2 * (c) 2003-2012 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
8 * Andreas Herrmann <andreas.herrmann3@amd.com>
10 * Based on the powernow-k7.c module written by Dave Jones.
11 * (C) 2003 Dave Jones on behalf of SuSE Labs
12 * (C) 2004 Dominik Brodowski <linux@brodo.de>
13 * (C) 2004 Pavel Machek <pavel@ucw.cz>
14 * Licensed under the terms of the GNU GPL License version 2.
15 * Based upon datasheets & sample CPUs kindly provided by AMD.
17 * Valuable input gratefully received from Dave Jones, Pavel Machek,
18 * Dominik Brodowski, Jacob Shin, and others.
19 * Originally developed by Paul Devriendt.
21 * Processor information obtained from Chapter 9 (Power and Thermal
22 * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23 * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24 * Power Management" in BKDGs for newer AMD CPU families.
26 * Tables for specific CPUs can be inferred from AMD's processor
27 * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
30 #include <linux/kernel.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/cpumask.h>
38 #include <linux/sched.h> /* for current / set_cpus_allowed() */
40 #include <linux/delay.h>
44 #include <linux/acpi.h>
45 #include <linux/mutex.h>
46 #include <acpi/processor.h>
48 #define PFX "powernow-k8: "
49 #define VERSION "version 2.20.00"
50 #include "powernow-k8.h"
53 /* serialize freq changes */
54 static DEFINE_MUTEX(fidvid_mutex
);
56 static DEFINE_PER_CPU(struct powernow_k8_data
*, powernow_data
);
58 static int cpu_family
= CPU_OPTERON
;
60 /* array to map SW pstate number to acpi state */
61 static u32 ps_to_as
[8];
63 /* core performance boost */
64 static bool cpb_capable
, cpb_enabled
;
65 static struct msr __percpu
*msrs
;
67 static struct cpufreq_driver cpufreq_amd64_driver
;
70 static inline const struct cpumask
*cpu_core_mask(int cpu
)
76 /* Return a frequency in MHz, given an input fid */
77 static u32
find_freq_from_fid(u32 fid
)
79 return 800 + (fid
* 100);
82 /* Return a frequency in KHz, given an input fid */
83 static u32
find_khz_freq_from_fid(u32 fid
)
85 return 1000 * find_freq_from_fid(fid
);
88 static u32
find_khz_freq_from_pstate(struct cpufreq_frequency_table
*data
,
91 return data
[ps_to_as
[pstate
]].frequency
;
94 /* Return the vco fid for an input fid
96 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
97 * only from corresponding high fids. This returns "high" fid corresponding to
100 static u32
convert_fid_to_vco_fid(u32 fid
)
102 if (fid
< HI_FID_TABLE_BOTTOM
)
103 return 8 + (2 * fid
);
109 * Return 1 if the pending bit is set. Unless we just instructed the processor
110 * to transition to a new state, seeing this bit set is really bad news.
112 static int pending_bit_stuck(void)
116 if (cpu_family
== CPU_HW_PSTATE
)
119 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
120 return lo
& MSR_S_LO_CHANGE_PENDING
? 1 : 0;
124 * Update the global current fid / vid values from the status msr.
125 * Returns 1 on error.
127 static int query_current_values_with_pending_wait(struct powernow_k8_data
*data
)
132 if (cpu_family
== CPU_HW_PSTATE
) {
133 rdmsr(MSR_PSTATE_STATUS
, lo
, hi
);
134 i
= lo
& HW_PSTATE_MASK
;
135 data
->currpstate
= i
;
138 * a workaround for family 11h erratum 311 might cause
139 * an "out-of-range Pstate if the core is in Pstate-0
141 if ((boot_cpu_data
.x86
== 0x11) && (i
>= data
->numps
))
142 data
->currpstate
= HW_PSTATE_0
;
148 pr_debug("detected change pending stuck\n");
151 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
152 } while (lo
& MSR_S_LO_CHANGE_PENDING
);
154 data
->currvid
= hi
& MSR_S_HI_CURRENT_VID
;
155 data
->currfid
= lo
& MSR_S_LO_CURRENT_FID
;
160 /* the isochronous relief time */
161 static void count_off_irt(struct powernow_k8_data
*data
)
163 udelay((1 << data
->irt
) * 10);
167 /* the voltage stabilization time */
168 static void count_off_vst(struct powernow_k8_data
*data
)
170 udelay(data
->vstable
* VST_UNITS_20US
);
174 /* need to init the control msr to a safe value (for each cpu) */
175 static void fidvid_msr_init(void)
180 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
181 vid
= hi
& MSR_S_HI_CURRENT_VID
;
182 fid
= lo
& MSR_S_LO_CURRENT_FID
;
183 lo
= fid
| (vid
<< MSR_C_LO_VID_SHIFT
);
184 hi
= MSR_C_HI_STP_GNT_BENIGN
;
185 pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo
, hi
);
186 wrmsr(MSR_FIDVID_CTL
, lo
, hi
);
189 /* write the new fid value along with the other control fields to the msr */
190 static int write_new_fid(struct powernow_k8_data
*data
, u32 fid
)
193 u32 savevid
= data
->currvid
;
196 if ((fid
& INVALID_FID_MASK
) || (data
->currvid
