constraints
, n
, wmin
, wmax
, assign
);
707 * scheduling failed or is just a simulation,
708 * free resources if necessary
710 if (!assign
|| num
) {
711 for (i
= 0; i
< n
; i
++) {
712 if (x86_pmu
.put_event_constraints
)
713 x86_pmu
.put_event_constraints(cpuc
, cpuc
->event_list
[i
]);
716 return num
? -EINVAL
: 0;
720 * dogrp: true if must collect siblings events (group)
721 * returns total number of events and error code
723 static int collect_events(struct cpu_hw_events
*cpuc
, struct perf_event
*leader
, bool dogrp
)
725 struct perf_event
*event
;
728 max_count
= x86_pmu
.num_counters
+ x86_pmu
.num_counters_fixed
;
730 /* current number of events already accepted */
733 if (is_x86_event(leader
)) {
736 cpuc
->event_list
[n
] = leader
;
742 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
) {
743 if (!is_x86_event(event
) ||
744 event
->state
<= PERF_EVENT_STATE_OFF
)
750 cpuc
->event_list
[n
] = event
;
756 static inline void x86_assign_hw_event(struct perf_event
*event
,
757 struct cpu_hw_events
*cpuc
, int i
)
759 struct hw_perf_event
*hwc
= &event
->hw
;
761 hwc
->idx
= cpuc
->assign
[i
];
762 hwc
->last_cpu
= smp_processor_id();
763 hwc
->last_tag
= ++cpuc
->tags
[i
];
765 if (hwc
->idx
== X86_PMC_IDX_FIXED_BTS
) {
766 hwc
->config_base
= 0;
768 } else if (hwc
->idx
>= X86_PMC_IDX_FIXED
) {
769 hwc
->config_base
= MSR_ARCH_PERFMON_FIXED_CTR_CTRL
;
770 hwc
->event_base
= MSR_ARCH_PERFMON_FIXED_CTR0
+ (hwc
->idx
- X86_PMC_IDX_FIXED
);
772 hwc
->config_base
= x86_pmu_config_addr(hwc
->idx
);
773 hwc
->event_base
= x86_pmu_event_addr(hwc
->idx
);
777 static inline int match_prev_assignment(struct hw_perf_event
*hwc
,
778 struct cpu_hw_events
*cpuc
,
781 return hwc
->idx
== cpuc
->assign
[i
] &&
782 hwc
->last_cpu
== smp_processor_id() &&
783 hwc
->last_tag
== cpuc
->tags
[i
];
786 static void x86_pmu_start(struct perf_event
*event
, int flags
);
788 static void x86_pmu_enable(struct pmu
*pmu
)
790 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
791 struct perf_event
*event
;
792 struct hw_perf_event
*hwc
;
793 int i
, added
= cpuc
->n_added
;
795 if (!x86_pmu_initialized())
802 int n_running
= cpuc
->n_events
- cpuc
->n_added
;
804 * apply assignment obtained either from
805 * hw_perf_group_sched_in() or x86_pmu_enable()
807 * step1: save events moving to new counters
808 * step2: reprogram moved events into new counters
810 for (i
= 0; i
< n_running
; i
++) {
811 event
= cpuc
->event_list
[i
];
815 * we can avoid reprogramming counter if:
816 * - assigned same counter as last time
817 * - running on same CPU as last time
818 * - no other event has used the counter since
820 if (hwc
->idx
== -1 ||
821 match_prev_assignment(hwc
, cpuc
, i
))
825 * Ensure we don't accidentally enable a stopped
826 * counter simply because we rescheduled.
