2 * BFQ: Hierarchical B-WF2Q+ scheduler.
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
11 #ifdef CONFIG_CGROUP_BFQIO
12 #define for_each_entity(entity) \
13 for (; entity != NULL; entity = entity->parent)
15 #define for_each_entity_safe(entity, parent) \
16 for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
18 static struct bfq_entity
*bfq_lookup_next_entity(struct bfq_sched_data
*sd
,
20 struct bfq_data
*bfqd
);
22 static int bfq_update_next_active(struct bfq_sched_data
*sd
)
24 struct bfq_group
*bfqg
;
25 struct bfq_entity
*entity
, *next_active
;
27 if (sd
->active_entity
!= NULL
)
28 /* will update/requeue at the end of service */
32 * NOTE: this can be improved in many ways, such as returning
33 * 1 (and thus propagating upwards the update) only when the
34 * budget changes, or caching the bfqq that will be scheduled
35 * next from this subtree. By now we worry more about
36 * correctness than about performance...
38 next_active
= bfq_lookup_next_entity(sd
, 0, NULL
);
39 sd
->next_active
= next_active
;
41 if (next_active
!= NULL
) {
42 bfqg
= container_of(sd
, struct bfq_group
, sched_data
);
43 entity
= bfqg
->my_entity
;
45 entity
->budget
= next_active
->budget
;
51 static inline void bfq_check_next_active(struct bfq_sched_data
*sd
,
52 struct bfq_entity
*entity
)
54 BUG_ON(sd
->next_active
!= entity
);
57 #define for_each_entity(entity) \
58 for (; entity != NULL; entity = NULL)
60 #define for_each_entity_safe(entity, parent) \
61 for (parent = NULL; entity != NULL; entity = parent)
63 static inline int bfq_update_next_active(struct bfq_sched_data
*sd
)
68 static inline void bfq_check_next_active(struct bfq_sched_data
*sd
,
69 struct bfq_entity
*entity
)
75 * Shift for timestamp calculations. This actually limits the maximum
76 * service allowed in one timestamp delta (small shift values increase it),
77 * the maximum total weight that can be used for the queues in the system
78 * (big shift values increase it), and the period of virtual time wraparounds.
80 #define WFQ_SERVICE_SHIFT 22
83 * bfq_gt - compare two timestamps.
87 * Return @a > @b, dealing with wrapping correctly.
89 static inline int bfq_gt(u64 a
, u64 b
)
91 return (s64
)(a
- b
) > 0;
94 static inline struct bfq_queue
*bfq_entity_to_bfqq(struct bfq_entity
*entity
)
96 struct bfq_queue
*bfqq
= NULL
;
98 BUG_ON(entity
== NULL
);
100 if (entity
->my_sched_data
== NULL
)
101 bfqq
= container_of(entity
, struct bfq_queue
, entity
);
108 * bfq_delta - map service into the virtual time domain.
109 * @service: amount of service.
110 * @weight: scale factor (weight of an entity or weight sum).
112 static inline u64
bfq_delta(unsigned long service
,
113 unsigned long weight
)
115 u64 d
= (u64
)service
<< WFQ_SERVICE_SHIFT
;
122 * bfq_calc_finish - assign the finish time to an entity.
123 * @entity: the entity to act upon.
124 * @service: the service to be charged to the entity.
126 static inline void bfq_calc_finish(struct bfq_entity
*entity
,
127 unsigned long service
)
129 struct bfq_queue
*bfqq
= bfq_entity_to_bfqq(entity
);
131 BUG_ON(entity
->weight
== 0);
133 entity
->finish
= entity
->start
+
134 bfq_delta(service
, entity
->weight
);
137 bfq_log_bfqq(bfqq
->bfqd
, bfqq
,
138 "calc_finish: serv %lu, w %d",
139 service
, entity
->weight
);
140 bfq_log_bfqq(bfqq
->bfqd
, bfqq
,
141 "calc_finish: start %llu, finish %llu, delta %llu",
142 entity
->start
, entity
->finish
,
143 bfq_delta(service
, entity
->weight
));
148 * bfq_entity_of - get an entity from a node.
149 * @node: the node field of the entity.
