4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
14 #include <asm/hardirq.h>
17 #include "perf_event.h"
20 * Intel PerfMon, used on Core and later.
22 static u64 intel_perfmon_event_map
[PERF_COUNT_HW_MAX
] __read_mostly
=
24 [PERF_COUNT_HW_CPU_CYCLES
] = 0x003c,
25 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
26 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x4f2e,
27 [PERF_COUNT_HW_CACHE_MISSES
] = 0x412e,
28 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c4,
29 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c5,
30 [PERF_COUNT_HW_BUS_CYCLES
] = 0x013c,
31 [PERF_COUNT_HW_REF_CPU_CYCLES
] = 0x0300, /* pseudo-encoding */
34 static struct event_constraint intel_core_event_constraints
[] __read_mostly
=
36 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
37 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
38 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
39 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
40 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
41 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45 static struct event_constraint intel_core2_event_constraints
[] __read_mostly
=
47 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
48 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
49 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
50 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
51 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
52 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
53 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
54 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
55 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
56 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
57 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
58 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
59 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63 static struct event_constraint intel_nehalem_event_constraints
[] __read_mostly
=
65 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
66 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
67 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
68 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
69 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
70 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
71 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
72 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
73 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
74 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
75 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79 static struct extra_reg intel_nehalem_extra_regs
[] __read_mostly
=
81 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
85 static struct event_constraint intel_westmere_event_constraints
[] __read_mostly
=
87 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
88 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
89 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
90 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
91 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
92 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
93 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
97 static struct event_constraint intel_snb_event_constraints
[] __read_mostly
=
99 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
100 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
101 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
102 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
103 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
104 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
108 static struct extra_reg intel_westmere_extra_regs
[] __read_mostly
=
110 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
111 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1
, 0xffff, RSP_1
),
115 static struct event_constraint intel_v1_event_constraints
[] __read_mostly
=
120 static struct event_constraint intel_gen_event_constraints
[] __read_mostly
=
122 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
123 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
124 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
128 static struct extra_reg intel_snb_extra_regs
[] __read_mostly
= {
129 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0
, 0x3fffffffffull
, RSP_0
),
130 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1
, 0x3fffffffffull
, RSP_1
),
134 static u64
intel_pmu_event_map(int hw_event
)
136 return intel_perfmon_event_map
[hw_event
];
139 static __initconst
const u64 snb_hw_cache_event_ids
140 [PERF_COUNT_HW_CACHE_MAX
]
141 [PERF_COUNT_HW_CACHE_OP_MAX
]
142 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
146 [ C(RESULT_ACCESS
) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
147 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPLACEMENT */
150 [ C(RESULT_ACCESS
) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
151 [ C(RESULT_MISS
) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
153 [ C(OP_PREFETCH
) ] = {
154 [ C(RESULT_ACCESS
) ] = 0x0,
155 [ C(RESULT_MISS
) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
160 [ C(RESULT_ACCESS
) ] = 0x0,
161 [ C(RESULT_MISS
) ] = 0x0280, /* ICACHE.MISSES */
164 [ C(RESULT_ACCESS
) ] = -1,
165 [ C(RESULT_MISS
) ] = -1,
167 [ C(OP_PREFETCH
) ] = {
168 [ C(RESULT_ACCESS
) ] = 0x0,
169 [ C(RESULT_MISS
) ] = 0x0,
174 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
175 [ C(RESULT_ACCESS
) ] = 0x01b7,
176 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
177 [ C(RESULT_MISS
) ] = 0x01b7,
180 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
181 [ C(RESULT_ACCESS
) ] = 0x01b7,
182 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
183 [ C(RESULT_MISS
) ] = 0x01b7,
185 [ C(OP_PREFETCH
) ] = {
186 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
187 [ C(RESULT_ACCESS
) ] = 0x01b7,
188 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
189 [ C(RESULT_MISS
) ] = 0x01b7,
194 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
195 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
198 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
199 [ C(RESULT_MISS
) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
201 [ C(OP_PREFETCH
) ] = {
202 [ C(RESULT_ACCESS
) ] = 0x0,
203 [ C(RESULT_MISS
) ] = 0x0,
208 [ C(RESULT_ACCESS
) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
209 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
212 [ C(RESULT_ACCESS
) ] = -1,
213 [ C(RESULT_MISS
) ] = -1,
215 [ C(OP_PREFETCH