828 if (hwc
->state
& PERF_HES_STOPPED
)
829 hwc
->state
|= PERF_HES_ARCH
;
831 x86_pmu_stop(event
, PERF_EF_UPDATE
);
834 for (i
= 0; i
< cpuc
->n_events
; i
++) {
835 event
= cpuc
->event_list
[i
];
838 if (!match_prev_assignment(hwc
, cpuc
, i
))
839 x86_assign_hw_event(event
, cpuc
, i
);
840 else if (i
< n_running
)
843 if (hwc
->state
& PERF_HES_ARCH
)
846 x86_pmu_start(event
, PERF_EF_RELOAD
);
849 perf_events_lapic_init();
855 x86_pmu
.enable_all(added
);
858 static DEFINE_PER_CPU(u64
[X86_PMC_IDX_MAX
], pmc_prev_left
);
861 * Set the next IRQ period, based on the hwc->period_left value.
862 * To be called with the event disabled in hw:
864 int x86_perf_event_set_period(struct perf_event
*event
)
866 struct hw_perf_event
*hwc
= &event
->hw
;
867 s64 left
= local64_read(&hwc
->period_left
);
868 s64 period
= hwc
->sample_period
;
869 int ret
= 0, idx
= hwc
->idx
;
871 if (idx
== X86_PMC_IDX_FIXED_BTS
)
875 * If we are way outside a reasonable range then just skip forward:
877 if (unlikely(left
<= -period
)) {
879 local64_set(&hwc
->period_left
, left
);
880 hwc
->last_period
= period
;
884 if (unlikely(left
<= 0)) {
886 local64_set(&hwc
->period_left
, left
);
887 hwc
->last_period
= period
;
891 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
893 if (unlikely(left
< 2))
896 if (left
> x86_pmu
.max_period
)
897 left
= x86_pmu
.max_period
;
899 per_cpu(pmc_prev_left
[idx
], smp_processor_id()) = left
;
902 * The hw event starts counting from this event offset,
903 * mark it to be able to extra future deltas:
905 local64_set(&hwc
->prev_count
, (u64
)-left
);
907 wrmsrl(hwc
->event_base
, (u64
)(-left
) & x86_pmu
.cntval_mask
);
910 * Due to erratum on certan cpu we need
911 * a second write to be sure the register
912 * is updated properly
914 if (x86_pmu
.perfctr_second_write
) {
915 wrmsrl(hwc
->event_base
,
916 (u64
)(-left
) & x86_pmu
.cntval_mask
);
919 perf_event_update_userpage(event
);
924 void x86_pmu_enable_event(struct perf_event
*event
)
926 if (__this_cpu_read(cpu_hw_events
.enabled
))
927 __x86_pmu_enable_event(&event
->hw
,
928 ARCH_PERFMON_EVENTSEL_ENABLE
);
932 * Add a single event to the PMU.
934 * The event is added to the group of enabled events
935 * but only if it can be scehduled with existing events.
937 static int x86_pmu_add(struct perf_event
*event
, int flags
)
939 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
940 struct hw_perf_event
*hwc
;
941 int assign
[X86_PMC_IDX_MAX
];
946 perf_pmu_disable(event
->pmu
);
948 ret
= n
= collect_events(cpuc
, event
, false);
952 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
953 if (!(flags
& PERF_EF_START
))
954 hwc
->state
|= PERF_HES_ARCH
;
957 * If group events scheduling transaction was started,
958 * skip the schedulability test here, it will be performed
959 * at commit time (->commit_txn) as a whole
961 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
964 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
968 * copy new assignment, now we know it is possible
969 * will be used by hw_perf_enable()
971 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
975 cpuc
->n_added
+= n
- n0
;
976 cpuc
->n_txn
+= n
- n0
;
980 perf_pmu_enable(event
->pmu
);
984 static void x86_pmu_start(struct perf_event
*event
, int flags
)
986 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
987 int idx
= event
->hw
.idx
;
989 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
992 if (WARN_ON_ONCE(idx
== -1))
995 if (flags
& PERF_EF_RELOAD
) {
996 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
997 x86_perf_event_set_period(event
);
1000 event
->hw
.state
= 0;
1002 cpuc
->events
[idx
] = event
;
1003 __set_bit(idx
