Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / arch / x86 / kvm / vmx.c
bloba7a6f60110027eb5c688eac941d8cb492c849a7e
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/ftrace_event.h>
31 #include <linux/slab.h>
32 #include <linux/tboot.h>
33 #include "kvm_cache_regs.h"
34 #include "x86.h"
36 #include <asm/io.h>
37 #include <asm/desc.h>
38 #include <asm/vmx.h>
39 #include <asm/virtext.h>
40 #include <asm/mce.h>
41 #include <asm/i387.h>
42 #include <asm/xcr.h>
43 #include <asm/perf_event.h>
45 #include "trace.h"
47 #define __ex(x) __kvm_handle_fault_on_reboot(x)
48 #define __ex_clear(x, reg) \
49 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
54 static bool __read_mostly enable_vpid = 1;
55 module_param_named(vpid, enable_vpid, bool, 0444);
57 static bool __read_mostly flexpriority_enabled = 1;
58 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
60 static bool __read_mostly enable_ept = 1;
61 module_param_named(ept, enable_ept, bool, S_IRUGO);
63 static bool __read_mostly enable_unrestricted_guest = 1;
64 module_param_named(unrestricted_guest,
65 enable_unrestricted_guest, bool, S_IRUGO);
67 static bool __read_mostly emulate_invalid_guest_state = 0;
68 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
70 static bool __read_mostly vmm_exclusive = 1;
71 module_param(vmm_exclusive, bool, S_IRUGO);
73 static bool __read_mostly yield_on_hlt = 1;
74 module_param(yield_on_hlt, bool, S_IRUGO);
76 static bool __read_mostly fasteoi = 1;
77 module_param(fasteoi, bool, S_IRUGO);
80 * If nested=1, nested virtualization is supported, i.e., guests may use
81 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
82 * use VMX instructions.
84 static bool __read_mostly nested = 0;
85 module_param(nested, bool, S_IRUGO);
87 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
88 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
89 #define KVM_GUEST_CR0_MASK \
90 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
91 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
92 (X86_CR0_WP | X86_CR0_NE)
93 #define KVM_VM_CR0_ALWAYS_ON \
94 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
95 #define KVM_CR4_GUEST_OWNED_BITS \
96 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
97 | X86_CR4_OSXMMEXCPT)
99 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
100 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
102 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
105 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
106 * ple_gap: upper bound on the amount of time between two successive
107 * executions of PAUSE in a loop. Also indicate if ple enabled.
108 * According to test, this time is usually smaller than 128 cycles.
109 * ple_window: upper bound on the amount of time a guest is allowed to execute
110 * in a PAUSE loop. Tests indicate that most spinlocks are held for
111 * less than 2^12 cycles
112 * Time is measured based on a counter that runs at the same rate as the TSC,
113 * refer SDM volume 3b section 21.6.13 & 22.1.3.
115 #define KVM_VMX_DEFAULT_PLE_GAP 128
116 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
117 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
118 module_param(ple_gap, int, S_IRUGO);
120 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
121 module_param(ple_window, int, S_IRUGO);
123 #define NR_AUTOLOAD_MSRS 8
124 #define VMCS02_POOL_SIZE 1
126 struct vmcs {
127 u32 revision_id;
128 u32 abort;
129 char data[0];
133 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
134 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
135 * loaded on this CPU (so we can clear them if the CPU goes down).
137 struct loaded_vmcs {
138 struct vmcs *vmcs;
139 int cpu;
140 int launched;
141 struct list_head loaded_vmcss_on_cpu_link;
144 struct shared_msr_entry {
145 unsigned index;
146 u64 data;
147 u64 mask;
151 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
152 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
153 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
154 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
155 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
156 * More than one of these structures may exist, if L1 runs multiple L2 guests.
157 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
158 * underlying hardware which will be used to run L2.
159 * This structure is packed to ensure that its layout is identical across
160 * machines (necessary for live migration).
161 * If there are changes in this struct, VMCS12_REVISION must be changed.
163 typedef u64 natural_width;
164 struct __packed vmcs12 {
165 /* According to the Intel spec, a VMCS region must start with the
166 * following two fields. Then follow implementation-specific data.
168 u32 revision_id;
169 u32 abort;
171 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
172 u32 padding[7]; /* room for future expansion */
174 u64 io_bitmap_a;
175 u64 io_bitmap_b;
176 u64 msr_bitmap;
177 u64 vm_exit_msr_store_addr;
178 u64 vm_exit_msr_load_addr;
179 u64 vm_entry_msr_load_addr;
180 u64 tsc_offset;
181 u64 virtual_apic_page_addr;
182 u64 apic_access_addr;
183 u64 ept_pointer;
184 u64 guest_physical_address;
185 u64 vmcs_link_pointer;
186 u64 guest_ia32_debugctl;
187 u64 guest_ia32_pat;
188 u64 guest_ia32_efer;
189 u64 guest_ia32_perf_global_ctrl;
190 u64 guest_pdptr0;
191 u64 guest_pdptr1;
192 u64 guest_pdptr2;
193 u64 guest_pdptr3;
194 u64 host_ia32_pat;
195 u64 host_ia32_efer;
196 u64 host_ia32_perf_global_ctrl;
197 u64 padding64[8]; /* room for future expansion */
199 * To allow migration of L1 (complete with its L2 guests) between
200 * machines of different natural widths (32 or 64 bit), we cannot have
201 * unsigned long fields with no explict size. We use u64 (aliased
202 * natural_width) instead. Luckily, x86 is little-endian.
204 natural_width cr0_guest_host_mask;
205 natural_width cr4_guest_host_mask;
206 natural_width cr0_read_shadow;
207 natural_width cr4_read_shadow;
208 natural_width cr3_target_value0;
209 natural_width cr3_target_value1;
210 natural_width cr3_target_value2;
211 natural_width cr3_target_value3;
212 natural_width exit_qualification;
213 natural_width guest_linear_address;
214 natural_width guest_cr0;
215 natural_width guest_cr3;
216 natural_width guest_cr4;
217 natural_width guest_es_base;
218 natural_width guest_cs_base;
219 natural_width guest_ss_base;
220 natural_width guest_ds_base;
221 natural_width guest_fs_base;
222 natural_width guest_gs_base;
223 natural_width guest_ldtr_base;
224 natural_width guest_tr_base;
225 natural_width guest_gdtr_base;
226 natural_width guest_idtr_base;
227 natural_width guest_dr7;
228 natural_width guest_rsp;
229 natural_width guest_rip;
230 natural_width guest_rflags;
231 natural_width guest_pending_dbg_exceptions;
232 natural_width guest_sysenter_esp;
233 natural_width guest_sysenter_eip;
234 natural_width host_cr0;
235 natural_width host_cr3;
236 natural_width host_cr4;
237 natural_width host_fs_base;
238 natural_width host_gs_base;
239 natural_width host_tr_base;
240 natural_width host_gdtr_base;
241 natural_width host_idtr_base;
242 natural_width host_ia32_sysenter_esp;
243 natural_width host_ia32_sysenter_eip;
244 natural_width host_rsp;
245 natural_width host_rip;
246 natural_width paddingl[8]; /* room for future expansion */
247 u32 pin_based_vm_exec_control;
248 u32 cpu_based_vm_exec_control;
249 u32 exception_bitmap;
250 u32 page_fault_error_code_mask;
251 u32 page_fault_error_code_match;
252 u32 cr3_target_count;
253 u32 vm_exit_controls;
254 u32 vm_exit_msr_store_count;
255 u32 vm_exit_msr_load_count;
256 u32 vm_entry_controls;
257 u32 vm_entry_msr_load_count;
258 u32 vm_entry_intr_info_field;
259 u32 vm_entry_exception_error_code;
260 u32 vm_entry_instruction_len;
261 u32 tpr_threshold;
262 u32 secondary_vm_exec_control;
263 u32 vm_instruction_error;
264 u32 vm_exit_reason;
265 u32 vm_exit_intr_info;
266 u32 vm_exit_intr_error_code;
267 u32 idt_vectoring_info_field;
268 u32 idt_vectoring_error_code;
269 u32 vm_exit_instruction_len;
270 u32 vmx_instruction_info;
271 u32 guest_es_limit;
272 u32 guest_cs_limit;
273 u32 guest_ss_limit;
274 u32 guest_ds_limit;
275 u32 guest_fs_limit;
276 u32 guest_gs_limit;
277 u32 guest_ldtr_limit;
278 u32 guest_tr_limit;
279 u32 guest_gdtr_limit;
280 u32 guest_idtr_limit;
281 u32 guest_es_ar_bytes;
282 u32 guest_cs_ar_bytes;
283 u32 guest_ss_ar_bytes;
284 u32 guest_ds_ar_bytes;
285 u32 guest_fs_ar_bytes;
286 u32 guest_gs_ar_bytes;
287 u32 guest_ldtr_ar_bytes;
288 u32 guest_tr_ar_bytes;
289 u32 guest_interruptibility_info;
290 u32 guest_activity_state;
291 u32 guest_sysenter_cs;
292 u32 host_ia32_sysenter_cs;
293 u32 padding32[8]; /* room for future expansion */
294 u16 virtual_processor_id;
295 u16 guest_es_selector;
296 u16 guest_cs_selector;
297 u16 guest_ss_selector;
298 u16 guest_ds_selector;
299 u16 guest_fs_selector;
300 u16 guest_gs_selector;
301 u16 guest_ldtr_selector;
302 u16 guest_tr_selector;
303 u16 host_es_selector;
304 u16 host_cs_selector;
305 u16 host_ss_selector;
306 u16 host_ds_selector;
307 u16 host_fs_selector;
308 u16 host_gs_selector;
309 u16 host_tr_selector;
313 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
314 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
315 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
317 #define VMCS12_REVISION 0x11e57ed0
320 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
321 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
322 * current implementation, 4K are reserved to avoid future complications.
324 #define VMCS12_SIZE 0x1000
326 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
327 struct vmcs02_list {
328 struct list_head list;
329 gpa_t vmptr;
330 struct loaded_vmcs vmcs02;
334 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
335 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
337 struct nested_vmx {
338 /* Has the level1 guest done vmxon? */
339 bool vmxon;
341 /* The guest-physical address of the current VMCS L1 keeps for L2 */
342 gpa_t current_vmptr;
343 /* The host-usable pointer to the above */
344 struct page *current_vmcs12_page;
345 struct vmcs12 *current_vmcs12;
347 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
348 struct list_head vmcs02_pool;
349 int vmcs02_num;
350 u64 vmcs01_tsc_offset;
351 /* L2 must run next, and mustn't decide to exit to L1. */
352 bool nested_run_pending;
354 * Guest pages referred to in vmcs02 with host-physical pointers, so
355 * we must keep them pinned while L2 runs.
357 struct page *apic_access_page;
360 struct vcpu_vmx {
361 struct kvm_vcpu vcpu;
362 unsigned long host_rsp;
363 u8 fail;
364 u8 cpl;
365 bool nmi_known_unmasked;
366 u32 exit_intr_info;
367 u32 idt_vectoring_info;
368 ulong rflags;
369 struct shared_msr_entry *guest_msrs;
370 int nmsrs;
371 int save_nmsrs;
372 #ifdef CONFIG_X86_64
373 u64 msr_host_kernel_gs_base;
374 u64 msr_guest_kernel_gs_base;
375 #endif
377 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
378 * non-nested (L1) guest, it always points to vmcs01. For a nested
379 * guest (L2), it points to a different VMCS.
381 struct loaded_vmcs vmcs01;
382 struct loaded_vmcs *loaded_vmcs;
383 bool __launched; /* temporary, used in vmx_vcpu_run */
384 struct msr_autoload {
385 unsigned nr;
386 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
387 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
388 } msr_autoload;
389 struct {
390 int loaded;
391 u16 fs_sel, gs_sel, ldt_sel;
392 int gs_ldt_reload_needed;
393 int fs_reload_needed;
394 } host_state;
395 struct {
396 int vm86_active;
397 ulong save_rflags;
398 struct kvm_save_segment {
399 u16 selector;
400 unsigned long base;
401 u32 limit;
402 u32 ar;
403 } tr, es, ds, fs, gs;
404 } rmode;
405 struct {
406 u32 bitmask; /* 4 bits per segment (1 bit per field) */
407 struct kvm_save_segment seg[8];
408 } segment_cache;
409 int vpid;
410 bool emulation_required;
412 /* Support for vnmi-less CPUs */
413 int soft_vnmi_blocked;
414 ktime_t entry_time;
415 s64 vnmi_blocked_time;
416 u32 exit_reason;
418 bool rdtscp_enabled;
420 /* Support for a guest hypervisor (nested VMX) */
421 struct nested_vmx nested;
424 enum segment_cache_field {
425 SEG_FIELD_SEL = 0,
426 SEG_FIELD_BASE = 1,
427 SEG_FIELD_LIMIT = 2,
428 SEG_FIELD_AR = 3,
430 SEG_FIELD_NR = 4
433 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
435 return container_of(vcpu, struct vcpu_vmx, vcpu);
438 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
439 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
440 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
441 [number##_HIGH] = VMCS12_OFFSET(name)+4
443 static unsigned short vmcs_field_to_offset_table[] = {
444 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
445 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
446 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
447 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
448 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
449 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
450 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
451 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
452 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
453 FIELD(HOST_ES_SELECTOR, host_es_selector),
454 FIELD(HOST_CS_SELECTOR, host_cs_selector),
455 FIELD(HOST_SS_SELECTOR, host_ss_selector),
456 FIELD(HOST_DS_SELECTOR, host_ds_selector),
457 FIELD(HOST_FS_SELECTOR, host_fs_selector),
458 FIELD(HOST_GS_SELECTOR, host_gs_selector),
459 FIELD(HOST_TR_SELECTOR, host_tr_selector),
460 FIELD64(IO_BITMAP_A, io_bitmap_a),
461 FIELD64(IO_BITMAP_B, io_bitmap_b),
462 FIELD64(MSR_BITMAP, msr_bitmap),
463 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
464 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
465 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
466 FIELD64(TSC_OFFSET, tsc_offset),
467 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
468 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
469 FIELD64(EPT_POINTER, ept_pointer),
470 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
471 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
472 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
473 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
474 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
475 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
476 FIELD64(GUEST_PDPTR0, guest_pdptr0),
477 FIELD64(GUEST_PDPTR1, guest_pdptr1),
478 FIELD64(GUEST_PDPTR2, guest_pdptr2),
479 FIELD64(GUEST_PDPTR3, guest_pdptr3),
480 FIELD64(HOST_IA32_PAT, host_ia32_pat),
481 FIELD64(HOST_IA32_EFER, host_ia32_efer),
482 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
483 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
484 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
485 FIELD(EXCEPTION_BITMAP, exception_bitmap),
486 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
487 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
488 FIELD(CR3_TARGET_COUNT, cr3_target_count),
489 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
490 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
491 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
492 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
493 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
494 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
495 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
496 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
497 FIELD(TPR_THRESHOLD, tpr_threshold),
498 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
499 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
500 FIELD(VM_EXIT_REASON, vm_exit_reason),
501 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
502 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
503 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
504 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
505 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
506 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
507 FIELD(GUEST_ES_LIMIT, guest_es_limit),
508 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
509 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
510 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
511 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
512 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
513 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
514 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
515 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
516 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
517 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
518 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
519 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
520 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
521 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
522 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
523 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
524 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
525 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
526 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
527 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
528 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
529 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
530 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
531 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
532 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
533 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
534 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
535 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
536 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
537 FIELD(EXIT_QUALIFICATION, exit_qualification),
538 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
539 FIELD(GUEST_CR0, guest_cr0),
540 FIELD(GUEST_CR3, guest_cr3),
541 FIELD(GUEST_CR4, guest_cr4),
542 FIELD(GUEST_ES_BASE, guest_es_base),
543 FIELD(GUEST_CS_BASE, guest_cs_base),
544 FIELD(GUEST_SS_BASE, guest_ss_base),
545 FIELD(GUEST_DS_BASE, guest_ds_base),
546 FIELD(GUEST_FS_BASE, guest_fs_base),
547 FIELD(GUEST_GS_BASE, guest_gs_base),
548 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
549 FIELD(GUEST_TR_BASE, guest_tr_base),
550 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
551 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
552 FIELD(GUEST_DR7, guest_dr7),
553 FIELD(GUEST_RSP, guest_rsp),
554 FIELD(GUEST_RIP, guest_rip),
555 FIELD(GUEST_RFLAGS, guest_rflags),
556 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
557 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
558 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
559 FIELD(HOST_CR0, host_cr0),
560 FIELD(HOST_CR3, host_cr3),
561 FIELD(HOST_CR4, host_cr4),
562 FIELD(HOST_FS_BASE, host_fs_base),
563 FIELD(HOST_GS_BASE, host_gs_base),
564 FIELD(HOST_TR_BASE, host_tr_base),
565 FIELD(HOST_GDTR_BASE, host_gdtr_base),
566 FIELD(HOST_IDTR_BASE, host_idtr_base),
567 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
568 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
569 FIELD(HOST_RSP, host_rsp),
570 FIELD(HOST_RIP, host_rip),
572 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
574 static inline short vmcs_field_to_offset(unsigned long field)
576 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
577 return -1;
578 return vmcs_field_to_offset_table[field];
581 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
583 return to_vmx(vcpu)->nested.current_vmcs12;
586 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
588 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
589 if (is_error_page(page)) {
590 kvm_release_page_clean(page);
591 return NULL;
593 return page;
596 static void nested_release_page(struct page *page)
598 kvm_release_page_dirty(page);
601 static void nested_release_page_clean(struct page *page)
603 kvm_release_page_clean(page);
606 static u64 construct_eptp(unsigned long root_hpa);
607 static void kvm_cpu_vmxon(u64 addr);
608 static void kvm_cpu_vmxoff(void);
609 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
610 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
612 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
613 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
615 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
616 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
618 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
619 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
621 static unsigned long *vmx_io_bitmap_a;
622 static unsigned long *vmx_io_bitmap_b;
623 static unsigned long *vmx_msr_bitmap_legacy;
624 static unsigned long *vmx_msr_bitmap_longmode;
626 static bool cpu_has_load_ia32_efer;
627 static bool cpu_has_load_perf_global_ctrl;
629 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
630 static DEFINE_SPINLOCK(vmx_vpid_lock);
632 static struct vmcs_config {
633 int size;
634 int order;
635 u32 revision_id;
636 u32 pin_based_exec_ctrl;
637 u32 cpu_based_exec_ctrl;
638 u32 cpu_based_2nd_exec_ctrl;
639 u32 vmexit_ctrl;
640 u32 vmentry_ctrl;
641 } vmcs_config;
643 static struct vmx_capability {
644 u32 ept;
645 u32 vpid;
646 } vmx_capability;
648 #define VMX_SEGMENT_FIELD(seg) \
649 [VCPU_SREG_##seg] = { \
650 .selector = GUEST_##seg##_SELECTOR, \
651 .base = GUEST_##seg##_BASE, \
652 .limit = GUEST_##seg##_LIMIT, \
653 .ar_bytes = GUEST_##seg##_AR_BYTES, \
656 static struct kvm_vmx_segment_field {
657 unsigned selector;
658 unsigned base;
659 unsigned limit;
660 unsigned ar_bytes;
661 } kvm_vmx_segment_fields[] = {
662 VMX_SEGMENT_FIELD(CS),
663 VMX_SEGMENT_FIELD(DS),
664 VMX_SEGMENT_FIELD(ES),
665 VMX_SEGMENT_FIELD(FS),
666 VMX_SEGMENT_FIELD(GS),
667 VMX_SEGMENT_FIELD(SS),
668 VMX_SEGMENT_FIELD(TR),
669 VMX_SEGMENT_FIELD(LDTR),
672 static u64 host_efer;
674 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
677 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
678 * away by decrementing the array size.
