1 #include <linux/perf_event.h>
2 #include <linux/export.h>
3 #include <linux/types.h>
4 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <asm/apicdef.h>
8 #include "perf_event.h"
10 static __initconst
const u64 amd_hw_cache_event_ids
11 [PERF_COUNT_HW_CACHE_MAX
]
12 [PERF_COUNT_HW_CACHE_OP_MAX
]
13 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
17 [ C(RESULT_ACCESS
) ] = 0x0040, /* Data Cache Accesses */
18 [ C(RESULT_MISS
) ] = 0x0141, /* Data Cache Misses */
21 [ C(RESULT_ACCESS
) ] = 0x0142, /* Data Cache Refills :system */
22 [ C(RESULT_MISS
) ] = 0,
24 [ C(OP_PREFETCH
) ] = {
25 [ C(RESULT_ACCESS
) ] = 0x0267, /* Data Prefetcher :attempts */
26 [ C(RESULT_MISS
) ] = 0x0167, /* Data Prefetcher :cancelled */
31 [ C(RESULT_ACCESS
) ] = 0x0080, /* Instruction cache fetches */
32 [ C(RESULT_MISS
) ] = 0x0081, /* Instruction cache misses */
35 [ C(RESULT_ACCESS
) ] = -1,
36 [ C(RESULT_MISS
) ] = -1,
38 [ C(OP_PREFETCH
) ] = {
39 [ C(RESULT_ACCESS
) ] = 0x014B, /* Prefetch Instructions :Load */
40 [ C(RESULT_MISS
) ] = 0,
45 [ C(RESULT_ACCESS
) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
46 [ C(RESULT_MISS
) ] = 0x037E, /* L2 Cache Misses : IC+DC */
49 [ C(RESULT_ACCESS
) ] = 0x017F, /* L2 Fill/Writeback */
50 [ C(RESULT_MISS
) ] = 0,
52 [ C(OP_PREFETCH
) ] = {
53 [ C(RESULT_ACCESS
) ] = 0,
54 [ C(RESULT_MISS
) ] = 0,
59 [ C(RESULT_ACCESS
) ] = 0x0040, /* Data Cache Accesses */
60 [ C(RESULT_MISS
) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
63 [ C(RESULT_ACCESS
) ] = 0,
64 [ C(RESULT_MISS
) ] = 0,
66 [ C(OP_PREFETCH
) ] = {
67 [ C(RESULT_ACCESS
) ] = 0,
68 [ C(RESULT_MISS
) ] = 0,
73 [ C(RESULT_ACCESS
) ] = 0x0080, /* Instruction fecthes */
74 [ C(RESULT_MISS
) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
77 [ C(RESULT_ACCESS
) ] = -1,
78 [ C(RESULT_MISS
) ] = -1,
80 [ C(OP_PREFETCH
) ] = {
81 [ C(RESULT_ACCESS
) ] = -1,
82 [ C(RESULT_MISS
) ] = -1,
87 [ C(RESULT_ACCESS
) ] = 0x00c2, /* Retired Branch Instr. */
88 [ C(RESULT_MISS
) ] = 0x00c3, /* Retired Mispredicted BI */
91 [ C(RESULT_ACCESS
) ] = -1,
92 [ C(RESULT_MISS
) ] = -1,
94 [ C(OP_PREFETCH
) ] = {
95 [ C(RESULT_ACCESS
) ] = -1,
96 [ C(RESULT_MISS
) ] = -1,
101 [ C(RESULT_ACCESS
) ] = 0xb8e9, /* CPU Request to Memory, l+r */
102 [ C(RESULT_MISS
) ] = 0x98e9, /* CPU Request to Memory, r */
105 [ C(RESULT_ACCESS
) ] = -1,
106 [ C(RESULT_MISS
) ] = -1,
108 [ C(OP_PREFETCH
) ] = {
109 [ C(RESULT_ACCESS
) ] = -1,
110 [ C(RESULT_MISS
) ] = -1,
116 * AMD Performance Monitor K7 and later.