151 * Convert a node pointer to the relative entity. This is used only
152 * to simplify the logic of some functions and not as the generic
153 * conversion mechanism because, e.g., in the tree walking functions,
154 * the check for a %NULL value would be redundant.
156 static inline struct bfq_entity
*bfq_entity_of(struct rb_node
*node
)
158 struct bfq_entity
*entity
= NULL
;
161 entity
= rb_entry(node
, struct bfq_entity
, rb_node
);
167 * bfq_extract - remove an entity from a tree.
168 * @root: the tree root.
169 * @entity: the entity to remove.
171 static inline void bfq_extract(struct rb_root
*root
,
172 struct bfq_entity
*entity
)
174 BUG_ON(entity
->tree
!= root
);
177 rb_erase(&entity
->rb_node
, root
);
181 * bfq_idle_extract - extract an entity from the idle tree.
182 * @st: the service tree of the owning @entity.
183 * @entity: the entity being removed.
185 static void bfq_idle_extract(struct bfq_service_tree
*st
,
186 struct bfq_entity
*entity
)
188 struct bfq_queue
*bfqq
= bfq_entity_to_bfqq(entity
);
189 struct rb_node
*next
;
191 BUG_ON(entity
->tree
!= &st
->idle
);
193 if (entity
== st
->first_idle
) {
194 next
= rb_next(&entity
->rb_node
);
195 st
->first_idle
= bfq_entity_of(next
);
198 if (entity
== st
->last_idle
) {
199 next
= rb_prev(&entity
->rb_node
);
200 st
->last_idle
= bfq_entity_of(next
);
203 bfq_extract(&st
->idle
, entity
);
206 list_del(&bfqq
->bfqq_list
);
210 * bfq_insert - generic tree insertion.
212 * @entity: entity to insert.
214 * This is used for the idle and the active tree, since they are both
215 * ordered by finish time.
217 static void bfq_insert(struct rb_root
*root
, struct bfq_entity
*entity
)
219 struct bfq_entity
*entry
;
220 struct rb_node
**node
= &root
->rb_node
;
221 struct rb_node
*parent
= NULL
;
223 BUG_ON(entity
->tree
!= NULL
);
225 while (*node
!= NULL
) {
227 entry
= rb_entry(parent
, struct bfq_entity
, rb_node
);
229 if (bfq_gt(entry
->finish
, entity
->finish
))
230 node
= &parent
->rb_left
;
232 node
= &parent
->rb_right
;
235 rb_link_node(&entity
->rb_node
, parent
, node
);
236 rb_insert_color(&entity
->rb_node
, root
);
242 * bfq_update_min - update the min_start field of a entity.
243 * @entity: the entity to update.
244 * @node: one of its children.
246 * This function is called when @entity may store an invalid value for
247 * min_start due to updates to the active tree. The function assumes
248 * that the subtree rooted at @node (which may be its left or its right
249 * child) has a valid min_start value.
251 static inline void bfq_update_min(struct bfq_entity
*entity
,
252 struct rb_node
*node
)
254 struct bfq_entity
*child
;
257 child
= rb_entry(node
, struct bfq_entity
, rb_node
);
258 if (bfq_gt(entity
->min_start
, child
->min_start
))
259 entity
->min_start
= child
->min_start
;
264 * bfq_update_active_node - recalculate min_start.
265 * @node: the node to update.
267 * @node may have changed position or one of its children may have moved,
268 * this function updates its min_start value. The left and right subtrees
269 * are assumed to hold a correct min_start value.
271 static inline void bfq_update_active_node(struct rb_node
*node
)
273 struct bfq_entity
*entity
= rb_entry(node
, struct bfq_entity
, rb_node
);
275 entity
->min_start
= entity
->start
;
276 bfq_update_min(entity
, node
->rb_right
);
277 bfq_update_min(entity
, node
->rb_left
);
281 * bfq_update_active_tree - update min_start for the whole active tree.
282 * @node: the starting node.
284 * @node must be the deepest modified node after an update. This function
285 * updates its min_start using the values held by its children, assuming
286 * that they did not change, and then updates all the nodes that may have
287 * changed in the path to the root. The only nodes that may have changed
288 * are the ones in the path or their siblings.