& INVALID_VID_MASK
)) {
197 printk(KERN_ERR PFX
"internal error - overflow on fid write\n");
202 lo
|= (data
->currvid
<< MSR_C_LO_VID_SHIFT
);
203 lo
|= MSR_C_LO_INIT_FID_VID
;
205 pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206 fid
, lo
, data
->plllock
* PLL_LOCK_CONVERSION
);
209 wrmsr(MSR_FIDVID_CTL
, lo
, data
->plllock
* PLL_LOCK_CONVERSION
);
212 "Hardware error - pending bit very stuck - "
213 "no further pstate changes possible\n");
216 } while (query_current_values_with_pending_wait(data
));
220 if (savevid
!= data
->currvid
) {
222 "vid change on fid trans, old 0x%x, new 0x%x\n",
223 savevid
, data
->currvid
);
227 if (fid
!= data
->currfid
) {
229 "fid trans failed, fid 0x%x, curr 0x%x\n", fid
,
237 /* Write a new vid to the hardware */
238 static int write_new_vid(struct powernow_k8_data
*data
, u32 vid
)
241 u32 savefid
= data
->currfid
;
244 if ((data
->currfid
& INVALID_FID_MASK
) || (vid
& INVALID_VID_MASK
)) {
245 printk(KERN_ERR PFX
"internal error - overflow on vid write\n");
250 lo
|= (vid
<< MSR_C_LO_VID_SHIFT
);
251 lo
|= MSR_C_LO_INIT_FID_VID
;
253 pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
254 vid
, lo
, STOP_GRANT_5NS
);
257 wrmsr(MSR_FIDVID_CTL
, lo
, STOP_GRANT_5NS
);
259 printk(KERN_ERR PFX
"internal error - pending bit "
260 "very stuck - no further pstate "
261 "changes possible\n");
264 } while (query_current_values_with_pending_wait(data
));
266 if (savefid
!= data
->currfid
) {
267 printk(KERN_ERR PFX
"fid changed on vid trans, old "
269 savefid
, data
->currfid
);
273 if (vid
!= data
->currvid
) {
274 printk(KERN_ERR PFX
"vid trans failed, vid 0x%x, "
284 * Reduce the vid by the max of step or reqvid.
285 * Decreasing vid codes represent increasing voltages:
286 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
288 static int decrease_vid_code_by_step(struct powernow_k8_data
*data
,
289 u32 reqvid
, u32 step
)
291 if ((data
->currvid
- reqvid
) > step
)
292 reqvid
= data
->currvid
- step
;
294 if (write_new_vid(data
, reqvid
))
302 /* Change hardware pstate by single MSR write */
303 static int transition_pstate(struct powernow_k8_data
*data
, u32 pstate
)
305 wrmsr(MSR_PSTATE_CTRL
, pstate
, 0);
306 data
->currpstate
= pstate
;
310 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
311 static int transition_fid_vid(struct powernow_k8_data
*data
,
312 u32 reqfid
, u32 reqvid
)
314 if (core_voltage_pre_transition(data
, reqvid
, reqfid
))
317 if (core_frequency_transition(data
, reqfid
))
320 if (core_voltage_post_transition(data
, reqvid
))
323 if (query_current_values_with_pending_wait(data
))
326 if ((reqfid
!= data
->currfid
) || (reqvid
!= data
->currvid
)) {
327 printk(KERN_ERR PFX
"failed (cpu%d): req 0x%x 0x%x, "
330 reqfid
, reqvid
, data
->currfid
, data
->currvid
);
334 pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
335 smp_processor_id(), data
->currfid
, data
->currvid
);
340 /* Phase 1 - core voltage transition ... setup voltage */
341 static int core_voltage_pre_transition(struct powernow_k8_data
*data
,
342 u32 reqvid
, u32 reqfid
)
344 u32 rvosteps
= data
->rvo
;
345 u32 savefid
= data
->currfid
;
346 u32 maxvid
, lo
, rvomult
= 1;
348 pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
349 "reqvid 0x%x, rvo 0x%x\n",
351 data
->currfid
, data
->currvid
, reqvid
, data
->rvo
);
353 if ((savefid
< LO_FID_TABLE_TOP
) && (reqfid
< LO_FID_TABLE_TOP
))
356 rdmsr(MSR_FIDVID_STATUS
, lo
, maxvid
);
357 maxvid
= 0x1f & (maxvid
>> 16);
358 pr_debug("ph1 maxvid=0x%x\n", maxvid
);
359 if (reqvid
< maxvid
) /* lower numbers are higher voltages */
362 while (data
->currvid
> reqvid
) {
363 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
364 data
->currvid
, reqvid
);
365 if (decrease_vid_code_by_step(data
, reqvid
, data
->vidmvs
))
369 while ((rvosteps
> 0) &&
370 ((rvomult
* data
->rvo
+ data
->currvid
) > reqvid
)) {
371 if (data
->currvid
== maxvid
) {
374 pr_debug("ph1: changing vid for rvo, req 0x%x\n",
376 if (decrease_vid_code_by_step(data
, data
->currvid
-1, 1))
382 if (query_current_values_with_pending_wait(data
))
385 if (savefid
!= data
->currfid
) {
386 printk(KERN_ERR PFX
"ph1 err, currfid changed 0x%x\n",
391 pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
392 data
->currfid
, data
->currvid
);
397 /* Phase 2 - core frequency transition */
398 static int core_frequency_transition(struct powernow_k8_data
*data
, u32 reqfid
)
400 u32 vcoreqfid
, vcocurrfid
, vcofiddiff
;
401 u32 fid_interval
, savevid
= data
->currvid
;
403 if (data
->currfid
== reqfid
) {
404 printk(KERN_ERR PFX
"ph2 null fid transition 0x%x\n",