680 static const u32 vmx_msr_index[] = {
681 #ifdef CONFIG_X86_64
682 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
683 #endif
684 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
686 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
688 static inline bool is_page_fault(u32 intr_info)
690 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
691 INTR_INFO_VALID_MASK)) ==
692 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
695 static inline bool is_no_device(u32 intr_info)
697 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
698 INTR_INFO_VALID_MASK)) ==
699 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
702 static inline bool is_invalid_opcode(u32 intr_info)
704 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
705 INTR_INFO_VALID_MASK)) ==
706 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
709 static inline bool is_external_interrupt(u32 intr_info)
711 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
712 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
715 static inline bool is_machine_check(u32 intr_info)
717 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
718 INTR_INFO_VALID_MASK)) ==
719 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
722 static inline bool cpu_has_vmx_msr_bitmap(void)
724 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
727 static inline bool cpu_has_vmx_tpr_shadow(void)
729 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
732 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
734 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
737 static inline bool cpu_has_secondary_exec_ctrls(void)
739 return vmcs_config.cpu_based_exec_ctrl &
740 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
743 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
745 return vmcs_config.cpu_based_2nd_exec_ctrl &
746 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
749 static inline bool cpu_has_vmx_flexpriority(void)
751 return cpu_has_vmx_tpr_shadow() &&
752 cpu_has_vmx_virtualize_apic_accesses();
755 static inline bool cpu_has_vmx_ept_execute_only(void)
757 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
760 static inline bool cpu_has_vmx_eptp_uncacheable(void)
762 return vmx_capability.ept & VMX_EPTP_UC_BIT;
765 static inline bool cpu_has_vmx_eptp_writeback(void)
767 return vmx_capability.ept & VMX_EPTP_WB_BIT;
770 static inline bool cpu_has_vmx_ept_2m_page(void)
772 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
775 static inline bool cpu_has_vmx_ept_1g_page(void)
777 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
780 static inline bool cpu_has_vmx_ept_4levels(void)
782 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
785 static inline bool cpu_has_vmx_invept_individual_addr(void)
787 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
790 static inline bool cpu_has_vmx_invept_context(void)
792 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
795 static inline bool cpu_has_vmx_invept_global(void)
797 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
800 static inline bool cpu_has_vmx_invvpid_single(void)
802 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
805 static inline bool cpu_has_vmx_invvpid_global(void)
807 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
810 static inline bool cpu_has_vmx_ept(void)
812 return vmcs_config.cpu_based_2nd_exec_ctrl &
813 SECONDARY_EXEC_ENABLE_EPT;
816 static inline bool cpu_has_vmx_unrestricted_guest(void)
818 return vmcs_config.cpu_based_2nd_exec_ctrl &
819 SECONDARY_EXEC_UNRESTRICTED_GUEST;
822 static inline bool cpu_has_vmx_ple(void)
824 return vmcs_config.cpu_based_2nd_exec_ctrl &
825 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
828 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
830 return flexpriority_enabled && irqchip_in_kernel(kvm);
833 static inline bool cpu_has_vmx_vpid(void)
835 return vmcs_config.cpu_based_2nd_exec_ctrl &
836 SECONDARY_EXEC_ENABLE_VPID;
839 static inline bool cpu_has_vmx_rdtscp(void)
841 return vmcs_config.cpu_based_2nd_exec_ctrl &
842 SECONDARY_EXEC_RDTSCP;
845 static inline bool cpu_has_virtual_nmis(void)
847 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
850 static inline bool cpu_has_vmx_wbinvd_exit(void)
852 return vmcs_config.cpu_based_2nd_exec_ctrl &
853 SECONDARY_EXEC_WBINVD_EXITING;
856 static inline bool report_flexpriority(void)
858 return flexpriority_enabled;
861 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
863 return vmcs12->cpu_based_vm_exec_control & bit;
866 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
868 return (vmcs12->cpu_based_vm_exec_control &
869 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
870 (vmcs12->secondary_vm_exec_control & bit);
873 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
874 struct kvm_vcpu *vcpu)
876 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
879 static inline bool is_exception(u32 intr_info)
881 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
882 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
885 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
886 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
887 struct vmcs12 *vmcs12,
888 u32 reason, unsigned long qualification);
890 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
892 int i;
894 for (i = 0; i < vmx->nmsrs; ++i)
895 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
896 return i;
897 return -1;
900 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
902 struct {
903 u64 vpid : 16;
904 u64 rsvd : 48;
905 u64 gva;
906 } operand = { vpid, 0, gva };
908 asm volatile (__ex(ASM_VMX_INVVPID)
909 /* CF==1 or ZF==1 --> rc = -1 */
910 "; ja 1f ; ud2 ; 1:"
911 : : "a"(&operand), "c"(ext) : "cc", "memory");
914 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
916 struct {
917 u64 eptp, gpa;
918 } operand = {eptp, gpa};
920 asm volatile (__ex(ASM_VMX_INVEPT)
921 /* CF==1 or ZF==1 --> rc = -1 */
922 "; ja 1f ; ud2 ; 1:\n"
923 : : "a" (&operand), "c" (ext) : "cc", "memory");
926 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
928 int i;
930 i = __find_msr_index(vmx, msr);
931 if (i >= 0)
932 return &vmx->guest_msrs[i];
933 return NULL;
936 static void vmcs_clear(struct vmcs *vmcs)
938 u64 phys_addr = __pa(vmcs);
939 u8 error;
941 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
942 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
943 : "cc", "memory");
944 if (error)
945 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
946 vmcs, phys_addr);
949 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
951 vmcs_clear(loaded_vmcs->vmcs);
952 loaded_vmcs->cpu = -1;
953 loaded_vmcs->launched = 0;
956 static void vmcs_load(struct vmcs *vmcs)
958 u64 phys_addr = __pa(vmcs);
959 u8 error;
961 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
962 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
963 : "cc", "memory");
964 if (error)
965 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
966 vmcs, phys_addr);
969 static void __loaded_vmcs_clear(void *arg)
971 struct loaded_vmcs *loaded_vmcs = arg;
972 int cpu = raw_smp_processor_id();
974 if (loaded_vmcs->cpu != cpu)
975 return; /* vcpu migration can race with cpu offline */
976 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
977 per_cpu(current_vmcs, cpu) = NULL;
978 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
979 loaded_vmcs_init(loaded_vmcs);
982 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
984 if (loaded_vmcs->cpu != -1)
985 smp_call_function_single(
986 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
989 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
991 if (vmx->vpid == 0)
992 return;
994 if (cpu_has_vmx_invvpid_single())
995 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
998 static inline void vpid_sync_vcpu_global(void)
1000 if (cpu_has_vmx_invvpid_global())
1001 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1004 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1006 if (cpu_has_vmx_invvpid_single())
1007 vpid_sync_vcpu_single(vmx);
1008 else
1009 vpid_sync_vcpu_global();
1012 static inline void ept_sync_global(void)
1014 if (cpu_has_vmx_invept_global())
1015 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1018 static inline void ept_sync_context(u64 eptp)
1020 if (enable_ept) {
1021 if (cpu_has_vmx_invept_context())
1022 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1023 else
1024 ept_sync_global();
1028 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1030 if (enable_ept) {
1031 if (cpu_has_vmx_invept_individual_addr())
1032 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1033 eptp, gpa);
1034 else
1035 ept_sync_context(eptp);
1039 static __always_inline unsigned long vmcs_readl(unsigned long field)
1041 unsigned long value;
1043 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1044 : "=a"(value) : "d"(field) : "cc");
1045 return value;
1048 static __always_inline u16 vmcs_read16(unsigned long field)
1050 return vmcs_readl(field);
1053 static __always_inline u32 vmcs_read32(unsigned long field)
1055 return vmcs_readl(field);
1058 static __always_inline u64 vmcs_read64(unsigned long field)
1060 #ifdef CONFIG_X86_64
1061 return vmcs_readl(field);
1062 #else
1063 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1064 #endif
1067 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1069 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1070 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1071 dump_stack();
1074 static void vmcs_writel(unsigned long field, unsigned long value)
1076 u8 error;
1078 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1079 : "=q"(error) : "a"(value), "d"(field) : "cc");
1080 if (unlikely(error))
1081 vmwrite_error(field, value);
1084 static void vmcs_write16(unsigned long field, u16 value)
1086 vmcs_writel(field, value);
1089 static void vmcs_write32(unsigned long field, u32 value)
1091 vmcs_writel(field, value);
1094 static void vmcs_write64(unsigned long field, u64 value)
1096 vmcs_writel(field, value);
1097 #ifndef CONFIG_X86_64
1098 asm volatile ("");
1099 vmcs_writel(field+1, value >> 32);
1100 #endif
1103 static void vmcs_clear_bits(unsigned long field, u32 mask)
1105 vmcs_writel(field, vmcs_readl(field) & ~mask);
1108 static void vmcs_set_bits(unsigned long field, u32 mask)
1110 vmcs_writel(field, vmcs_readl(field) | mask);
1113 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1115 vmx->segment_cache.bitmask = 0;
1118 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1119 unsigned field)
1121 bool ret;
1122 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1124 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1125 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1126 vmx->segment_cache.bitmask = 0;
1128 ret = vmx->segment_cache.bitmask & mask;
1129 vmx->segment_cache.bitmask |= mask;
1130 return ret;
1133 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1135 u16 *p = &vmx->segment_cache.seg[seg].selector;
1137 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1138 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1139 return *p;
1142 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1144 ulong *p = &vmx->segment_cache.seg[seg].base;
1146 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1147 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1148 return *p;
1151 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1153 u32 *p = &vmx->segment_cache.seg[seg].limit;
1155 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1156 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1157 return *p;
1160 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1162 u32 *p = &vmx->segment_cache.seg[seg].ar;
1164 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1165 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1166 return *p;
1169 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1171 u32 eb;
1173 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1174 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1175 if ((vcpu->guest_debug &
1176 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1177 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1178 eb |= 1u << BP_VECTOR;
1179 if (to_vmx(vcpu)->rmode.vm86_active)
1180 eb = ~0;
1181 if (enable_ept)
1182 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1183 if (vcpu->fpu_active)
1184 eb &= ~(1u << NM_VECTOR);
1186 /* When we are running a nested L2 guest and L1 specified for it a
1187 * certain exception bitmap, we must trap the same exceptions and pass
1188 * them to L1. When running L2, we will only handle the exceptions
1189 * specified above if L1 did not want them.
1191 if (is_guest_mode(vcpu))
1192 eb |= get_vmcs12(vcpu)->exception_bitmap;
1194 vmcs_write32(EXCEPTION_BITMAP, eb);
1197 static void clear_atomic_switch_msr_special(unsigned long entry,
1198 unsigned long exit)
1200 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1201 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1204 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1206 unsigned i;
1207 struct msr_autoload *m = &vmx->msr_autoload;
1209 switch (msr) {
1210 case MSR_EFER:
1211 if (cpu_has_load_ia32_efer) {
1212 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1213 VM_EXIT_LOAD_IA32_EFER);
1214 return;
1216 break;
1217 case MSR_CORE_PERF_GLOBAL_CTRL:
1218 if (cpu_has_load_perf_global_ctrl) {
1219 clear_atomic_switch_msr_special(
1220 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1221 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1222 return;
1224 break;
1227 for (i = 0; i < m->nr; ++i)
1228 if (m->guest[i].index == msr)
1229 break;
1231 if (i == m->nr)
1232 return;
1233 --m->nr;
1234 m->guest[i] = m->guest[m->nr];
1235 m->host[i] = m->host[m->nr];
1236 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1237 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1240 static void add_atomic_switch_msr_special(unsigned long entry,
1241 unsigned long exit, unsigned long guest_val_vmcs,
1242 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1244 vmcs_write64(guest_val_vmcs, guest_val);
1245 vmcs_write64(host_val_vmcs, host_val);
1246 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1247 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1250 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1251 u64 guest_val, u64 host_val)
1253 unsigned i;
1254 struct msr_autoload *m = &vmx->msr_autoload;
1256 switch (msr) {
1257 case MSR_EFER:
1258 if (cpu_has_load_ia32_efer) {
1259 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1260 VM_EXIT_LOAD_IA32_EFER,
1261 GUEST_IA32_EFER,
1262 HOST_IA32_EFER,
1263 guest_val, host_val);
1264 return;
1266 break;
1267 case MSR_CORE_PERF_GLOBAL_CTRL:
1268 if (cpu_has_load_perf_global_ctrl) {
1269 add_atomic_switch_msr_special(
1270 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1271 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1272 GUEST_IA32_PERF_GLOBAL_CTRL,
1273 HOST_IA32_PERF_GLOBAL_CTRL,
1274 guest_val, host_val);
1275 return;
1277 break;
1280 for (i = 0; i < m->nr; ++i)
1281 if (m->guest[i].index == msr)
1282 break;
1284 if (i == NR_AUTOLOAD_MSRS) {
1285 printk_once(KERN_WARNING"Not enough mst switch entries. "
1286 "Can't add msr %x\n", msr);
1287 return;
1288 } else if (i == m->nr) {
1289 ++m->nr;
1290 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1291 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1294 m->guest[i].index = msr;
1295 m->guest[i].value = guest_val;
1296 m->host[i].index = msr;
1297 m->host[i].value = host_val;
1300 static void reload_tss(void)
1303 * VT restores TR but not its size. Useless.
1305 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1306 struct desc_struct *descs;
1308 descs = (void *)gdt->address;
1309 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1310 load_TR_desc();
1313 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1315 u64 guest_efer;
1316 u64 ignore_bits;
1318 guest_efer = vmx->vcpu.arch.efer;
1321 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1322 * outside long mode
1324 ignore_bits = EFER_NX | EFER_SCE;
1325 #ifdef CONFIG_X86_64
1326 ignore_bits |= EFER_LMA | EFER_LME;
1327 /* SCE is meaningful only in long mode on Intel */
1328 if (guest_efer & EFER_LMA)
1329 ignore_bits &= ~(u64)EFER_SCE;
1330 #endif
1331 guest_efer &= ~ignore_bits;
1332 guest_efer |= host_efer & ignore_bits;
1333 vmx->guest_msrs[efer_offset].data = guest_efer;
1334 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1336 clear_atomic_switch_msr(vmx, MSR_EFER);
1337 /* On ept, can't emulate nx, and must switch nx atomically */
1338 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1339 guest_efer = vmx->vcpu.arch.efer;
1340 if (!(guest_efer & EFER_LMA))
1341 guest_efer &= ~EFER_LME;
1342 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1343 return false;
1346 return true;
1349 static unsigned long segment_base(u16 selector)
1351 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1352 struct desc_struct *d;
1353 unsigned long table_base;
1354 unsigned long v;
1356 if (!(selector & ~3))
1357 return 0;
1359 table_base = gdt->address;
1361 if (selector & 4) { /* from ldt */
1362 u16 ldt_selector = kvm_read_ldt();
1364 if (!(ldt_selector & ~3))
1365 return 0;
1367 table_base = segment_base(ldt_selector);
1369 d = (struct desc_struct *)(table_base + (selector & ~7));
1370 v = get_desc_base(d);
1371 #ifdef CONFIG_X86_64
1372 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1373 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1374 #endif
1375 return v;
1378 static inline unsigned long kvm_read_tr_base(void)
1380 u16 tr;
1381 asm("str %0" : "=g"(tr));
1382 return segment_base(tr);
1385 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1387 struct vcpu_vmx *vmx = to_vmx(vcpu);
1388 int i;
1390 if (vmx->host_state.loaded)
1391 return;
1393 vmx->host_state.loaded = 1;
1395 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1396 * allow segment selectors with cpl > 0 or ti == 1.
1398 vmx->host_state.ldt_sel = kvm_read_ldt();
1399 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1400 savesegment(fs, vmx->host_state.fs_sel);
1401 if (!(vmx->host_state.fs_sel & 7)) {
1402 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1403 vmx->host_state.fs_reload_needed = 0;
1404 } else {
1405 vmcs_write16(HOST_FS_SELECTOR, 0);
1406 vmx->host_state.fs_reload_needed = 1;
1408 savesegment(gs, vmx->host_state.gs_sel);
1409 if (!(vmx->host_state.gs_sel & 7))
1410 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1411 else {
1412 vmcs_write16(HOST_GS_SELECTOR, 0);
1413 vmx->host_state.gs_ldt_reload_needed = 1;
1416 #ifdef CONFIG_X86_64
1417 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1418 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1419 #else
1420 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1421 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1422 #endif
1424 #ifdef CONFIG_X86_64
1425 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1426 if (is_long_mode(&vmx->vcpu))
1427 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1428 #endif
1429 for (i = 0; i < vmx->save_nmsrs; ++i)
1430 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1431 vmx->guest_msrs[i].data,
1432 vmx->guest_msrs[i].mask);
1435 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1437 if (!vmx->host_state.loaded)
1438 return;
1440 ++vmx->vcpu.stat.host_state_reload;
1441 vmx->host_state.loaded = 0;
1442 #ifdef CONFIG_X86_64
1443 if (is_long_mode(&vmx->vcpu))
1444 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1445 #endif
1446 if (vmx->host_state.gs_ldt_reload_needed) {
1447 kvm_load_ldt(vmx->host_state.ldt_sel);
1448 #ifdef CONFIG_X86_64
1449 load_gs_index(vmx->host_state.gs_sel);
1450 #else
1451 loadsegment(gs, vmx->host_state.gs_sel);
1452 #endif
1454 if (vmx->host_state.fs_reload_needed)
1455 loadsegment(fs, vmx->host_state.fs_sel);
1456 reload_tss();
1457 #ifdef CONFIG_X86_64
1458 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1459 #endif
1460 if (__thread_has_fpu(current))
1461 clts();
1462 load_gdt(&__get_cpu_var(host_gdt));
1465 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1467 preempt_disable();
1468 __vmx_load_host_state(vmx);
1469 preempt_enable();
1473 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1474 * vcpu mutex is already taken.
1476 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1478 struct vcpu_vmx *vmx = to_vmx(vcpu);
1479 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1481 if (!vmm_exclusive)
1482 kvm_cpu_vmxon(phys_addr);
1483 else if (vmx->loaded_vmcs->cpu != cpu)
1484 loaded_vmcs_clear(vmx->loaded_vmcs);
1486 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1487 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1488 vmcs_load(vmx->loaded_vmcs->vmcs);
1491 if (vmx->loaded_vmcs->cpu != cpu) {
1492 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1493 unsigned long sysenter_esp;
1495 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1496 local_irq_disable();
1497 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1498 &per_cpu(loaded_vmcss_on_cpu, cpu));
1499 local_irq_enable();
1502 * Linux uses per-cpu TSS and GDT, so set these when switching
1503 * processors.
1505 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1506 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1508 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1509 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1510 vmx->loaded_vmcs->cpu = cpu;
1514 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1516 __vmx_load_host_state(to_vmx(vcpu));
1517 if (!vmm_exclusive) {
1518 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1519 vcpu->cpu = -1;
1520 kvm_cpu_vmxoff();
1524 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1526 ulong cr0;
1528 if (vcpu->fpu_active)
1529 return;
1530 vcpu->fpu_active = 1;
1531 cr0 = vmcs_readl(GUEST_CR0);
1532 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1533 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1534 vmcs_writel(GUEST_CR0, cr0);
1535 update_exception_bitmap(vcpu);
1536 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1537 if (is_guest_mode(vcpu))
1538 vcpu->arch.cr0_guest_owned_bits &=
1539 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1540 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1543 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1546 * Return the cr0 value that a nested guest would read. This is a combination
1547 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1548 * its hypervisor (cr0_read_shadow).
1550 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1552 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1553 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1555 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1557 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1558 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1561 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1563 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1564 * set this *before* calling this function.
1566 vmx_decache_cr0_guest_bits(vcpu);
1567 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1568 update_exception_bitmap(vcpu);
1569 vcpu->arch.cr0_guest_owned_bits = 0;
1570 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1571 if (is_guest_mode(vcpu)) {
1573 * L1's specified read shadow might not contain the TS bit,
1574 * so now that we turned on shadowing of this bit, we need to
1575 * set this bit of the shadow. Like in nested_vmx_run we need
1576 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1577 * up-to-date here because we just decached cr0.TS (and we'll
1578 * only update vmcs12->guest_cr0 on nested exit).
1580 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1581 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1582 (vcpu->arch.cr0 & X86_CR0_TS);
1583 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1584 } else
1585 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1588 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1590 unsigned long rflags, save_rflags;
1592 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1593 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1594 rflags = vmcs_readl(GUEST_RFLAGS);
1595 if (to_vmx(vcpu)->rmode.vm86_active) {
1596 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1597 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1598 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1600 to_vmx(vcpu)->rflags = rflags;
1602 return to_vmx(vcpu)->rflags;
1605 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1607 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1608 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1609 to_vmx(vcpu)->rflags = rflags;
1610 if (to_vmx(vcpu)->rmode.vm86_active) {
1611 to_vmx(vcpu)->rmode.save_rflags = rflags;
1612 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1614 vmcs_writel(GUEST_RFLAGS, rflags);
1617 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1619 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1620 int ret = 0;
1622 if (interruptibility & GUEST_INTR_STATE_STI)
1623 ret |= KVM_X86_SHADOW_INT_STI;
1624 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1625 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1627 return ret & mask;
1630 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1632 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1633 u32 interruptibility = interruptibility_old;
1635 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1637 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1638 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1639 else if (mask & KVM_X86_SHADOW_INT_STI)
1640 interruptibility |= GUEST_INTR_STATE_STI;
1642 if ((interruptibility != interruptibility_old))
1643 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1646 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1648 unsigned long rip;
1650 rip = kvm_rip_read(vcpu);
1651 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1652 kvm_rip_write(vcpu, rip);
1654 /* skipping an emulated instruction also counts */
1655 vmx_set_interrupt_shadow(vcpu, 0);
1658 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1660 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1661 * explicitly skip the instruction because if the HLT state is set, then
1662 * the instruction is already executing and RIP has already been
1663 * advanced. */
1664 if (!yield_on_hlt &&
1665 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1666 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1670 * KVM wants to inject page-faults which it got to the guest. This function
1671 * checks whether in a nested guest, we need to inject them to L1 or L2.
1672 * This function assumes it is called with the exit reason in vmcs02 being
1673 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1674 * is running).
1676 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1678 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1680 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1681 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1682 return 0;
1684 nested_vmx_vmexit(vcpu);
1685 return 1;
1688 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1689 bool has_error_code, u32 error_code,
1690 bool reinject)
1692 struct vcpu_vmx *vmx = to_vmx(vcpu);
1693 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1695 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1696 nested_pf_handled(vcpu))
1697 return;
1699 if (has_error_code) {
1700 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1701 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1704 if (vmx->rmode.vm86_active) {
1705 int inc_eip = 0;
1706 if (kvm_exception_is_soft(nr))
1707 inc_eip = vcpu->arch.event_exit_inst_len;
1708 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1709 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1710 return;
1713 if (kvm_exception_is_soft(nr)) {
1714 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1715 vmx->vcpu.arch.event_exit_inst_len);
1716 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1717 } else
1718 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1720 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1721 vmx_clear_hlt(vcpu);
1724 static bool vmx_rdtscp_supported(void)
1726 return cpu_has_vmx_rdtscp();
1730 * Swap MSR entry in host/guest MSR entry array.
1732 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1734 struct shared_msr_entry tmp;
1736 tmp = vmx->guest_msrs[to];
1737 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1738 vmx->guest_msrs[from] = tmp;
1742 * Set up the vmcs to automatically save and restore system
1743 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1744 * mode, as fiddling with msrs is very expensive.
1746 static void setup_msrs(struct vcpu_vmx *vmx)
1748 int save_nmsrs, index;
1749 unsigned long *msr_bitmap;
1751 save_nmsrs = 0;
1752 #ifdef CONFIG_X86_64
1753 if (is_long_mode(&vmx->vcpu)) {
1754 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1755 if (index >= 0)
1756 move_msr_up(vmx, index, save_nmsrs++);
1757 index = __find_msr_index(vmx, MSR_LSTAR);
1758 if (index >= 0)
1759 move_msr_up(vmx, index, save_nmsrs++);
1760 index = __find_msr_index(vmx, MSR_CSTAR);
1761 if (index >= 0)
1762 move_msr_up(vmx, index, save_nmsrs++);
1763 index = __find_msr_index(vmx, MSR_TSC_AUX);
1764 if (index >= 0 && vmx->rdtscp_enabled)
1765 move_msr_up(vmx, index, save_nmsrs++);
1767 * MSR_STAR is only needed on long mode guests, and only
1768 * if efer.sce is enabled.
1770 index = __find_msr_index(vmx, MSR_STAR);
1771 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1772 move_msr_up(vmx, index, save_nmsrs++);
1774 #endif
1775 index = __find_msr_index(vmx, MSR_EFER);
1776 if (index >= 0 && update_transition_efer(vmx, index))
1777 move_msr_up(vmx, index, save_nmsrs++);
1779 vmx->save_nmsrs = save_nmsrs;
1781 if (cpu_has_vmx_msr_bitmap()) {
1782 if (is_long_mode(&vmx->vcpu))
1783 msr_bitmap = vmx_msr_bitmap_longmode;
1784 else
1785 msr_bitmap = vmx_msr_bitmap_legacy;
1787 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1792 * reads and returns guest's timestamp counter "register"
1793 * guest_tsc = host_tsc + tsc_offset -- 21.3
1795 static u64 guest_read_tsc(void)
1797 u64 host_tsc, tsc_offset;
1799 rdtscll(host_tsc);
1800 tsc_offset = vmcs_read64(TSC_OFFSET);
1801 return host_tsc + tsc_offset;
1805 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1806 * counter, even if a nested guest (L2) is currently running.
1808 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1810 u64 host_tsc, tsc_offset;
1812 rdtscll(host_tsc);
1813 tsc_offset = is_guest_mode(vcpu) ?
1814 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1815 vmcs_read64(TSC_OFFSET);
1816 return host_tsc + tsc_offset;
1820 * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1821 * ioctl. In this case the call-back should update internal vmx state to make
1822 * the changes effective.