) ] = {
216 [ C(RESULT_ACCESS
) ] = -1,
217 [ C(RESULT_MISS
) ] = -1,
222 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
223 [ C(RESULT_MISS
) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
226 [ C(RESULT_ACCESS
) ] = -1,
227 [ C(RESULT_MISS
) ] = -1,
229 [ C(OP_PREFETCH
) ] = {
230 [ C(RESULT_ACCESS
) ] = -1,
231 [ C(RESULT_MISS
) ] = -1,
236 [ C(RESULT_ACCESS
) ] = -1,
237 [ C(RESULT_MISS
) ] = -1,
240 [ C(RESULT_ACCESS
) ] = -1,
241 [ C(RESULT_MISS
) ] = -1,
243 [ C(OP_PREFETCH
) ] = {
244 [ C(RESULT_ACCESS
) ] = -1,
245 [ C(RESULT_MISS
) ] = -1,
251 static __initconst
const u64 westmere_hw_cache_event_ids
252 [PERF_COUNT_HW_CACHE_MAX
]
253 [PERF_COUNT_HW_CACHE_OP_MAX
]
254 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
258 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
259 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
262 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
263 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
265 [ C(OP_PREFETCH
) ] = {
266 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
267 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
272 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
273 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
276 [ C(RESULT_ACCESS
) ] = -1,
277 [ C(RESULT_MISS
) ] = -1,
279 [ C(OP_PREFETCH
) ] = {
280 [ C(RESULT_ACCESS
) ] = 0x0,
281 [ C(RESULT_MISS
) ] = 0x0,
286 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
287 [ C(RESULT_ACCESS
) ] = 0x01b7,
288 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
289 [ C(RESULT_MISS
) ] = 0x01b7,
292 * Use RFO, not WRITEBACK, because a write miss would typically occur
296 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
297 [ C(RESULT_ACCESS
) ] = 0x01b7,
298 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
299 [ C(RESULT_MISS
) ] = 0x01b7,
301 [ C(OP_PREFETCH
) ] = {
302 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
303 [ C(RESULT_ACCESS
) ] = 0x01b7,
304 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
305 [ C(RESULT_MISS
) ] = 0x01b7,
310 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
311 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
314 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
315 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
317 [ C(OP_PREFETCH
) ] = {
318 [ C(RESULT_ACCESS
) ] = 0x0,
319 [ C(RESULT_MISS
) ] = 0x0,
324 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
325 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.ANY */
328 [ C(RESULT_ACCESS
) ] = -1,
329 [ C(RESULT_MISS
) ] = -1,
331 [ C(OP_PREFETCH
) ] = {
332 [ C(RESULT_ACCESS
) ] = -1,
333 [ C(RESULT_MISS
) ] = -1,
338 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
339 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
342 [ C(RESULT_ACCESS
) ] = -1,
343 [ C(RESULT_MISS
) ] = -1,
345 [ C(OP_PREFETCH
) ] = {
346 [ C(RESULT_ACCESS
) ] = -1,
347 [ C(RESULT_MISS
) ] = -1,
352 [ C(RESULT_ACCESS
) ] = 0x01b7,
353 [ C(RESULT_MISS
) ] = 0x01b7,
356 [ C(RESULT_ACCESS
) ] = 0x01b7,
357 [ C(RESULT_MISS
) ] = 0x01b7,
359 [ C(OP_PREFETCH
) ] = {
360 [ C(RESULT_ACCESS
) ] = 0x01b7,
361 [ C(RESULT_MISS
) ] = 0x01b7,
367 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
368 * See IA32 SDM Vol 3B 30.6.1.3
371 #define NHM_DMND_DATA_RD (1 << 0)
372 #define NHM_DMND_RFO (1 << 1)
373 #define NHM_DMND_IFETCH (1 << 2)
374 #define NHM_DMND_WB (1 << 3)
375 #define NHM_PF_DATA_RD (1 << 4)
376 #define NHM_PF_DATA_RFO (1 << 5)
377 #define NHM_PF_IFETCH (1 << 6)
378 #define NHM_OFFCORE_OTHER (1 << 7)
379 #define NHM_UNCORE_HIT (1 << 8)
380 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
381 #define NHM_OTHER_CORE_HITM (1 << 10)
383 #define NHM_REMOTE_CACHE_FWD (1 << 12)
384 #define NHM_REMOTE_DRAM (1 << 13)
385 #define NHM_LOCAL_DRAM (1 << 14)
386 #define NHM_NON_DRAM (1 << 15)
388 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
389 #define NHM_REMOTE (NHM_REMOTE_DRAM)
391 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
392 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
393 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
395 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
396 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
397 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
399 static __initconst
const u64 nehalem_hw_cache_extra_regs
400 [PERF_COUNT_HW_CACHE_MAX
]
401 [PERF_COUNT_HW_CACHE_OP_MAX
]
402 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
406 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_L3_ACCESS
,
407 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_L3_MISS
,
410 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_L3_ACCESS
,
411 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_L3_MISS
,
413 [ C(OP_PREFETCH
) ] = {
414 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_L3_ACCESS
,
415 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_L3_MISS
,
420 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_LOCAL
|NHM_REMOTE
,
421 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_REMOTE
,
424 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_LOCAL
|NHM_REMOTE
,
425 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_REMOTE
,
427 [ C(OP_PREFETCH
) ] = {
428 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_LOCAL
|NHM_REMOTE
,
429 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_REMOTE
,
434 static __initconst
const u64 nehalem_hw_cache_event_ids
435 [PERF_COUNT_HW_CACHE_MAX
]
436 [PERF_COUNT_HW_CACHE_OP_MAX
]
437 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
441 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
442 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
445 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
446 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
448 [ C(OP_PREFETCH
) ] = {
449 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
450 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
455 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
456 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
459 [ C(RESULT_ACCESS
) ] = -1,
460 [ C(RESULT_MISS
) ] = -1,
462 [ C(OP_PREFETCH
) ] = {
463 [ C(RESULT_ACCESS
) ] = 0x0,
464 [ C(RESULT_MISS
) ] = 0x0,
469 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
470 [ C(RESULT_ACCESS
) ] = 0x01b7,
471 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
472 [ C(RESULT_MISS
) ] = 0x01b7,
475 * Use RFO, not WRITEBACK, because a write miss would typically occur
479 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
480 [ C(RESULT_ACCESS
) ] = 0x01b7,