118 static const u64 amd_perfmon_event_map
[] =
120 [PERF_COUNT_HW_CPU_CYCLES
] = 0x0076,
121 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
122 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x0080,
123 [PERF_COUNT_HW_CACHE_MISSES
] = 0x0081,
124 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c2,
125 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c3,
126 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = 0x00d0, /* "Decoder empty" event */
127 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = 0x00d1, /* "Dispatch stalls" event */
130 static u64
amd_pmu_event_map(int hw_event
)
132 return amd_perfmon_event_map
[hw_event
];
135 static int amd_pmu_hw_config(struct perf_event
*event
)
137 int ret
= x86_pmu_hw_config(event
);
142 if (event
->attr
.exclude_host
&& event
->attr
.exclude_guest
)
144 * When HO == GO == 1 the hardware treats that as GO == HO == 0
145 * and will count in both modes. We don't want to count in that
146 * case so we emulate no-counting by setting US = OS = 0.
148 event
->hw
.config
&= ~(ARCH_PERFMON_EVENTSEL_USR
|
149 ARCH_PERFMON_EVENTSEL_OS
);
150 else if (event
->attr
.exclude_host
)
151 event
->hw
.config
|= AMD_PERFMON_EVENTSEL_GUESTONLY
;
152 else if (event
->attr
.exclude_guest
)
153 event
->hw
.config
|= AMD_PERFMON_EVENTSEL_HOSTONLY
;
155 if (event
->attr
.type
!= PERF_TYPE_RAW
)
158 event
->hw
.config
|= event
->attr
.config
& AMD64_RAW_EVENT_MASK
;
164 * AMD64 events are detected based on their event codes.
166 static inline unsigned int amd_get_event_code(struct hw_perf_event
*hwc
)
168 return ((hwc
->config
>> 24) & 0x0f00) | (hwc
->config
& 0x00ff);
171 static inline int amd_is_nb_event(struct hw_perf_event
*hwc
)
173 return (hwc
->config
& 0xe0) == 0xe0;
176 static inline int amd_has_nb(struct cpu_hw_events
*cpuc
)
178 struct amd_nb
*nb
= cpuc
->amd_nb
;
180 return nb
&& nb
->nb_id
!= -1;
183 static void amd_put_event_constraints(struct cpu_hw_events
*cpuc
,
184 struct perf_event
*event
)
186 struct hw_perf_event
*hwc
= &event
->hw
;
187 struct amd_nb
*nb
= cpuc
->amd_nb
;
191 * only care about NB events
193 if (!(amd_has_nb(cpuc
) && amd_is_nb_event(hwc
)))
197 * need to scan whole list because event may not have
198 * been assigned during scheduling
200 * no race condition possible because event can only
201 * be removed on one CPU at a time AND PMU is disabled
204 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
205 if (nb
->owners
[i
] == event
) {
206 cmpxchg(nb
->owners
+i
, event
, NULL
);
213 * AMD64 NorthBridge events need special treatment because
214 * counter access needs to be synchronized across all cores
215 * of a package. Refer to BKDG section 3.12
217 * NB events are events measuring L3 cache, Hypertransport
218 * traffic. They are identified by an event code >= 0xe00.
219 * They measure events on the NorthBride which is shared
220 * by all cores on a package. NB events are counted on a
221 * shared set of counters. When a NB event is programmed
222 * in a counter, the data actually comes from a shared
223 * counter. Thus, access to those counters needs to be
226 * We implement the synchronization such that no two cores
227 * can be measuring NB events using the same counters. Thus,
228 * we maintain a per-NB allocation table. The available slot
229 * is propagated using the event_constraint structure.
231 * We provide only one choice for each NB event based on
232 * the fact that only NB events have restrictions. Consequently,
233 * if a counter is available, there is a guarantee the NB event
234 * will be assigned to it. If no slot is available, an empty
235 * constraint is returned and scheduling will eventually fail
238 * Note that all cores attached the same NB compete for the same
239 * counters to host NB events, this is why we use atomic ops. Some
240 * multi-chip CPUs may have more than one NB.
242 * Given that resources are allocated (cmpxchg), they must be
243 * eventually freed for others to use. This is accomplished by
244 * calling amd_put_event_constraints().