290 static void bfq_update_active_tree(struct rb_node
*node
)
292 struct rb_node
*parent
;
295 bfq_update_active_node(node
);
297 parent
= rb_parent(node
);
301 if (node
== parent
->rb_left
&& parent
->rb_right
!= NULL
)
302 bfq_update_active_node(parent
->rb_right
);
303 else if (parent
->rb_left
!= NULL
)
304 bfq_update_active_node(parent
->rb_left
);
311 * bfq_active_insert - insert an entity in the active tree of its group/device.
312 * @st: the service tree of the entity.
313 * @entity: the entity being inserted.
315 * The active tree is ordered by finish time, but an extra key is kept
316 * per each node, containing the minimum value for the start times of
317 * its children (and the node itself), so it's possible to search for
318 * the eligible node with the lowest finish time in logarithmic time.
320 static void bfq_active_insert(struct bfq_service_tree
*st
,
321 struct bfq_entity
*entity
)
323 struct bfq_queue
*bfqq
= bfq_entity_to_bfqq(entity
);
324 struct rb_node
*node
= &entity
->rb_node
;
326 bfq_insert(&st
->active
, entity
);
328 if (node
->rb_left
!= NULL
)
329 node
= node
->rb_left
;
330 else if (node
->rb_right
!= NULL
)
331 node
= node
->rb_right
;
333 bfq_update_active_tree(node
);
336 list_add(&bfqq
->bfqq_list
, &bfqq
->bfqd
->active_list
);
340 * bfq_ioprio_to_weight - calc a weight from an ioprio.
341 * @ioprio: the ioprio value to convert.
343 static unsigned short bfq_ioprio_to_weight(int ioprio
)
345 WARN_ON(ioprio
< 0 || ioprio
>= IOPRIO_BE_NR
);
346 return IOPRIO_BE_NR
- ioprio
;
350 * bfq_weight_to_ioprio - calc an ioprio from a weight.
351 * @weight: the weight value to convert.
353 * To preserve as mush as possible the old only-ioprio user interface,
354 * 0 is used as an escape ioprio value for weights (numerically) equal or
355 * larger than IOPRIO_BE_NR
357 static unsigned short bfq_weight_to_ioprio(int weight
)
359 WARN_ON(weight
< BFQ_MIN_WEIGHT
|| weight
> BFQ_MAX_WEIGHT
);
360 return IOPRIO_BE_NR
- weight
< 0 ? 0 : IOPRIO_BE_NR
- weight
;
363 static inline void bfq_get_entity(struct bfq_entity
*entity
)
365 struct bfq_queue
*bfqq
= bfq_entity_to_bfqq(entity
);
366 struct bfq_sched_data
*sd
;
369 sd
= entity
->sched_data
;
370 atomic_inc(&bfqq
->ref
);
371 bfq_log_bfqq(bfqq
->bfqd
, bfqq
, "get_entity: %p %d",
372 bfqq
, atomic_read(&bfqq
->ref
));
377 * bfq_find_deepest - find the deepest node that an extraction can modify.
378 * @node: the node being removed.
380 * Do the first step of an extraction in an rb tree, looking for the
381 * node that will replace @node, and returning the deepest node that
382 * the following modifications to the tree can touch. If @node is the
383 * last node in the tree return %NULL.
385 static struct rb_node
*bfq_find_deepest(struct rb_node
*node
)
387 struct rb_node
*deepest
;
389 if (node
->rb_right
== NULL
&& node
->rb_left
== NULL
)
390 deepest
= rb_parent(node
);
391 else if (node
->rb_right
== NULL
)
392 deepest
= node
->rb_left
;
393 else if (node
->rb_left
== NULL
)
394 deepest
= node
->rb_right
;
396 deepest
= rb_next(node
);
397 if (deepest
->rb_right
!= NULL
)
398 deepest
= deepest
->rb_right
;
399 else if (rb_parent(deepest
) != node
)
400 deepest
= rb_parent(deepest
);
407 * bfq_active_extract - remove an entity from the active tree.
408 * @st: the service_tree containing the tree.