481 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
482 [ C(RESULT_MISS
) ] = 0x01b7,
484 [ C(OP_PREFETCH
) ] = {
485 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
486 [ C(RESULT_ACCESS
) ] = 0x01b7,
487 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
488 [ C(RESULT_MISS
) ] = 0x01b7,
493 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
494 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
497 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
498 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
500 [ C(OP_PREFETCH
) ] = {
501 [ C(RESULT_ACCESS
) ] = 0x0,
502 [ C(RESULT_MISS
) ] = 0x0,
507 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
508 [ C(RESULT_MISS
) ] = 0x20c8, /* ITLB_MISS_RETIRED */
511 [ C(RESULT_ACCESS
) ] = -1,
512 [ C(RESULT_MISS
) ] = -1,
514 [ C(OP_PREFETCH
) ] = {
515 [ C(RESULT_ACCESS
) ] = -1,
516 [ C(RESULT_MISS
) ] = -1,
521 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
522 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
525 [ C(RESULT_ACCESS
) ] = -1,
526 [ C(RESULT_MISS
) ] = -1,
528 [ C(OP_PREFETCH
) ] = {
529 [ C(RESULT_ACCESS
) ] = -1,
530 [ C(RESULT_MISS
) ] = -1,
535 [ C(RESULT_ACCESS
) ] = 0x01b7,
536 [ C(RESULT_MISS
) ] = 0x01b7,
539 [ C(RESULT_ACCESS
) ] = 0x01b7,
540 [ C(RESULT_MISS
) ] = 0x01b7,
542 [ C(OP_PREFETCH
) ] = {
543 [ C(RESULT_ACCESS
) ] = 0x01b7,
544 [ C(RESULT_MISS
) ] = 0x01b7,
549 static __initconst
const u64 core2_hw_cache_event_ids
550 [PERF_COUNT_HW_CACHE_MAX
]
551 [PERF_COUNT_HW_CACHE_OP_MAX
]
552 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
556 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
557 [ C(RESULT_MISS
) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
560 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
561 [ C(RESULT_MISS
) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
563 [ C(OP_PREFETCH
) ] = {
564 [ C(RESULT_ACCESS
) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
565 [ C(RESULT_MISS
) ] = 0,
570 [ C(RESULT_ACCESS
) ] = 0x0080, /* L1I.READS */
571 [ C(RESULT_MISS
) ] = 0x0081, /* L1I.MISSES */
574 [ C(RESULT_ACCESS
) ] = -1,
575 [ C(RESULT_MISS
) ] = -1,
577 [ C(OP_PREFETCH
) ] = {
578 [ C(RESULT_ACCESS
) ] = 0,
579 [ C(RESULT_MISS
) ] = 0,
584 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
585 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
588 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
589 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
591 [ C(OP_PREFETCH
) ] = {
592 [ C(RESULT_ACCESS
) ] = 0,
593 [ C(RESULT_MISS
) ] = 0,
598 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
599 [ C(RESULT_MISS
) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
602 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
603 [ C(RESULT_MISS
) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
605 [ C(OP_PREFETCH
) ] = {
606 [ C(RESULT_ACCESS
) ] = 0,
607 [ C(RESULT_MISS
) ] = 0,
612 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
613 [ C(RESULT_MISS
) ] = 0x1282, /* ITLBMISSES */
616 [ C(RESULT_ACCESS
) ] = -1,
617 [ C(RESULT_MISS
) ] = -1,
619 [ C(OP_PREFETCH
) ] = {
620 [ C(RESULT_ACCESS
) ] = -1,
621 [ C(RESULT_MISS
) ] = -1,
626 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
627 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
630 [ C(RESULT_ACCESS
) ] = -1,
631 [ C(RESULT_MISS
) ] = -1,
633 [ C(OP_PREFETCH
) ] = {
634 [ C(RESULT_ACCESS
) ] = -1,
635 [ C(RESULT_MISS
) ] = -1,
640 static __initconst
const u64 atom_hw_cache_event_ids
641 [PERF_COUNT_HW_CACHE_MAX
]
642 [PERF_COUNT_HW_CACHE_OP_MAX
]
643 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
647 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE.LD */
648 [ C(RESULT_MISS
) ] = 0,
651 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE.ST */
652 [ C(RESULT_MISS
) ] = 0,
654 [ C(OP_PREFETCH
) ] = {
655 [ C(RESULT_ACCESS
) ] = 0x0,
656 [ C(RESULT_MISS
) ] = 0,
661 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
662 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
665 [ C(RESULT_ACCESS
) ] = -1,
666 [ C(RESULT_MISS
) ] = -1,
668 [ C(OP_PREFETCH
) ] = {
669 [ C(RESULT_ACCESS
) ] = 0,
670 [ C(RESULT_MISS
) ] = 0,
675 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
676 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
679 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
680 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
682 [ C(OP_PREFETCH
) ] = {
683 [ C(RESULT_ACCESS
) ] = 0,
684 [ C(RESULT_MISS
) ] = 0,
689 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
690 [ C(RESULT_MISS
) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
693 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
694 [ C(RESULT_MISS
) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
696 [ C(OP_PREFETCH
) ] = {
697 [ C(RESULT_ACCESS
) ] = 0,
698 [ C(RESULT_MISS
) ] = 0,
703 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
704 [ C(RESULT_MISS
) ] = 0x0282, /* ITLB.MISSES */
707 [ C(RESULT_ACCESS
) ] = -1,
708 [ C(RESULT_MISS
) ] = -1,
710 [ C(OP_PREFETCH
) ] = {
711 [ C(RESULT_ACCESS
) ] = -1,
712 [ C(RESULT_MISS
) ] = -1,
717 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
718 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
721 [ C(RESULT_ACCESS
) ] = -1,
722 [ C(RESULT_MISS
) ] = -1,
724 [ C(OP_PREFETCH
) ] = {
725 [ C(RESULT_ACCESS
) ] = -1,
726 [ C(RESULT_MISS
) ] = -1,
731 static void intel_pmu_disable_all(void)
733 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
735 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
737 if (test_bit(X86_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
))
738 intel_pmu_disable_bts();
740 intel_pmu_pebs_disable_all();
741 intel_pmu_lbr_disable_all();
744 static void intel_pmu_enable_all(int added
)
746 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
748 intel_pmu_pebs_enable_all();
749 intel_pmu_lbr_enable_all();
750 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
,
751 x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
);
753 if (test_bit(X86_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
754 struct perf_event
*event
=
755 cpuc
->events
[X86_PMC_IDX_FIXED_BTS
];
757 if (WARN_ON_ONCE(!event
))
760 intel_pmu_enable_bts(event
->hw
.config
);
766 * Intel Errata AAK100 (model 26)
767 * Intel Errata AAP53 (model 30)
768 * Intel Errata BD53 (model 44)
770 * The official story:
771 * These chips need to be 'reset' when adding counters by programming the
772 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
773 * in sequence on the same PMC or on different PMCs.