, cpuc
->active_mask
);
1004 __set_bit(idx
, cpuc
->running
);
1005 x86_pmu
.enable(event
);
1006 perf_event_update_userpage(event
);
1009 void perf_event_print_debug(void)
1011 u64 ctrl
, status
, overflow
, pmc_ctrl
, pmc_count
, prev_left
, fixed
;
1013 struct cpu_hw_events
*cpuc
;
1014 unsigned long flags
;
1017 if (!x86_pmu
.num_counters
)
1020 local_irq_save(flags
);
1022 cpu
= smp_processor_id();
1023 cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1025 if (x86_pmu
.version
>= 2) {
1026 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, ctrl
);
1027 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
1028 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, overflow
);
1029 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL
, fixed
);
1030 rdmsrl(MSR_IA32_PEBS_ENABLE
, pebs
);
1033 pr_info("CPU#%d: ctrl: %016llx\n", cpu
, ctrl
);
1034 pr_info("CPU#%d: status: %016llx\n", cpu
, status
);
1035 pr_info("CPU#%d: overflow: %016llx\n", cpu
, overflow
);
1036 pr_info("CPU#%d: fixed: %016llx\n", cpu
, fixed
);
1037 pr_info("CPU#%d: pebs: %016llx\n", cpu
, pebs
);
1039 pr_info("CPU#%d: active: %016llx\n", cpu
, *(u64
*)cpuc
->active_mask
);
1041 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1042 rdmsrl(x86_pmu_config_addr(idx
), pmc_ctrl
);
1043 rdmsrl(x86_pmu_event_addr(idx
), pmc_count
);
1045 prev_left
= per_cpu(pmc_prev_left
[idx
], cpu
);
1047 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1048 cpu
, idx
, pmc_ctrl
);
1049 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1050 cpu
, idx
, pmc_count
);
1051 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1052 cpu
, idx
, prev_left
);
1054 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++) {
1055 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, pmc_count
);
1057 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1058 cpu
, idx
, pmc_count
);
1060 local_irq_restore(flags
);
1063 void x86_pmu_stop(struct perf_event
*event
, int flags
)
1065 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1066 struct hw_perf_event
*hwc
= &event
->hw
;
1068 if (__test_and_clear_bit(hwc
->idx
, cpuc
->active_mask
)) {
1069 x86_pmu
.disable(event
);
1070 cpuc
->events
[hwc
->idx
] = NULL
;
1071 WARN_ON_ONCE(hwc
->state
& PERF_HES_STOPPED
);
1072 hwc
->state
|= PERF_HES_STOPPED
;
1075 if ((flags
& PERF_EF_UPDATE
) && !(hwc
->state
& PERF_HES_UPTODATE
)) {
1077 * Drain the remaining delta count out of a event
1078 * that we are disabling:
1080 x86_perf_event_update(event
);
1081 hwc
->state
|= PERF_HES_UPTODATE
;
1085 static void x86_pmu_del(struct perf_event
*event
, int flags
)
1087 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1091 * If we're called during a txn, we don't need to do anything.
1092 * The events never got scheduled and ->cancel_txn will truncate
1095 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1098 x86_pmu_stop(event
, PERF_EF_UPDATE
);
1100 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1101 if (event
== cpuc
->event_list
[i
]) {
1103 if (x86_pmu
.put_event_constraints
)
1104 x86_pmu
.put_event_constraints(cpuc
, event
);
1106 while (++i
< cpuc
->n_events
)
1107 cpuc
->event_list
[i
-1] = cpuc
->event_list
[i
];
1113 perf_event_update_userpage(event
);
1116 int x86_pmu_handle_irq(struct pt_regs
*regs
)
1118 struct perf_sample_data data
;
1119 struct cpu_hw_events
*cpuc
;
1120 struct perf_event
*event
;
1121 int idx
, handled
= 0;
1124 perf_sample_data_init(&data
, 0);
1126 cpuc
= &__get_cpu_var(cpu_hw_events
);
1129 * Some chipsets need to unmask the LVTPC in a particular spot
1130 * inside the nmi handler. As a result, the unmasking was pushed
1131 * into all the nmi handlers.