409 * @entity: the entity being removed.
411 static void bfq_active_extract(struct bfq_service_tree
*st
,
412 struct bfq_entity
*entity
)
414 struct bfq_queue
*bfqq
= bfq_entity_to_bfqq(entity
);
415 struct rb_node
*node
;
417 node
= bfq_find_deepest(&entity
->rb_node
);
418 bfq_extract(&st
->active
, entity
);
421 bfq_update_active_tree(node
);
424 list_del(&bfqq
->bfqq_list
);
428 * bfq_idle_insert - insert an entity into the idle tree.
429 * @st: the service tree containing the tree.
430 * @entity: the entity to insert.
432 static void bfq_idle_insert(struct bfq_service_tree
*st
,
433 struct bfq_entity
*entity
)
435 struct bfq_queue
*bfqq
= bfq_entity_to_bfqq(entity
);
436 struct bfq_entity
*first_idle
= st
->first_idle
;
437 struct bfq_entity
*last_idle
= st
->last_idle
;
439 if (first_idle
== NULL
|| bfq_gt(first_idle
->finish
, entity
->finish
))
440 st
->first_idle
= entity
;
441 if (last_idle
== NULL
|| bfq_gt(entity
->finish
, last_idle
->finish
))
442 st
->last_idle
= entity
;
444 bfq_insert(&st
->idle
, entity
);
447 list_add(&bfqq
->bfqq_list
, &bfqq
->bfqd
->idle_list
);
451 * bfq_forget_entity - remove an entity from the wfq trees.
452 * @st: the service tree.
453 * @entity: the entity being removed.
455 * Update the device status and forget everything about @entity, putting
456 * the device reference to it, if it is a queue. Entities belonging to
457 * groups are not refcounted.
459 static void bfq_forget_entity(struct bfq_service_tree
*st
,
460 struct bfq_entity
*entity
)
462 struct bfq_queue
*bfqq
= bfq_entity_to_bfqq(entity
);
463 struct bfq_sched_data
*sd
;
465 BUG_ON(!entity
->on_st
);
468 st
->wsum
-= entity
->weight
;
470 sd
= entity
->sched_data
;
471 bfq_log_bfqq(bfqq
->bfqd
, bfqq
, "forget_entity: %p %d",
472 bfqq
, atomic_read(&bfqq
->ref
));
478 * bfq_put_idle_entity - release the idle tree ref of an entity.
479 * @st: service tree for the entity.
480 * @entity: the entity being released.
482 static void bfq_put_idle_entity(struct bfq_service_tree
*st
,
483 struct bfq_entity
*entity
)
485 bfq_idle_extract(st
, entity
);
486 bfq_forget_entity(st
, entity
);
490 * bfq_forget_idle - update the idle tree if necessary.
491 * @st: the service tree to act upon.
493 * To preserve the global O(log N) complexity we only remove one entry here;
494 * as the idle tree will not grow indefinitely this can be done safely.
496 static void bfq_forget_idle(struct bfq_service_tree
*st
)
498 struct bfq_entity
*first_idle
= st
->first_idle
;
499 struct bfq_entity
*last_idle
= st
->last_idle
;
501 if (RB_EMPTY_ROOT(&st
->active
) && last_idle
!= NULL
&&
502 !bfq_gt(last_idle
->finish
, st
->vtime
)) {
504 * Forget the whole idle tree, increasing the vtime past
505 * the last finish time of idle entities.