409 pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
412 data
->currfid
, data
->currvid
, reqfid
);
414 vcoreqfid
= convert_fid_to_vco_fid(reqfid
);
415 vcocurrfid
= convert_fid_to_vco_fid(data
->currfid
);
416 vcofiddiff
= vcocurrfid
> vcoreqfid
? vcocurrfid
- vcoreqfid
417 : vcoreqfid
- vcocurrfid
;
419 if ((reqfid
<= LO_FID_TABLE_TOP
) && (data
->currfid
<= LO_FID_TABLE_TOP
))
422 while (vcofiddiff
> 2) {
423 (data
->currfid
& 1) ? (fid_interval
= 1) : (fid_interval
= 2);
425 if (reqfid
> data
->currfid
) {
426 if (data
->currfid
> LO_FID_TABLE_TOP
) {
427 if (write_new_fid(data
,
428 data
->currfid
+ fid_interval
))
433 2 + convert_fid_to_vco_fid(data
->currfid
)))
437 if (write_new_fid(data
, data
->currfid
- fid_interval
))
441 vcocurrfid
= convert_fid_to_vco_fid(data
->currfid
);
442 vcofiddiff
= vcocurrfid
> vcoreqfid
? vcocurrfid
- vcoreqfid
443 : vcoreqfid
- vcocurrfid
;
446 if (write_new_fid(data
, reqfid
))
449 if (query_current_values_with_pending_wait(data
))
452 if (data
->currfid
!= reqfid
) {
454 "ph2: mismatch, failed fid transition, "
455 "curr 0x%x, req 0x%x\n",
456 data
->currfid
, reqfid
);
460 if (savevid
!= data
->currvid
) {
461 printk(KERN_ERR PFX
"ph2: vid changed, save 0x%x, curr 0x%x\n",
462 savevid
, data
->currvid
);
466 pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
467 data
->currfid
, data
->currvid
);
472 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
473 static int core_voltage_post_transition(struct powernow_k8_data
*data
,
476 u32 savefid
= data
->currfid
;
477 u32 savereqvid
= reqvid
;
479 pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
481 data
->currfid
, data
->currvid
);
483 if (reqvid
!= data
->currvid
) {
484 if (write_new_vid(data
, reqvid
))
487 if (savefid
!= data
->currfid
) {
489 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
490 savefid
, data
->currfid
);
494 if (data
->currvid
!= reqvid
) {
496 "ph3: failed vid transition\n, "
497 "req 0x%x, curr 0x%x",
498 reqvid
, data
->currvid
);
503 if (query_current_values_with_pending_wait(data
))
506 if (savereqvid
!= data
->currvid
) {
507 pr_debug("ph3 failed, currvid 0x%x\n", data
->currvid
);
511 if (savefid
!= data
->currfid
) {
512 pr_debug("ph3 failed, currfid changed 0x%x\n",
517 pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
518 data
->currfid
, data
->currvid
);
523 static void check_supported_cpu(void *_rc
)
525 u32 eax
, ebx
, ecx
, edx
;
530 if (__this_cpu_read(cpu_info
.x86_vendor
) != X86_VENDOR_AMD
)
533 eax
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
534 if (((eax
& CPUID_XFAM
) != CPUID_XFAM_K8
) &&
535 ((eax
& CPUID_XFAM
) < CPUID_XFAM_10H
))
538 if ((eax
& CPUID_XFAM
) == CPUID_XFAM_K8
) {
539 if (((eax
& CPUID_USE_XFAM_XMOD
) != CPUID_USE_XFAM_XMOD
) ||
540 ((eax
& CPUID_XMOD
) > CPUID_XMOD_REV_MASK
)) {
542 "Processor cpuid %x not supported\n", eax
);
546 eax
= cpuid_eax(CPUID_GET_MAX_CAPABILITIES
);
547 if (eax
< CPUID_FREQ_VOLT_CAPABILITIES
) {
549 "No frequency change capabilities detected\n");
553 cpuid(CPUID_FREQ_VOLT_CAPABILITIES
, &eax
, &ebx
, &ecx
, &edx
);
554 if ((edx
& P_STATE_TRANSITION_CAPABLE
)
555 != P_STATE_TRANSITION_CAPABLE
) {
557 "Power state transitions not supported\n");
560 } else { /* must be a HW Pstate capable processor */
561 cpuid(CPUID_FREQ_VOLT_CAPABILITIES
, &eax
, &ebx
, &ecx
, &edx
);
562 if ((edx
& USE_HW_PSTATE
) == USE_HW_PSTATE
)
563 cpu_family
= CPU_HW_PSTATE
;
571 static int check_pst_table(struct powernow_k8_data
*data
, struct pst_s
*pst
,
577 for (j
= 0; j
< data
->numps
; j
++) {
578 if (pst
[j
].vid
> LEAST_VID
) {
579 printk(KERN_ERR FW_BUG PFX
"vid %d invalid : 0x%x\n",
583 if (pst
[j
].vid
< data
->rvo
) {
585 printk(KERN_ERR FW_BUG PFX
"0 vid exceeded with pstate"
589 if (pst
[j
].vid
< maxvid
+ data
->rvo
) {
590 /* vid + rvo >= maxvid */
591 printk(KERN_ERR FW_BUG PFX
"maxvid exceeded with pstate"
595 if (pst
[j
].fid
> MAX_FID
) {
596 printk(KERN_ERR FW_BUG PFX
"maxfid exceeded with pstate"
600 if (j
&& (pst
[j
].fid
< HI_FID_TABLE_BOTTOM
)) {
601 /* Only first fid is allowed to be in "low" range */
602 printk(KERN_ERR FW_BUG PFX
"two low fids - %d : "
603 "0x%x\n", j
, pst
[j
].fid
);
606 if (pst
[j
].fid
< lastfid
)
607 lastfid
= pst
[j
].fid
;
610 printk(KERN_ERR FW_BUG PFX
"lastfid invalid\n");
613 if (lastfid
> LO_FID_TABLE_TOP
)
614 printk(KERN_INFO FW_BUG PFX
615 "first fid not from lo freq table\n");
620 static void invalidate_entry(struct cpufreq_frequency_table
*powernow_table
,
623 powernow_table
[entry
].frequency
= CPUFREQ_ENTRY_INVALID
;
626 static void print_basics(struct powernow_k8_data
*data
)
629 for (j