775 * In practise it appears some of these events do in fact count, and
776 * we need to programm all 4 events.
778 static void intel_pmu_nhm_workaround(void)
780 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
781 static const unsigned long nhm_magic
[4] = {
787 struct perf_event
*event
;
791 * The Errata requires below steps:
792 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
793 * 2) Configure 4 PERFEVTSELx with the magic events and clear
794 * the corresponding PMCx;
795 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
796 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
797 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
801 * The real steps we choose are a little different from above.
802 * A) To reduce MSR operations, we don't run step 1) as they
803 * are already cleared before this function is called;
804 * B) Call x86_perf_event_update to save PMCx before configuring
805 * PERFEVTSELx with magic number;
806 * C) With step 5), we do clear only when the PERFEVTSELx is
807 * not used currently.
808 * D) Call x86_perf_event_set_period to restore PMCx;
811 /* We always operate 4 pairs of PERF Counters */
812 for (i
= 0; i
< 4; i
++) {
813 event
= cpuc
->events
[i
];
815 x86_perf_event_update(event
);
818 for (i
= 0; i
< 4; i
++) {
819 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, nhm_magic
[i
]);
820 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0
+ i
, 0x0);
823 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0xf);
824 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0x0);
826 for (i
= 0; i
< 4; i
++) {
827 event
= cpuc
->events
[i
];
830 x86_perf_event_set_period(event
);
831 __x86_pmu_enable_event(&event
->hw
,
832 ARCH_PERFMON_EVENTSEL_ENABLE
);
834 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, 0x0);
838 static void intel_pmu_nhm_enable_all(int added
)
841 intel_pmu_nhm_workaround();
842 intel_pmu_enable_all(added
);
845 static inline u64
intel_pmu_get_status(void)
849 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
854 static inline void intel_pmu_ack_status(u64 ack
)
856 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, ack
);
859 static void intel_pmu_disable_fixed(struct hw_perf_event
*hwc
)
861 int idx
= hwc
->idx
- X86_PMC_IDX_FIXED
;
864 mask
= 0xfULL
<< (idx
* 4);
866 rdmsrl(hwc
->config_base
, ctrl_val
);
868 wrmsrl(hwc
->config_base
, ctrl_val
);
871 static void intel_pmu_disable_event(struct perf_event
*event
)
873 struct hw_perf_event
*hwc
= &event
->hw
;
874 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
876 if (unlikely(hwc
->idx
== X86_PMC_IDX_FIXED_BTS
)) {
877 intel_pmu_disable_bts();
878 intel_pmu_drain_bts_buffer();
882 cpuc
->intel_ctrl_guest_mask
&= ~(1ull << hwc
->idx
);
883 cpuc
->intel_ctrl_host_mask
&= ~(1ull << hwc
->idx
);
885 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
886 intel_pmu_disable_fixed(hwc
);
890 x86_pmu_disable_event(event
);
892 if (unlikely(event
->attr
.precise_ip
))
893 intel_pmu_pebs_disable(event
);
896 static void intel_pmu_enable_fixed(struct hw_perf_event
*hwc
)
898 int idx
= hwc
->idx
- X86_PMC_IDX_FIXED
;
899 u64 ctrl_val
, bits
, mask
;
902 * Enable IRQ generation (0x8),
903 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
907 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_USR
)
909 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_OS
)
913 * ANY bit is supported in v3 and up
915 if (x86_pmu
.version
> 2 && hwc
->config
& ARCH_PERFMON_EVENTSEL_ANY
)
919 mask
= 0xfULL
<< (idx
* 4);
921 rdmsrl(hwc
->config_base
, ctrl_val
);
924 wrmsrl(hwc
->config_base
, ctrl_val
);
927 static void intel_pmu_enable_event(struct perf_event
*event
)
929 struct hw_perf_event
*hwc
= &event
->hw
;
930 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
932 if (unlikely(hwc
->idx
== X86_PMC_IDX_FIXED_BTS
)) {
933 if (!__this_cpu_read(cpu_hw_events
.enabled
))
936 intel_pmu_enable_bts(hwc
->config
);
940 if (event
->attr
.exclude_host
)
941 cpuc
->intel_ctrl_guest_mask
|= (1ull << hwc
->idx
);
942 if (event
->attr
.exclude_guest
)
943 cpuc
->intel_ctrl_host_mask
|= (1ull << hwc
->idx
);
945 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
946 intel_pmu_enable_fixed(hwc
);
950 if (unlikely(event
->attr
.precise_ip
))
951 intel_pmu_pebs_enable(event
);
953 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
957 * Save and restart an expired event. Called by NMI contexts,
958 * so it has to be careful about preempting normal event ops:
960 int intel_pmu_save_and_restart(struct perf_event
*event
)
962 x86_perf_event_update(event
);
963 return x86_perf_event_set_period(event
);
966 static void intel_pmu_reset(void)
968 struct debug_store
*ds
= __this_cpu_read(cpu_hw_events
.ds
);
972 if (!x86_pmu
.num_counters
)
975 local_irq_save(flags
);
977 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
979 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
980 checking_wrmsrl(x86_pmu_config_addr(idx
), 0ull);
981 checking_wrmsrl(x86_pmu_event_addr(idx
), 0ull);
983 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++)
984 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, 0ull);
987 ds
->bts_index
= ds
->bts_buffer_base
;
989 local_irq_restore(flags
);
993 * This handler is triggered by the local APIC, so the APIC IRQ handling
996 static int intel_pmu_handle_irq(struct pt_regs
*regs
)
998 struct perf_sample_data data
;
999 struct cpu_hw_events
*cpuc
;
1004 perf_sample_data_init(&data
, 0);
1006 cpuc
= &__get_cpu_var(cpu_hw_events
);
1009 * Some chipsets need to unmask the LVTPC in a particular spot
1010 * inside the nmi handler. As a result, the unmasking was pushed
1011 * into all the nmi handlers.