246 * Non NB events are not impacted by this restriction.
248 static struct event_constraint
*
249 amd_get_event_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
)
251 struct hw_perf_event
*hwc
= &event
->hw
;
252 struct amd_nb
*nb
= cpuc
->amd_nb
;
253 struct perf_event
*old
= NULL
;
254 int max
= x86_pmu
.num_counters
;
258 * if not NB event or no NB, then no constraints
260 if (!(amd_has_nb(cpuc
) && amd_is_nb_event(hwc
)))
261 return &unconstrained
;
264 * detect if already present, if so reuse
266 * cannot merge with actual allocation
267 * because of possible holes
269 * event can already be present yet not assigned (in hwc->idx)
270 * because of successive calls to x86_schedule_events() from
271 * hw_perf_group_sched_in() without hw_perf_enable()
273 for (i
= 0; i
< max
; i
++) {
275 * keep track of first free slot
277 if (k
== -1 && !nb
->owners
[i
])
280 /* already present, reuse */
281 if (nb
->owners
[i
] == event
)
285 * not present, so grab a new slot
286 * starting either at:
288 if (hwc
->idx
!= -1) {
289 /* previous assignment */
291 } else if (k
!= -1) {
292 /* start from free slot found */
296 * event not found, no slot found in
297 * first pass, try again from the
304 old
= cmpxchg(nb
->owners
+i
, NULL
, event
);
312 return &nb
->event_constraints
[i
];
314 return &emptyconstraint
;
317 static struct amd_nb
*amd_alloc_nb(int cpu
)
322 nb
= kmalloc_node(sizeof(struct amd_nb
), GFP_KERNEL
| __GFP_ZERO
,
330 * initialize all possible NB constraints
332 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
333 __set_bit(i
, nb
->event_constraints
[i
].idxmsk
);
334 nb
->event_constraints
[i
].weight
= 1;
339 static int amd_pmu_cpu_prepare(int cpu
)
341 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
343 WARN_ON_ONCE(cpuc
->amd_nb
);
345 if (boot_cpu_data
.x86_max_cores
< 2)
348 cpuc
->amd_nb
= amd_alloc_nb(cpu
);
355 static void amd_pmu_cpu_starting(int cpu
)
357 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
361 cpuc
->perf_ctr_virt_mask
= AMD_PERFMON_EVENTSEL_HOSTONLY
;
363 if (boot_cpu_data
.x86_max_cores
< 2 || boot_cpu_data
.x86
== 0x15)
366 nb_id
= amd_get_nb_id(cpu
);
367 WARN_ON_ONCE(nb_id
== BAD_APICID
);
369 for_each_online_cpu(i
) {
370 nb
= per_cpu(cpu_hw_events
, i
).amd_nb
;
371 if (WARN_ON_ONCE(!nb
))
374 if (nb
->nb_id
== nb_id
) {
375 cpuc
->kfree_on_online
= cpuc
->amd_nb
;
381 cpuc
->amd_nb
->nb_id
= nb_id
;
382 cpuc
->amd_nb
->refcnt
++;
385 static void amd_pmu_cpu_dead(int cpu
)
387 struct cpu_hw_events
*cpuhw
;
389 if (boot_cpu_data
.x86_max_cores
< 2)
392 cpuhw
= &per_cpu(cpu_hw_events
, cpu
);
395 struct amd_nb
*nb
= cpuhw
->amd_nb
;
397 if (nb
->nb_id
== -1 || --nb
->refcnt
== 0)
400 cpuhw
->amd_nb
= NULL
;
404 static __initconst
const struct x86_pmu amd_pmu
= {
406 .handle_irq
= x86_pmu_handle_irq
,
407 .disable_all
= x86_pmu_disable_all
,
408 .enable_all
= x86_pmu_enable_all
,
409 .enable
= x86_pmu_enable_event
,
410 .disable
= x86_pmu_disable_event
,
411 .hw_config
= amd_pmu_hw_config
,
412 .schedule_events
= x86_schedule_events
,
413 .eventsel