507 st
->vtime
= last_idle
->finish
;
510 if (first_idle
!= NULL
&& !bfq_gt(first_idle
->finish
, st
->vtime
))
511 bfq_put_idle_entity(st
, first_idle
);
514 static struct bfq_service_tree
*
515 __bfq_entity_update_weight_prio(struct bfq_service_tree
*old_st
,
516 struct bfq_entity
*entity
)
518 struct bfq_service_tree
*new_st
= old_st
;
520 if (entity
->ioprio_changed
) {
521 struct bfq_queue
*bfqq
= bfq_entity_to_bfqq(entity
);
523 BUG_ON(old_st
->wsum
< entity
->weight
);
524 old_st
->wsum
-= entity
->weight
;
526 if (entity
->new_weight
!= entity
->orig_weight
) {
527 entity
->orig_weight
= entity
->new_weight
;
529 bfq_weight_to_ioprio(entity
->orig_weight
);
530 } else if (entity
->new_ioprio
!= entity
->ioprio
) {
531 entity
->ioprio
= entity
->new_ioprio
;
532 entity
->orig_weight
=
533 bfq_ioprio_to_weight(entity
->ioprio
);
535 entity
->new_weight
= entity
->orig_weight
=
536 bfq_ioprio_to_weight(entity
->ioprio
);
538 entity
->ioprio_class
= entity
->new_ioprio_class
;
539 entity
->ioprio_changed
= 0;
542 * NOTE: here we may be changing the weight too early,
543 * this will cause unfairness. The correct approach
544 * would have required additional complexity to defer
545 * weight changes to the proper time instants (i.e.,
546 * when entity->finish <= old_st->vtime).
548 new_st
= bfq_entity_service_tree(entity
);
549 entity
->weight
= entity
->orig_weight
*
550 (bfqq
!= NULL
? bfqq
->raising_coeff
: 1);
551 new_st
->wsum
+= entity
->weight
;
553 if (new_st
!= old_st
)
554 entity
->start
= new_st
->vtime
;
561 * bfq_bfqq_served - update the scheduler status after selection for service.
562 * @bfqq: the queue being served.
563 * @served: bytes to transfer.
565 * NOTE: this can be optimized, as the timestamps of upper level entities
566 * are synchronized every time a new bfqq is selected for service. By now,
567 * we keep it to better check consistency.
569 static void bfq_bfqq_served(struct bfq_queue
*bfqq
, unsigned long served
)
571 struct bfq_entity
*entity
= &bfqq
->entity
;
572 struct bfq_service_tree
*st
;
574 for_each_entity(entity
) {
575 st
= bfq_entity_service_tree(entity
);
577 entity
->service
+= served
;
578 WARN_ON_ONCE(entity
->service
> entity
->budget
);
579 BUG_ON(st
->wsum
== 0);
581 st
->vtime
+= bfq_delta(served
, st
->wsum
);
584 bfq_log_bfqq(bfqq
->bfqd
, bfqq
, "bfqq_served %lu secs", served
);
588 * bfq_bfqq_charge_full_budget - set the service to the entity budget.
589 * @bfqq: the queue that needs a service update.
591 * When it's not possible to be fair in the service domain, because
592 * a queue is not consuming its budget fast enough (the meaning of
593 * fast depends on the timeout parameter), we charge it a full
594 * budget. In this way we should obtain a sort of time-domain
595 * fairness among all the seeky/slow queues.
597 static inline void bfq_bfqq_charge_full_budget(struct bfq_queue
*bfqq
)
599 struct bfq_entity
*entity
= &bfqq
->entity
;
601 bfq_log_bfqq(bfqq
->bfqd
, bfqq
, "charge_full_budget");
603 bfq_bfqq_served(bfqq
, entity
->budget
- entity
->service
);
607 * __bfq_activate_entity - activate an entity.
608 * @entity: the entity being activated.
610 * Called whenever an entity is activated, i.e., it is not active and one
611 * of its children receives a new request, or has to be reactivated due to
612 * budget exhaustion. It uses the current budget of the entity (and the
613 * service received if @entity is active) of the queue to calculate its
616 static void __bfq_activate_entity(struct bfq_entity
*entity
)
618 struct bfq_sched_data
*sd
= entity
->sched_data
;
619 struct bfq_service_tree
*st
= bfq_entity_service_tree(entity
);
621 if (entity
== sd
->active_entity
) {
622 BUG_ON(entity
->tree
!= NULL
);
624 * If we are requeueing the current entity we have
625 * to take care of not charging to it service it has
628 bfq_calc_finish(entity
, entity
->service
);
629 entity
->start
= entity
->finish
;
630 sd
->active_entity
= NULL
;
631 } else if (entity
->tree
== &st
->active
) {
633 * Requeueing an entity due to a change of some
634 * next_active entity below it. We reuse the old
637 bfq_active_extract(st
, entity
);
638 } else if (entity
->tree
== &st
->idle
) {
640 * Must be on the idle tree, bfq_idle_extract() will
643 bfq_idle_extract(st
, entity
);
644 entity
->start
= bfq_gt(st
->vtime
, entity
->finish
) ?