1824 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1826 /* Nothing to do here */
1830 * writes 'offset' into guest's timestamp counter offset register
1832 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1834 if (is_guest_mode(vcpu)) {
1836 * We're here if L1 chose not to trap WRMSR to TSC. According
1837 * to the spec, this should set L1's TSC; The offset that L1
1838 * set for L2 remains unchanged, and still needs to be added
1839 * to the newly set TSC to get L2's TSC.
1841 struct vmcs12 *vmcs12;
1842 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1843 /* recalculate vmcs02.TSC_OFFSET: */
1844 vmcs12 = get_vmcs12(vcpu);
1845 vmcs_write64(TSC_OFFSET, offset +
1846 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1847 vmcs12->tsc_offset : 0));
1848 } else {
1849 vmcs_write64(TSC_OFFSET, offset);
1853 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1855 u64 offset = vmcs_read64(TSC_OFFSET);
1856 vmcs_write64(TSC_OFFSET, offset + adjustment);
1857 if (is_guest_mode(vcpu)) {
1858 /* Even when running L2, the adjustment needs to apply to L1 */
1859 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1863 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1865 return target_tsc - native_read_tsc();
1868 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1870 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1871 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1875 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1876 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1877 * all guests if the "nested" module option is off, and can also be disabled
1878 * for a single guest by disabling its VMX cpuid bit.
1880 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1882 return nested && guest_cpuid_has_vmx(vcpu);
1886 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1887 * returned for the various VMX controls MSRs when nested VMX is enabled.
1888 * The same values should also be used to verify that vmcs12 control fields are
1889 * valid during nested entry from L1 to L2.
1890 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1891 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1892 * bit in the high half is on if the corresponding bit in the control field
1893 * may be on. See also vmx_control_verify().
1894 * TODO: allow these variables to be modified (downgraded) by module options
1895 * or other means.
1897 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1898 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1899 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1900 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1901 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1902 static __init void nested_vmx_setup_ctls_msrs(void)
1905 * Note that as a general rule, the high half of the MSRs (bits in
1906 * the control fields which may be 1) should be initialized by the
1907 * intersection of the underlying hardware's MSR (i.e., features which
1908 * can be supported) and the list of features we want to expose -
1909 * because they are known to be properly supported in our code.
1910 * Also, usually, the low half of the MSRs (bits which must be 1) can
1911 * be set to 0, meaning that L1 may turn off any of these bits. The
1912 * reason is that if one of these bits is necessary, it will appear
1913 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1914 * fields of vmcs01 and vmcs02, will turn these bits off - and
1915 * nested_vmx_exit_handled() will not pass related exits to L1.
1916 * These rules have exceptions below.
1919 /* pin-based controls */
1921 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1922 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1924 nested_vmx_pinbased_ctls_low = 0x16 ;
1925 nested_vmx_pinbased_ctls_high = 0x16 |
1926 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1927 PIN_BASED_VIRTUAL_NMIS;
1929 /* exit controls */
1930 nested_vmx_exit_ctls_low = 0;
1931 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1932 #ifdef CONFIG_X86_64
1933 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1934 #else
1935 nested_vmx_exit_ctls_high = 0;
1936 #endif
1938 /* entry controls */
1939 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1940 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1941 nested_vmx_entry_ctls_low = 0;
1942 nested_vmx_entry_ctls_high &=
1943 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1945 /* cpu-based controls */
1946 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1947 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1948 nested_vmx_procbased_ctls_low = 0;
1949 nested_vmx_procbased_ctls_high &=
1950 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1951 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1952 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1953 CPU_BASED_CR3_STORE_EXITING |
1954 #ifdef CONFIG_X86_64
1955 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1956 #endif
1957 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1958 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1959 CPU_BASED_RDPMC_EXITING |
1960 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1962 * We can allow some features even when not supported by the
1963 * hardware. For example, L1 can specify an MSR bitmap - and we
1964 * can use it to avoid exits to L1 - even when L0 runs L2
1965 * without MSR bitmaps.
1967 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1969 /* secondary cpu-based controls */
1970 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1971 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1972 nested_vmx_secondary_ctls_low = 0;
1973 nested_vmx_secondary_ctls_high &=
1974 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1977 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1980 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1982 return ((control & high) | low) == control;
1985 static inline u64 vmx_control_msr(u32 low, u32 high)
1987 return low | ((u64)high << 32);
1991 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1992 * also let it use VMX-specific MSRs.
1993 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1994 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1995 * like all other MSRs).
1997 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1999 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2000 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2002 * According to the spec, processors which do not support VMX
2003 * should throw a #GP(0) when VMX capability MSRs are read.
2005 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2006 return 1;
2009 switch (msr_index) {
2010 case MSR_IA32_FEATURE_CONTROL:
2011 *pdata = 0;
2012 break;
2013 case MSR_IA32_VMX_BASIC:
2015 * This MSR reports some information about VMX support. We
2016 * should return information about the VMX we emulate for the
2017 * guest, and the VMCS structure we give it - not about the
2018 * VMX support of the underlying hardware.
2020 *pdata = VMCS12_REVISION |
2021 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2022 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2023 break;
2024 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2025 case MSR_IA32_VMX_PINBASED_CTLS:
2026 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2027 nested_vmx_pinbased_ctls_high);
2028 break;
2029 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2030 case MSR_IA32_VMX_PROCBASED_CTLS:
2031 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2032 nested_vmx_procbased_ctls_high);
2033 break;
2034 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2035 case MSR_IA32_VMX_EXIT_CTLS:
2036 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2037 nested_vmx_exit_ctls_high);
2038 break;
2039 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2040 case MSR_IA32_VMX_ENTRY_CTLS:
2041 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2042 nested_vmx_entry_ctls_high);
2043 break;
2044 case MSR_IA32_VMX_MISC:
2045 *pdata = 0;
2046 break;
2048 * These MSRs specify bits which the guest must keep fixed (on or off)
2049 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2050 * We picked the standard core2 setting.
2052 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2053 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2054 case MSR_IA32_VMX_CR0_FIXED0:
2055 *pdata = VMXON_CR0_ALWAYSON;
2056 break;
2057 case MSR_IA32_VMX_CR0_FIXED1:
2058 *pdata = -1ULL;
2059 break;
2060 case MSR_IA32_VMX_CR4_FIXED0:
2061 *pdata = VMXON_CR4_ALWAYSON;
2062 break;
2063 case MSR_IA32_VMX_CR4_FIXED1:
2064 *pdata = -1ULL;
2065 break;
2066 case MSR_IA32_VMX_VMCS_ENUM:
2067 *pdata = 0x1f;
2068 break;
2069 case MSR_IA32_VMX_PROCBASED_CTLS2:
2070 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2071 nested_vmx_secondary_ctls_high);
2072 break;
2073 case MSR_IA32_VMX_EPT_VPID_CAP:
2074 /* Currently, no nested ept or nested vpid */
2075 *pdata = 0;
2076 break;
2077 default:
2078 return 0;
2081 return 1;
2084 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2086 if (!nested_vmx_allowed(vcpu))
2087 return 0;
2089 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2090 /* TODO: the right thing. */
2091 return 1;
2093 * No need to treat VMX capability MSRs specially: If we don't handle
2094 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2096 return 0;
2100 * Reads an msr value (of 'msr_index') into 'pdata'.
2101 * Returns 0 on success, non-0 otherwise.
2102 * Assumes vcpu_load() was already called.
2104 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2106 u64 data;
2107 struct shared_msr_entry *msr;
2109 if (!pdata) {
2110 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2111 return -EINVAL;
2114 switch (msr_index) {
2115 #ifdef CONFIG_X86_64
2116 case MSR_FS_BASE:
2117 data = vmcs_readl(GUEST_FS_BASE);
2118 break;
2119 case MSR_GS_BASE:
2120 data = vmcs_readl(GUEST_GS_BASE);
2121 break;
2122 case MSR_KERNEL_GS_BASE:
2123 vmx_load_host_state(to_vmx(vcpu));
2124 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2125 break;
2126 #endif
2127 case MSR_EFER:
2128 return kvm_get_msr_common(vcpu, msr_index, pdata);
2129 case MSR_IA32_TSC:
2130 data = guest_read_tsc();
2131 break;
2132 case MSR_IA32_SYSENTER_CS:
2133 data = vmcs_read32(GUEST_SYSENTER_CS);
2134 break;
2135 case MSR_IA32_SYSENTER_EIP:
2136 data = vmcs_readl(GUEST_SYSENTER_EIP);
2137 break;
2138 case MSR_IA32_SYSENTER_ESP:
2139 data = vmcs_readl(GUEST_SYSENTER_ESP);
2140 break;
2141 case MSR_TSC_AUX:
2142 if (!to_vmx(vcpu)->rdtscp_enabled)
2143 return 1;
2144 /* Otherwise falls through */
2145 default:
2146 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2147 return 0;
2148 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2149 if (msr) {
2150 data = msr->data;
2151 break;
2153 return kvm_get_msr_common(vcpu, msr_index, pdata);
2156 *pdata = data;
2157 return 0;
2161 * Writes msr value into into the appropriate "register".
2162 * Returns 0 on success, non-0 otherwise.
2163 * Assumes vcpu_load() was already called.
2165 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2167 struct vcpu_vmx *vmx = to_vmx(vcpu);
2168 struct shared_msr_entry *msr;
2169 int ret = 0;
2171 switch (msr_index) {
2172 case MSR_EFER:
2173 ret = kvm_set_msr_common(vcpu, msr_index, data);
2174 break;
2175 #ifdef CONFIG_X86_64
2176 case MSR_FS_BASE:
2177 vmx_segment_cache_clear(vmx);
2178 vmcs_writel(GUEST_FS_BASE, data);
2179 break;
2180 case MSR_GS_BASE:
2181 vmx_segment_cache_clear(vmx);
2182 vmcs_writel(GUEST_GS_BASE, data);
2183 break;
2184 case MSR_KERNEL_GS_BASE:
2185 vmx_load_host_state(vmx);
2186 vmx->msr_guest_kernel_gs_base = data;
2187 break;
2188 #endif
2189 case MSR_IA32_SYSENTER_CS:
2190 vmcs_write32(GUEST_SYSENTER_CS, data);
2191 break;
2192 case MSR_IA32_SYSENTER_EIP:
2193 vmcs_writel(GUEST_SYSENTER_EIP, data);
2194 break;
2195 case MSR_IA32_SYSENTER_ESP:
2196 vmcs_writel(GUEST_SYSENTER_ESP, data);
2197 break;
2198 case MSR_IA32_TSC:
2199 kvm_write_tsc(vcpu, data);
2200 break;
2201 case MSR_IA32_CR_PAT:
2202 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2203 vmcs_write64(GUEST_IA32_PAT, data);
2204 vcpu->arch.pat = data;
2205 break;
2207 ret = kvm_set_msr_common(vcpu, msr_index, data);
2208 break;
2209 case MSR_TSC_AUX:
2210 if (!vmx->rdtscp_enabled)
2211 return 1;
2212 /* Check reserved bit, higher 32 bits should be zero */
2213 if ((data >> 32) != 0)
2214 return 1;
2215 /* Otherwise falls through */
2216 default:
2217 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2218 break;
2219 msr = find_msr_entry(vmx, msr_index);
2220 if (msr) {
2221 msr->data = data;
2222 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2223 preempt_disable();
2224 kvm_set_shared_msr(msr->index, msr->data,
2225 msr->mask);
2226 preempt_enable();
2228 break;
2230 ret = kvm_set_msr_common(vcpu, msr_index, data);
2233 return ret;
2236 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2238 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2239 switch (reg) {
2240 case VCPU_REGS_RSP:
2241 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2242 break;
2243 case VCPU_REGS_RIP:
2244 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2245 break;
2246 case VCPU_EXREG_PDPTR:
2247 if (enable_ept)
2248 ept_save_pdptrs(vcpu);
2249 break;
2250 default:
2251 break;
2255 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2257 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2258 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2259 else
2260 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2262 update_exception_bitmap(vcpu);
2265 static __init int cpu_has_kvm_support(void)
2267 return cpu_has_vmx();
2270 static __init int vmx_disabled_by_bios(void)
2272 u64 msr;
2274 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2275 if (msr & FEATURE_CONTROL_LOCKED) {
2276 /* launched w/ TXT and VMX disabled */
2277 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2278 && tboot_enabled())
2279 return 1;
2280 /* launched w/o TXT and VMX only enabled w/ TXT */
2281 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2282 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2283 && !tboot_enabled()) {
2284 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2285 "activate TXT before enabling KVM\n");
2286 return 1;
2288 /* launched w/o TXT and VMX disabled */
2289 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2290 && !tboot_enabled())
2291 return 1;
2294 return 0;
2297 static void kvm_cpu_vmxon(u64 addr)
2299 asm volatile (ASM_VMX_VMXON_RAX
2300 : : "a"(&addr), "m"(addr)
2301 : "memory", "cc");
2304 static int hardware_enable(void *garbage)
2306 int cpu = raw_smp_processor_id();
2307 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2308 u64 old, test_bits;
2310 if (read_cr4() & X86_CR4_VMXE)
2311 return -EBUSY;
2313 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2314 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2316 test_bits = FEATURE_CONTROL_LOCKED;
2317 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2318 if (tboot_enabled())
2319 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2321 if ((old & test_bits) != test_bits) {
2322 /* enable and lock */
2323 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2325 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2327 if (vmm_exclusive) {
2328 kvm_cpu_vmxon(phys_addr);
2329 ept_sync_global();
2332 store_gdt(&__get_cpu_var(host_gdt));
2334 return 0;
2337 static void vmclear_local_loaded_vmcss(void)
2339 int cpu = raw_smp_processor_id();
2340 struct loaded_vmcs *v, *n;
2342 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2343 loaded_vmcss_on_cpu_link)
2344 __loaded_vmcs_clear(v);
2348 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2349 * tricks.
2351 static void kvm_cpu_vmxoff(void)
2353 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2356 static void hardware_disable(void *garbage)
2358 if (vmm_exclusive) {
2359 vmclear_local_loaded_vmcss();
2360 kvm_cpu_vmxoff();
2362 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2365 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2366 u32 msr, u32 *result)
2368 u32 vmx_msr_low, vmx_msr_high;
2369 u32 ctl = ctl_min | ctl_opt;
2371 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2373 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2374 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2376 /* Ensure minimum (required) set of control bits are supported. */
2377 if (ctl_min & ~ctl)
2378 return -EIO;
2380 *result = ctl;
2381 return 0;
2384 static __init bool allow_1_setting(u32 msr, u32 ctl)
2386 u32 vmx_msr_low, vmx_msr_high;
2388 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2389 return vmx_msr_high & ctl;
2392 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2394 u32 vmx_msr_low, vmx_msr_high;
2395 u32 min, opt, min2, opt2;
2396 u32 _pin_based_exec_control = 0;
2397 u32 _cpu_based_exec_control = 0;
2398 u32 _cpu_based_2nd_exec_control = 0;
2399 u32 _vmexit_control = 0;
2400 u32 _vmentry_control = 0;
2402 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2403 opt = PIN_BASED_VIRTUAL_NMIS;
2404 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2405 &_pin_based_exec_control) < 0)
2406 return -EIO;
2408 min =
2409 #ifdef CONFIG_X86_64
2410 CPU_BASED_CR8_LOAD_EXITING |
2411 CPU_BASED_CR8_STORE_EXITING |
2412 #endif
2413 CPU_BASED_CR3_LOAD_EXITING |
2414 CPU_BASED_CR3_STORE_EXITING |
2415 CPU_BASED_USE_IO_BITMAPS |
2416 CPU_BASED_MOV_DR_EXITING |
2417 CPU_BASED_USE_TSC_OFFSETING |
2418 CPU_BASED_MWAIT_EXITING |
2419 CPU_BASED_MONITOR_EXITING |
2420 CPU_BASED_INVLPG_EXITING |
2421 CPU_BASED_RDPMC_EXITING;
2423 if (yield_on_hlt)
2424 min |= CPU_BASED_HLT_EXITING;
2426 opt = CPU_BASED_TPR_SHADOW |
2427 CPU_BASED_USE_MSR_BITMAPS |
2428 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2429 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2430 &_cpu_based_exec_control) < 0)
2431 return -EIO;
2432 #ifdef CONFIG_X86_64
2433 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2434 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2435 ~CPU_BASED_CR8_STORE_EXITING;
2436 #endif
2437 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2438 min2 = 0;
2439 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2440 SECONDARY_EXEC_WBINVD_EXITING |
2441 SECONDARY_EXEC_ENABLE_VPID |
2442 SECONDARY_EXEC_ENABLE_EPT |
2443 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2444 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2445 SECONDARY_EXEC_RDTSCP;
2446 if (adjust_vmx_controls(min2, opt2,
2447 MSR_IA32_VMX_PROCBASED_CTLS2,
2448 &_cpu_based_2nd_exec_control) < 0)
2449 return -EIO;
2451 #ifndef CONFIG_X86_64
2452 if (!(_cpu_based_2nd_exec_control &
2453 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2454 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2455 #endif
2456 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2457 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2458 enabled */
2459 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2460 CPU_BASED_CR3_STORE_EXITING |
2461 CPU_BASED_INVLPG_EXITING);
2462 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2463 vmx_capability.ept, vmx_capability.vpid);
2466 min = 0;
2467 #ifdef CONFIG_X86_64
2468 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2469 #endif
2470 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2471 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2472 &_vmexit_control) < 0)
2473 return -EIO;
2475 min = 0;
2476 opt = VM_ENTRY_LOAD_IA32_PAT;
2477 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2478 &_vmentry_control) < 0)
2479 return -EIO;
2481 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2483 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2484 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2485 return -EIO;
2487 #ifdef CONFIG_X86_64
2488 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2489 if (vmx_msr_high & (1u<<16))
2490 return -EIO;
2491 #endif
2493 /* Require Write-Back (WB) memory type for VMCS accesses. */
2494 if (((vmx_msr_high >> 18) & 15) != 6)
2495 return -EIO;
2497 vmcs_conf->size = vmx_msr_high & 0x1fff;
2498 vmcs_conf->order = get_order(vmcs_config.size);
2499 vmcs_conf->revision_id = vmx_msr_low;
2501 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2502 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2503 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2504 vmcs_conf->vmexit_ctrl = _vmexit_control;
2505 vmcs_conf->vmentry_ctrl = _vmentry_control;
2507 cpu_has_load_ia32_efer =
2508 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2509 VM_ENTRY_LOAD_IA32_EFER)
2510 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2511 VM_EXIT_LOAD_IA32_EFER);
2513 cpu_has_load_perf_global_ctrl =
2514 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2515 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2516 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2517 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2520 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2521 * but due to arrata below it can't be used. Workaround is to use
2522 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2524 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2526 * AAK155 (model 26)
2527 * AAP115 (model 30)
2528 * AAT100 (model 37)
2529 * BC86,AAY89,BD102 (model 44)
2530 * BA97 (model 46)
2533 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2534 switch (boot_cpu_data.x86_model) {
2535 case 26:
2536 case 30:
2537 case 37:
2538 case 44:
2539 case 46:
2540 cpu_has_load_perf_global_ctrl = false;
2541 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2542 "does not work properly. Using workaround\n");
2543 break;
2544 default:
2545 break;
2549 return 0;
2552 static struct vmcs *alloc_vmcs_cpu(int cpu)
2554 int node = cpu_to_node(cpu);
2555 struct page *pages;
2556 struct vmcs *vmcs;
2558 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2559 if (!pages)
2560 return NULL;
2561 vmcs = page_address(pages);
2562 memset(vmcs, 0, vmcs_config.size);
2563 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2564 return vmcs;
2567 static struct vmcs *alloc_vmcs(void)
2569 return alloc_vmcs_cpu(raw_smp_processor_id());
2572 static void free_vmcs(struct vmcs *vmcs)
2574 free_pages((unsigned long)vmcs, vmcs_config.order);
2578 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2580 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2582 if (!loaded_vmcs->vmcs)
2583 return;
2584 loaded_vmcs_clear(loaded_vmcs);
2585 free_vmcs(loaded_vmcs->vmcs);
2586 loaded_vmcs->vmcs = NULL;
2589 static void free_kvm_area(void)
2591 int cpu;
2593 for_each_possible_cpu(cpu) {
2594 free_vmcs(per_cpu(vmxarea, cpu));
2595 per_cpu(vmxarea, cpu) = NULL;
2599 static __init int alloc_kvm_area(void)
2601 int cpu;
2603 for_each_possible_cpu(cpu) {
2604 struct vmcs *vmcs;
2606 vmcs = alloc_vmcs_cpu(cpu);
2607 if (!vmcs) {
2608 free_kvm_area();
2609 return -ENOMEM;
2612 per_cpu(vmxarea, cpu) = vmcs;
2614 return 0;
2617 static __init int hardware_setup(void)
2619 if (setup_vmcs_config(&vmcs_config) < 0)
2620 return -EIO;
2622 if (boot_cpu_has(X86_FEATURE_NX))
2623 kvm_enable_efer_bits(EFER_NX);
2625 if (!cpu_has_vmx_vpid())
2626 enable_vpid = 0;
2628 if (!cpu_has_vmx_ept() ||
2629 !cpu_has_vmx_ept_4levels()) {
2630 enable_ept = 0;
2631 enable_unrestricted_guest = 0;
2634 if (!cpu_has_vmx_unrestricted_guest())
2635 enable_unrestricted_guest = 0;
2637 if (!cpu_has_vmx_flexpriority())
2638 flexpriority_enabled = 0;
2640 if (!cpu_has_vmx_tpr_shadow())
2641 kvm_x86_ops->update_cr8_intercept = NULL;
2643 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2644 kvm_disable_largepages();
2646 if (!cpu_has_vmx_ple())
2647 ple_gap = 0;
2649 if (nested)
2650 nested_vmx_setup_ctls_msrs();
2652 return alloc_kvm_area();
2655 static __exit void hardware_unsetup(void)
2657 free_kvm_area();
2660 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2662 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2664 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2665 vmcs_write16(sf->selector, save->selector);
2666 vmcs_writel(sf->base, save->base);
2667 vmcs_write32(sf->limit, save->limit);
2668 vmcs_write32(sf->ar_bytes, save->ar);
2669 } else {
2670 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2671 << AR_DPL_SHIFT;
2672 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2676 static void enter_pmode(struct kvm_vcpu *vcpu)
2678 unsigned long flags;
2679 struct vcpu_vmx *vmx = to_vmx(vcpu);
2681 vmx->emulation_required = 1;
2682 vmx->rmode.vm86_active = 0;
2684 vmx_segment_cache_clear(vmx);
2686 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2687 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2688 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2689 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2691 flags = vmcs_readl(GUEST_RFLAGS);
2692 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2693 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2694 vmcs_writel(GUEST_RFLAGS, flags);
2696 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2697 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2699 update_exception_bitmap(vcpu);
2701 if (emulate_invalid_guest_state)
2702 return;
2704 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2705 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2706 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2707 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2709 vmx_segment_cache_clear(vmx);
2711 vmcs_write16(GUEST_SS_SELECTOR, 0);
2712 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2714 vmcs_write16(GUEST_CS_SELECTOR,
2715 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2716 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2719 static gva_t rmode_tss_base(struct kvm *kvm)
2721 if (!kvm->arch.tss_addr) {
2722 struct kvm_memslots *slots;
2723 struct kvm_memory_slot *slot;
2724 gfn_t base_gfn;
2726 slots = kvm_memslots(kvm);
2727 slot = id_to_memslot(slots, 0);
2728 base_gfn = slot->base_gfn + slot->npages - 3;
2730 return base_gfn << PAGE_SHIFT;
2732 return kvm->arch.tss_addr;
2735 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2737 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2739 save->selector = vmcs_read16(sf->selector);
2740 save->base = vmcs_readl(sf->base);
2741 save->limit = vmcs_read32(sf->limit);
2742 save->ar = vmcs_read32(sf->ar_bytes);
2743 vmcs_write16(sf->selector, save->base >> 4);
2744 vmcs_write32(sf->base, save->base & 0xffff0);
2745 vmcs_write32(sf->limit, 0xffff);
2746 vmcs_write32(sf->ar_bytes, 0xf3);
2747 if (save->base & 0xf)
2748 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2749 " aligned when entering protected mode (seg=%d)",
2750 seg);
2753 static void enter_rmode(struct kvm_vcpu *vcpu)
2755 unsigned long flags;
2756 struct vcpu_vmx *vmx = to_vmx(vcpu);
2758 if (enable_unrestricted_guest)
2759 return;
2761 vmx->emulation_required = 1;
2762 vmx->rmode.vm86_active = 1;
2765 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2766 * vcpu. Call it here with phys address pointing 16M below 4G.