1013 * This handler doesn't seem to have any issues with the unmasking
1014 * so it was left at the top.
1016 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
1018 intel_pmu_disable_all();
1019 handled
= intel_pmu_drain_bts_buffer();
1020 status
= intel_pmu_get_status();
1022 intel_pmu_enable_all(0);
1028 intel_pmu_ack_status(status
);
1029 if (++loops
> 100) {
1030 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1031 perf_event_print_debug();
1036 inc_irq_stat(apic_perf_irqs
);
1038 intel_pmu_lbr_read();
1041 * PEBS overflow sets bit 62 in the global status register
1043 if (__test_and_clear_bit(62, (unsigned long *)&status
)) {
1045 x86_pmu
.drain_pebs(regs
);
1048 for_each_set_bit(bit
, (unsigned long *)&status
, X86_PMC_IDX_MAX
) {
1049 struct perf_event
*event
= cpuc
->events
[bit
];
1053 if (!test_bit(bit
, cpuc
->active_mask
))
1056 if (!intel_pmu_save_and_restart(event
))
1059 data
.period
= event
->hw
.last_period
;
1061 if (perf_event_overflow(event
, &data
, regs
))
1062 x86_pmu_stop(event
, 0);
1066 * Repeat if there is more work to be done:
1068 status
= intel_pmu_get_status();
1073 intel_pmu_enable_all(0);
1077 static struct event_constraint
*
1078 intel_bts_constraints(struct perf_event
*event
)
1080 struct hw_perf_event
*hwc
= &event
->hw
;
1081 unsigned int hw_event
, bts_event
;
1083 if (event
->attr
.freq
)
1086 hw_event
= hwc
->config
& INTEL_ARCH_EVENT_MASK
;
1087 bts_event
= x86_pmu
.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS
);
1089 if (unlikely(hw_event
== bts_event
&& hwc
->sample_period
== 1))
1090 return &bts_constraint
;
1095 static bool intel_try_alt_er(struct perf_event
*event
, int orig_idx
)
1097 if (!(x86_pmu
.er_flags
& ERF_HAS_RSP_1
))
1100 if (event
->hw
.extra_reg
.idx
== EXTRA_REG_RSP_0
) {
1101 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
1102 event
->hw
.config
|= 0x01bb;
1103 event
->hw
.extra_reg
.idx
= EXTRA_REG_RSP_1
;
1104 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_1
;
1105 } else if (event
->hw
.extra_reg
.idx
== EXTRA_REG_RSP_1
) {
1106 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
1107 event
->hw
.config
|= 0x01b7;
1108 event
->hw
.extra_reg
.idx
= EXTRA_REG_RSP_0
;
1109 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_0
;
1112 if (event
->hw
.extra_reg
.idx
== orig_idx
)
1119 * manage allocation of shared extra msr for certain events
1122 * per-cpu: to be shared between the various events on a single PMU
1123 * per-core: per-cpu + shared by HT threads
1125 static struct event_constraint
*
1126 __intel_shared_reg_get_constraints(struct cpu_hw_events
*cpuc
,
1127 struct perf_event
*event
)
1129 struct event_constraint
*c
= &emptyconstraint
;
1130 struct hw_perf_event_extra
*reg
= &event
->hw
.extra_reg
;
1131 struct er_account
*era
;
1132 unsigned long flags
;
1133 int orig_idx
= reg
->idx
;
1135 /* already allocated shared msr */
1137 return &unconstrained
;
1140 era
= &cpuc
->shared_regs
->regs
[reg
->idx
];
1142 * we use spin_lock_irqsave() to avoid lockdep issues when
1143 * passing a fake cpuc
1145 raw_spin_lock_irqsave(&era
->lock
, flags
);
1147 if (!atomic_read(&era
->ref
) || era
->config
== reg
->config
) {
1149 /* lock in msr value */
1150 era
->config
= reg
->config
;
1151 era
->reg
= reg
->reg
;
1154 atomic_inc(&era
->ref
);
1156 /* no need to reallocate during incremental event scheduling */
1160 * All events using extra_reg are unconstrained.
1161 * Avoids calling x86_get_event_constraints()
1163 * Must revisit if extra_reg controlling events
1164 * ever have constraints. Worst case we go through
1165 * the regular event constraint table.