= 0; j
< data
->numps
; j
++) {
630 if (data
->powernow_table
[j
].frequency
!=
631 CPUFREQ_ENTRY_INVALID
) {
632 if (cpu_family
== CPU_HW_PSTATE
) {
634 " %d : pstate %d (%d MHz)\n", j
,
635 data
->powernow_table
[j
].index
,
636 data
->powernow_table
[j
].frequency
/1000);
639 "fid 0x%x (%d MHz), vid 0x%x\n",
640 data
->powernow_table
[j
].index
& 0xff,
641 data
->powernow_table
[j
].frequency
/1000,
642 data
->powernow_table
[j
].index
>> 8);
647 printk(KERN_INFO PFX
"Only %d pstates on battery\n",
651 static u32
freq_from_fid_did(u32 fid
, u32 did
)
655 if (boot_cpu_data
.x86
== 0x10)
656 mhz
= (100 * (fid
+ 0x10)) >> did
;
657 else if (boot_cpu_data
.x86
== 0x11)
658 mhz
= (100 * (fid
+ 8)) >> did
;
665 static int fill_powernow_table(struct powernow_k8_data
*data
,
666 struct pst_s
*pst
, u8 maxvid
)
668 struct cpufreq_frequency_table
*powernow_table
;
672 /* use ACPI support to get full speed on mains power */
673 printk(KERN_WARNING PFX
674 "Only %d pstates usable (use ACPI driver for full "
675 "range\n", data
->batps
);
676 data
->numps
= data
->batps
;
679 for (j
= 1; j
< data
->numps
; j
++) {
680 if (pst
[j
-1].fid
>= pst
[j
].fid
) {
681 printk(KERN_ERR PFX
"PST out of sequence\n");
686 if (data
->numps
< 2) {
687 printk(KERN_ERR PFX
"no p states to transition\n");
691 if (check_pst_table(data
, pst
, maxvid
))
694 powernow_table
= kmalloc((sizeof(struct cpufreq_frequency_table
)
695 * (data
->numps
+ 1)), GFP_KERNEL
);
696 if (!powernow_table
) {
697 printk(KERN_ERR PFX
"powernow_table memory alloc failure\n");
701 for (j
= 0; j
< data
->numps
; j
++) {
703 powernow_table
[j
].index
= pst
[j
].fid
; /* lower 8 bits */
704 powernow_table
[j
].index
|= (pst
[j
].vid
<< 8); /* upper 8 bits */
705 freq
= find_khz_freq_from_fid(pst
[j
].fid
);
706 powernow_table
[j
].frequency
= freq
;
708 powernow_table
[data
->numps
].frequency
= CPUFREQ_TABLE_END
;
709 powernow_table
[data
->numps
].index
= 0;
711 if (query_current_values_with_pending_wait(data
)) {
712 kfree(powernow_table
);
716 pr_debug("cfid 0x%x, cvid 0x%x\n", data
->currfid
, data
->currvid
);
717 data
->powernow_table
= powernow_table
;
718 if (cpumask_first(cpu_core_mask(data
->cpu
)) == data
->cpu
)
721 for (j
= 0; j
< data
->numps
; j
++)
722 if ((pst
[j
].fid
== data
->currfid
) &&
723 (pst
[j
].vid
== data
->currvid
))
726 pr_debug("currfid/vid do not match PST, ignoring\n");
730 /* Find and validate the PSB/PST table in BIOS. */
731 static int find_psb_table(struct powernow_k8_data
*data
)
740 for (i
= 0xc0000; i
< 0xffff0; i
+= 0x10) {
741 /* Scan BIOS looking for the signature. */
742 /* It can not be at ffff0 - it is too big. */
744 psb
= phys_to_virt(i
);
745 if (memcmp(psb
, PSB_ID_STRING
, PSB_ID_STRING_LEN
) != 0)
748 pr_debug("found PSB header at 0x%p\n", psb
);
750 pr_debug("table vers: 0x%x\n", psb
->tableversion
);
751 if (psb
->tableversion
!= PSB_VERSION_1_4
) {
752 printk(KERN_ERR FW_BUG PFX
"PSB table is not v1.4\n");
756 pr_debug("flags: 0x%x\n", psb
->flags1
);
758 printk(KERN_ERR FW_BUG PFX
"unknown flags\n");
762 data
->vstable
= psb
->vstable
;
763 pr_debug("voltage stabilization time: %d(*20us)\n",
766 pr_debug("flags2: 0x%x\n", psb
->flags2
);
767 data
->rvo
= psb
->flags2
& 3;
768 data
->irt
= ((psb
->flags2
) >> 2) & 3;
769 mvs
= ((psb
->flags2
) >> 4) & 3;
770 data
->vidmvs
= 1 << mvs
;
771 data
->batps
= ((psb
->flags2
) >> 6) & 3;
773 pr_debug("ramp voltage offset: %d\n", data
->rvo
);
774 pr_debug("isochronous relief time: %d\n", data
->irt
);
775 pr_debug("maximum voltage step: %d - 0x%x\n", mvs
, data
->vidmvs
);
777 pr_debug("numpst: 0x%x\n", psb
->num_tables
);
778 cpst
= psb
->num_tables
;
779 if ((psb
->cpuid
== 0x00000fc0) ||
780 (psb
->cpuid
== 0x00000fe0)) {
781 thiscpuid
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
782 if ((thiscpuid
== 0x00000fc0) ||
783 (thiscpuid
== 0x00000fe0))
787 printk(KERN_ERR FW_BUG PFX
"numpst must be 1\n");
791 data
->plllock
= psb
->plllocktime
;
792 pr_debug("plllocktime: 0x%x (units 1us)\n", psb
->plllocktime
);
793 pr_debug("maxfid: 0x%x\n", psb
->maxfid
);
794 pr_debug("maxvid: 0x%x\n", psb
->maxvid
);
795 maxvid
= psb
->maxvid
;
797 data
->numps
= psb
->numps
;
798 pr_debug("numpstates: 0x%x\n", data
->numps
);
799 return fill_powernow_table(data
,
800 (struct pst_s
*)(psb
+1), maxvid
);
803 * If you see this message, complain to BIOS manufacturer. If
804 * he tells you "we do not support Linux" or some similar
805 * nonsense, remember that Windows 2000 uses the same legacy
806 * mechanism that the old Linux PSB driver uses. Tell them it
807 * is broken with Windows 2000.