645 st
->vtime
: entity
->finish
;
648 * The finish time of the entity may be invalid, and
649 * it is in the past for sure, otherwise the queue
650 * would have been on the idle tree.
652 entity
->start
= st
->vtime
;
653 st
->wsum
+= entity
->weight
;
654 bfq_get_entity(entity
);
656 BUG_ON(entity
->on_st
);
660 st
= __bfq_entity_update_weight_prio(st
, entity
);
661 bfq_calc_finish(entity
, entity
->budget
);
662 bfq_active_insert(st
, entity
);
666 * bfq_activate_entity - activate an entity and its ancestors if necessary.
667 * @entity: the entity to activate.
669 * Activate @entity and all the entities on the path from it to the root.
671 static void bfq_activate_entity(struct bfq_entity
*entity
)
673 struct bfq_sched_data
*sd
;
675 for_each_entity(entity
) {
676 __bfq_activate_entity(entity
);
678 sd
= entity
->sched_data
;
679 if (!bfq_update_next_active(sd
))
681 * No need to propagate the activation to the
682 * upper entities, as they will be updated when
683 * the active entity is rescheduled.
690 * __bfq_deactivate_entity - deactivate an entity from its service tree.
691 * @entity: the entity to deactivate.
692 * @requeue: if false, the entity will not be put into the idle tree.
694 * Deactivate an entity, independently from its previous state. If the
695 * entity was not on a service tree just return, otherwise if it is on
696 * any scheduler tree, extract it from that tree, and if necessary
697 * and if the caller did not specify @requeue, put it on the idle tree.
699 * Return %1 if the caller should update the entity hierarchy, i.e.,
700 * if the entity was under service or if it was the next_active for
701 * its sched_data; return %0 otherwise.
703 static int __bfq_deactivate_entity(struct bfq_entity
*entity
, int requeue
)
705 struct bfq_sched_data
*sd
= entity
->sched_data
;
706 struct bfq_service_tree
*st
= bfq_entity_service_tree(entity
);
707 int was_active
= entity
== sd
->active_entity
;
713 BUG_ON(was_active
&& entity
->tree
!= NULL
);
716 bfq_calc_finish(entity
, entity
->service
);
717 sd
->active_entity
= NULL
;
718 } else if (entity
->tree
== &st
->active
)
719 bfq_active_extract(st
, entity
);
720 else if (entity
->tree
== &st
->idle
)
721 bfq_idle_extract(st
, entity
);
722 else if (entity
->tree
!= NULL
)
725 if (was_active
|| sd
->next_active
== entity
)
726 ret
= bfq_update_next_active(sd
);
728 if (!requeue
|| !bfq_gt(entity
->finish
, st
->vtime
))
729 bfq_forget_entity(st
, entity
);
731 bfq_idle_insert(st
, entity
);
733 BUG_ON(sd
->active_entity
== entity
);
734 BUG_ON(sd
->next_active
== entity
);
740 * bfq_deactivate_entity - deactivate an entity.
741 * @entity: the entity to deactivate.
742 * @requeue: true if the entity can be put on the idle tree
744 static void bfq_deactivate_entity(struct bfq_entity
*entity
, int requeue
)
746 struct bfq_sched_data
*sd
;
747 struct bfq_entity
*parent
;
749 for_each_entity_safe(entity
, parent
) {
750 sd
= entity
->sched_data
;
752 if (!__bfq_deactivate_entity(entity
, requeue
))
754 * The parent entity is still backlogged, and
755 * we don't need to update it as it is still
760 if (sd
->next_active
!= NULL
)
762 * The parent entity is still backlogged and
763 * the budgets on the path towards the root
764 * need to be updated.
769 * If we reach there the parent is no more backlogged and
770 * we want to propagate the dequeue upwards.