1168 } else if (intel_try_alt_er(event
, orig_idx
)) {
1169 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
1172 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
1178 __intel_shared_reg_put_constraints(struct cpu_hw_events
*cpuc
,
1179 struct hw_perf_event_extra
*reg
)
1181 struct er_account
*era
;
1184 * only put constraint if extra reg was actually
1185 * allocated. Also takes care of event which do
1186 * not use an extra shared reg
1191 era
= &cpuc
->shared_regs
->regs
[reg
->idx
];
1193 /* one fewer user */
1194 atomic_dec(&era
->ref
);
1196 /* allocate again next time */
1200 static struct event_constraint
*
1201 intel_shared_regs_constraints(struct cpu_hw_events
*cpuc
,
1202 struct perf_event
*event
)
1204 struct event_constraint
*c
= NULL
;
1206 if (event
->hw
.extra_reg
.idx
!= EXTRA_REG_NONE
)
1207 c
= __intel_shared_reg_get_constraints(cpuc
, event
);
1212 struct event_constraint
*
1213 x86_get_event_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
)
1215 struct event_constraint
*c
;
1217 if (x86_pmu
.event_constraints
) {
1218 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
1219 if ((event
->hw
.config
& c
->cmask
) == c
->code
)
1224 return &unconstrained
;
1227 static struct event_constraint
*
1228 intel_get_event_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
)
1230 struct event_constraint
*c
;
1232 c
= intel_bts_constraints(event
);
1236 c
= intel_pebs_constraints(event
);
1240 c
= intel_shared_regs_constraints(cpuc
, event
);
1244 return x86_get_event_constraints(cpuc
, event
);
1248 intel_put_shared_regs_event_constraints(struct cpu_hw_events
*cpuc
,
1249 struct perf_event
*event
)
1251 struct hw_perf_event_extra
*reg
;
1253 reg
= &event
->hw
.extra_reg
;
1254 if (reg
->idx
!= EXTRA_REG_NONE
)
1255 __intel_shared_reg_put_constraints(cpuc
, reg
);
1258 static void intel_put_event_constraints(struct cpu_hw_events
*cpuc
,
1259 struct perf_event
*event
)
1261 intel_put_shared_regs_event_constraints(cpuc
, event
);
1264 static int intel_pmu_hw_config(struct perf_event
*event
)
1266 int ret
= x86_pmu_hw_config(event
);
1271 if (event
->attr
.precise_ip
&&
1272 (event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
1274 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1275 * (0x003c) so that we can use it with PEBS.
1277 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1278 * PEBS capable. However we can use INST_RETIRED.ANY_P
1279 * (0x00c0), which is a PEBS capable event, to get the same
1282 * INST_RETIRED.ANY_P counts the number of cycles that retires
1283 * CNTMASK instructions. By setting CNTMASK to a value (16)
1284 * larger than the maximum number of instructions that can be
1285 * retired per cycle (4) and then inverting the condition, we
1286 * count all cycles that retire 16 or less instructions, which
1289 * Thereby we gain a PEBS capable cycle counter.
1291 u64 alt_config
= 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
1293 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
1294 event
->hw
.config
= alt_config
;
1297 if (event
->attr
.type
!= PERF_TYPE_RAW
)
1300 if (!(event
->attr
.config
& ARCH_PERFMON_EVENTSEL_ANY
))
1303 if (x86_pmu
.version
< 3)
1306 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1309 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_ANY
;
1314 struct perf_guest_switch_msr
*perf_guest_get_msrs(int *nr
)
1316 if (x86_pmu
.guest_get_msrs
)
1317 return x86_pmu
.guest_get_msrs(nr
);
1321 EXPORT_SYMBOL_GPL(perf_guest_get_msrs
);
1323 static struct perf_guest_switch_msr
*intel_guest_get_msrs(int *nr
)
1325 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1326 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
1328 arr
[0].msr
= MSR_CORE_PERF_GLOBAL_CTRL
;
1329 arr
[0].host
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
;
1330 arr
[0].guest
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_host_mask
;
1336 static struct perf_guest_switch_msr
*core_guest_get_msrs(int *nr
)
1338 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1339 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
1342 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1343 struct perf_event
*event
= cpuc
->events
[idx
];
1345 arr
[idx
].msr
= x86_pmu_config_addr(idx
);
1346 arr
[idx
].host
= arr
[idx
].guest
= 0;
1348 if (!test_bit(idx
, cpuc
->active_mask
))
1351 arr
[idx
].host
= arr
[idx
].guest
=
1352 event
->hw
.config
| ARCH_PERFMON_EVENTSEL_ENABLE
;
1354 if (event
->attr
.exclude_host
)
1355 arr
[idx
].host
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
1356 else if (event
->attr
.exclude_guest
)
1357 arr
[idx
].guest
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
1360 *nr
= x86_pmu
.num_counters
;
1364 static void core_pmu_enable_event(struct perf_event
*event
)
1366 if (!event
->attr
.exclude_host
)
1367 x86_pmu_enable_event(event
);
1370 static void core_pmu_enable_all(int added
)
1372 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1375 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
1376 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
1378 if (!test_bit(idx
, cpuc
->active_mask
) ||
1379 cpuc
->events
[idx
]->attr
.exclude_host
)
1382 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
1386 static __initconst
const struct x86_pmu core_pmu
= {
1388 .handle_irq
= x86_pmu_handle_irq
,
1389 .disable_all
= x86_pmu_disable_all
,
1390 .enable_all
= core_pmu_enable_all
,
1391 .enable
= core_pmu_enable_event
,
1392 .disable
= x86_pmu_disable_event
,
1393 .hw_config
= x86_pmu_hw_config
,
1394 .schedule_events
= x86_schedule_events
,
1395 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
1396 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
1397 .event_map
= intel_pmu_event_map
,
1398 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
1401 * Intel PMCs cannot be accessed sanely above 32 bit width,
1402 * so we install an artificial 1<<31 period regardless of
1403 * the generic event period:
1405 .max_period
= (1ULL << 31) - 1,
1406 .get_event_constraints
= intel_get_event_constraints
,
1407 .put_event_constraints
= intel_put_event_constraints
,
1408 .event_constraints
= intel_core_event_constraints
,
1409 .guest_get_msrs
= core_guest_get_msrs
,
1412 struct intel_shared_regs
*allocate_shared_regs(int cpu
)
1414 struct intel_shared_regs
*regs
;
1417 regs
= kzalloc_node(sizeof(struct intel_shared_regs
),
1418 GFP_KERNEL
, cpu_to_node(cpu
));
1421 * initialize the locks to keep lockdep happy
1423 for (i
= 0; i
< EXTRA_REG_MAX
; i
++)
1424 raw_spin_lock_init(®s
->regs
[i
].lock
);
1431 static int intel_pmu_cpu_prepare(int cpu
)
1433 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1435 if (!x86_pmu
.extra_regs
)
1438 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
1439 if (!cpuc
->shared_regs
)
1445 static void intel_pmu_cpu_starting(int cpu
)
1447 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1448 int core_id
= topology_core_id(cpu
);
1451 init_debug_store_on_cpu(cpu
);
1453 * Deal with CPUs that don't clear their LBRs on power-up.