2768 if (!vcpu->kvm->arch.tss_addr) {
2769 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2770 "called before entering vcpu\n");
2771 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2772 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2773 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2776 vmx_segment_cache_clear(vmx);
2778 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2779 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2780 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2782 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2783 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2785 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2786 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2788 flags = vmcs_readl(GUEST_RFLAGS);
2789 vmx->rmode.save_rflags = flags;
2791 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2793 vmcs_writel(GUEST_RFLAGS, flags);
2794 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2795 update_exception_bitmap(vcpu);
2797 if (emulate_invalid_guest_state)
2798 goto continue_rmode;
2800 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2801 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2802 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2804 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2805 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2806 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2807 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2808 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2810 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2811 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2812 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2813 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2815 continue_rmode:
2816 kvm_mmu_reset_context(vcpu);
2819 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2821 struct vcpu_vmx *vmx = to_vmx(vcpu);
2822 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2824 if (!msr)
2825 return;
2828 * Force kernel_gs_base reloading before EFER changes, as control
2829 * of this msr depends on is_long_mode().
2831 vmx_load_host_state(to_vmx(vcpu));
2832 vcpu->arch.efer = efer;
2833 if (efer & EFER_LMA) {
2834 vmcs_write32(VM_ENTRY_CONTROLS,
2835 vmcs_read32(VM_ENTRY_CONTROLS) |
2836 VM_ENTRY_IA32E_MODE);
2837 msr->data = efer;
2838 } else {
2839 vmcs_write32(VM_ENTRY_CONTROLS,
2840 vmcs_read32(VM_ENTRY_CONTROLS) &
2841 ~VM_ENTRY_IA32E_MODE);
2843 msr->data = efer & ~EFER_LME;
2845 setup_msrs(vmx);
2848 #ifdef CONFIG_X86_64
2850 static void enter_lmode(struct kvm_vcpu *vcpu)
2852 u32 guest_tr_ar;
2854 vmx_segment_cache_clear(to_vmx(vcpu));
2856 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2857 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2858 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2859 __func__);
2860 vmcs_write32(GUEST_TR_AR_BYTES,
2861 (guest_tr_ar & ~AR_TYPE_MASK)
2862 | AR_TYPE_BUSY_64_TSS);
2864 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2867 static void exit_lmode(struct kvm_vcpu *vcpu)
2869 vmcs_write32(VM_ENTRY_CONTROLS,
2870 vmcs_read32(VM_ENTRY_CONTROLS)
2871 & ~VM_ENTRY_IA32E_MODE);
2872 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2875 #endif
2877 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2879 vpid_sync_context(to_vmx(vcpu));
2880 if (enable_ept) {
2881 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2882 return;
2883 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2887 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2889 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2891 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2892 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2895 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2897 if (enable_ept && is_paging(vcpu))
2898 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2899 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2902 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2904 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2906 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2907 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2910 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2912 if (!test_bit(VCPU_EXREG_PDPTR,
2913 (unsigned long *)&vcpu->arch.regs_dirty))
2914 return;
2916 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2917 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2918 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2919 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2920 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2924 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2926 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2927 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2928 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2929 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2930 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2933 __set_bit(VCPU_EXREG_PDPTR,
2934 (unsigned long *)&vcpu->arch.regs_avail);
2935 __set_bit(VCPU_EXREG_PDPTR,
2936 (unsigned long *)&vcpu->arch.regs_dirty);
2939 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2941 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2942 unsigned long cr0,
2943 struct kvm_vcpu *vcpu)
2945 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2946 vmx_decache_cr3(vcpu);
2947 if (!(cr0 & X86_CR0_PG)) {
2948 /* From paging/starting to nonpaging */
2949 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2950 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2951 (CPU_BASED_CR3_LOAD_EXITING |
2952 CPU_BASED_CR3_STORE_EXITING));
2953 vcpu->arch.cr0 = cr0;
2954 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2955 } else if (!is_paging(vcpu)) {
2956 /* From nonpaging to paging */
2957 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2958 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2959 ~(CPU_BASED_CR3_LOAD_EXITING |
2960 CPU_BASED_CR3_STORE_EXITING));
2961 vcpu->arch.cr0 = cr0;
2962 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2965 if (!(cr0 & X86_CR0_WP))
2966 *hw_cr0 &= ~X86_CR0_WP;
2969 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2971 struct vcpu_vmx *vmx = to_vmx(vcpu);
2972 unsigned long hw_cr0;
2974 if (enable_unrestricted_guest)
2975 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2976 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2977 else
2978 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2980 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2981 enter_pmode(vcpu);
2983 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2984 enter_rmode(vcpu);
2986 #ifdef CONFIG_X86_64
2987 if (vcpu->arch.efer & EFER_LME) {
2988 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2989 enter_lmode(vcpu);
2990 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2991 exit_lmode(vcpu);
2993 #endif
2995 if (enable_ept)
2996 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2998 if (!vcpu->fpu_active)
2999 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3001 vmcs_writel(CR0_READ_SHADOW, cr0);
3002 vmcs_writel(GUEST_CR0, hw_cr0);
3003 vcpu->arch.cr0 = cr0;
3004 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3007 static u64 construct_eptp(unsigned long root_hpa)
3009 u64 eptp;
3011 /* TODO write the value reading from MSR */
3012 eptp = VMX_EPT_DEFAULT_MT |
3013 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3014 eptp |= (root_hpa & PAGE_MASK);
3016 return eptp;
3019 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3021 unsigned long guest_cr3;
3022 u64 eptp;
3024 guest_cr3 = cr3;
3025 if (enable_ept) {
3026 eptp = construct_eptp(cr3);
3027 vmcs_write64(EPT_POINTER, eptp);
3028 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3029 vcpu->kvm->arch.ept_identity_map_addr;
3030 ept_load_pdptrs(vcpu);
3033 vmx_flush_tlb(vcpu);
3034 vmcs_writel(GUEST_CR3, guest_cr3);
3037 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3039 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3040 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3042 if (cr4 & X86_CR4_VMXE) {
3044 * To use VMXON (and later other VMX instructions), a guest
3045 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3046 * So basically the check on whether to allow nested VMX
3047 * is here.
3049 if (!nested_vmx_allowed(vcpu))
3050 return 1;
3051 } else if (to_vmx(vcpu)->nested.vmxon)
3052 return 1;
3054 vcpu->arch.cr4 = cr4;
3055 if (enable_ept) {
3056 if (!is_paging(vcpu)) {
3057 hw_cr4 &= ~X86_CR4_PAE;
3058 hw_cr4 |= X86_CR4_PSE;
3059 } else if (!(cr4 & X86_CR4_PAE)) {
3060 hw_cr4 &= ~X86_CR4_PAE;
3064 vmcs_writel(CR4_READ_SHADOW, cr4);
3065 vmcs_writel(GUEST_CR4, hw_cr4);
3066 return 0;
3069 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3070 struct kvm_segment *var, int seg)
3072 struct vcpu_vmx *vmx = to_vmx(vcpu);
3073 struct kvm_save_segment *save;
3074 u32 ar;
3076 if (vmx->rmode.vm86_active
3077 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3078 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3079 || seg == VCPU_SREG_GS)
3080 && !emulate_invalid_guest_state) {
3081 switch (seg) {
3082 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3083 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3084 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3085 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3086 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3087 default: BUG();
3089 var->selector = save->selector;
3090 var->base = save->base;
3091 var->limit = save->limit;
3092 ar = save->ar;
3093 if (seg == VCPU_SREG_TR
3094 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3095 goto use_saved_rmode_seg;
3097 var->base = vmx_read_guest_seg_base(vmx, seg);
3098 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3099 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3100 ar = vmx_read_guest_seg_ar(vmx, seg);
3101 use_saved_rmode_seg:
3102 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3103 ar = 0;
3104 var->type = ar & 15;
3105 var->s = (ar >> 4) & 1;
3106 var->dpl = (ar >> 5) & 3;
3107 var->present = (ar >> 7) & 1;
3108 var->avl = (ar >> 12) & 1;
3109 var->l = (ar >> 13) & 1;
3110 var->db = (ar >> 14) & 1;
3111 var->g = (ar >> 15) & 1;
3112 var->unusable = (ar >> 16) & 1;
3115 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3117 struct kvm_segment s;
3119 if (to_vmx(vcpu)->rmode.vm86_active) {
3120 vmx_get_segment(vcpu, &s, seg);
3121 return s.base;
3123 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3126 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3128 if (!is_protmode(vcpu))
3129 return 0;
3131 if (!is_long_mode(vcpu)
3132 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3133 return 3;
3135 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3138 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3140 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3141 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3142 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3144 return to_vmx(vcpu)->cpl;
3148 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3150 u32 ar;
3152 if (var->unusable)
3153 ar = 1 << 16;
3154 else {
3155 ar = var->type & 15;
3156 ar |= (var->s & 1) << 4;
3157 ar |= (var->dpl & 3) << 5;
3158 ar |= (var->present & 1) << 7;
3159 ar |= (var->avl & 1) << 12;
3160 ar |= (var->l & 1) << 13;
3161 ar |= (var->db & 1) << 14;
3162 ar |= (var->g & 1) << 15;
3164 if (ar == 0) /* a 0 value means unusable */
3165 ar = AR_UNUSABLE_MASK;
3167 return ar;
3170 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3171 struct kvm_segment *var, int seg)
3173 struct vcpu_vmx *vmx = to_vmx(vcpu);
3174 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3175 u32 ar;
3177 vmx_segment_cache_clear(vmx);
3179 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3180 vmcs_write16(sf->selector, var->selector);
3181 vmx->rmode.tr.selector = var->selector;
3182 vmx->rmode.tr.base = var->base;
3183 vmx->rmode.tr.limit = var->limit;
3184 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3185 return;
3187 vmcs_writel(sf->base, var->base);
3188 vmcs_write32(sf->limit, var->limit);
3189 vmcs_write16(sf->selector, var->selector);
3190 if (vmx->rmode.vm86_active && var->s) {
3192 * Hack real-mode segments into vm86 compatibility.
3194 if (var->base == 0xffff0000 && var->selector == 0xf000)
3195 vmcs_writel(sf->base, 0xf0000);
3196 ar = 0xf3;
3197 } else
3198 ar = vmx_segment_access_rights(var);
3201 * Fix the "Accessed" bit in AR field of segment registers for older
3202 * qemu binaries.
3203 * IA32 arch specifies that at the time of processor reset the
3204 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3205 * is setting it to 0 in the usedland code. This causes invalid guest
3206 * state vmexit when "unrestricted guest" mode is turned on.
3207 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3208 * tree. Newer qemu binaries with that qemu fix would not need this
3209 * kvm hack.
3211 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3212 ar |= 0x1; /* Accessed */
3214 vmcs_write32(sf->ar_bytes, ar);
3215 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3218 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3220 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3222 *db = (ar >> 14) & 1;
3223 *l = (ar >> 13) & 1;
3226 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3228 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3229 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3232 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3234 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3235 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3238 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3240 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3241 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3244 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3246 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3247 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3250 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3252 struct kvm_segment var;
3253 u32 ar;
3255 vmx_get_segment(vcpu, &var, seg);
3256 ar = vmx_segment_access_rights(&var);
3258 if (var.base != (var.selector << 4))
3259 return false;
3260 if (var.limit != 0xffff)
3261 return false;
3262 if (ar != 0xf3)
3263 return false;
3265 return true;
3268 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3270 struct kvm_segment cs;
3271 unsigned int cs_rpl;
3273 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3274 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3276 if (cs.unusable)
3277 return false;
3278 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3279 return false;
3280 if (!cs.s)
3281 return false;
3282 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3283 if (cs.dpl > cs_rpl)
3284 return false;
3285 } else {
3286 if (cs.dpl != cs_rpl)
3287 return false;
3289 if (!cs.present)
3290 return false;
3292 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3293 return true;
3296 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3298 struct kvm_segment ss;
3299 unsigned int ss_rpl;
3301 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3302 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3304 if (ss.unusable)
3305 return true;
3306 if (ss.type != 3 && ss.type != 7)
3307 return false;
3308 if (!ss.s)
3309 return false;
3310 if (ss.dpl != ss_rpl) /* DPL != RPL */
3311 return false;
3312 if (!ss.present)
3313 return false;
3315 return true;
3318 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3320 struct kvm_segment var;
3321 unsigned int rpl;
3323 vmx_get_segment(vcpu, &var, seg);
3324 rpl = var.selector & SELECTOR_RPL_MASK;
3326 if (var.unusable)
3327 return true;
3328 if (!var.s)
3329 return false;
3330 if (!var.present)
3331 return false;
3332 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3333 if (var.dpl < rpl) /* DPL < RPL */
3334 return false;
3337 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3338 * rights flags
3340 return true;
3343 static bool tr_valid(struct kvm_vcpu *vcpu)
3345 struct kvm_segment tr;
3347 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3349 if (tr.unusable)
3350 return false;
3351 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3352 return false;
3353 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3354 return false;
3355 if (!tr.present)
3356 return false;
3358 return true;
3361 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3363 struct kvm_segment ldtr;
3365 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3367 if (ldtr.unusable)
3368 return true;
3369 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3370 return false;
3371 if (ldtr.type != 2)
3372 return false;
3373 if (!ldtr.present)
3374 return false;
3376 return true;
3379 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3381 struct kvm_segment cs, ss;
3383 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3384 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3386 return ((cs.selector & SELECTOR_RPL_MASK) ==
3387 (ss.selector & SELECTOR_RPL_MASK));
3391 * Check if guest state is valid. Returns true if valid, false if
3392 * not.
3393 * We assume that registers are always usable
3395 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3397 /* real mode guest state checks */
3398 if (!is_protmode(vcpu)) {
3399 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3400 return false;
3401 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3402 return false;
3403 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3404 return false;
3405 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3406 return false;
3407 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3408 return false;
3409 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3410 return false;
3411 } else {
3412 /* protected mode guest state checks */
3413 if (!cs_ss_rpl_check(vcpu))
3414 return false;
3415 if (!code_segment_valid(vcpu))
3416 return false;
3417 if (!stack_segment_valid(vcpu))
3418 return false;
3419 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3420 return false;
3421 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3422 return false;
3423 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3424 return false;
3425 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3426 return false;
3427 if (!tr_valid(vcpu))
3428 return false;
3429 if (!ldtr_valid(vcpu))
3430 return false;
3432 /* TODO:
3433 * - Add checks on RIP
3434 * - Add checks on RFLAGS
3437 return true;
3440 static int init_rmode_tss(struct kvm *kvm)
3442 gfn_t fn;
3443 u16 data = 0;
3444 int r, idx, ret = 0;
3446 idx = srcu_read_lock(&kvm->srcu);
3447 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3448 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3449 if (r < 0)
3450 goto out;
3451 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3452 r = kvm_write_guest_page(kvm, fn++, &data,
3453 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3454 if (r < 0)
3455 goto out;
3456 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3457 if (r < 0)
3458 goto out;
3459 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3460 if (r < 0)
3461 goto out;
3462 data = ~0;
3463 r = kvm_write_guest_page(kvm, fn, &data,
3464 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3465 sizeof(u8));
3466 if (r < 0)
3467 goto out;
3469 ret = 1;
3470 out:
3471 srcu_read_unlock(&kvm->srcu, idx);
3472 return ret;
3475 static int init_rmode_identity_map(struct kvm *kvm)
3477 int i, idx, r, ret;
3478 pfn_t identity_map_pfn;
3479 u32 tmp;
3481 if (!enable_ept)
3482 return 1;
3483 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3484 printk(KERN_ERR "EPT: identity-mapping pagetable "
3485 "haven't been allocated!\n");
3486 return 0;
3488 if (likely(kvm->arch.ept_identity_pagetable_done))
3489 return 1;
3490 ret = 0;
3491 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3492 idx = srcu_read_lock(&kvm->srcu);
3493 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3494 if (r < 0)
3495 goto out;
3496 /* Set up identity-mapping pagetable for EPT in real mode */
3497 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3498 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3499 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3500 r = kvm_write_guest_page(kvm, identity_map_pfn,
3501 &tmp, i * sizeof(tmp), sizeof(tmp));
3502 if (r < 0)
3503 goto out;
3505 kvm->arch.ept_identity_pagetable_done = true;
3506 ret = 1;
3507 out:
3508 srcu_read_unlock(&kvm->srcu, idx);
3509 return ret;
3512 static void seg_setup(int seg)
3514 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3515 unsigned int ar;
3517 vmcs_write16(sf->selector, 0);
3518 vmcs_writel(sf->base, 0);
3519 vmcs_write32(sf->limit, 0xffff);
3520 if (enable_unrestricted_guest) {
3521 ar = 0x93;
3522 if (seg == VCPU_SREG_CS)
3523 ar |= 0x08; /* code segment */
3524 } else
3525 ar = 0xf3;
3527 vmcs_write32(sf->ar_bytes, ar);
3530 static int alloc_apic_access_page(struct kvm *kvm)
3532 struct kvm_userspace_memory_region kvm_userspace_mem;
3533 int r = 0;
3535 mutex_lock(&kvm->slots_lock);
3536 if (kvm->arch.apic_access_page)
3537 goto out;
3538 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3539 kvm_userspace_mem.flags = 0;
3540 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3541 kvm_userspace_mem.memory_size = PAGE_SIZE;
3542 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3543 if (r)
3544 goto out;
3546 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3547 out:
3548 mutex_unlock(&kvm->slots_lock);
3549 return r;
3552 static int alloc_identity_pagetable(struct kvm *kvm)
3554 struct kvm_userspace_memory_region kvm_userspace_mem;
3555 int r = 0;
3557 mutex_lock(&kvm->slots_lock);
3558 if (kvm->arch.ept_identity_pagetable)
3559 goto out;
3560 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3561 kvm_userspace_mem.flags = 0;
3562 kvm_userspace_mem.guest_phys_addr =
3563 kvm->arch.ept_identity_map_addr;
3564 kvm_userspace_mem.memory_size = PAGE_SIZE;
3565 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3566 if (r)
3567 goto out;
3569 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3570 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3571 out:
3572 mutex_unlock(&kvm->slots_lock);
3573 return r;
3576 static void allocate_vpid(struct vcpu_vmx *vmx)
3578 int vpid;
3580 vmx->vpid = 0;
3581 if (!enable_vpid)
3582 return;
3583 spin_lock(&vmx_vpid_lock);
3584 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3585 if (vpid < VMX_NR_VPIDS) {
3586 vmx->vpid = vpid;
3587 __set_bit(vpid, vmx_vpid_bitmap);
3589 spin_unlock(&vmx_vpid_lock);
3592 static void free_vpid(struct vcpu_vmx *vmx)
3594 if (!enable_vpid)
3595 return;
3596 spin_lock(&vmx_vpid_lock);
3597 if (vmx->vpid != 0)
3598 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3599 spin_unlock(&vmx_vpid_lock);
3602 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3604 int f = sizeof(unsigned long);
3606 if (!cpu_has_vmx_msr_bitmap())
3607 return;
3610 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3611 * have the write-low and read-high bitmap offsets the wrong way round.
3612 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3614 if (msr <= 0x1fff) {
3615 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3616 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3617 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3618 msr &= 0x1fff;
3619 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3620 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3624 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3626 if (!longmode_only)
3627 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3628 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3632 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3633 * will not change in the lifetime of the guest.
3634 * Note that host-state that does change is set elsewhere. E.g., host-state
3635 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3637 static void vmx_set_constant_host_state(void)
3639 u32 low32, high32;
3640 unsigned long tmpl;
3641 struct desc_ptr dt;
3643 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3644 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3645 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3647 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3648 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3649 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3650 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3651 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3653 native_store_idt(&dt);
3654 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3656 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3657 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3659 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3660 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3661 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3662 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3664 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3665 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3666 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3670 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3672 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3673 if (enable_ept)
3674 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3675 if (is_guest_mode(&vmx->vcpu))
3676 vmx->vcpu.arch.cr4_guest_owned_bits &=
3677 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3678 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3681 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3683 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3684 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3685 exec_control &= ~CPU_BASED_TPR_SHADOW;
3686 #ifdef CONFIG_X86_64
3687 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3688 CPU_BASED_CR8_LOAD_EXITING;
3689 #endif
3691 if (!enable_ept)
3692 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3693 CPU_BASED_CR3_LOAD_EXITING |
3694 CPU_BASED_INVLPG_EXITING;
3695 return exec_control;
3698 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3700 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3701 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3702 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3703 if (vmx->vpid == 0)
3704 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3705 if (!enable_ept) {
3706 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3707 enable_unrestricted_guest = 0;
3709 if (!enable_unrestricted_guest)
3710 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3711 if (!ple_gap)
3712 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3713 return exec_control;
3716 static void ept_set_mmio_spte_mask(void)
3719 * EPT Misconfigurations can be generated if the value of bits 2:0
3720 * of an EPT paging-structure entry is 110b (write/execute).
3721 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3722 * spte.
3724 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3728 * Sets up the vmcs for emulated real mode.