= MSR_K7_EVNTSEL0
,
414 .perfctr
= MSR_K7_PERFCTR0
,
415 .event_map
= amd_pmu_event_map
,
416 .max_events
= ARRAY_SIZE(amd_perfmon_event_map
),
417 .num_counters
= AMD64_NUM_COUNTERS
,
419 .cntval_mask
= (1ULL << 48) - 1,
421 /* use highest bit to detect overflow */
422 .max_period
= (1ULL << 47) - 1,
423 .get_event_constraints
= amd_get_event_constraints
,
424 .put_event_constraints
= amd_put_event_constraints
,
426 .cpu_prepare
= amd_pmu_cpu_prepare
,
427 .cpu_starting
= amd_pmu_cpu_starting
,
428 .cpu_dead
= amd_pmu_cpu_dead
,
433 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
435 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
436 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
437 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
438 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
439 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
440 #define AMD_EVENT_EX_LS 0x000000C0ULL
441 #define AMD_EVENT_DE 0x000000D0ULL
442 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
445 * AMD family 15h event code/PMC mappings:
447 * type = event_code & 0x0F0:
449 * 0x000 FP PERF_CTL[5:3]
450 * 0x010 FP PERF_CTL[5:3]
451 * 0x020 LS PERF_CTL[5:0]
452 * 0x030 LS PERF_CTL[5:0]
453 * 0x040 DC PERF_CTL[5:0]
454 * 0x050 DC PERF_CTL[5:0]
455 * 0x060 CU PERF_CTL[2:0]
456 * 0x070 CU PERF_CTL[2:0]
457 * 0x080 IC/DE PERF_CTL[2:0]
458 * 0x090 IC/DE PERF_CTL[2:0]
461 * 0x0C0 EX/LS PERF_CTL[5:0]
462 * 0x0D0 DE PERF_CTL[2:0]
463 * 0x0E0 NB NB_PERF_CTL[3:0]
464 * 0x0F0 NB NB_PERF_CTL[3:0]
468 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
469 * 0x003 FP PERF_CTL[3]
470 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
471 * 0x00B FP PERF_CTL[3]
472 * 0x00D FP PERF_CTL[3]
473 * 0x023 DE PERF_CTL[2:0]
474 * 0x02D LS PERF_CTL[3]
475 * 0x02E LS PERF_CTL[3,0]
476 * 0x043 CU PERF_CTL[2:0]
477 * 0x045 CU PERF_CTL[2:0]
478 * 0x046 CU PERF_CTL[2:0]
479 * 0x054 CU PERF_CTL[2:0]
480 * 0x055 CU PERF_CTL[2:0]
481 * 0x08F IC PERF_CTL[0]
482 * 0x187 DE PERF_CTL[0]
483 * 0x188 DE PERF_CTL[0]
484 * 0x0DB EX PERF_CTL[5:0]
485 * 0x0DC LS PERF_CTL[5:0]
486 * 0x0DD LS PERF_CTL[5:0]
487 * 0x0DE LS PERF_CTL[5:0]
488 * 0x0DF LS PERF_CTL[5:0]
489 * 0x1D6 EX PERF_CTL[5:0]
490 * 0x1D8 EX PERF_CTL[5:0]
492 * (*) depending on the umask all FPU counters may be used
495 static struct event_constraint amd_f15_PMC0
= EVENT_CONSTRAINT(0, 0x01, 0);
496 static struct event_constraint amd_f15_PMC20
= EVENT_CONSTRAINT(0, 0x07, 0);
497 static struct event_constraint amd_f15_PMC3
= EVENT_CONSTRAINT(0, 0x08, 0);
498 static struct event_constraint amd_f15_PMC30
= EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
499 static struct event_constraint amd_f15_PMC50
= EVENT_CONSTRAINT(0, 0x3F, 0);
500 static struct event_constraint amd_f15_PMC53
= EVENT_CONSTRAINT(0, 0x38, 0);
502 static struct event_constraint
*
503 amd_get_event_constraints_f15h(struct cpu_hw_events
*cpuc
, struct perf_event
*event
)
505 struct hw_perf_event
*hwc
= &event
->hw
;
506 unsigned int event_code
= amd_get_event_code(hwc
);
508 switch (event_code