1455 intel_pmu_lbr_reset();
1457 if (!cpuc
->shared_regs
|| (x86_pmu
.er_flags
& ERF_NO_HT_SHARING
))
1460 for_each_cpu(i
, topology_thread_cpumask(cpu
)) {
1461 struct intel_shared_regs
*pc
;
1463 pc
= per_cpu(cpu_hw_events
, i
).shared_regs
;
1464 if (pc
&& pc
->core_id
== core_id
) {
1465 cpuc
->kfree_on_online
= cpuc
->shared_regs
;
1466 cpuc
->shared_regs
= pc
;
1471 cpuc
->shared_regs
->core_id
= core_id
;
1472 cpuc
->shared_regs
->refcnt
++;
1475 static void intel_pmu_cpu_dying(int cpu
)
1477 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
1478 struct intel_shared_regs
*pc
;
1480 pc
= cpuc
->shared_regs
;
1482 if (pc
->core_id
== -1 || --pc
->refcnt
== 0)
1484 cpuc
->shared_regs
= NULL
;
1487 fini_debug_store_on_cpu(cpu
);
1490 static __initconst
const struct x86_pmu intel_pmu
= {
1492 .handle_irq
= intel_pmu_handle_irq
,
1493 .disable_all
= intel_pmu_disable_all
,
1494 .enable_all
= intel_pmu_enable_all
,
1495 .enable
= intel_pmu_enable_event
,
1496 .disable
= intel_pmu_disable_event
,
1497 .hw_config
= intel_pmu_hw_config
,
1498 .schedule_events
= x86_schedule_events
,
1499 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
1500 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
1501 .event_map
= intel_pmu_event_map
,
1502 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
1505 * Intel PMCs cannot be accessed sanely above 32 bit width,
1506 * so we install an artificial 1<<31 period regardless of
1507 * the generic event period:
1509 .max_period
= (1ULL << 31) - 1,
1510 .get_event_constraints
= intel_get_event_constraints
,
1511 .put_event_constraints
= intel_put_event_constraints
,
1513 .cpu_prepare
= intel_pmu_cpu_prepare
,
1514 .cpu_starting
= intel_pmu_cpu_starting
,
1515 .cpu_dying
= intel_pmu_cpu_dying
,
1516 .guest_get_msrs
= intel_guest_get_msrs
,
1519 static __init
void intel_clovertown_quirk(void)
1522 * PEBS is unreliable due to:
1524 * AJ67 - PEBS may experience CPL leaks
1525 * AJ68 - PEBS PMI may be delayed by one event
1526 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1527 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1529 * AJ67 could be worked around by restricting the OS/USR flags.
1530 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1532 * AJ106 could possibly be worked around by not allowing LBR
1533 * usage from PEBS, including the fixup.
1534 * AJ68 could possibly be worked around by always programming
1535 * a pebs_event_reset[0] value and coping with the lost events.
1537 * But taken together it might just make sense to not enable PEBS on
1540 printk(KERN_WARNING
"PEBS disabled due to CPU errata.\n");
1542 x86_pmu
.pebs_constraints
= NULL
;
1545 static __init
void intel_sandybridge_quirk(void)
1547 printk(KERN_WARNING
"PEBS disabled due to CPU errata.\n");
1549 x86_pmu
.pebs_constraints
= NULL
;
1552 static const struct { int id
; char *name
; } intel_arch_events_map
[] __initconst
= {
1553 { PERF_COUNT_HW_CPU_CYCLES
, "cpu cycles" },
1554 { PERF_COUNT_HW_INSTRUCTIONS
, "instructions" },
1555 { PERF_COUNT_HW_BUS_CYCLES
, "bus cycles" },
1556 { PERF_COUNT_HW_CACHE_REFERENCES
, "cache references" },
1557 { PERF_COUNT_HW_CACHE_MISSES
, "cache misses" },
1558 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS
, "branch instructions" },
1559 { PERF_COUNT_HW_BRANCH_MISSES
, "branch misses" },
1562 static __init
void intel_arch_events_quirk(void)
1566 /* disable event that reported as not presend by cpuid */
1567 for_each_set_bit(bit
, x86_pmu
.events_mask
, ARRAY_SIZE(intel_arch_events_map
)) {
1568 intel_perfmon_event_map
[intel_arch_events_map
[bit
].id
] = 0;
1569 printk(KERN_WARNING
"CPUID marked event: \'%s\' unavailable\n",
1570 intel_arch_events_map
[bit
].name
);
1574 static __init
void intel_nehalem_quirk(void)
1576 union cpuid10_ebx ebx
;
1578 ebx
.full
= x86_pmu
.events_maskl
;
1579 if (ebx
.split
.no_branch_misses_retired
) {
1581 * Erratum AAJ80 detected, we work it around by using
1582 * the BR_MISP_EXEC.ANY event. This will over-count
1583 * branch-misses, but it's still much better than the
1584 * architectural event which is often completely bogus:
1586 intel_perfmon_event_map
[PERF_COUNT_HW_BRANCH_MISSES
] = 0x7f89;
1587 ebx
.split
.no_branch_misses_retired
= 0;
1588 x86_pmu
.events_maskl
= ebx
.full
;
1589 printk(KERN_INFO
"CPU erratum AAJ80 worked around\n");
1593 __init
int intel_pmu_init(void)
1595 union cpuid10_edx edx
;
1596 union cpuid10_eax eax
;
1597 union cpuid10_ebx ebx
;
1598 unsigned int unused
;
1601 if (!cpu_has(&boot_cpu_data
, X86_FEATURE_ARCH_PERFMON
)) {
1602 switch (boot_cpu_data
.x86
) {
1604 return p6_pmu_init();
1606 return p4_pmu_init();
1612 * Check whether the Architectural PerfMon supports
1613 * Branch Misses Retired hw_event or not.