1133 * This generic handler doesn't seem to have any issues where the
1134 * unmasking occurs so it was left at the top.
1136 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1138 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1139 if (!test_bit(idx
, cpuc
->active_mask
)) {
1141 * Though we deactivated the counter some cpus
1142 * might still deliver spurious interrupts still
1143 * in flight. Catch them:
1145 if (__test_and_clear_bit(idx
, cpuc
->running
))
1150 event
= cpuc
->events
[idx
];
1152 val
= x86_perf_event_update(event
);
1153 if (val
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
1160 data
.period
= event
->hw
.last_period
;
1162 if (!x86_perf_event_set_period(event
))
1165 if (perf_event_overflow(event
, &data
, regs
))
1166 x86_pmu_stop(event
, 0);
1170 inc_irq_stat(apic_perf_irqs
);
1175 void perf_events_lapic_init(void)
1177 if (!x86_pmu
.apic
|| !x86_pmu_initialized())
1181 * Always use NMI for PMU
1183 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1186 static int __kprobes
1187 perf_event_nmi_handler(unsigned int cmd
, struct pt_regs
*regs
)
1189 if (!atomic_read(&active_events
))
1192 return x86_pmu
.handle_irq(regs
);
1195 struct event_constraint emptyconstraint
;
1196 struct event_constraint unconstrained
;
1198 static int __cpuinit
1199 x86_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
1201 unsigned int cpu
= (long)hcpu
;
1202 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1203 int ret
= NOTIFY_OK
;
1205 switch (action
& ~CPU_TASKS_FROZEN
) {
1206 case CPU_UP_PREPARE
:
1207 cpuc
->kfree_on_online
= NULL
;
1208 if (x86_pmu
.cpu_prepare
)
1209 ret
= x86_pmu
.cpu_prepare(cpu
);
1213 if (x86_pmu
.cpu_starting
)
1214 x86_pmu
.cpu_starting(cpu
);
1218 kfree(cpuc
->kfree_on_online
);
1222 if (x86_pmu
.cpu_dying
)
1223 x86_pmu
.cpu_dying(cpu
);
1226 case CPU_UP_CANCELED
:
1228 if (x86_pmu
.cpu_dead
)
1229 x86_pmu
.cpu_dead(cpu
);
1239 static void __init
pmu_check_apic(void)
1245 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1246 pr_info("no hardware sampling interrupt available.\n");
1249 static int __init
init_hw_perf_events(void)
1251 struct x86_pmu_quirk
*quirk
;
1252 struct event_constraint
*c
;
1255 pr_info("Performance Events: ");
1257 switch (boot_cpu_data
.x86_vendor
) {
1258 case X86_VENDOR_INTEL
:
1259 err
= intel_pmu_init();
1261 case X86_VENDOR_AMD
:
1262 err
= amd_pmu_init();
1268 pr_cont("no PMU driver, software events only.\n");
1274 /* sanity check that the hardware exists or is emulated */
1275 if (!check_hw_exists())
1278 pr_cont("%s PMU driver.\n", x86_pmu
.name
);
1280 for (quirk
= x86_pmu
.quirks
; quirk
; quirk
= quirk
->next
)