779 for_each_entity(entity
) {
780 __bfq_activate_entity(entity
);
782 sd
= entity
->sched_data
;
783 if (!bfq_update_next_active(sd
))
789 * bfq_update_vtime - update vtime if necessary.
790 * @st: the service tree to act upon.
792 * If necessary update the service tree vtime to have at least one
793 * eligible entity, skipping to its start time. Assumes that the
794 * active tree of the device is not empty.
796 * NOTE: this hierarchical implementation updates vtimes quite often,
797 * we may end up with reactivated tasks getting timestamps after a
798 * vtime skip done because we needed a ->first_active entity on some
801 static void bfq_update_vtime(struct bfq_service_tree
*st
)
803 struct bfq_entity
*entry
;
804 struct rb_node
*node
= st
->active
.rb_node
;
806 entry
= rb_entry(node
, struct bfq_entity
, rb_node
);
807 if (bfq_gt(entry
->min_start
, st
->vtime
)) {
808 st
->vtime
= entry
->min_start
;
814 * bfq_first_active - find the eligible entity with the smallest finish time
815 * @st: the service tree to select from.
817 * This function searches the first schedulable entity, starting from the
818 * root of the tree and going on the left every time on this side there is
819 * a subtree with at least one eligible (start >= vtime) entity. The path
820 * on the right is followed only if a) the left subtree contains no eligible
821 * entities and b) no eligible entity has been found yet.
823 static struct bfq_entity
*bfq_first_active_entity(struct bfq_service_tree
*st
)
825 struct bfq_entity
*entry
, *first
= NULL
;
826 struct rb_node
*node
= st
->active
.rb_node
;
828 while (node
!= NULL
) {
829 entry
= rb_entry(node
, struct bfq_entity
, rb_node
);
831 if (!bfq_gt(entry
->start
, st
->vtime
))
834 BUG_ON(bfq_gt(entry
->min_start
, st
->vtime
));
836 if (node
->rb_left
!= NULL
) {
837 entry
= rb_entry(node
->rb_left
,
838 struct bfq_entity
, rb_node
);
839 if (!bfq_gt(entry
->min_start
, st
->vtime
)) {
840 node
= node
->rb_left
;
846 node
= node
->rb_right
;
849 BUG_ON(first
== NULL
&& !RB_EMPTY_ROOT(&st
->active
));
854 * __bfq_lookup_next_entity - return the first eligible entity in @st.
855 * @st: the service tree.
857 * Update the virtual time in @st and return the first eligible entity
860 static struct bfq_entity
*__bfq_lookup_next_entity(struct bfq_service_tree
*st
)
862 struct bfq_entity
*entity
;
864 if (RB_EMPTY_ROOT(&st
->active
))
867 bfq_update_vtime(st
);
868 entity
= bfq_first_active_entity(st
);
869 BUG_ON(bfq_gt(entity
->start
, st
->vtime
));
875 * bfq_lookup_next_entity - return the first eligible entity in @sd.
876 * @sd: the sched_data.
877 * @extract: if true the returned entity will be also extracted from @sd.
879 * NOTE: since we cache the next_active entity at each level of the
880 * hierarchy, the complexity of the lookup can be decreased with
881 * absolutely no effort just returning the cached next_active value;
882 * we prefer to do full lookups to test the consistency of * the data
885 static struct bfq_entity
*bfq_lookup_next_entity(struct bfq_sched_data
*sd
,
887 struct bfq_data
*bfqd
)
889 struct bfq_service_tree
*st
= sd
->service_tree
;
890 struct bfq_entity
*entity
;
893 BUG_ON(sd
->active_entity
!= NULL
);
896 jiffies
- bfqd
->bfq_class_idle_last_service
> BFQ_CL_IDLE_TIMEOUT
) {
897 entity
= __bfq_lookup_next_entity(st
+ BFQ_IOPRIO_CLASSES
- 1);
898 if (entity
!= NULL
) {
899 i
= BFQ_IOPRIO_CLASSES
- 1;
900 bfqd
->bfq_class_idle_last_service
= jiffies
;
901 sd
->next_active
= entity
;
904 for (; i
< BFQ_IOPRIO_CLASSES
; i
++) {
905 entity
= __bfq_lookup_next_entity(st
+ i
);
906 if (entity
!= NULL
) {
908 bfq_check_next_active(sd
, entity
);
909 bfq_active_extract(st
+ i
, entity
);
910 sd
->active_entity
= entity
;
911 sd
->next_active
= NULL
;
921 * Get next queue for service.