809 * The reference to the AMD documentation is chapter 9 in the
810 * BIOS and Kernel Developer's Guide, which is available on
813 printk(KERN_ERR FW_BUG PFX
"No PSB or ACPI _PSS objects\n");
814 printk(KERN_ERR PFX
"Make sure that your BIOS is up to date"
815 " and Cool'N'Quiet support is enabled in BIOS setup\n");
819 static void powernow_k8_acpi_pst_values(struct powernow_k8_data
*data
,
824 if (!data
->acpi_data
.state_count
|| (cpu_family
== CPU_HW_PSTATE
))
827 control
= data
->acpi_data
.states
[index
].control
;
828 data
->irt
= (control
>> IRT_SHIFT
) & IRT_MASK
;
829 data
->rvo
= (control
>> RVO_SHIFT
) & RVO_MASK
;
830 data
->exttype
= (control
>> EXT_TYPE_SHIFT
) & EXT_TYPE_MASK
;
831 data
->plllock
= (control
>> PLL_L_SHIFT
) & PLL_L_MASK
;
832 data
->vidmvs
= 1 << ((control
>> MVS_SHIFT
) & MVS_MASK
);
833 data
->vstable
= (control
>> VST_SHIFT
) & VST_MASK
;
836 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data
*data
)
838 struct cpufreq_frequency_table
*powernow_table
;
839 int ret_val
= -ENODEV
;
842 if (acpi_processor_register_performance(&data
->acpi_data
, data
->cpu
)) {
843 pr_debug("register performance failed: bad ACPI data\n");
847 /* verify the data contained in the ACPI structures */
848 if (data
->acpi_data
.state_count
<= 1) {
849 pr_debug("No ACPI P-States\n");
853 control
= data
->acpi_data
.control_register
.space_id
;
854 status
= data
->acpi_data
.status_register
.space_id
;
856 if ((control
!= ACPI_ADR_SPACE_FIXED_HARDWARE
) ||
857 (status
!= ACPI_ADR_SPACE_FIXED_HARDWARE
)) {
858 pr_debug("Invalid control/status registers (%llx - %llx)\n",
863 /* fill in data->powernow_table */
864 powernow_table
= kmalloc((sizeof(struct cpufreq_frequency_table
)
865 * (data
->acpi_data
.state_count
+ 1)), GFP_KERNEL
);
866 if (!powernow_table
) {
867 pr_debug("powernow_table memory alloc failure\n");
872 data
->numps
= data
->acpi_data
.state_count
;
873 powernow_k8_acpi_pst_values(data
, 0);
875 if (cpu_family
== CPU_HW_PSTATE
)
876 ret_val
= fill_powernow_table_pstate(data
, powernow_table
);
878 ret_val
= fill_powernow_table_fidvid(data
, powernow_table
);
882 powernow_table
[data
->acpi_data
.state_count
].frequency
=
884 powernow_table
[data
->acpi_data
.state_count
].index
= 0;
885 data
->powernow_table
= powernow_table
;
887 if (cpumask_first(cpu_core_mask(data
->cpu
)) == data
->cpu
)
890 /* notify BIOS that we exist */
891 acpi_processor_notify_smm(THIS_MODULE
);
893 if (!zalloc_cpumask_var(&data
->acpi_data
.shared_cpu_map
, GFP_KERNEL
)) {
895 "unable to alloc powernow_k8_data cpumask\n");
903 kfree(powernow_table
);
906 acpi_processor_unregister_performance(&data
->acpi_data
, data
->cpu
);
908 /* data->acpi_data.state_count informs us at ->exit()
909 * whether ACPI was used */
910 data
->acpi_data
.state_count
= 0;
915 static int fill_powernow_table_pstate(struct powernow_k8_data
*data
,
916 struct cpufreq_frequency_table
*powernow_table
)
920 rdmsr(MSR_PSTATE_CUR_LIMIT
, lo
, hi
);
921 data
->max_hw_pstate
= (lo
& HW_PSTATE_MAX_MASK
) >> HW_PSTATE_MAX_SHIFT
;
923 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
926 index
= data
->acpi_data
.states
[i
].control
& HW_PSTATE_MASK
;
927 if (index
> data
->max_hw_pstate
) {
928 printk(KERN_ERR PFX
"invalid pstate %d - "
929 "bad value %d.\n", i
, index
);
930 printk(KERN_ERR PFX
"Please report to BIOS "
932 invalidate_entry(powernow_table