1283 if (x86_pmu
.num_counters
> X86_PMC_MAX_GENERIC
) {
1284 WARN(1, KERN_ERR
"hw perf events %d > max(%d), clipping!",
1285 x86_pmu
.num_counters
, X86_PMC_MAX_GENERIC
);
1286 x86_pmu
.num_counters
= X86_PMC_MAX_GENERIC
;
1288 x86_pmu
.intel_ctrl
= (1 << x86_pmu
.num_counters
) - 1;
1290 if (x86_pmu
.num_counters_fixed
> X86_PMC_MAX_FIXED
) {
1291 WARN(1, KERN_ERR
"hw perf events fixed %d > max(%d), clipping!",
1292 x86_pmu
.num_counters_fixed
, X86_PMC_MAX_FIXED
);
1293 x86_pmu
.num_counters_fixed
= X86_PMC_MAX_FIXED
;
1296 x86_pmu
.intel_ctrl
|=
1297 ((1LL << x86_pmu
.num_counters_fixed
)-1) << X86_PMC_IDX_FIXED
;
1299 perf_events_lapic_init();
1300 register_nmi_handler(NMI_LOCAL
, perf_event_nmi_handler
, 0, "PMI");
1302 unconstrained
= (struct event_constraint
)
1303 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu
.num_counters
) - 1,
1304 0, x86_pmu
.num_counters
, 0);
1306 if (x86_pmu
.event_constraints
) {
1308 * event on fixed counter2 (REF_CYCLES) only works on this
1309 * counter, so do not extend mask to generic counters
1311 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
1312 if (c
->cmask
!= X86_RAW_EVENT_MASK
1313 || c
->idxmsk64
== X86_PMC_MSK_FIXED_REF_CYCLES
) {
1317 c
->idxmsk64
|= (1ULL << x86_pmu
.num_counters
) - 1;
1318 c
->weight
+= x86_pmu
.num_counters
;
1322 pr_info("... version: %d\n", x86_pmu
.version
);
1323 pr_info("... bit width: %d\n", x86_pmu
.cntval_bits
);
1324 pr_info("... generic registers: %d\n", x86_pmu
.num_counters
);
1325 pr_info("... value mask: %016Lx\n", x86_pmu
.cntval_mask
);
1326 pr_info("... max period: %016Lx\n", x86_pmu
.max_period
);
1327 pr_info("... fixed-purpose events: %d\n", x86_pmu
.num_counters_fixed
);
1328 pr_info("... event mask: %016Lx\n", x86_pmu
.intel_ctrl
);
1330 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1331 perf_cpu_notifier(x86_pmu_notifier
);
1335 early_initcall(init_hw_perf_events
);
1337 static inline void x86_pmu_read(struct perf_event
*event
)
1339 x86_perf_event_update(event
);
1343 * Start group events scheduling transaction
1344 * Set the flag to make pmu::enable() not perform the
1345 * schedulability test, it will be performed at commit time
1347 static void x86_pmu_start_txn(struct pmu
*pmu
)
1349 perf_pmu_disable(pmu
);
1350 __this_cpu_or(cpu_hw_events
.group_flag
, PERF_EVENT_TXN
);
1351 __this_cpu_write(cpu_hw_events
.n_txn
, 0);
1355 * Stop group events scheduling transaction
1356 * Clear the flag and pmu::enable() will perform the
1357 * schedulability test.
1359 static void x86_pmu_cancel_txn(struct pmu
*pmu
)
1361 __this_cpu_and(cpu_hw_events
.group_flag
, ~PERF_EVENT_TXN
);
1363 * Truncate the collected events.