3730 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3732 #ifdef CONFIG_X86_64
3733 unsigned long a;
3734 #endif
3735 int i;
3737 /* I/O */
3738 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3739 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3741 if (cpu_has_vmx_msr_bitmap())
3742 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3744 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3746 /* Control */
3747 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3748 vmcs_config.pin_based_exec_ctrl);
3750 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3752 if (cpu_has_secondary_exec_ctrls()) {
3753 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3754 vmx_secondary_exec_control(vmx));
3757 if (ple_gap) {
3758 vmcs_write32(PLE_GAP, ple_gap);
3759 vmcs_write32(PLE_WINDOW, ple_window);
3762 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3764 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3766 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3767 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
3768 vmx_set_constant_host_state();
3769 #ifdef CONFIG_X86_64
3770 rdmsrl(MSR_FS_BASE, a);
3771 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3772 rdmsrl(MSR_GS_BASE, a);
3773 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3774 #else
3775 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3776 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3777 #endif
3779 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3780 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3781 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3782 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3783 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3785 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3786 u32 msr_low, msr_high;
3787 u64 host_pat;
3788 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3789 host_pat = msr_low | ((u64) msr_high << 32);
3790 /* Write the default value follow host pat */
3791 vmcs_write64(GUEST_IA32_PAT, host_pat);
3792 /* Keep arch.pat sync with GUEST_IA32_PAT */
3793 vmx->vcpu.arch.pat = host_pat;
3796 for (i = 0; i < NR_VMX_MSR; ++i) {
3797 u32 index = vmx_msr_index[i];
3798 u32 data_low, data_high;
3799 int j = vmx->nmsrs;
3801 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3802 continue;
3803 if (wrmsr_safe(index, data_low, data_high) < 0)
3804 continue;
3805 vmx->guest_msrs[j].index = i;
3806 vmx->guest_msrs[j].data = 0;
3807 vmx->guest_msrs[j].mask = -1ull;
3808 ++vmx->nmsrs;
3811 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3813 /* 22.2.1, 20.8.1 */
3814 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3816 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3817 set_cr4_guest_host_mask(vmx);
3819 kvm_write_tsc(&vmx->vcpu, 0);
3821 return 0;
3824 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3826 struct vcpu_vmx *vmx = to_vmx(vcpu);
3827 u64 msr;
3828 int ret;
3830 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3832 vmx->rmode.vm86_active = 0;
3834 vmx->soft_vnmi_blocked = 0;
3836 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3837 kvm_set_cr8(&vmx->vcpu, 0);
3838 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3839 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3840 msr |= MSR_IA32_APICBASE_BSP;
3841 kvm_set_apic_base(&vmx->vcpu, msr);
3843 ret = fx_init(&vmx->vcpu);
3844 if (ret != 0)
3845 goto out;
3847 vmx_segment_cache_clear(vmx);
3849 seg_setup(VCPU_SREG_CS);
3851 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3852 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3854 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3855 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3856 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3857 } else {
3858 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3859 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3862 seg_setup(VCPU_SREG_DS);
3863 seg_setup(VCPU_SREG_ES);
3864 seg_setup(VCPU_SREG_FS);
3865 seg_setup(VCPU_SREG_GS);
3866 seg_setup(VCPU_SREG_SS);
3868 vmcs_write16(GUEST_TR_SELECTOR, 0);
3869 vmcs_writel(GUEST_TR_BASE, 0);
3870 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3871 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3873 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3874 vmcs_writel(GUEST_LDTR_BASE, 0);
3875 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3876 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3878 vmcs_write32(GUEST_SYSENTER_CS, 0);
3879 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3880 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3882 vmcs_writel(GUEST_RFLAGS, 0x02);
3883 if (kvm_vcpu_is_bsp(&vmx->vcpu))
3884 kvm_rip_write(vcpu, 0xfff0);
3885 else
3886 kvm_rip_write(vcpu, 0);
3887 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3889 vmcs_writel(GUEST_DR7, 0x400);
3891 vmcs_writel(GUEST_GDTR_BASE, 0);
3892 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3894 vmcs_writel(GUEST_IDTR_BASE, 0);
3895 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3897 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3898 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3899 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3901 /* Special registers */
3902 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3904 setup_msrs(vmx);
3906 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3908 if (cpu_has_vmx_tpr_shadow()) {
3909 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3910 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3911 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3912 __pa(vmx->vcpu.arch.apic->regs));
3913 vmcs_write32(TPR_THRESHOLD, 0);
3916 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3917 vmcs_write64(APIC_ACCESS_ADDR,
3918 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3920 if (vmx->vpid != 0)
3921 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3923 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3924 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3925 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3926 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3927 vmx_set_cr4(&vmx->vcpu, 0);
3928 vmx_set_efer(&vmx->vcpu, 0);
3929 vmx_fpu_activate(&vmx->vcpu);
3930 update_exception_bitmap(&vmx->vcpu);
3932 vpid_sync_context(vmx);
3934 ret = 0;
3936 /* HACK: Don't enable emulation on guest boot/reset */
3937 vmx->emulation_required = 0;
3939 out:
3940 return ret;
3944 * In nested virtualization, check if L1 asked to exit on external interrupts.
3945 * For most existing hypervisors, this will always return true.
3947 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3949 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3950 PIN_BASED_EXT_INTR_MASK;
3953 static void enable_irq_window(struct kvm_vcpu *vcpu)
3955 u32 cpu_based_vm_exec_control;
3956 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3958 * We get here if vmx_interrupt_allowed() said we can't
3959 * inject to L1 now because L2 must run. Ask L2 to exit
3960 * right after entry, so we can inject to L1 more promptly.
3962 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
3963 return;
3966 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3967 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3968 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3971 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3973 u32 cpu_based_vm_exec_control;
3975 if (!cpu_has_virtual_nmis()) {
3976 enable_irq_window(vcpu);
3977 return;
3980 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3981 enable_irq_window(vcpu);
3982 return;
3984 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3985 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3986 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3989 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3991 struct vcpu_vmx *vmx = to_vmx(vcpu);
3992 uint32_t intr;
3993 int irq = vcpu->arch.interrupt.nr;
3995 trace_kvm_inj_virq(irq);
3997 ++vcpu->stat.irq_injections;
3998 if (vmx->rmode.vm86_active) {
3999 int inc_eip = 0;
4000 if (vcpu->arch.interrupt.soft)
4001 inc_eip = vcpu->arch.event_exit_inst_len;
4002 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4003 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4004 return;
4006 intr = irq | INTR_INFO_VALID_MASK;
4007 if (vcpu->arch.interrupt.soft) {
4008 intr |= INTR_TYPE_SOFT_INTR;
4009 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4010 vmx->vcpu.arch.event_exit_inst_len);
4011 } else
4012 intr |= INTR_TYPE_EXT_INTR;
4013 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4014 vmx_clear_hlt(vcpu);
4017 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4019 struct vcpu_vmx *vmx = to_vmx(vcpu);
4021 if (is_guest_mode(vcpu))
4022 return;
4024 if (!cpu_has_virtual_nmis()) {
4026 * Tracking the NMI-blocked state in software is built upon
4027 * finding the next open IRQ window. This, in turn, depends on
4028 * well-behaving guests: They have to keep IRQs disabled at
4029 * least as long as the NMI handler runs. Otherwise we may
4030 * cause NMI nesting, maybe breaking the guest. But as this is
4031 * highly unlikely, we can live with the residual risk.
4033 vmx->soft_vnmi_blocked = 1;
4034 vmx->vnmi_blocked_time = 0;
4037 ++vcpu->stat.nmi_injections;
4038 vmx->nmi_known_unmasked = false;
4039 if (vmx->rmode.vm86_active) {
4040 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4041 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4042 return;
4044 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4045 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4046 vmx_clear_hlt(vcpu);
4049 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4051 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4052 return 0;
4054 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4055 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4056 | GUEST_INTR_STATE_NMI));
4059 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4061 if (!cpu_has_virtual_nmis())
4062 return to_vmx(vcpu)->soft_vnmi_blocked;
4063 if (to_vmx(vcpu)->nmi_known_unmasked)
4064 return false;
4065 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4068 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4070 struct vcpu_vmx *vmx = to_vmx(vcpu);
4072 if (!cpu_has_virtual_nmis()) {
4073 if (vmx->soft_vnmi_blocked != masked) {
4074 vmx->soft_vnmi_blocked = masked;
4075 vmx->vnmi_blocked_time = 0;
4077 } else {
4078 vmx->nmi_known_unmasked = !masked;
4079 if (masked)
4080 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4081 GUEST_INTR_STATE_NMI);
4082 else
4083 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4084 GUEST_INTR_STATE_NMI);
4088 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4090 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4091 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4092 if (to_vmx(vcpu)->nested.nested_run_pending ||
4093 (vmcs12->idt_vectoring_info_field &
4094 VECTORING_INFO_VALID_MASK))
4095 return 0;
4096 nested_vmx_vmexit(vcpu);
4097 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4098 vmcs12->vm_exit_intr_info = 0;
4099 /* fall through to normal code, but now in L1, not L2 */
4102 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4103 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4104 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4107 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4109 int ret;
4110 struct kvm_userspace_memory_region tss_mem = {
4111 .slot = TSS_PRIVATE_MEMSLOT,
4112 .guest_phys_addr = addr,
4113 .memory_size = PAGE_SIZE * 3,
4114 .flags = 0,
4117 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4118 if (ret)
4119 return ret;
4120 kvm->arch.tss_addr = addr;
4121 if (!init_rmode_tss(kvm))
4122 return -ENOMEM;
4124 return 0;
4127 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4128 int vec, u32 err_code)
4131 * Instruction with address size override prefix opcode 0x67
4132 * Cause the #SS fault with 0 error code in VM86 mode.
4134 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4135 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4136 return 1;
4138 * Forward all other exceptions that are valid in real mode.
4139 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4140 * the required debugging infrastructure rework.
4142 switch (vec) {
4143 case DB_VECTOR:
4144 if (vcpu->guest_debug &
4145 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4146 return 0;
4147 kvm_queue_exception(vcpu, vec);
4148 return 1;
4149 case BP_VECTOR:
4151 * Update instruction length as we may reinject the exception
4152 * from user space while in guest debugging mode.
4154 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4155 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4156 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4157 return 0;
4158 /* fall through */
4159 case DE_VECTOR:
4160 case OF_VECTOR:
4161 case BR_VECTOR:
4162 case UD_VECTOR:
4163 case DF_VECTOR:
4164 case SS_VECTOR:
4165 case GP_VECTOR:
4166 case MF_VECTOR:
4167 kvm_queue_exception(vcpu, vec);
4168 return 1;
4170 return 0;
4174 * Trigger machine check on the host. We assume all the MSRs are already set up
4175 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4176 * We pass a fake environment to the machine check handler because we want
4177 * the guest to be always treated like user space, no matter what context
4178 * it used internally.
4180 static void kvm_machine_check(void)
4182 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4183 struct pt_regs regs = {
4184 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4185 .flags = X86_EFLAGS_IF,
4188 do_machine_check(&regs, 0);
4189 #endif
4192 static int handle_machine_check(struct kvm_vcpu *vcpu)
4194 /* already handled by vcpu_run */
4195 return 1;
4198 static int handle_exception(struct kvm_vcpu *vcpu)
4200 struct vcpu_vmx *vmx = to_vmx(vcpu);
4201 struct kvm_run *kvm_run = vcpu->run;
4202 u32 intr_info, ex_no, error_code;
4203 unsigned long cr2, rip, dr6;
4204 u32 vect_info;
4205 enum emulation_result er;
4207 vect_info = vmx->idt_vectoring_info;
4208 intr_info = vmx->exit_intr_info;
4210 if (is_machine_check(intr_info))
4211 return handle_machine_check(vcpu);
4213 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4214 !is_page_fault(intr_info)) {
4215 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4216 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4217 vcpu->run->internal.ndata = 2;
4218 vcpu->run->internal.data[0] = vect_info;
4219 vcpu->run->internal.data[1] = intr_info;
4220 return 0;
4223 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4224 return 1; /* already handled by vmx_vcpu_run() */
4226 if (is_no_device(intr_info)) {
4227 vmx_fpu_activate(vcpu);
4228 return 1;
4231 if (is_invalid_opcode(intr_info)) {
4232 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4233 if (er != EMULATE_DONE)
4234 kvm_queue_exception(vcpu, UD_VECTOR);
4235 return 1;
4238 error_code = 0;
4239 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4240 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4241 if (is_page_fault(intr_info)) {
4242 /* EPT won't cause page fault directly */
4243 BUG_ON(enable_ept);
4244 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4245 trace_kvm_page_fault(cr2, error_code);
4247 if (kvm_event_needs_reinjection(vcpu))
4248 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4249 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4252 if (vmx->rmode.vm86_active &&
4253 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4254 error_code)) {
4255 if (vcpu->arch.halt_request) {
4256 vcpu->arch.halt_request = 0;
4257 return kvm_emulate_halt(vcpu);
4259 return 1;
4262 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4263 switch (ex_no) {
4264 case DB_VECTOR:
4265 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4266 if (!(vcpu->guest_debug &
4267 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4268 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4269 kvm_queue_exception(vcpu, DB_VECTOR);
4270 return 1;
4272 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4273 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4274 /* fall through */
4275 case BP_VECTOR:
4277 * Update instruction length as we may reinject #BP from
4278 * user space while in guest debugging mode. Reading it for
4279 * #DB as well causes no harm, it is not used in that case.
4281 vmx->vcpu.arch.event_exit_inst_len =
4282 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4283 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4284 rip = kvm_rip_read(vcpu);
4285 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4286 kvm_run->debug.arch.exception = ex_no;
4287 break;
4288 default:
4289 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4290 kvm_run->ex.exception = ex_no;
4291 kvm_run->ex.error_code = error_code;
4292 break;
4294 return 0;
4297 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4299 ++vcpu->stat.irq_exits;
4300 return 1;
4303 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4305 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4306 return 0;
4309 static int handle_io(struct kvm_vcpu *vcpu)
4311 unsigned long exit_qualification;
4312 int size, in, string;
4313 unsigned port;
4315 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4316 string = (exit_qualification & 16) != 0;
4317 in = (exit_qualification & 8) != 0;
4319 ++vcpu->stat.io_exits;
4321 if (string || in)
4322 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4324 port = exit_qualification >> 16;
4325 size = (exit_qualification & 7) + 1;
4326 skip_emulated_instruction(vcpu);
4328 return kvm_fast_pio_out(vcpu, size, port);
4331 static void
4332 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4335 * Patch in the VMCALL instruction:
4337 hypercall[0] = 0x0f;
4338 hypercall[1] = 0x01;
4339 hypercall[2] = 0xc1;
4342 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
4343 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4345 if (to_vmx(vcpu)->nested.vmxon &&
4346 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4347 return 1;
4349 if (is_guest_mode(vcpu)) {
4351 * We get here when L2 changed cr0 in a way that did not change
4352 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4353 * but did change L0 shadowed bits. This can currently happen
4354 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4355 * loading) while pretending to allow the guest to change it.
4357 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4358 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4359 return 1;
4360 vmcs_writel(CR0_READ_SHADOW, val);
4361 return 0;
4362 } else
4363 return kvm_set_cr0(vcpu, val);
4366 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4368 if (is_guest_mode(vcpu)) {
4369 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4370 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4371 return 1;
4372 vmcs_writel(CR4_READ_SHADOW, val);
4373 return 0;
4374 } else
4375 return kvm_set_cr4(vcpu, val);
4378 /* called to set cr0 as approriate for clts instruction exit. */
4379 static void handle_clts(struct kvm_vcpu *vcpu)
4381 if (is_guest_mode(vcpu)) {
4383 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4384 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4385 * just pretend it's off (also in arch.cr0 for fpu_activate).
4387 vmcs_writel(CR0_READ_SHADOW,
4388 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4389 vcpu->arch.cr0 &= ~X86_CR0_TS;
4390 } else
4391 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4394 static int handle_cr(struct kvm_vcpu *vcpu)
4396 unsigned long exit_qualification, val;
4397 int cr;
4398 int reg;
4399 int err;
4401 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4402 cr = exit_qualification & 15;
4403 reg = (exit_qualification >> 8) & 15;
4404 switch ((exit_qualification >> 4) & 3) {
4405 case 0: /* mov to cr */
4406 val = kvm_register_read(vcpu, reg);
4407 trace_kvm_cr_write(cr, val);
4408 switch (cr) {
4409 case 0:
4410 err = handle_set_cr0(vcpu, val);
4411 kvm_complete_insn_gp(vcpu, err);
4412 return 1;
4413 case 3:
4414 err = kvm_set_cr3(vcpu, val);
4415 kvm_complete_insn_gp(vcpu, err);
4416 return 1;
4417 case 4:
4418 err = handle_set_cr4(vcpu, val);
4419 kvm_complete_insn_gp(vcpu, err);
4420 return 1;
4421 case 8: {
4422 u8 cr8_prev = kvm_get_cr8(vcpu);
4423 u8 cr8 = kvm_register_read(vcpu, reg);
4424 err = kvm_set_cr8(vcpu, cr8);
4425 kvm_complete_insn_gp(vcpu, err);
4426 if (irqchip_in_kernel(vcpu->kvm))
4427 return 1;
4428 if (cr8_prev <= cr8)
4429 return 1;
4430 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4431 return 0;
4434 break;
4435 case 2: /* clts */
4436 handle_clts(vcpu);
4437 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4438 skip_emulated_instruction(vcpu);
4439 vmx_fpu_activate(vcpu);
4440 return 1;
4441 case 1: /*mov from cr*/
4442 switch (cr) {
4443 case 3:
4444 val = kvm_read_cr3(vcpu);
4445 kvm_register_write(vcpu, reg, val);
4446 trace_kvm_cr_read(cr, val);
4447 skip_emulated_instruction(vcpu);
4448 return 1;
4449 case 8:
4450 val = kvm_get_cr8(vcpu);
4451 kvm_register_write(vcpu, reg, val);
4452 trace_kvm_cr_read(cr, val);
4453 skip_emulated_instruction(vcpu);
4454 return 1;
4456 break;
4457 case 3: /* lmsw */
4458 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4459 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4460 kvm_lmsw(vcpu, val);
4462 skip_emulated_instruction(vcpu);
4463 return 1;
4464 default:
4465 break;
4467 vcpu->run->exit_reason = 0;
4468 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4469 (int)(exit_qualification >> 4) & 3, cr);
4470 return 0;
4473 static int handle_dr(struct kvm_vcpu *vcpu)
4475 unsigned long exit_qualification;
4476 int dr, reg;
4478 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4479 if (!kvm_require_cpl(vcpu, 0))
4480 return 1;
4481 dr = vmcs_readl(GUEST_DR7);
4482 if (dr & DR7_GD) {
4484 * As the vm-exit takes precedence over the debug trap, we
4485 * need to emulate the latter, either for the host or the
4486 * guest debugging itself.
4488 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4489 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4490 vcpu->run->debug.arch.dr7 = dr;
4491 vcpu->run->debug.arch.pc =
4492 vmcs_readl(GUEST_CS_BASE) +
4493 vmcs_readl(GUEST_RIP);
4494 vcpu->run->debug.arch.exception = DB_VECTOR;
4495 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4496 return 0;
4497 } else {
4498 vcpu->arch.dr7 &= ~DR7_GD;
4499 vcpu->arch.dr6 |= DR6_BD;
4500 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4501 kvm_queue_exception(vcpu, DB_VECTOR);
4502 return 1;
4506 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4507 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4508 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4509 if (exit_qualification & TYPE_MOV_FROM_DR) {
4510 unsigned long val;
4511 if (!kvm_get_dr(vcpu, dr, &val))
4512 kvm_register_write(vcpu, reg, val);
4513 } else
4514 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4515 skip_emulated_instruction(vcpu);
4516 return 1;
4519 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4521 vmcs_writel(GUEST_DR7, val);
4524 static int handle_cpuid(struct kvm_vcpu *vcpu)
4526 kvm_emulate_cpuid(vcpu);
4527 return 1;
4530 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4532 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4533 u64 data;
4535 if (vmx_get_msr(vcpu, ecx, &data)) {
4536 trace_kvm_msr_read_ex(ecx);
4537 kvm_inject_gp(vcpu, 0);
4538 return 1;
4541 trace_kvm_msr_read(ecx, data);
4543 /* FIXME: handling of bits 32:63 of rax, rdx */
4544 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4545 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4546 skip_emulated_instruction(vcpu);
4547 return 1;
4550 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4552 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4553 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4554 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4556 if (vmx_set_msr(vcpu, ecx, data) != 0) {
4557 trace_kvm_msr_write_ex(ecx, data);
4558 kvm_inject_gp(vcpu, 0);
4559 return 1;
4562 trace_kvm_msr_write(ecx, data);
4563 skip_emulated_instruction(vcpu);
4564 return 1;
4567 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4569 kvm_make_request(KVM_REQ_EVENT, vcpu);
4570 return 1;
4573 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4575 u32 cpu_based_vm_exec_control;
4577 /* clear pending irq */
4578 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4579 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4580 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4582 kvm_make_request(KVM_REQ_EVENT, vcpu);
4584 ++vcpu->stat.irq_window_exits;
4587 * If the user space waits to inject interrupts, exit as soon as
4588 * possible
4590 if (!irqchip_in_kernel(vcpu->kvm) &&
4591 vcpu->run->request_interrupt_window &&
4592 !kvm_cpu_has_interrupt(vcpu)) {
4593 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4594 return 0;
4596 return 1;
4599 static int handle_halt(struct kvm_vcpu *vcpu)
4601 skip_emulated_instruction(vcpu);
4602 return kvm_emulate_halt(vcpu);
4605 static int handle_vmcall(struct kvm_vcpu *vcpu)
4607 skip_emulated_instruction(vcpu);
4608 kvm_emulate_hypercall(vcpu);
4609 return 1;
4612 static int handle_invd(struct kvm_vcpu *vcpu)
4614 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4617 static int handle_invlpg(struct kvm_vcpu *vcpu)
4619 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4621 kvm_mmu_invlpg(vcpu, exit_qualification);
4622 skip_emulated_instruction(vcpu);
4623 return 1;
4626 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4628 int err;
4630 err = kvm_rdpmc(vcpu);
4631 kvm_complete_insn_gp(vcpu, err);
4633 return 1;
4636 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4638 skip_emulated_instruction(vcpu);
4639 kvm_emulate_wbinvd(vcpu);
4640 return 1;
4643 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4645 u64 new_bv = kvm_read_edx_eax(vcpu);
4646 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4648 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4649 skip_emulated_instruction(vcpu);
4650 return 1;
4653 static int handle_apic_access(struct kvm_vcpu *vcpu)
4655 if (likely(fasteoi)) {
4656 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4657 int access_type, offset;
4659 access_type = exit_qualification & APIC_ACCESS_TYPE;
4660 offset = exit_qualification & APIC_ACCESS_OFFSET;
4662 * Sane guest uses MOV to write EOI, with written value
4663 * not cared. So make a short-circuit here by avoiding
4664 * heavy instruction emulation.