, i
);
938 /* Frequency may be rounded for these */
939 if ((boot_cpu_data
.x86
== 0x10 && boot_cpu_data
.x86_model
< 10)
940 || boot_cpu_data
.x86
== 0x11) {
942 rdmsr(MSR_PSTATE_DEF_BASE
+ index
, lo
, hi
);
943 if (!(hi
& HW_PSTATE_VALID_MASK
)) {
944 pr_debug("invalid pstate %d, ignoring\n", index
);
945 invalidate_entry(powernow_table
, i
);
949 powernow_table
[i
].frequency
=
950 freq_from_fid_did(lo
& 0x3f, (lo
>> 6) & 7);
952 powernow_table
[i
].frequency
=
953 data
->acpi_data
.states
[i
].core_frequency
* 1000;
955 powernow_table
[i
].index
= index
;
960 static int fill_powernow_table_fidvid(struct powernow_k8_data
*data
,
961 struct cpufreq_frequency_table
*powernow_table
)
965 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
972 status
= data
->acpi_data
.states
[i
].status
;
973 fid
= status
& EXT_FID_MASK
;
974 vid
= (status
>> VID_SHIFT
) & EXT_VID_MASK
;
976 control
= data
->acpi_data
.states
[i
].control
;
977 fid
= control
& FID_MASK
;
978 vid
= (control
>> VID_SHIFT
) & VID_MASK
;
981 pr_debug(" %d : fid 0x%x, vid 0x%x\n", i
, fid
, vid
);
983 index
= fid
| (vid
<<8);
984 powernow_table
[i
].index
= index
;
986 freq
= find_khz_freq_from_fid(fid
);
987 powernow_table
[i
].frequency
= freq
;
989 /* verify frequency is OK */
990 if ((freq
> (MAX_FREQ
* 1000)) || (freq
< (MIN_FREQ
* 1000))) {
991 pr_debug("invalid freq %u kHz, ignoring\n", freq
);
992 invalidate_entry(powernow_table
, i
);
996 /* verify voltage is OK -
997 * BIOSs are using "off" to indicate invalid */
998 if (vid
== VID_OFF
) {
999 pr_debug("invalid vid %u, ignoring\n", vid
);
1000 invalidate_entry(powernow_table
, i
);
1004 if (freq
!= (data
->acpi_data
.states
[i
].core_frequency
* 1000)) {
1005 printk(KERN_INFO PFX
"invalid freq entries "
1006 "%u kHz vs. %u kHz\n", freq
,
1008 (data
->acpi_data
.states
[i
].core_frequency
1010 invalidate_entry(powernow_table
, i
);
1017 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data
*data
)
1019 if (data
->acpi_data
.state_count
)
1020 acpi_processor_unregister_performance(&data
->acpi_data
,
1022 free_cpumask_var(data
->acpi_data
.shared_cpu_map
);
1025 static int get_transition_latency(struct powernow_k8_data
*data
)
1027 int max_latency
= 0;
1029 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
1030 int cur_latency
= data
->acpi_data
.states
[i
].transition_latency
1031 + data
->acpi_data
.states
[i
].bus_master_latency
;
1032 if (cur_latency
> max_latency
)
1033 max_latency
= cur_latency
;
1035 if (max_latency
== 0) {
1037 * Fam 11h and later may return 0 as transition latency. This
1038 * is intended and means "very fast". While cpufreq core and
1039 * governors currently can handle that gracefully, better set it
1040 * to 1 to avoid problems in the future.
1042 if (boot_cpu_data
.x86
< 0x11)
1043 printk(KERN_ERR FW_WARN PFX
"Invalid zero transition "
1047 /* value in usecs, needs to be in nanoseconds */
1048 return 1000 * max_latency
;
1051 /* Take a frequency, and issue the fid/vid transition command */
1052 static int transition_frequency_fidvid(struct powernow_k8_data
*data
,
1058 struct cpufreq_freqs freqs
;
1060 pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index
);
1062 /* fid/vid correctness check for k8 */
1063 /* fid are the lower 8 bits of the index we stored into
1064 * the cpufreq frequency table in find_psb_table, vid
1065 * are the upper 8 bits.