923 static struct bfq_queue
*bfq_get_next_queue(struct bfq_data
*bfqd
)
925 struct bfq_entity
*entity
= NULL
;
926 struct bfq_sched_data
*sd
;
927 struct bfq_queue
*bfqq
;
929 BUG_ON(bfqd
->active_queue
!= NULL
);
931 if (bfqd
->busy_queues
== 0)
934 sd
= &bfqd
->root_group
->sched_data
;
935 for (; sd
!= NULL
; sd
= entity
->my_sched_data
) {
936 entity
= bfq_lookup_next_entity(sd
, 1, bfqd
);
937 BUG_ON(entity
== NULL
);
941 bfqq
= bfq_entity_to_bfqq(entity
);
942 BUG_ON(bfqq
== NULL
);
948 * Forced extraction of the given queue.
950 static void bfq_get_next_queue_forced(struct bfq_data
*bfqd
,
951 struct bfq_queue
*bfqq
)
953 struct bfq_entity
*entity
;
954 struct bfq_sched_data
*sd
;
956 BUG_ON(bfqd
->active_queue
!= NULL
);
958 entity
= &bfqq
->entity
;
960 * Bubble up extraction/update from the leaf to the root.
962 for_each_entity(entity
) {
963 sd
= entity
->sched_data
;
964 bfq_update_vtime(bfq_entity_service_tree(entity
));
965 bfq_active_extract(bfq_entity_service_tree(entity
), entity
);
966 sd
->active_entity
= entity
;
967 sd
->next_active
= NULL
;
974 static void __bfq_bfqd_reset_active(struct bfq_data
*bfqd
)
976 if (bfqd
->active_bic
!= NULL
) {
977 put_io_context(bfqd
->active_bic
->icq
.ioc
);
978 bfqd
->active_bic
= NULL
;
981 bfqd
->active_queue
= NULL
;
982 del_timer(&bfqd
->idle_slice_timer
);
985 static void bfq_deactivate_bfqq(struct bfq_data
*bfqd
, struct bfq_queue
*bfqq
,
988 struct bfq_entity
*entity
= &bfqq
->entity
;
990 if (bfqq
== bfqd
->active_queue
)
991 __bfq_bfqd_reset_active(bfqd
);
993 bfq_deactivate_entity(entity
, requeue
);
996 static void bfq_activate_bfqq(struct bfq_data
*bfqd
, struct bfq_queue
*bfqq
)
998 struct bfq_entity
*entity
= &bfqq
->entity
;
1000 bfq_activate_entity(entity
);
1004 * Called when the bfqq no longer has requests pending, remove it from
1007 static void bfq_del_bfqq_busy(struct bfq_data
*bfqd
, struct bfq_queue
*bfqq
,
1010 BUG_ON(!bfq_bfqq_busy(bfqq
));
1011 BUG_ON(!RB_EMPTY_ROOT(&bfqq
->sort_list
));
1013 bfq_log_bfqq(bfqd
, bfqq
, "del from busy");
1015 bfq_clear_bfqq_busy(bfqq
);
1017 BUG_ON(bfqd
->busy_queues
== 0);
1018 bfqd
->busy_queues
--;
1020 bfq_deactivate_bfqq(bfqd
, bfqq
, requeue
);
1024 * Called when an inactive queue receives a new request.
1026 static void bfq_add_bfqq_busy(struct bfq_data
*bfqd
, struct bfq_queue
*bfqq
)
1028 BUG_ON(bfq_bfqq_busy(bfqq
));
1029 BUG_ON(bfqq
== bfqd
->active_queue
);
1031 bfq_log_bfqq(bfqd
, bfqq
, "add to busy");
1033 bfq_activate_bfqq(bfqd
, bfqq
);
1035 bfq_mark_bfqq_busy(bfqq
);
1036 bfqd
->busy_queues
++;