4666 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4667 (offset == APIC_EOI)) {
4668 kvm_lapic_set_eoi(vcpu);
4669 skip_emulated_instruction(vcpu);
4670 return 1;
4673 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4676 static int handle_task_switch(struct kvm_vcpu *vcpu)
4678 struct vcpu_vmx *vmx = to_vmx(vcpu);
4679 unsigned long exit_qualification;
4680 bool has_error_code = false;
4681 u32 error_code = 0;
4682 u16 tss_selector;
4683 int reason, type, idt_v;
4685 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4686 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4688 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4690 reason = (u32)exit_qualification >> 30;
4691 if (reason == TASK_SWITCH_GATE && idt_v) {
4692 switch (type) {
4693 case INTR_TYPE_NMI_INTR:
4694 vcpu->arch.nmi_injected = false;
4695 vmx_set_nmi_mask(vcpu, true);
4696 break;
4697 case INTR_TYPE_EXT_INTR:
4698 case INTR_TYPE_SOFT_INTR:
4699 kvm_clear_interrupt_queue(vcpu);
4700 break;
4701 case INTR_TYPE_HARD_EXCEPTION:
4702 if (vmx->idt_vectoring_info &
4703 VECTORING_INFO_DELIVER_CODE_MASK) {
4704 has_error_code = true;
4705 error_code =
4706 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4708 /* fall through */
4709 case INTR_TYPE_SOFT_EXCEPTION:
4710 kvm_clear_exception_queue(vcpu);
4711 break;
4712 default:
4713 break;
4716 tss_selector = exit_qualification;
4718 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4719 type != INTR_TYPE_EXT_INTR &&
4720 type != INTR_TYPE_NMI_INTR))
4721 skip_emulated_instruction(vcpu);
4723 if (kvm_task_switch(vcpu, tss_selector, reason,
4724 has_error_code, error_code) == EMULATE_FAIL) {
4725 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4726 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4727 vcpu->run->internal.ndata = 0;
4728 return 0;
4731 /* clear all local breakpoint enable flags */
4732 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4735 * TODO: What about debug traps on tss switch?
4736 * Are we supposed to inject them and update dr6?
4739 return 1;
4742 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4744 unsigned long exit_qualification;
4745 gpa_t gpa;
4746 int gla_validity;
4748 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4750 if (exit_qualification & (1 << 6)) {
4751 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4752 return -EINVAL;
4755 gla_validity = (exit_qualification >> 7) & 0x3;
4756 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4757 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4758 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4759 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4760 vmcs_readl(GUEST_LINEAR_ADDRESS));
4761 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4762 (long unsigned int)exit_qualification);
4763 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4764 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4765 return 0;
4768 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4769 trace_kvm_page_fault(gpa, exit_qualification);
4770 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4773 static u64 ept_rsvd_mask(u64 spte, int level)
4775 int i;
4776 u64 mask = 0;
4778 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4779 mask |= (1ULL << i);
4781 if (level > 2)
4782 /* bits 7:3 reserved */
4783 mask |= 0xf8;
4784 else if (level == 2) {
4785 if (spte & (1ULL << 7))
4786 /* 2MB ref, bits 20:12 reserved */
4787 mask |= 0x1ff000;
4788 else
4789 /* bits 6:3 reserved */
4790 mask |= 0x78;
4793 return mask;
4796 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4797 int level)
4799 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4801 /* 010b (write-only) */
4802 WARN_ON((spte & 0x7) == 0x2);
4804 /* 110b (write/execute) */
4805 WARN_ON((spte & 0x7) == 0x6);
4807 /* 100b (execute-only) and value not supported by logical processor */
4808 if (!cpu_has_vmx_ept_execute_only())
4809 WARN_ON((spte & 0x7) == 0x4);
4811 /* not 000b */
4812 if ((spte & 0x7)) {
4813 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4815 if (rsvd_bits != 0) {
4816 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4817 __func__, rsvd_bits);
4818 WARN_ON(1);
4821 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4822 u64 ept_mem_type = (spte & 0x38) >> 3;
4824 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4825 ept_mem_type == 7) {
4826 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4827 __func__, ept_mem_type);
4828 WARN_ON(1);
4834 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4836 u64 sptes[4];
4837 int nr_sptes, i, ret;
4838 gpa_t gpa;
4840 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4842 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4843 if (likely(ret == 1))
4844 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4845 EMULATE_DONE;
4846 if (unlikely(!ret))
4847 return 1;
4849 /* It is the real ept misconfig */
4850 printk(KERN_ERR "EPT: Misconfiguration.\n");
4851 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4853 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4855 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4856 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4858 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4859 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4861 return 0;
4864 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4866 u32 cpu_based_vm_exec_control;
4868 /* clear pending NMI */
4869 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4870 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4871 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4872 ++vcpu->stat.nmi_window_exits;
4873 kvm_make_request(KVM_REQ_EVENT, vcpu);
4875 return 1;
4878 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4880 struct vcpu_vmx *vmx = to_vmx(vcpu);
4881 enum emulation_result err = EMULATE_DONE;
4882 int ret = 1;
4883 u32 cpu_exec_ctrl;
4884 bool intr_window_requested;
4886 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4887 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4889 while (!guest_state_valid(vcpu)) {
4890 if (intr_window_requested
4891 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4892 return handle_interrupt_window(&vmx->vcpu);
4894 err = emulate_instruction(vcpu, 0);
4896 if (err == EMULATE_DO_MMIO) {
4897 ret = 0;
4898 goto out;
4901 if (err != EMULATE_DONE)
4902 return 0;
4904 if (signal_pending(current))
4905 goto out;
4906 if (need_resched())
4907 schedule();
4910 vmx->emulation_required = 0;
4911 out:
4912 return ret;
4916 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4917 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4919 static int handle_pause(struct kvm_vcpu *vcpu)
4921 skip_emulated_instruction(vcpu);
4922 kvm_vcpu_on_spin(vcpu);
4924 return 1;
4927 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4929 kvm_queue_exception(vcpu, UD_VECTOR);
4930 return 1;
4934 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4935 * We could reuse a single VMCS for all the L2 guests, but we also want the
4936 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4937 * allows keeping them loaded on the processor, and in the future will allow
4938 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4939 * every entry if they never change.
4940 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4941 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4943 * The following functions allocate and free a vmcs02 in this pool.
4946 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4947 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4949 struct vmcs02_list *item;
4950 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4951 if (item->vmptr == vmx->nested.current_vmptr) {
4952 list_move(&item->list, &vmx->nested.vmcs02_pool);
4953 return &item->vmcs02;
4956 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4957 /* Recycle the least recently used VMCS. */
4958 item = list_entry(vmx->nested.vmcs02_pool.prev,
4959 struct vmcs02_list, list);
4960 item->vmptr = vmx->nested.current_vmptr;
4961 list_move(&item->list, &vmx->nested.vmcs02_pool);
4962 return &item->vmcs02;
4965 /* Create a new VMCS */
4966 item = (struct vmcs02_list *)
4967 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4968 if (!item)
4969 return NULL;
4970 item->vmcs02.vmcs = alloc_vmcs();
4971 if (!item->vmcs02.vmcs) {
4972 kfree(item);
4973 return NULL;
4975 loaded_vmcs_init(&item->vmcs02);
4976 item->vmptr = vmx->nested.current_vmptr;
4977 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4978 vmx->nested.vmcs02_num++;
4979 return &item->vmcs02;
4982 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4983 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4985 struct vmcs02_list *item;
4986 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4987 if (item->vmptr == vmptr) {
4988 free_loaded_vmcs(&item->vmcs02);
4989 list_del(&item->list);
4990 kfree(item);
4991 vmx->nested.vmcs02_num--;
4992 return;
4997 * Free all VMCSs saved for this vcpu, except the one pointed by
4998 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4999 * currently used, if running L2), and vmcs01 when running L2.
5001 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5003 struct vmcs02_list *item, *n;
5004 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5005 if (vmx->loaded_vmcs != &item->vmcs02)
5006 free_loaded_vmcs(&item->vmcs02);
5007 list_del(&item->list);
5008 kfree(item);
5010 vmx->nested.vmcs02_num = 0;
5012 if (vmx->loaded_vmcs != &vmx->vmcs01)
5013 free_loaded_vmcs(&vmx->vmcs01);
5017 * Emulate the VMXON instruction.
5018 * Currently, we just remember that VMX is active, and do not save or even
5019 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5020 * do not currently need to store anything in that guest-allocated memory
5021 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5022 * argument is different from the VMXON pointer (which the spec says they do).
5024 static int handle_vmon(struct kvm_vcpu *vcpu)
5026 struct kvm_segment cs;
5027 struct vcpu_vmx *vmx = to_vmx(vcpu);
5029 /* The Intel VMX Instruction Reference lists a bunch of bits that
5030 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5031 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5032 * Otherwise, we should fail with #UD. We test these now:
5034 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5035 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5036 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5037 kvm_queue_exception(vcpu, UD_VECTOR);
5038 return 1;
5041 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5042 if (is_long_mode(vcpu) && !cs.l) {
5043 kvm_queue_exception(vcpu, UD_VECTOR);
5044 return 1;
5047 if (vmx_get_cpl(vcpu)) {
5048 kvm_inject_gp(vcpu, 0);
5049 return 1;
5052 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5053 vmx->nested.vmcs02_num = 0;
5055 vmx->nested.vmxon = true;
5057 skip_emulated_instruction(vcpu);
5058 return 1;
5062 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5063 * for running VMX instructions (except VMXON, whose prerequisites are
5064 * slightly different). It also specifies what exception to inject otherwise.
5066 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5068 struct kvm_segment cs;
5069 struct vcpu_vmx *vmx = to_vmx(vcpu);
5071 if (!vmx->nested.vmxon) {
5072 kvm_queue_exception(vcpu, UD_VECTOR);
5073 return 0;
5076 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5077 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5078 (is_long_mode(vcpu) && !cs.l)) {
5079 kvm_queue_exception(vcpu, UD_VECTOR);
5080 return 0;
5083 if (vmx_get_cpl(vcpu)) {
5084 kvm_inject_gp(vcpu, 0);
5085 return 0;
5088 return 1;
5092 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5093 * just stops using VMX.
5095 static void free_nested(struct vcpu_vmx *vmx)
5097 if (!vmx->nested.vmxon)
5098 return;
5099 vmx->nested.vmxon = false;
5100 if (vmx->nested.current_vmptr != -1ull) {
5101 kunmap(vmx->nested.current_vmcs12_page);
5102 nested_release_page(vmx->nested.current_vmcs12_page);
5103 vmx->nested.current_vmptr = -1ull;
5104 vmx->nested.current_vmcs12 = NULL;
5106 /* Unpin physical memory we referred to in current vmcs02 */
5107 if (vmx->nested.apic_access_page) {
5108 nested_release_page(vmx->nested.apic_access_page);
5109 vmx->nested.apic_access_page = 0;
5112 nested_free_all_saved_vmcss(vmx);
5115 /* Emulate the VMXOFF instruction */
5116 static int handle_vmoff(struct kvm_vcpu *vcpu)
5118 if (!nested_vmx_check_permission(vcpu))
5119 return 1;
5120 free_nested(to_vmx(vcpu));
5121 skip_emulated_instruction(vcpu);
5122 return 1;
5126 * Decode the memory-address operand of a vmx instruction, as recorded on an
5127 * exit caused by such an instruction (run by a guest hypervisor).
5128 * On success, returns 0. When the operand is invalid, returns 1 and throws
5129 * #UD or #GP.
5131 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5132 unsigned long exit_qualification,
5133 u32 vmx_instruction_info, gva_t *ret)
5136 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5137 * Execution", on an exit, vmx_instruction_info holds most of the
5138 * addressing components of the operand. Only the displacement part
5139 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5140 * For how an actual address is calculated from all these components,
5141 * refer to Vol. 1, "Operand Addressing".
5143 int scaling = vmx_instruction_info & 3;
5144 int addr_size = (vmx_instruction_info >> 7) & 7;
5145 bool is_reg = vmx_instruction_info & (1u << 10);
5146 int seg_reg = (vmx_instruction_info >> 15) & 7;
5147 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5148 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5149 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5150 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5152 if (is_reg) {
5153 kvm_queue_exception(vcpu, UD_VECTOR);
5154 return 1;
5157 /* Addr = segment_base + offset */
5158 /* offset = base + [index * scale] + displacement */
5159 *ret = vmx_get_segment_base(vcpu, seg_reg);
5160 if (base_is_valid)
5161 *ret += kvm_register_read(vcpu, base_reg);
5162 if (index_is_valid)
5163 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5164 *ret += exit_qualification; /* holds the displacement */
5166 if (addr_size == 1) /* 32 bit */
5167 *ret &= 0xffffffff;
5170 * TODO: throw #GP (and return 1) in various cases that the VM*
5171 * instructions require it - e.g., offset beyond segment limit,
5172 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5173 * address, and so on. Currently these are not checked.
5175 return 0;
5179 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5180 * set the success or error code of an emulated VMX instruction, as specified
5181 * by Vol 2B, VMX Instruction Reference, "Conventions".
5183 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5185 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5186 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5187 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5190 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5192 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5193 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5194 X86_EFLAGS_SF | X86_EFLAGS_OF))
5195 | X86_EFLAGS_CF);
5198 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5199 u32 vm_instruction_error)
5201 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5203 * failValid writes the error number to the current VMCS, which
5204 * can't be done there isn't a current VMCS.
5206 nested_vmx_failInvalid(vcpu);
5207 return;
5209 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5210 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5211 X86_EFLAGS_SF | X86_EFLAGS_OF))
5212 | X86_EFLAGS_ZF);
5213 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5216 /* Emulate the VMCLEAR instruction */
5217 static int handle_vmclear(struct kvm_vcpu *vcpu)
5219 struct vcpu_vmx *vmx = to_vmx(vcpu);
5220 gva_t gva;
5221 gpa_t vmptr;
5222 struct vmcs12 *vmcs12;
5223 struct page *page;
5224 struct x86_exception e;
5226 if (!nested_vmx_check_permission(vcpu))
5227 return 1;
5229 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5230 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5231 return 1;
5233 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5234 sizeof(vmptr), &e)) {
5235 kvm_inject_page_fault(vcpu, &e);
5236 return 1;
5239 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5240 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5241 skip_emulated_instruction(vcpu);
5242 return 1;
5245 if (vmptr == vmx->nested.current_vmptr) {
5246 kunmap(vmx->nested.current_vmcs12_page);
5247 nested_release_page(vmx->nested.current_vmcs12_page);
5248 vmx->nested.current_vmptr = -1ull;
5249 vmx->nested.current_vmcs12 = NULL;
5252 page = nested_get_page(vcpu, vmptr);
5253 if (page == NULL) {
5255 * For accurate processor emulation, VMCLEAR beyond available
5256 * physical memory should do nothing at all. However, it is
5257 * possible that a nested vmx bug, not a guest hypervisor bug,
5258 * resulted in this case, so let's shut down before doing any
5259 * more damage:
5261 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5262 return 1;
5264 vmcs12 = kmap(page);
5265 vmcs12->launch_state = 0;
5266 kunmap(page);
5267 nested_release_page(page);
5269 nested_free_vmcs02(vmx, vmptr);
5271 skip_emulated_instruction(vcpu);
5272 nested_vmx_succeed(vcpu);
5273 return 1;
5276 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5278 /* Emulate the VMLAUNCH instruction */
5279 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5281 return nested_vmx_run(vcpu, true);
5284 /* Emulate the VMRESUME instruction */
5285 static int handle_vmresume(struct kvm_vcpu *vcpu)
5288 return nested_vmx_run(vcpu, false);
5291 enum vmcs_field_type {
5292 VMCS_FIELD_TYPE_U16 = 0,
5293 VMCS_FIELD_TYPE_U64 = 1,
5294 VMCS_FIELD_TYPE_U32 = 2,
5295 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5298 static inline int vmcs_field_type(unsigned long field)
5300 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5301 return VMCS_FIELD_TYPE_U32;
5302 return (field >> 13) & 0x3 ;
5305 static inline int vmcs_field_readonly(unsigned long field)
5307 return (((field >> 10) & 0x3) == 1);
5311 * Read a vmcs12 field. Since these can have varying lengths and we return
5312 * one type, we chose the biggest type (u64) and zero-extend the return value
5313 * to that size. Note that the caller, handle_vmread, might need to use only
5314 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5315 * 64-bit fields are to be returned).
5317 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5318 unsigned long field, u64 *ret)
5320 short offset = vmcs_field_to_offset(field);
5321 char *p;
5323 if (offset < 0)
5324 return 0;
5326 p = ((char *)(get_vmcs12(vcpu))) + offset;
5328 switch (vmcs_field_type(field)) {
5329 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5330 *ret = *((natural_width *)p);
5331 return 1;
5332 case VMCS_FIELD_TYPE_U16:
5333 *ret = *((u16 *)p);
5334 return 1;
5335 case VMCS_FIELD_TYPE_U32:
5336 *ret = *((u32 *)p);
5337 return 1;
5338 case VMCS_FIELD_TYPE_U64:
5339 *ret = *((u64 *)p);
5340 return 1;
5341 default:
5342 return 0; /* can never happen. */
5347 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5348 * used before) all generate the same failure when it is missing.
5350 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5352 struct vcpu_vmx *vmx = to_vmx(vcpu);
5353 if (vmx->nested.current_vmptr == -1ull) {
5354 nested_vmx_failInvalid(vcpu);
5355 skip_emulated_instruction(vcpu);
5356 return 0;
5358 return 1;
5361 static int handle_vmread(struct kvm_vcpu *vcpu)
5363 unsigned long field;
5364 u64 field_value;
5365 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5366 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5367 gva_t gva = 0;
5369 if (!nested_vmx_check_permission(vcpu) ||
5370 !nested_vmx_check_vmcs12(vcpu))
5371 return 1;
5373 /* Decode instruction info and find the field to read */
5374 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5375 /* Read the field, zero-extended to a u64 field_value */
5376 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5377 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5378 skip_emulated_instruction(vcpu);
5379 return 1;
5382 * Now copy part of this value to register or memory, as requested.
5383 * Note that the number of bits actually copied is 32 or 64 depending
5384 * on the guest's mode (32 or 64 bit), not on the given field's length.
5386 if (vmx_instruction_info & (1u << 10)) {
5387 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5388 field_value);
5389 } else {
5390 if (get_vmx_mem_address(vcpu, exit_qualification,
5391 vmx_instruction_info, &gva))
5392 return 1;
5393 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5394 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5395 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5398 nested_vmx_succeed(vcpu);
5399 skip_emulated_instruction(vcpu);
5400 return 1;
5404 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5406 unsigned long field;
5407 gva_t gva;
5408 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5409 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5410 char *p;
5411 short offset;
5412 /* The value to write might be 32 or 64 bits, depending on L1's long
5413 * mode, and eventually we need to write that into a field of several
5414 * possible lengths. The code below first zero-extends the value to 64
5415 * bit (field_value), and then copies only the approriate number of
5416 * bits into the vmcs12 field.
5418 u64 field_value = 0;
5419 struct x86_exception e;
5421 if (!nested_vmx_check_permission(vcpu) ||
5422 !nested_vmx_check_vmcs12(vcpu))
5423 return 1;
5425 if (vmx_instruction_info & (1u << 10))
5426 field_value = kvm_register_read(vcpu,
5427 (((vmx_instruction_info) >> 3) & 0xf));
5428 else {
5429 if (get_vmx_mem_address(vcpu, exit_qualification,
5430 vmx_instruction_info, &gva))
5431 return 1;
5432 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5433 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5434 kvm_inject_page_fault(vcpu, &e);
5435 return 1;
5440 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5441 if (vmcs_field_readonly(field)) {
5442 nested_vmx_failValid(vcpu,
5443 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5444 skip_emulated_instruction(vcpu);
5445 return 1;
5448 offset = vmcs_field_to_offset(field);
5449 if (offset < 0) {
5450 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5451 skip_emulated_instruction(vcpu);
5452 return 1;
5454 p = ((char *) get_vmcs12(vcpu)) + offset;
5456 switch (vmcs_field_type(field)) {
5457 case VMCS_FIELD_TYPE_U16:
5458 *(u16 *)p = field_value;
5459 break;
5460 case VMCS_FIELD_TYPE_U32:
5461 *(u32 *)p = field_value;
5462 break;
5463 case VMCS_FIELD_TYPE_U64:
5464 *(u64 *)p = field_value;
5465 break;
5466 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5467 *(natural_width *)p = field_value;
5468 break;
5469 default:
5470 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5471 skip_emulated_instruction(vcpu);
5472 return 1;
5475 nested_vmx_succeed(vcpu);
5476 skip_emulated_instruction(vcpu);
5477 return 1;
5480 /* Emulate the VMPTRLD instruction */
5481 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5483 struct vcpu_vmx *vmx = to_vmx(vcpu);
5484 gva_t gva;
5485 gpa_t vmptr;
5486 struct x86_exception e;
5488 if (!nested_vmx_check_permission(vcpu))
5489 return 1;
5491 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5492 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5493 return 1;
5495 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5496 sizeof(vmptr), &e)) {
5497 kvm_inject_page_fault(vcpu, &e);
5498 return 1;
5501 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5502 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5503 skip_emulated_instruction(vcpu);
5504 return 1;
5507 if (vmx->nested.current_vmptr != vmptr) {
5508 struct vmcs12 *new_vmcs12;
5509 struct page *page;
5510 page = nested_get_page(vcpu, vmptr);
5511 if (page == NULL) {
5512 nested_vmx_failInvalid(vcpu);
5513 skip_emulated_instruction(vcpu);
5514 return 1;
5516 new_vmcs12 = kmap(page);
5517 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5518 kunmap(page);
5519 nested_release_page_clean(page);
5520 nested_vmx_failValid(vcpu,
5521 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5522 skip_emulated_instruction(vcpu);
5523 return 1;
5525 if (vmx->nested.current_vmptr != -1ull) {
5526 kunmap(vmx->nested.current_vmcs12_page);
5527 nested_release_page(vmx->nested.current_vmcs12_page);
5530 vmx->nested.current_vmptr = vmptr;
5531 vmx->nested.current_vmcs12 = new_vmcs12;
5532 vmx->nested.current_vmcs12_page = page;
5535 nested_vmx_succeed(vcpu);
5536 skip_emulated_instruction(vcpu);
5537 return 1;
5540 /* Emulate the VMPTRST instruction */
5541 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5543 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5544 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5545 gva_t vmcs_gva;
5546 struct x86_exception e;
5548 if (!nested_vmx_check_permission(vcpu))
5549 return 1;
5551 if (get_vmx_mem_address(vcpu, exit_qualification,
5552 vmx_instruction_info, &vmcs_gva))
5553 return 1;
5554 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5555 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5556 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5557 sizeof(u64), &e)) {
5558 kvm_inject_page_fault(vcpu, &e);
5559 return 1;
5561 nested_vmx_succeed(vcpu);
5562 skip_emulated_instruction(vcpu);
5563 return 1;
5567 * The exit handlers return 1 if the exit was handled fully and guest execution
5568 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5569 * to be done to userspace and return 0.