1067 fid
= data
->powernow_table
[index
].index
& 0xFF;
1068 vid
= (data
->powernow_table
[index
].index
& 0xFF00) >> 8;
1070 pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid
, vid
);
1072 if (query_current_values_with_pending_wait(data
))
1075 if ((data
->currvid
== vid
) && (data
->currfid
== fid
)) {
1076 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1081 pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1082 smp_processor_id(), fid
, vid
);
1083 freqs
.old
= find_khz_freq_from_fid(data
->currfid
);
1084 freqs
.new = find_khz_freq_from_fid(fid
);
1086 for_each_cpu(i
, data
->available_cores
) {
1088 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
1091 res
= transition_fid_vid(data
, fid
, vid
);
1095 freqs
.new = find_khz_freq_from_fid(data
->currfid
);
1097 for_each_cpu(i
, data
->available_cores
) {
1099 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
1104 /* Take a frequency, and issue the hardware pstate transition command */
1105 static int transition_frequency_pstate(struct powernow_k8_data
*data
,
1110 struct cpufreq_freqs freqs
;
1112 pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index
);
1114 /* get MSR index for hardware pstate transition */
1115 pstate
= index
& HW_PSTATE_MASK
;
1116 if (pstate
> data
->max_hw_pstate
)
1119 freqs
.old
= find_khz_freq_from_pstate(data
->powernow_table
,
1121 freqs
.new = find_khz_freq_from_pstate(data
->powernow_table
, pstate
);
1123 for_each_cpu(i
, data
->available_cores
) {
1125 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
1128 res
= transition_pstate(data
, pstate
);
1129 freqs
.new = find_khz_freq_from_pstate(data
->powernow_table
, pstate
);
1131 for_each_cpu(i
, data
->available_cores
) {
1133 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
1138 /* Driver entry point to switch to the target frequency */
1139 static int powernowk8_target(struct cpufreq_policy
*pol
,
1140 unsigned targfreq
, unsigned relation
)
1142 cpumask_var_t oldmask
;
1143 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1146 unsigned int newstate
;
1152 checkfid
= data
->currfid
;
1153 checkvid
= data
->currvid
;
1155 /* only run on specific CPU from here on. */
1156 /* This is poor form: use a workqueue or smp_call_function_single */
1157 if (!alloc_cpumask_var(&oldmask
, GFP_KERNEL
))
1160 cpumask_copy(oldmask
, tsk_cpus_allowed(current
));
1161 set_cpus_allowed_ptr(current
, cpumask_of(pol
->cpu
));
1163 if (smp_processor_id() != pol
->cpu
) {
1164 printk(KERN_ERR PFX
"limiting to cpu %u failed\n", pol
->cpu
);
1168 if (pending_bit_stuck()) {
1169 printk(KERN_ERR PFX
"failing targ, change pending bit set\n");
1173 pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1174 pol
->cpu
, targfreq
, pol
->min
, pol
->max
, relation
);
1176 if (query_current_values_with_pending_wait(data
))
1179 if (cpu_family
!= CPU_HW_PSTATE
) {
1180 pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1181 data
->currfid
, data
->currvid
);
1183 if ((checkvid
!= data
->currvid
) ||
1184 (checkfid
!= data
->currfid
)) {
1185 printk(KERN_INFO PFX
1186 "error - out of sync, fix 0x%x 0x%x, "
1188 checkfid
, data
->currfid
,
1189 checkvid
, data
->currvid
);
1193 if (cpufreq_frequency_table_target(pol
, data
->powernow_table
,
1194 targfreq
, relation
, &newstate
))
1197 mutex_lock(&fidvid_mutex
);
1199 powernow_k8_acpi_pst_values(data
, newstate
);
1201 if (cpu_family
== CPU_HW_PSTATE
)
1202 ret
= transition_frequency_pstate(data
,
1203 data
->powernow_table
[newstate
].index
);
1205 ret
= transition_frequency_fidvid(data
, newstate
);
1207 printk(KERN_ERR PFX
"transition frequency failed\n");
1209 mutex_unlock(&fidvid_mutex
);
1212 mutex_unlock(&fidvid_mutex
);
1214 if (cpu_family
== CPU_HW_PSTATE
)
1215 pol
->cur
= find_khz_freq_from_pstate(data
->powernow_table
,
1216 data
->powernow_table
[newstate
].index
);
1218 pol
->cur
= find_khz_freq_from_fid(data
->currfid
);
1222 set_cpus_allowed_ptr(current
, oldmask
);
1223 free_cpumask_var(oldmask
);
1227 /* Driver entry point to verify the policy and range of frequencies */
1228 static int powernowk8_verify(struct cpufreq_policy
*pol
)
1230 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1235 return cpufreq_frequency_table_verify(pol
, data
->powernow_table
);
1238 struct init_on_cpu
{
1239 struct powernow_k8_data
*data
;
1243 static void __cpuinit
powernowk8_cpu_init_on_cpu(void *_init_on_cpu
)
1245 struct init_on_cpu
*init_on_cpu
= _init_on_cpu
;
1247 if (pending_bit_stuck()) {
1248 printk(KERN_ERR PFX
"failing init, change pending bit set\n");
1249 init_on_cpu
->rc
= -ENODEV
;
1253 if (query_current_values_with_pending_wait(init_on_cpu
->data
)) {
1254 init_on_cpu
->rc
= -ENODEV
;
1258 if (cpu_family
== CPU_OPTERON
)
1261 init_on_cpu
->rc
= 0;
1264 /* per CPU init entry point to the driver */
1265 static int __cpuinit
powernowk8_cpu_init(struct cpufreq_policy
*pol
)
1267 static const char ACPI_PSS_BIOS_BUG_MSG
[] =
1268 KERN_ERR FW_BUG PFX
"No compatible ACPI _PSS objects found.\n"
1269 FW_BUG PFX
"Try again with latest BIOS.\n";
1270 struct powernow_k8_data
*data
;
1271 struct init_on_cpu init_on_cpu
;
1273 struct cpuinfo_x86
*c
= &cpu_data(pol
->cpu
);
1275 if (!cpu_online(pol
->cpu
))
1278 smp_call_function_single(pol
->cpu
, check_supported_cpu
, &rc
, 1);
1282 data
= kzalloc(sizeof(struct powernow_k8_data
), GFP_KERNEL
);
1284 printk(KERN_ERR PFX
"unable to alloc powernow_k8_data");
1288 data
->cpu
= pol
->cpu
;
1289 data
->currpstate
= HW_PSTATE_INVALID
;
1291 if (powernow_k8_cpu_init_acpi(data
)) {
1293 * Use the PSB BIOS structure. This is only available on
1294 * an UP version, and is deprecated by AMD.