1365 __this_cpu_sub(cpu_hw_events
.n_added
, __this_cpu_read(cpu_hw_events
.n_txn
));
1366 __this_cpu_sub(cpu_hw_events
.n_events
, __this_cpu_read(cpu_hw_events
.n_txn
));
1367 perf_pmu_enable(pmu
);
1371 * Commit group events scheduling transaction
1372 * Perform the group schedulability test as a whole
1373 * Return 0 if success
1375 static int x86_pmu_commit_txn(struct pmu
*pmu
)
1377 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1378 int assign
[X86_PMC_IDX_MAX
];
1383 if (!x86_pmu_initialized())
1386 ret
= x86_pmu
.schedule_events(cpuc
, n
, assign
);
1391 * copy new assignment, now we know it is possible
1392 * will be used by hw_perf_enable()
1394 memcpy(cpuc
->assign
, assign
, n
*sizeof(int));
1396 cpuc
->group_flag
&= ~PERF_EVENT_TXN
;
1397 perf_pmu_enable(pmu
);
1401 * a fake_cpuc is used to validate event groups. Due to
1402 * the extra reg logic, we need to also allocate a fake
1403 * per_core and per_cpu structure. Otherwise, group events
1404 * using extra reg may conflict without the kernel being
1405 * able to catch this when the last event gets added to
1408 static void free_fake_cpuc(struct cpu_hw_events
*cpuc
)
1410 kfree(cpuc
->shared_regs
);
1414 static struct cpu_hw_events
*allocate_fake_cpuc(void)
1416 struct cpu_hw_events
*cpuc
;
1417 int cpu
= raw_smp_processor_id();
1419 cpuc
= kzalloc(sizeof(*cpuc
), GFP_KERNEL
);
1421 return ERR_PTR(-ENOMEM
);
1423 /* only needed, if we have extra_regs */
1424 if (x86_pmu
.extra_regs
) {
1425 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
1426 if (!cpuc
->shared_regs
)
1431 free_fake_cpuc(cpuc
);
1432 return ERR_PTR(-ENOMEM
);
1436 * validate that we can schedule this event
1438 static int validate_event(struct perf_event
*event
)
1440 struct cpu_hw_events
*fake_cpuc
;
1441 struct event_constraint
*c
;
1444 fake_cpuc
= allocate_fake_cpuc();
1445 if (IS_ERR(fake_cpuc
))
1446 return PTR_ERR(fake_cpuc
);
1448 c
= x86_pmu
.get_event_constraints(fake_cpuc
, event
);
1450 if (!c
|| !c
->weight
)
1453 if (x86_pmu
.put_event_constraints
)
1454 x86_pmu
.put_event_constraints(fake_cpuc
, event
);
1456 free_fake_cpuc(fake_cpuc
);
1462 * validate a single event group
1464 * validation include:
1465 * - check events are compatible which each other
1466 * - events do not compete for the same counter
1467 * - number of events <= number of counters
1469 * validation ensures the group can be loaded onto the
1470 * PMU if it was the only group available.
1472 static int validate_group(struct perf_event
*event
)
1474 struct perf_event
*leader
= event
->group_leader
;
1475 struct cpu_hw_events
*fake_cpuc
;
1476 int ret
= -EINVAL
, n
;
1478 fake_cpuc
= allocate_fake_cpuc();
1479 if (IS_ERR(fake_cpuc
))
1480 return PTR_ERR(fake_cpuc
);
1482 * the event is not yet connected with its
1483 * siblings therefore we must first collect
1484 * existing siblings, then add the new event
1485 * before we can simulate the scheduling
1487 n
= collect_events(fake_cpuc
, leader
, true);
1491 fake_cpuc
->n_events
= n
;
1492 n
= collect_events(fake_cpuc
, event
, false);
1496 fake_cpuc
->n_events
= n
;
1498 ret
= x86_pmu
.schedule_events(fake_cpuc
, n
, NULL
);
1501 free_fake_cpuc(fake_cpuc
);
1505 static int x86_pmu_event_init(struct perf_event
*event
)
1510 switch (event
->attr
.type
) {
1512 case PERF_TYPE_HARDWARE
:
1513 case PERF_TYPE_HW_CACHE
:
1520 err
= __x86_pmu_event_init(event
);
1523 * we temporarily connect event to its pmu
1524 * such that validate_group() can classify
1525 * it as an x86 event using is_x86_event()
1530 if (event
->group_leader
!= event
)
1531 err
= validate_group(event
);
1533 err
= validate_event(event
);
1539 event
->destroy(event