5571 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5572 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5573 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5574 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5575 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5576 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5577 [EXIT_REASON_CR_ACCESS] = handle_cr,
5578 [EXIT_REASON_DR_ACCESS] = handle_dr,
5579 [EXIT_REASON_CPUID] = handle_cpuid,
5580 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5581 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5582 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5583 [EXIT_REASON_HLT] = handle_halt,
5584 [EXIT_REASON_INVD] = handle_invd,
5585 [EXIT_REASON_INVLPG] = handle_invlpg,
5586 [EXIT_REASON_RDPMC] = handle_rdpmc,
5587 [EXIT_REASON_VMCALL] = handle_vmcall,
5588 [EXIT_REASON_VMCLEAR] = handle_vmclear,
5589 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5590 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
5591 [EXIT_REASON_VMPTRST] = handle_vmptrst,
5592 [EXIT_REASON_VMREAD] = handle_vmread,
5593 [EXIT_REASON_VMRESUME] = handle_vmresume,
5594 [EXIT_REASON_VMWRITE] = handle_vmwrite,
5595 [EXIT_REASON_VMOFF] = handle_vmoff,
5596 [EXIT_REASON_VMON] = handle_vmon,
5597 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5598 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5599 [EXIT_REASON_WBINVD] = handle_wbinvd,
5600 [EXIT_REASON_XSETBV] = handle_xsetbv,
5601 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5602 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5603 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5604 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5605 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5606 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5607 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
5610 static const int kvm_vmx_max_exit_handlers =
5611 ARRAY_SIZE(kvm_vmx_exit_handlers);
5614 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5615 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5616 * disinterest in the current event (read or write a specific MSR) by using an
5617 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5619 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5620 struct vmcs12 *vmcs12, u32 exit_reason)
5622 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5623 gpa_t bitmap;
5625 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5626 return 1;
5629 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5630 * for the four combinations of read/write and low/high MSR numbers.
5631 * First we need to figure out which of the four to use:
5633 bitmap = vmcs12->msr_bitmap;
5634 if (exit_reason == EXIT_REASON_MSR_WRITE)
5635 bitmap += 2048;
5636 if (msr_index >= 0xc0000000) {
5637 msr_index -= 0xc0000000;
5638 bitmap += 1024;
5641 /* Then read the msr_index'th bit from this bitmap: */
5642 if (msr_index < 1024*8) {
5643 unsigned char b;
5644 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5645 return 1 & (b >> (msr_index & 7));
5646 } else
5647 return 1; /* let L1 handle the wrong parameter */
5651 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5652 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5653 * intercept (via guest_host_mask etc.) the current event.
5655 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5656 struct vmcs12 *vmcs12)
5658 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5659 int cr = exit_qualification & 15;
5660 int reg = (exit_qualification >> 8) & 15;
5661 unsigned long val = kvm_register_read(vcpu, reg);
5663 switch ((exit_qualification >> 4) & 3) {
5664 case 0: /* mov to cr */
5665 switch (cr) {
5666 case 0:
5667 if (vmcs12->cr0_guest_host_mask &
5668 (val ^ vmcs12->cr0_read_shadow))
5669 return 1;
5670 break;
5671 case 3:
5672 if ((vmcs12->cr3_target_count >= 1 &&
5673 vmcs12->cr3_target_value0 == val) ||
5674 (vmcs12->cr3_target_count >= 2 &&
5675 vmcs12->cr3_target_value1 == val) ||
5676 (vmcs12->cr3_target_count >= 3 &&
5677 vmcs12->cr3_target_value2 == val) ||
5678 (vmcs12->cr3_target_count >= 4 &&
5679 vmcs12->cr3_target_value3 == val))
5680 return 0;
5681 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5682 return 1;
5683 break;
5684 case 4:
5685 if (vmcs12->cr4_guest_host_mask &
5686 (vmcs12->cr4_read_shadow ^ val))
5687 return 1;
5688 break;
5689 case 8:
5690 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5691 return 1;
5692 break;
5694 break;
5695 case 2: /* clts */
5696 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5697 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5698 return 1;
5699 break;
5700 case 1: /* mov from cr */
5701 switch (cr) {
5702 case 3:
5703 if (vmcs12->cpu_based_vm_exec_control &
5704 CPU_BASED_CR3_STORE_EXITING)
5705 return 1;
5706 break;
5707 case 8:
5708 if (vmcs12->cpu_based_vm_exec_control &
5709 CPU_BASED_CR8_STORE_EXITING)
5710 return 1;
5711 break;
5713 break;
5714 case 3: /* lmsw */
5716 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5717 * cr0. Other attempted changes are ignored, with no exit.
5719 if (vmcs12->cr0_guest_host_mask & 0xe &
5720 (val ^ vmcs12->cr0_read_shadow))
5721 return 1;
5722 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5723 !(vmcs12->cr0_read_shadow & 0x1) &&
5724 (val & 0x1))
5725 return 1;
5726 break;
5728 return 0;
5732 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5733 * should handle it ourselves in L0 (and then continue L2). Only call this
5734 * when in is_guest_mode (L2).
5736 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5738 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5739 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5740 struct vcpu_vmx *vmx = to_vmx(vcpu);
5741 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5743 if (vmx->nested.nested_run_pending)
5744 return 0;
5746 if (unlikely(vmx->fail)) {
5747 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5748 vmcs_read32(VM_INSTRUCTION_ERROR));
5749 return 1;
5752 switch (exit_reason) {
5753 case EXIT_REASON_EXCEPTION_NMI:
5754 if (!is_exception(intr_info))
5755 return 0;
5756 else if (is_page_fault(intr_info))
5757 return enable_ept;
5758 return vmcs12->exception_bitmap &
5759 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5760 case EXIT_REASON_EXTERNAL_INTERRUPT:
5761 return 0;
5762 case EXIT_REASON_TRIPLE_FAULT:
5763 return 1;
5764 case EXIT_REASON_PENDING_INTERRUPT:
5765 case EXIT_REASON_NMI_WINDOW:
5767 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5768 * (aka Interrupt Window Exiting) only when L1 turned it on,
5769 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5770 * Same for NMI Window Exiting.
5772 return 1;
5773 case EXIT_REASON_TASK_SWITCH:
5774 return 1;
5775 case EXIT_REASON_CPUID:
5776 return 1;
5777 case EXIT_REASON_HLT:
5778 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5779 case EXIT_REASON_INVD:
5780 return 1;
5781 case EXIT_REASON_INVLPG:
5782 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5783 case EXIT_REASON_RDPMC:
5784 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5785 case EXIT_REASON_RDTSC:
5786 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5787 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5788 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5789 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5790 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5791 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5793 * VMX instructions trap unconditionally. This allows L1 to
5794 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5796 return 1;
5797 case EXIT_REASON_CR_ACCESS:
5798 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5799 case EXIT_REASON_DR_ACCESS:
5800 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5801 case EXIT_REASON_IO_INSTRUCTION:
5802 /* TODO: support IO bitmaps */
5803 return 1;
5804 case EXIT_REASON_MSR_READ:
5805 case EXIT_REASON_MSR_WRITE:
5806 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5807 case EXIT_REASON_INVALID_STATE:
5808 return 1;
5809 case EXIT_REASON_MWAIT_INSTRUCTION:
5810 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5811 case EXIT_REASON_MONITOR_INSTRUCTION:
5812 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5813 case EXIT_REASON_PAUSE_INSTRUCTION:
5814 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5815 nested_cpu_has2(vmcs12,
5816 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5817 case EXIT_REASON_MCE_DURING_VMENTRY:
5818 return 0;
5819 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5820 return 1;
5821 case EXIT_REASON_APIC_ACCESS:
5822 return nested_cpu_has2(vmcs12,
5823 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5824 case EXIT_REASON_EPT_VIOLATION:
5825 case EXIT_REASON_EPT_MISCONFIG:
5826 return 0;
5827 case EXIT_REASON_WBINVD:
5828 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5829 case EXIT_REASON_XSETBV:
5830 return 1;
5831 default:
5832 return 1;
5836 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5838 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5839 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5843 * The guest has exited. See if we can fix it or if we need userspace
5844 * assistance.
5846 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5848 struct vcpu_vmx *vmx = to_vmx(vcpu);
5849 u32 exit_reason = vmx->exit_reason;
5850 u32 vectoring_info = vmx->idt_vectoring_info;
5852 /* If guest state is invalid, start emulating */
5853 if (vmx->emulation_required && emulate_invalid_guest_state)
5854 return handle_invalid_guest_state(vcpu);
5857 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5858 * we did not inject a still-pending event to L1 now because of
5859 * nested_run_pending, we need to re-enable this bit.
5861 if (vmx->nested.nested_run_pending)
5862 kvm_make_request(KVM_REQ_EVENT, vcpu);
5864 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5865 exit_reason == EXIT_REASON_VMRESUME))
5866 vmx->nested.nested_run_pending = 1;
5867 else
5868 vmx->nested.nested_run_pending = 0;
5870 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5871 nested_vmx_vmexit(vcpu);
5872 return 1;
5875 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5876 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5877 vcpu->run->fail_entry.hardware_entry_failure_reason
5878 = exit_reason;
5879 return 0;
5882 if (unlikely(vmx->fail)) {
5883 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5884 vcpu->run->fail_entry.hardware_entry_failure_reason
5885 = vmcs_read32(VM_INSTRUCTION_ERROR);
5886 return 0;
5889 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5890 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5891 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5892 exit_reason != EXIT_REASON_TASK_SWITCH))
5893 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5894 "(0x%x) and exit reason is 0x%x\n",
5895 __func__, vectoring_info, exit_reason);
5897 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5898 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5899 get_vmcs12(vcpu), vcpu)))) {
5900 if (vmx_interrupt_allowed(vcpu)) {
5901 vmx->soft_vnmi_blocked = 0;
5902 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
5903 vcpu->arch.nmi_pending) {
5905 * This CPU don't support us in finding the end of an
5906 * NMI-blocked window if the guest runs with IRQs
5907 * disabled. So we pull the trigger after 1 s of
5908 * futile waiting, but inform the user about this.
5910 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5911 "state on VCPU %d after 1 s timeout\n",
5912 __func__, vcpu->vcpu_id);
5913 vmx->soft_vnmi_blocked = 0;
5917 if (exit_reason < kvm_vmx_max_exit_handlers
5918 && kvm_vmx_exit_handlers[exit_reason])
5919 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5920 else {
5921 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5922 vcpu->run->hw.hardware_exit_reason = exit_reason;
5924 return 0;
5927 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5929 if (irr == -1 || tpr < irr) {
5930 vmcs_write32(TPR_THRESHOLD, 0);
5931 return;
5934 vmcs_write32(TPR_THRESHOLD, irr);
5937 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5939 u32 exit_intr_info;
5941 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5942 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5943 return;
5945 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5946 exit_intr_info = vmx->exit_intr_info;
5948 /* Handle machine checks before interrupts are enabled */
5949 if (is_machine_check(exit_intr_info))
5950 kvm_machine_check();
5952 /* We need to handle NMIs before interrupts are enabled */
5953 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5954 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5955 kvm_before_handle_nmi(&vmx->vcpu);
5956 asm("int $2");
5957 kvm_after_handle_nmi(&vmx->vcpu);
5961 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5963 u32 exit_intr_info;
5964 bool unblock_nmi;
5965 u8 vector;
5966 bool idtv_info_valid;
5968 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5970 if (cpu_has_virtual_nmis()) {
5971 if (vmx->nmi_known_unmasked)
5972 return;
5974 * Can't use vmx->exit_intr_info since we're not sure what
5975 * the exit reason is.
5977 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5978 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5979 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5981 * SDM 3: 27.7.1.2 (September 2008)
5982 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5983 * a guest IRET fault.
5984 * SDM 3: 23.2.2 (September 2008)
5985 * Bit 12 is undefined in any of the following cases:
5986 * If the VM exit sets the valid bit in the IDT-vectoring
5987 * information field.
5988 * If the VM exit is due to a double fault.
5990 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5991 vector != DF_VECTOR && !idtv_info_valid)
5992 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5993 GUEST_INTR_STATE_NMI);
5994 else
5995 vmx->nmi_known_unmasked =
5996 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5997 & GUEST_INTR_STATE_NMI);
5998 } else if (unlikely(vmx->soft_vnmi_blocked))
5999 vmx->vnmi_blocked_time +=
6000 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6003 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6004 u32 idt_vectoring_info,
6005 int instr_len_field,
6006 int error_code_field)
6008 u8 vector;
6009 int type;
6010 bool idtv_info_valid;
6012 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6014 vmx->vcpu.arch.nmi_injected = false;
6015 kvm_clear_exception_queue(&vmx->vcpu);
6016 kvm_clear_interrupt_queue(&vmx->vcpu);
6018 if (!idtv_info_valid)
6019 return;
6021 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6023 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6024 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6026 switch (type) {
6027 case INTR_TYPE_NMI_INTR:
6028 vmx->vcpu.arch.nmi_injected = true;
6030 * SDM 3: 27.7.1.2 (September 2008)
6031 * Clear bit "block by NMI" before VM entry if a NMI
6032 * delivery faulted.
6034 vmx_set_nmi_mask(&vmx->vcpu, false);
6035 break;
6036 case INTR_TYPE_SOFT_EXCEPTION:
6037 vmx->vcpu.arch.event_exit_inst_len =
6038 vmcs_read32(instr_len_field);
6039 /* fall through */
6040 case INTR_TYPE_HARD_EXCEPTION:
6041 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6042 u32 err = vmcs_read32(error_code_field);
6043 kvm_queue_exception_e(&vmx->vcpu, vector, err);
6044 } else
6045 kvm_queue_exception(&vmx->vcpu, vector);
6046 break;
6047 case INTR_TYPE_SOFT_INTR:
6048 vmx->vcpu.arch.event_exit_inst_len =
6049 vmcs_read32(instr_len_field);
6050 /* fall through */
6051 case INTR_TYPE_EXT_INTR:
6052 kvm_queue_interrupt(&vmx->vcpu, vector,
6053 type == INTR_TYPE_SOFT_INTR);
6054 break;
6055 default:
6056 break;
6060 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6062 if (is_guest_mode(&vmx->vcpu))
6063 return;
6064 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6065 VM_EXIT_INSTRUCTION_LEN,
6066 IDT_VECTORING_ERROR_CODE);
6069 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6071 if (is_guest_mode(vcpu))
6072 return;
6073 __vmx_complete_interrupts(to_vmx(vcpu),
6074 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6075 VM_ENTRY_INSTRUCTION_LEN,
6076 VM_ENTRY_EXCEPTION_ERROR_CODE);
6078 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6081 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6083 int i, nr_msrs;
6084 struct perf_guest_switch_msr *msrs;
6086 msrs = perf_guest_get_msrs(&nr_msrs);
6088 if (!msrs)
6089 return;
6091 for (i = 0; i < nr_msrs; i++)
6092 if (msrs[i].host == msrs[i].guest)
6093 clear_atomic_switch_msr(vmx, msrs[i].msr);
6094 else
6095 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6096 msrs[i].host);
6099 #ifdef CONFIG_X86_64
6100 #define R "r"
6101 #define Q "q"
6102 #else
6103 #define R "e"
6104 #define Q "l"
6105 #endif
6107 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6109 struct vcpu_vmx *vmx = to_vmx(vcpu);
6111 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6112 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6113 if (vmcs12->idt_vectoring_info_field &
6114 VECTORING_INFO_VALID_MASK) {
6115 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6116 vmcs12->idt_vectoring_info_field);
6117 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6118 vmcs12->vm_exit_instruction_len);
6119 if (vmcs12->idt_vectoring_info_field &
6120 VECTORING_INFO_DELIVER_CODE_MASK)
6121 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6122 vmcs12->idt_vectoring_error_code);
6126 /* Record the guest's net vcpu time for enforced NMI injections. */
6127 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6128 vmx->entry_time = ktime_get();
6130 /* Don't enter VMX if guest state is invalid, let the exit handler
6131 start emulation until we arrive back to a valid state */
6132 if (vmx->emulation_required && emulate_invalid_guest_state)
6133 return;
6135 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6136 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6137 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6138 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6140 /* When single-stepping over STI and MOV SS, we must clear the
6141 * corresponding interruptibility bits in the guest state. Otherwise
6142 * vmentry fails as it then expects bit 14 (BS) in pending debug
6143 * exceptions being set, but that's not correct for the guest debugging
6144 * case. */
6145 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6146 vmx_set_interrupt_shadow(vcpu, 0);
6148 atomic_switch_perf_msrs(vmx);
6150 vmx->__launched = vmx->loaded_vmcs->launched;
6151 asm(
6152 /* Store host registers */
6153 "push %%"R"dx; push %%"R"bp;"
6154 "push %%"R"cx \n\t" /* placeholder for guest rcx */
6155 "push %%"R"cx \n\t"
6156 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6157 "je 1f \n\t"
6158 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
6159 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6160 "1: \n\t"
6161 /* Reload cr2 if changed */
6162 "mov %c[cr2](%0), %%"R"ax \n\t"
6163 "mov %%cr2, %%"R"dx \n\t"
6164 "cmp %%"R"ax, %%"R"dx \n\t"
6165 "je 2f \n\t"
6166 "mov %%"R"ax, %%cr2 \n\t"
6167 "2: \n\t"
6168 /* Check if vmlaunch of vmresume is needed */
6169 "cmpl $0, %c[launched](%0) \n\t"
6170 /* Load guest registers. Don't clobber flags. */
6171 "mov %c[rax](%0), %%"R"ax \n\t"
6172 "mov %c[rbx](%0), %%"R"bx \n\t"
6173 "mov %c[rdx](%0), %%"R"dx \n\t"
6174 "mov %c[rsi](%0), %%"R"si \n\t"
6175 "mov %c[rdi](%0), %%"R"di \n\t"
6176 "mov %c[rbp](%0), %%"R"bp \n\t"
6177 #ifdef CONFIG_X86_64
6178 "mov %c[r8](%0), %%r8 \n\t"
6179 "mov %c[r9](%0), %%r9 \n\t"
6180 "mov %c[r10](%0), %%r10 \n\t"
6181 "mov %c[r11](%0), %%r11 \n\t"
6182 "mov %c[r12](%0), %%r12 \n\t"
6183 "mov %c[r13](%0), %%r13 \n\t"
6184 "mov %c[r14](%0), %%r14 \n\t"
6185 "mov %c[r15](%0), %%r15 \n\t"
6186 #endif
6187 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6189 /* Enter guest mode */
6190 "jne .Llaunched \n\t"
6191 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6192 "jmp .Lkvm_vmx_return \n\t"
6193 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6194 ".Lkvm_vmx_return: "
6195 /* Save guest registers, load host registers, keep flags */
6196 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6197 "pop %0 \n\t"
6198 "mov %%"R"ax, %c[rax](%0) \n\t"
6199 "mov %%"R"bx, %c[rbx](%0) \n\t"
6200 "pop"Q" %c[rcx](%0) \n\t"
6201 "mov %%"R"dx, %c[rdx](%0) \n\t"
6202 "mov %%"R"si, %c[rsi](%0) \n\t"
6203 "mov %%"R"di, %c[rdi](%0) \n\t"
6204 "mov %%"R"bp, %c[rbp](%0) \n\t"
6205 #ifdef CONFIG_X86_64
6206 "mov %%r8, %c[r8](%0) \n\t"
6207 "mov %%r9, %c[r9](%0) \n\t"
6208 "mov %%r10, %c[r10](%0) \n\t"
6209 "mov %%r11, %c[r11](%0) \n\t"
6210 "mov %%r12, %c[r12](%0) \n\t"
6211 "mov %%r13, %c[r13](%0) \n\t"
6212 "mov %%r14, %c[r14](%0) \n\t"
6213 "mov %%r15, %c[r15](%0) \n\t"
6214 #endif
6215 "mov %%cr2, %%"R"ax \n\t"
6216 "mov %%"R"ax, %c[cr2](%0) \n\t"
6218 "pop %%"R"bp; pop %%"R"dx \n\t"
6219 "setbe %c[fail](%0) \n\t"
6220 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6221 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6222 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6223 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6224 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6225 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6226 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6227 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6228 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6229 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6230 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6231 #ifdef CONFIG_X86_64
6232 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6233 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6234 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6235 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6236 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6237 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6238 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6239 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6240 #endif
6241 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6242 [wordsize]"i"(sizeof(ulong))
6243 : "cc", "memory"
6244 , R"ax", R"bx", R"di", R"si"
6245 #ifdef CONFIG_X86_64
6246 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6247 #endif
6250 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6251 | (1 << VCPU_EXREG_RFLAGS)
6252 | (1 << VCPU_EXREG_CPL)
6253 | (1 << VCPU_EXREG_PDPTR)
6254 | (1 << VCPU_EXREG_SEGMENTS)
6255 | (1 << VCPU_EXREG_CR3));
6256 vcpu->arch.regs_dirty = 0;
6258 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6260 if (is_guest_mode(vcpu)) {
6261 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6262 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6263 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6264 vmcs12->idt_vectoring_error_code =
6265 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6266 vmcs12->vm_exit_instruction_len =
6267 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6271 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
6272 vmx->loaded_vmcs->launched = 1;
6274 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6275 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6277 vmx_complete_atomic_exit(vmx);
6278 vmx_recover_nmi_blocking(vmx);
6279 vmx_complete_interrupts(vmx);
6282 #undef R
6283 #undef Q
6285 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6287 struct vcpu_vmx *vmx = to_vmx(vcpu);
6289 free_vpid(vmx);
6290 free_nested(vmx);
6291 free_loaded_vmcs(vmx->loaded_vmcs);
6292 kfree(vmx->guest_msrs);
6293 kvm_vcpu_uninit(vcpu);
6294 kmem_cache_free(kvm_vcpu_cache, vmx);
6297 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6299 int err;
6300 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6301 int cpu;
6303 if (!vmx)
6304 return ERR_PTR(-ENOMEM);
6306 allocate_vpid(vmx);
6308 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6309 if (err)
6310 goto free_vcpu;
6312 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6313 err = -ENOMEM;
6314 if (!vmx->guest_msrs) {
6315 goto uninit_vcpu;
6318 vmx->loaded_vmcs = &vmx->vmcs01;
6319 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6320 if (!vmx->loaded_vmcs->vmcs)
6321 goto free_msrs;
6322 if (!vmm_exclusive)
6323 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6324 loaded_vmcs_init(vmx->loaded_vmcs);
6325 if (!vmm_exclusive)
6326 kvm_cpu_vmxoff();
6328 cpu = get_cpu();
6329 vmx_vcpu_load(&vmx->vcpu, cpu);
6330 vmx->vcpu.cpu = cpu;
6331 err = vmx_vcpu_setup(vmx);
6332 vmx_vcpu_put(&vmx->vcpu);
6333 put_cpu();
6334 if (err)
6335 goto free_vmcs;
6336 if (vm_need_virtualize_apic_accesses(kvm))
6337 err = alloc_apic_access_page(kvm);
6338 if (err)
6339 goto free_vmcs;
6341 if (enable_ept) {
6342 if (!kvm->arch.ept_identity_map_addr)
6343 kvm->arch.ept_identity_map_addr =
6344 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6345 err = -ENOMEM;
6346 if (alloc_identity_pagetable(kvm) != 0)
6347 goto free_vmcs;
6348 if (!init_rmode_identity_map(kvm))
6349 goto free_vmcs;
6352 vmx->nested.current_vmptr = -1ull;
6353 vmx->nested.current_vmcs12 = NULL;
6355 return &vmx->vcpu;
6357 free_vmcs:
6358 free_vmcs(vmx->loaded_vmcs->vmcs);
6359 free_msrs:
6360 kfree(vmx->guest_msrs);
6361 uninit_vcpu:
6362 kvm_vcpu_uninit(&vmx->vcpu);
6363 free_vcpu:
6364 free_vpid(vmx);
6365 kmem_cache_free(kvm_vcpu_cache, vmx);
6366 return ERR_PTR(err);
6369 static void __init vmx_check_processor_compat(void *rtn)
6371 struct vmcs_config vmcs_conf;
6373 *(int *)rtn = 0;
6374 if (setup_vmcs_config(&vmcs_conf) < 0)
6375 *(int *)rtn = -EIO;
6376 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6377 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6378 smp_processor_id());
6379 *(int *)rtn = -EIO;
6383 static int get_ept_level(void)
6385 return VMX_EPT_DEFAULT_GAW + 1;
6388 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6390 u64 ret;
6392 /* For VT-d and EPT combination
6393 * 1. MMIO: always map as UC
6394 * 2. EPT with VT-d:
6395 * a. VT-d without snooping control feature: can't guarantee the
6396 * result, try to trust guest.