& AMD_EVENT_TYPE_MASK
) {
510 switch (event_code
) {
512 if (!(hwc
->config
& 0x0000F000ULL
))
514 if (!(hwc
->config
& 0x00000F00ULL
))
516 return &amd_f15_PMC3
;
518 if (hweight_long(hwc
->config
& ARCH_PERFMON_EVENTSEL_UMASK
) <= 1)
520 return &amd_f15_PMC3
;
524 return &amd_f15_PMC3
;
526 return &amd_f15_PMC53
;
529 case AMD_EVENT_EX_LS
:
530 switch (event_code
) {
537 return &amd_f15_PMC20
;
539 return &amd_f15_PMC3
;
541 return &amd_f15_PMC30
;
543 return &amd_f15_PMC50
;
546 case AMD_EVENT_IC_DE
:
548 switch (event_code
) {
552 return &amd_f15_PMC0
;
553 case 0x0DB ... 0x0DF:
556 return &amd_f15_PMC50
;
558 return &amd_f15_PMC20
;
561 /* not yet implemented */
562 return &emptyconstraint
;
564 return &emptyconstraint
;
568 static __initconst
const struct x86_pmu amd_pmu_f15h
= {
569 .name
= "AMD Family 15h",
570 .handle_irq
= x86_pmu_handle_irq
,
571 .disable_all
= x86_pmu_disable_all
,
572 .enable_all
= x86_pmu_enable_all
,
573 .enable
= x86_pmu_enable_event
,
574 .disable
= x86_pmu_disable_event
,
575 .hw_config
= amd_pmu_hw_config
,
576 .schedule_events
= x86_schedule_events
,
577 .eventsel
= MSR_F15H_PERF_CTL
,
578 .perfctr
= MSR_F15H_PERF_CTR
,
579 .event_map
= amd_pmu_event_map
,
580 .max_events
= ARRAY_SIZE(amd_perfmon_event_map
),
581 .num_counters
= AMD64_NUM_COUNTERS_F15H
,
583 .cntval_mask
= (1ULL << 48) - 1,
585 /* use highest bit to detect overflow */
586 .max_period
= (1ULL << 47) - 1,
587 .get_event_constraints
= amd_get_event_constraints_f15h
,
588 /* nortbridge counters not yet implemented: */
590 .put_event_constraints
= amd_put_event_constraints
,
592 .cpu_prepare
= amd_pmu_cpu_prepare
,
593 .cpu_dead
= amd_pmu_cpu_dead
,
595 .cpu_starting
= amd_pmu_cpu_starting
,
598 __init
int amd_pmu_init(void)
600 /* Performance-monitoring supported from K7 and later: */
601 if (boot_cpu_data
.x86
< 6)
605 * If core performance counter extensions exists, it must be
606 * family 15h, otherwise fail. See x86_pmu_addr_offset().
608 switch (boot_cpu_data
.x86
) {
610 if (!cpu_has_perfctr_core
)
612 x86_pmu
= amd_pmu_f15h
;
615 if (cpu_has_perfctr_core
)
621 /* Events are common for all AMDs */
622 memcpy(hw_cache_event_ids
, amd_hw_cache_event_ids
,
623 sizeof(hw_cache_event_ids
));
628 void amd_pmu_enable_virt(void)
630 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
632 cpuc
->perf_ctr_virt_mask
= 0;
634 /* Reload all events */
635 x86_pmu_disable_all();
636 x86_pmu_enable_all(0);
638 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt
);
640 void amd_pmu_disable_virt(void)
642 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
645 * We only mask out the Host-only bit so that host-only counting works
646 * when SVM is disabled. If someone sets up a guest-only counter when
647 * SVM is disabled the Guest-only bits still gets set and the counter
648 * will not count anything.
650 cpuc
->perf_ctr_virt_mask
= AMD_PERFMON_EVENTSEL_HOSTONLY
;
652 /* Reload all events */
653 x86_pmu_disable_all();
654 x86_pmu_enable_all(0);
656 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt
);