);
1545 static struct pmu pmu
= {
1546 .pmu_enable
= x86_pmu_enable
,
1547 .pmu_disable
= x86_pmu_disable
,
1549 .event_init
= x86_pmu_event_init
,
1553 .start
= x86_pmu_start
,
1554 .stop
= x86_pmu_stop
,
1555 .read
= x86_pmu_read
,
1557 .start_txn
= x86_pmu_start_txn
,
1558 .cancel_txn
= x86_pmu_cancel_txn
,
1559 .commit_txn
= x86_pmu_commit_txn
,
1566 static int backtrace_stack(void *data
, char *name
)
1571 static void backtrace_address(void *data
, unsigned long addr
, int reliable
)
1573 struct perf_callchain_entry
*entry
= data
;
1575 perf_callchain_store(entry
, addr
);
1578 static const struct stacktrace_ops backtrace_ops
= {
1579 .stack
= backtrace_stack
,
1580 .address
= backtrace_address
,
1581 .walk_stack
= print_context_stack_bp
,
1585 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1587 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1588 /* TODO: We don't support guest os callchain now */
1592 perf_callchain_store(entry
, regs
->ip
);
1594 dump_trace(NULL
, regs
, NULL
, 0, &backtrace_ops
, entry
);
1597 #ifdef CONFIG_COMPAT
1599 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1601 /* 32-bit process in 64-bit kernel. */
1602 struct stack_frame_ia32 frame
;
1603 const void __user
*fp
;
1605 if (!test_thread_flag(TIF_IA32
))
1608 fp
= compat_ptr(regs
->bp
);
1609 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1610 unsigned long bytes
;
1611 frame
.next_frame
= 0;
1612 frame
.return_address
= 0;
1614 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1615 if (bytes
!= sizeof(frame
))
1618 if (fp
< compat_ptr(regs
->sp
))
1621 perf_callchain_store(entry
, frame
.return_address
);
1622 fp
= compat_ptr(frame
.next_frame
);
1628 perf_callchain_user32(struct pt_regs
*regs
, struct perf_callchain_entry
*entry
)
1635 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1637 struct stack_frame frame
;
1638 const void __user
*fp
;
1640 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1641 /* TODO: We don't support guest os callchain now */
1645 fp
= (void __user
*)regs
->bp
;
1647 perf_callchain_store(entry
, regs
->ip
);
1652 if (perf_callchain_user32(regs
, entry
))
1655 while (entry
->nr
< PERF_MAX_STACK_DEPTH
) {
1656 unsigned long bytes
;
1657 frame
.next_frame
= NULL
;
1658 frame
.return_address
= 0;
1660 bytes
= copy_from_user_nmi(&frame
, fp
, sizeof(frame
));
1661 if (bytes
!= sizeof(frame
))
1664 if ((unsigned long)fp
< regs
->sp
)
1667 perf_callchain_store(entry
, frame
.return_address
);
1668 fp
= frame
.next_frame
;
1672 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
1676 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
1677 ip
= perf_guest_cbs
->get_guest_ip();
1679 ip
= instruction_pointer(regs
);
1684 unsigned long perf_misc_flags(struct pt_regs
*regs
)
1688 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
1689 if (perf_guest_cbs
->is_user_mode())
1690 misc
|= PERF_RECORD_MISC_GUEST_USER
;
1692 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
1694 if (user_mode(regs
))
1695 misc
|= PERF_RECORD_MISC_USER
;
1697 misc
|= PERF_RECORD_MISC_KERNEL
;
1700 if (regs
->flags
& PERF_EFLAGS_EXACT
)
1701 misc
|= PERF_RECORD_MISC_EXACT_IP
;
1706 void perf_get_x86_pmu_capability(struct x86_pmu_capability
*cap
)
1708 cap
->version
= x86_pmu
.version
;
1709 cap
->num_counters_gp
= x86_pmu
.num_counters
;
1710 cap
->num_counters_fixed
= x86_pmu
.num_counters_fixed
;
1711 cap
->bit_width_gp
= x86_pmu
.cntval_bits
;
1712 cap
->bit_width_fixed
= x86_pmu
.cntval_bits
;
1713 cap
->events_mask
= (unsigned int)x86_pmu
.events_maskl
;
1714 cap
->events_mask_len
= x86_pmu
.events_mask_len
;
1716 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability
);