6397 * b. VT-d with snooping control feature: snooping control feature of
6398 * VT-d engine can guarantee the cache correctness. Just set it
6399 * to WB to keep consistent with host. So the same as item 3.
6400 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6401 * consistent with host MTRR
6403 if (is_mmio)
6404 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6405 else if (vcpu->kvm->arch.iommu_domain &&
6406 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6407 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6408 VMX_EPT_MT_EPTE_SHIFT;
6409 else
6410 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6411 | VMX_EPT_IPAT_BIT;
6413 return ret;
6416 static int vmx_get_lpage_level(void)
6418 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6419 return PT_DIRECTORY_LEVEL;
6420 else
6421 /* For shadow and EPT supported 1GB page */
6422 return PT_PDPE_LEVEL;
6425 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6427 struct kvm_cpuid_entry2 *best;
6428 struct vcpu_vmx *vmx = to_vmx(vcpu);
6429 u32 exec_control;
6431 vmx->rdtscp_enabled = false;
6432 if (vmx_rdtscp_supported()) {
6433 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6434 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6435 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6436 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6437 vmx->rdtscp_enabled = true;
6438 else {
6439 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6440 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6441 exec_control);
6447 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6449 if (func == 1 && nested)
6450 entry->ecx |= bit(X86_FEATURE_VMX);
6454 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6455 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6456 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6457 * guest in a way that will both be appropriate to L1's requests, and our
6458 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6459 * function also has additional necessary side-effects, like setting various
6460 * vcpu->arch fields.
6462 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6464 struct vcpu_vmx *vmx = to_vmx(vcpu);
6465 u32 exec_control;
6467 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6468 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6469 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6470 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6471 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6472 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6473 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6474 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6475 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6476 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6477 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6478 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6479 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6480 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6481 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6482 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6483 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6484 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6485 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6486 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6487 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6488 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6489 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6490 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6491 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6492 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6493 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6494 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6495 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6496 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6497 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6498 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6499 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6500 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6501 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6502 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6504 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6505 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6506 vmcs12->vm_entry_intr_info_field);
6507 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6508 vmcs12->vm_entry_exception_error_code);
6509 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6510 vmcs12->vm_entry_instruction_len);
6511 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6512 vmcs12->guest_interruptibility_info);
6513 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6514 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6515 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6516 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6517 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6518 vmcs12->guest_pending_dbg_exceptions);
6519 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6520 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6522 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6524 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6525 (vmcs_config.pin_based_exec_ctrl |
6526 vmcs12->pin_based_vm_exec_control));
6529 * Whether page-faults are trapped is determined by a combination of
6530 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6531 * If enable_ept, L0 doesn't care about page faults and we should
6532 * set all of these to L1's desires. However, if !enable_ept, L0 does
6533 * care about (at least some) page faults, and because it is not easy
6534 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6535 * to exit on each and every L2 page fault. This is done by setting
6536 * MASK=MATCH=0 and (see below) EB.PF=1.
6537 * Note that below we don't need special code to set EB.PF beyond the
6538 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6539 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6540 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6542 * A problem with this approach (when !enable_ept) is that L1 may be
6543 * injected with more page faults than it asked for. This could have
6544 * caused problems, but in practice existing hypervisors don't care.
6545 * To fix this, we will need to emulate the PFEC checking (on the L1
6546 * page tables), using walk_addr(), when injecting PFs to L1.
6548 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6549 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6550 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6551 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6553 if (cpu_has_secondary_exec_ctrls()) {
6554 u32 exec_control = vmx_secondary_exec_control(vmx);
6555 if (!vmx->rdtscp_enabled)
6556 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6557 /* Take the following fields only from vmcs12 */
6558 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6559 if (nested_cpu_has(vmcs12,
6560 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6561 exec_control |= vmcs12->secondary_vm_exec_control;
6563 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6565 * Translate L1 physical address to host physical
6566 * address for vmcs02. Keep the page pinned, so this
6567 * physical address remains valid. We keep a reference
6568 * to it so we can release it later.
6570 if (vmx->nested.apic_access_page) /* shouldn't happen */
6571 nested_release_page(vmx->nested.apic_access_page);
6572 vmx->nested.apic_access_page =
6573 nested_get_page(vcpu, vmcs12->apic_access_addr);
6575 * If translation failed, no matter: This feature asks
6576 * to exit when accessing the given address, and if it
6577 * can never be accessed, this feature won't do
6578 * anything anyway.
6580 if (!vmx->nested.apic_access_page)
6581 exec_control &=
6582 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6583 else
6584 vmcs_write64(APIC_ACCESS_ADDR,
6585 page_to_phys(vmx->nested.apic_access_page));
6588 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6593 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6594 * Some constant fields are set here by vmx_set_constant_host_state().
6595 * Other fields are different per CPU, and will be set later when
6596 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6598 vmx_set_constant_host_state();
6601 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6602 * entry, but only if the current (host) sp changed from the value
6603 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6604 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6605 * here we just force the write to happen on entry.
6607 vmx->host_rsp = 0;
6609 exec_control = vmx_exec_control(vmx); /* L0's desires */
6610 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6611 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6612 exec_control &= ~CPU_BASED_TPR_SHADOW;
6613 exec_control |= vmcs12->cpu_based_vm_exec_control;
6615 * Merging of IO and MSR bitmaps not currently supported.
6616 * Rather, exit every time.
6618 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6619 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6620 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6622 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6624 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6625 * bitwise-or of what L1 wants to trap for L2, and what we want to
6626 * trap. Note that CR0.TS also needs updating - we do this later.
6628 update_exception_bitmap(vcpu);
6629 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6630 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6632 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6633 vmcs_write32(VM_EXIT_CONTROLS,
6634 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6635 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6636 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6638 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6639 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6640 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6641 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6644 set_cr4_guest_host_mask(vmx);
6646 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6647 vmcs_write64(TSC_OFFSET,
6648 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6649 else
6650 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6652 if (enable_vpid) {
6654 * Trivially support vpid by letting L2s share their parent
6655 * L1's vpid. TODO: move to a more elaborate solution, giving
6656 * each L2 its own vpid and exposing the vpid feature to L1.
6658 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6659 vmx_flush_tlb(vcpu);
6662 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6663 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6664 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6665 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6666 else
6667 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6668 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6669 vmx_set_efer(vcpu, vcpu->arch.efer);
6672 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6673 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6674 * The CR0_READ_SHADOW is what L2 should have expected to read given
6675 * the specifications by L1; It's not enough to take
6676 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6677 * have more bits than L1 expected.
6679 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6680 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6682 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6683 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6685 /* shadow page tables on either EPT or shadow page tables */
6686 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6687 kvm_mmu_reset_context(vcpu);
6689 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6690 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6694 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6695 * for running an L2 nested guest.
6697 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6699 struct vmcs12 *vmcs12;
6700 struct vcpu_vmx *vmx = to_vmx(vcpu);
6701 int cpu;
6702 struct loaded_vmcs *vmcs02;
6704 if (!nested_vmx_check_permission(vcpu) ||
6705 !nested_vmx_check_vmcs12(vcpu))
6706 return 1;
6708 skip_emulated_instruction(vcpu);
6709 vmcs12 = get_vmcs12(vcpu);
6712 * The nested entry process starts with enforcing various prerequisites
6713 * on vmcs12 as required by the Intel SDM, and act appropriately when
6714 * they fail: As the SDM explains, some conditions should cause the
6715 * instruction to fail, while others will cause the instruction to seem
6716 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6717 * To speed up the normal (success) code path, we should avoid checking
6718 * for misconfigurations which will anyway be caught by the processor
6719 * when using the merged vmcs02.
6721 if (vmcs12->launch_state == launch) {
6722 nested_vmx_failValid(vcpu,
6723 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6724 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6725 return 1;
6728 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6729 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6730 /*TODO: Also verify bits beyond physical address width are 0*/
6731 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6732 return 1;
6735 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6736 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6737 /*TODO: Also verify bits beyond physical address width are 0*/
6738 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6739 return 1;
6742 if (vmcs12->vm_entry_msr_load_count > 0 ||
6743 vmcs12->vm_exit_msr_load_count > 0 ||
6744 vmcs12->vm_exit_msr_store_count > 0) {
6745 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6746 __func__);
6747 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6748 return 1;
6751 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6752 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6753 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6754 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6755 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6756 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6757 !vmx_control_verify(vmcs12->vm_exit_controls,
6758 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6759 !vmx_control_verify(vmcs12->vm_entry_controls,
6760 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6762 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6763 return 1;
6766 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6767 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6768 nested_vmx_failValid(vcpu,
6769 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6770 return 1;
6773 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6774 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6775 nested_vmx_entry_failure(vcpu, vmcs12,
6776 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6777 return 1;
6779 if (vmcs12->vmcs_link_pointer != -1ull) {
6780 nested_vmx_entry_failure(vcpu, vmcs12,
6781 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6782 return 1;
6786 * We're finally done with prerequisite checking, and can start with
6787 * the nested entry.
6790 vmcs02 = nested_get_current_vmcs02(vmx);
6791 if (!vmcs02)
6792 return -ENOMEM;
6794 enter_guest_mode(vcpu);
6796 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6798 cpu = get_cpu();
6799 vmx->loaded_vmcs = vmcs02;
6800 vmx_vcpu_put(vcpu);
6801 vmx_vcpu_load(vcpu, cpu);
6802 vcpu->cpu = cpu;
6803 put_cpu();
6805 vmcs12->launch_state = 1;
6807 prepare_vmcs02(vcpu, vmcs12);
6810 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6811 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6812 * returned as far as L1 is concerned. It will only return (and set
6813 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6815 return 1;
6819 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6820 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6821 * This function returns the new value we should put in vmcs12.guest_cr0.
6822 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6823 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6824 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6825 * didn't trap the bit, because if L1 did, so would L0).
6826 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6827 * been modified by L2, and L1 knows it. So just leave the old value of
6828 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6829 * isn't relevant, because if L0 traps this bit it can set it to anything.
6830 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6831 * changed these bits, and therefore they need to be updated, but L0
6832 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6833 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6835 static inline unsigned long
6836 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6838 return
6839 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6840 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6841 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6842 vcpu->arch.cr0_guest_owned_bits));
6845 static inline unsigned long
6846 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6848 return
6849 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6850 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6851 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6852 vcpu->arch.cr4_guest_owned_bits));
6856 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6857 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6858 * and this function updates it to reflect the changes to the guest state while
6859 * L2 was running (and perhaps made some exits which were handled directly by L0
6860 * without going back to L1), and to reflect the exit reason.
6861 * Note that we do not have to copy here all VMCS fields, just those that
6862 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6863 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6864 * which already writes to vmcs12 directly.
6866 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6868 /* update guest state fields: */
6869 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6870 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6872 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6873 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6874 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6875 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6877 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6878 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6879 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6880 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6881 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6882 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6883 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6884 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6885 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6886 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6887 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6888 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6889 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6890 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6891 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6892 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6893 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6894 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6895 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6896 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6897 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6898 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6899 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6900 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6901 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6902 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6903 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6904 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6905 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6906 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6907 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6908 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6909 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6910 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6911 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6912 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6914 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6915 vmcs12->guest_interruptibility_info =
6916 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6917 vmcs12->guest_pending_dbg_exceptions =
6918 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6920 /* TODO: These cannot have changed unless we have MSR bitmaps and
6921 * the relevant bit asks not to trap the change */
6922 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6923 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6924 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6925 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6926 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6927 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6929 /* update exit information fields: */
6931 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6932 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6934 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6935 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6936 vmcs12->idt_vectoring_info_field =
6937 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6938 vmcs12->idt_vectoring_error_code =
6939 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6940 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6941 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6943 /* clear vm-entry fields which are to be cleared on exit */
6944 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6945 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6949 * A part of what we need to when the nested L2 guest exits and we want to
6950 * run its L1 parent, is to reset L1's guest state to the host state specified
6951 * in vmcs12.
6952 * This function is to be called not only on normal nested exit, but also on
6953 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6954 * Failures During or After Loading Guest State").
6955 * This function should be called when the active VMCS is L1's (vmcs01).
6957 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6959 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6960 vcpu->arch.efer = vmcs12->host_ia32_efer;
6961 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6962 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6963 else
6964 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6965 vmx_set_efer(vcpu, vcpu->arch.efer);
6967 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6968 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6970 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6971 * actually changed, because it depends on the current state of
6972 * fpu_active (which may have changed).
6973 * Note that vmx_set_cr0 refers to efer set above.
6975 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6977 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6978 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6979 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6981 update_exception_bitmap(vcpu);
6982 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6983 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6986 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6987 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6989 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6990 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6992 /* shadow page tables on either EPT or shadow page tables */
6993 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6994 kvm_mmu_reset_context(vcpu);
6996 if (enable_vpid) {
6998 * Trivially support vpid by letting L2s share their parent
6999 * L1's vpid. TODO: move to a more elaborate solution, giving
7000 * each L2 its own vpid and exposing the vpid feature to L1.
7002 vmx_flush_tlb(vcpu);
7006 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7007 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7008 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7009 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7010 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7011 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7012 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7013 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7014 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7015 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7016 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7017 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7018 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7019 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7020 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7022 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7023 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7024 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7025 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7026 vmcs12->host_ia32_perf_global_ctrl);
7030 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7031 * and modify vmcs12 to make it see what it would expect to see there if
7032 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7034 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7036 struct vcpu_vmx *vmx = to_vmx(vcpu);
7037 int cpu;
7038 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7040 leave_guest_mode(vcpu);
7041 prepare_vmcs12(vcpu, vmcs12);
7043 cpu = get_cpu();
7044 vmx->loaded_vmcs = &vmx->vmcs01;
7045 vmx_vcpu_put(vcpu);
7046 vmx_vcpu_load(vcpu, cpu);
7047 vcpu->cpu = cpu;
7048 put_cpu();
7050 /* if no vmcs02 cache requested, remove the one we used */
7051 if (VMCS02_POOL_SIZE == 0)
7052 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7054 load_vmcs12_host_state(vcpu, vmcs12);
7056 /* Update TSC_OFFSET if TSC was changed while L2 ran */
7057 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7059 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7060 vmx->host_rsp = 0;
7062 /* Unpin physical memory we referred to in vmcs02 */
7063 if (vmx->nested.apic_access_page) {
7064 nested_release_page(vmx->nested.apic_access_page);
7065 vmx->nested.apic_access_page = 0;
7069 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7070 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7071 * success or failure flag accordingly.
7073 if (unlikely(vmx->fail)) {
7074 vmx->fail = 0;
7075 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7076 } else
7077 nested_vmx_succeed(vcpu);
7081 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7082 * 23.7 "VM-entry failures during or after loading guest state" (this also
7083 * lists the acceptable exit-reason and exit-qualification parameters).
7084 * It should only be called before L2 actually succeeded to run, and when
7085 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7087 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7088 struct vmcs12 *vmcs12,
7089 u32 reason, unsigned long qualification)
7091 load_vmcs12_host_state(vcpu, vmcs12);
7092 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7093 vmcs12->exit_qualification = qualification;
7094 nested_vmx_succeed(vcpu);
7097 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7098 struct x86_instruction_info *info,
7099 enum x86_intercept_stage stage)
7101 return X86EMUL_CONTINUE;
7104 static struct kvm_x86_ops vmx_x86_ops = {
7105 .cpu_has_kvm_support = cpu_has_kvm_support,
7106 .disabled_by_bios = vmx_disabled_by_bios,
7107 .hardware_setup = hardware_setup,
7108 .hardware_unsetup = hardware_unsetup,
7109 .check_processor_compatibility = vmx_check_processor_compat,
7110 .hardware_enable = hardware_enable,
7111 .hardware_disable = hardware_disable,
7112 .cpu_has_accelerated_tpr = report_flexpriority,
7114 .vcpu_create = vmx_create_vcpu,
7115 .vcpu_free = vmx_free_vcpu,
7116 .vcpu_reset = vmx_vcpu_reset,
7118 .prepare_guest_switch = vmx_save_host_state,
7119 .vcpu_load = vmx_vcpu_load,
7120 .vcpu_put = vmx_vcpu_put,
7122 .set_guest_debug = set_guest_debug,
7123 .get_msr = vmx_get_msr,
7124 .set_msr = vmx_set_msr,
7125 .get_segment_base = vmx_get_segment_base,
7126 .get_segment = vmx_get_segment,
7127 .set_segment = vmx_set_segment,
7128 .get_cpl = vmx_get_cpl,
7129 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7130 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7131 .decache_cr3 = vmx_decache_cr3,
7132 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7133 .set_cr0 = vmx_set_cr0,
7134 .set_cr3 = vmx_set_cr3,
7135 .set_cr4 = vmx_set_cr4,
7136 .set_efer = vmx_set_efer,
7137 .get_idt = vmx_get_idt,
7138 .set_idt = vmx_set_idt,
7139 .get_gdt = vmx_get_gdt,
7140 .set_gdt = vmx_set_gdt,
7141 .set_dr7 = vmx_set_dr7,
7142 .cache_reg = vmx_cache_reg,
7143 .get_rflags = vmx_get_rflags,
7144 .set_rflags = vmx_set_rflags,
7145 .fpu_activate = vmx_fpu_activate,
7146 .fpu_deactivate = vmx_fpu_deactivate,
7148 .tlb_flush = vmx_flush_tlb,
7150 .run = vmx_vcpu_run,
7151 .handle_exit = vmx_handle_exit,
7152 .skip_emulated_instruction = skip_emulated_instruction,
7153 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7154 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7155 .patch_hypercall = vmx_patch_hypercall,
7156 .set_irq = vmx_inject_irq,
7157 .set_nmi = vmx_inject_nmi,
7158 .queue_exception = vmx_queue_exception,
7159 .cancel_injection = vmx_cancel_injection,
7160 .interrupt_allowed = vmx_interrupt_allowed,
7161 .nmi_allowed = vmx_nmi_allowed,
7162 .get_nmi_mask = vmx_get_nmi_mask,
7163 .set_nmi_mask = vmx_set_nmi_mask,
7164 .enable_nmi_window = enable_nmi_window,
7165 .enable_irq_window = enable_irq_window,
7166 .update_cr8_intercept = update_cr8_intercept,
7168 .set_tss_addr = vmx_set_tss_addr,
7169 .get_tdp_level = get_ept_level,
7170 .get_mt_mask = vmx_get_mt_mask,
7172 .get_exit_info = vmx_get_exit_info,
7174 .get_lpage_level = vmx_get_lpage_level,
7176 .cpuid_update = vmx_cpuid_update,
7178 .rdtscp_supported = vmx_rdtscp_supported,
7180 .set_supported_cpuid = vmx_set_supported_cpuid,
7182 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7184 .set_tsc_khz = vmx_set_tsc_khz,
7185 .write_tsc_offset = vmx_write_tsc_offset,
7186 .adjust_tsc_offset = vmx_adjust_tsc_offset,
7187 .compute_tsc_offset = vmx_compute_tsc_offset,
7188 .read_l1_tsc = vmx_read_l1_tsc,
7190 .set_tdp_cr3 = vmx_set_cr3,
7192 .check_intercept = vmx_check_intercept,
7195 static int __init vmx_init(void)
7197 int r, i;
7199 rdmsrl_safe(MSR_EFER, &host_efer);
7201 for (i = 0; i < NR_VMX_MSR; ++i)
7202 kvm_define_shared_msr(i, vmx_msr_index[i]);
7204 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7205 if (!vmx_io_bitmap_a)
7206 return -ENOMEM;
7208 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7209 if (!vmx_io_bitmap_b) {
7210 r = -ENOMEM;
7211 goto out;
7214 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7215 if (!vmx_msr_bitmap_legacy) {
7216 r = -ENOMEM;
7217 goto out1;
7220 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7221 if (!vmx_msr_bitmap_longmode) {
7222 r = -ENOMEM;
7223 goto out2;
7227 * Allow direct access to the PC debug port (it is often used for I/O
7228 * delays, but the vmexits simply slow things down).
7230 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7231 clear_bit(0x80, vmx_io_bitmap_a);
7233 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7235 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7236 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7238 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7240 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7241 __alignof__(struct vcpu_vmx), THIS_MODULE);
7242 if (r)
7243 goto out3;
7245 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7246 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7247 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7248 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7249 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7250 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7252 if (enable_ept) {
7253 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7254 VMX_EPT_EXECUTABLE_MASK);
7255 ept_set_mmio_spte_mask();
7256 kvm_enable_tdp();
7257 } else
7258 kvm_disable_tdp();
7260 return 0;
7262 out3:
7263 free_page((unsigned long)vmx_msr_bitmap_longmode);
7264 out2:
7265 free_page((unsigned long)vmx_msr_bitmap_legacy);
7266 out1:
7267 free_page((unsigned long)vmx_io_bitmap_b);
7268 out:
7269 free_page((unsigned long)vmx_io_bitmap_a);
7270 return r;
7273 static void __exit vmx_exit(void)
7275 free_page((unsigned long)vmx_msr_bitmap_legacy);
7276 free_page((unsigned long)vmx_msr_bitmap_longmode);
7277 free_page((unsigned long)vmx_io_bitmap_b);
7278 free_page((unsigned long)vmx_io_bitmap_a);
7280 kvm_exit();
7283 module_init(vmx_init)
7284 module_exit(vmx_exit)