1615 cpuid(10, &eax
.full
, &ebx
.full
, &unused
, &edx
.full
);
1616 if (eax
.split
.mask_length
< ARCH_PERFMON_EVENTS_COUNT
)
1619 version
= eax
.split
.version_id
;
1623 x86_pmu
= intel_pmu
;
1625 x86_pmu
.version
= version
;
1626 x86_pmu
.num_counters
= eax
.split
.num_counters
;
1627 x86_pmu
.cntval_bits
= eax
.split
.bit_width
;
1628 x86_pmu
.cntval_mask
= (1ULL << eax
.split
.bit_width
) - 1;
1630 x86_pmu
.events_maskl
= ebx
.full
;
1631 x86_pmu
.events_mask_len
= eax
.split
.mask_length
;
1634 * Quirk: v2 perfmon does not report fixed-purpose events, so
1635 * assume at least 3 events:
1638 x86_pmu
.num_counters_fixed
= max((int)edx
.split
.num_counters_fixed
, 3);
1641 * v2 and above have a perf capabilities MSR
1646 rdmsrl(MSR_IA32_PERF_CAPABILITIES
, capabilities
);
1647 x86_pmu
.intel_cap
.capabilities
= capabilities
;
1652 x86_add_quirk(intel_arch_events_quirk
); /* Install first, so it runs last */
1655 * Install the hw-cache-events table:
1657 switch (boot_cpu_data
.x86_model
) {
1658 case 14: /* 65 nm core solo/duo, "Yonah" */
1659 pr_cont("Core events, ");
1662 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1663 x86_add_quirk(intel_clovertown_quirk
);
1664 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1665 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1666 case 29: /* six-core 45 nm xeon "Dunnington" */
1667 memcpy(hw_cache_event_ids
, core2_hw_cache_event_ids
,
1668 sizeof(hw_cache_event_ids
));
1670 intel_pmu_lbr_init_core();
1672 x86_pmu
.event_constraints
= intel_core2_event_constraints
;
1673 x86_pmu
.pebs_constraints
= intel_core2_pebs_event_constraints
;
1674 pr_cont("Core2 events, ");
1677 case 26: /* 45 nm nehalem, "Bloomfield" */
1678 case 30: /* 45 nm nehalem, "Lynnfield" */
1679 case 46: /* 45 nm nehalem-ex, "Beckton" */
1680 memcpy(hw_cache_event_ids
, nehalem_hw_cache_event_ids
,
1681 sizeof(hw_cache_event_ids
));
1682 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
1683 sizeof(hw_cache_extra_regs
));
1685 intel_pmu_lbr_init_nhm();
1687 x86_pmu
.event_constraints
= intel_nehalem_event_constraints
;
1688 x86_pmu
.pebs_constraints
= intel_nehalem_pebs_event_constraints
;
1689 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
1690 x86_pmu
.extra_regs
= intel_nehalem_extra_regs
;
1692 /* UOPS_ISSUED.STALLED_CYCLES */
1693 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = 0x180010e;
1694 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1695 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = 0x1803fb1;
1697 x86_add_quirk(intel_nehalem_quirk
);
1699 pr_cont("Nehalem events, ");
1703 memcpy(hw_cache_event_ids
, atom_hw_cache_event_ids
,
1704 sizeof(hw_cache_event_ids
));
1706 intel_pmu_lbr_init_atom();
1708 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
1709 x86_pmu
.pebs_constraints
= intel_atom_pebs_event_constraints
;
1710 pr_cont("Atom events, ");
1713 case 37: /* 32 nm nehalem, "Clarkdale" */
1714 case 44: /* 32 nm nehalem, "Gulftown" */
1715 case 47: /* 32 nm Xeon E7 */
1716 memcpy(hw_cache_event_ids
, westmere_hw_cache_event_ids
,
1717 sizeof(hw_cache_event_ids
));
1718 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
1719 sizeof(hw_cache_extra_regs
));
1721 intel_pmu_lbr_init_nhm();
1723 x86_pmu
.event_constraints
= intel_westmere_event_constraints
;
1724 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
1725 x86_pmu
.pebs_constraints
= intel_westmere_pebs_event_constraints
;
1726 x86_pmu
.extra_regs
= intel_westmere_extra_regs
;
1727 x86_pmu
.er_flags
|= ERF_HAS_RSP_1
;
1729 /* UOPS_ISSUED.STALLED_CYCLES */
1730 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = 0x180010e;
1731 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1732 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = 0x1803fb1;
1734 pr_cont("Westmere events, ");
1737 case 42: /* SandyBridge */
1738 x86_add_quirk(intel_sandybridge_quirk
);
1739 case 45: /* SandyBridge, "Romely-EP" */
1740 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
1741 sizeof(hw_cache_event_ids
));
1743 intel_pmu_lbr_init_nhm();
1745 x86_pmu
.event_constraints
= intel_snb_event_constraints
;
1746 x86_pmu
.pebs_constraints
= intel_snb_pebs_event_constraints
;
1747 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
1748 /* all extra regs are per-cpu when HT is on */
1749 x86_pmu
.er_flags
|= ERF_HAS_RSP_1
;
1750 x86_pmu
.er_flags
|= ERF_NO_HT_SHARING
;
1752 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1753 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = 0x180010e;
1754 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1755 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = 0x18001b1;
1757 pr_cont("SandyBridge events, ");
1761 switch (x86_pmu
.version
) {
1763 x86_pmu
.event_constraints
= intel_v1_event_constraints
;
1764 pr_cont("generic architected perfmon v1, ");
1768 * default constraints for v2 and up
1770 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
1771 pr_cont("generic architected perfmon, ");