1296 if (num_online_cpus() != 1) {
1297 printk_once(ACPI_PSS_BIOS_BUG_MSG
);
1300 if (pol
->cpu
!= 0) {
1301 printk(KERN_ERR FW_BUG PFX
"No ACPI _PSS objects for "
1302 "CPU other than CPU0. Complain to your BIOS "
1306 rc
= find_psb_table(data
);
1310 /* Take a crude guess here.
1311 * That guess was in microseconds, so multiply with 1000 */
1312 pol
->cpuinfo
.transition_latency
= (
1313 ((data
->rvo
+ 8) * data
->vstable
* VST_UNITS_20US
) +
1314 ((1 << data
->irt
) * 30)) * 1000;
1315 } else /* ACPI _PSS objects available */
1316 pol
->cpuinfo
.transition_latency
= get_transition_latency(data
);
1318 /* only run on specific CPU from here on */
1319 init_on_cpu
.data
= data
;
1320 smp_call_function_single(data
->cpu
, powernowk8_cpu_init_on_cpu
,
1322 rc
= init_on_cpu
.rc
;
1324 goto err_out_exit_acpi
;
1326 if (cpu_family
== CPU_HW_PSTATE
)
1327 cpumask_copy(pol
->cpus
, cpumask_of(pol
->cpu
));
1329 cpumask_copy(pol
->cpus
, cpu_core_mask(pol
->cpu
));
1330 data
->available_cores
= pol
->cpus
;
1332 if (cpu_family
== CPU_HW_PSTATE
)
1333 pol
->cur
= find_khz_freq_from_pstate(data
->powernow_table
,
1336 pol
->cur
= find_khz_freq_from_fid(data
->currfid
);
1337 pr_debug("policy current frequency %d kHz\n", pol
->cur
);
1339 /* min/max the cpu is capable of */
1340 if (cpufreq_frequency_table_cpuinfo(pol
, data
->powernow_table
)) {
1341 printk(KERN_ERR FW_BUG PFX
"invalid powernow_table\n");
1342 powernow_k8_cpu_exit_acpi(data
);
1343 kfree(data
->powernow_table
);
1348 /* Check for APERF/MPERF support in hardware */
1349 if (cpu_has(c
, X86_FEATURE_APERFMPERF
))
1350 cpufreq_amd64_driver
.getavg
= cpufreq_get_measured_perf
;
1352 cpufreq_frequency_table_get_attr(data
->powernow_table
, pol
->cpu
);
1354 if (cpu_family
== CPU_HW_PSTATE
)
1355 pr_debug("cpu_init done, current pstate 0x%x\n",
1358 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1359 data
->currfid
, data
->currvid
);
1361 per_cpu(powernow_data
, pol
->cpu
) = data
;
1366 powernow_k8_cpu_exit_acpi(data
);
1373 static int __devexit
powernowk8_cpu_exit(struct cpufreq_policy
*pol
)
1375 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1380 powernow_k8_cpu_exit_acpi(data
);
1382 cpufreq_frequency_table_put_attr(pol
->cpu
);
1384 kfree(data
->powernow_table
);
1386 per_cpu(powernow_data
, pol
->cpu
) = NULL
;
1391 static void query_values_on_cpu(void *_err
)
1394 struct powernow_k8_data
*data
= __this_cpu_read(powernow_data
);
1396 *err
= query_current_values_with_pending_wait(data
);
1399 static unsigned int powernowk8_get(unsigned int cpu
)
1401 struct powernow_k8_data
*data
= per_cpu(powernow_data
, cpu
);
1402 unsigned int khz
= 0;
1408 smp_call_function_single(cpu
, query_values_on_cpu
, &err
, true);
1412 if (cpu_family
== CPU_HW_PSTATE
)
1413 khz
= find_khz_freq_from_pstate(data
->powernow_table
,
1416 khz
= find_khz_freq_from_fid(data
->currfid
);
1423 static void _cpb_toggle_msrs(bool t
)
1429 rdmsr_on_cpus(cpu_online_mask
, MSR_K7_HWCR
, msrs
);
1431 for_each_cpu(cpu
, cpu_online_mask
) {
1432 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
1438 wrmsr_on_cpus(cpu_online_mask
, MSR_K7_HWCR
, msrs
);
1444 * Switch on/off core performance boosting.
1449 static void cpb_toggle(bool t
)
1454 if (t
&& !cpb_enabled
) {
1456 _cpb_toggle_msrs(t
);
1457 printk(KERN_INFO PFX
"Core Boosting enabled.\n");
1458 } else if (!t
&& cpb_enabled
) {
1459 cpb_enabled
= false;
1460 _cpb_toggle_msrs(t
);
1461 printk(KERN_INFO PFX
"Core Boosting disabled.\n");
1465 static ssize_t
store_cpb(struct cpufreq_policy
*policy
, const char *buf
,
1469 unsigned long val
= 0;
1471 ret
= strict_strtoul(buf
, 10, &val
);
1472 if (!ret
&& (val
== 0 || val
== 1) && cpb_capable
)
1480 static ssize_t
show_cpb(struct cpufreq_policy
*policy
, char *buf
)
1482 return sprintf(buf
, "%u\n", cpb_enabled
);
1485 #define define_one_rw(_name) \
1486 static struct freq_attr _name = \
1487 __ATTR(_name, 0644, show_##_name, store_##_name)
1491 static struct freq_attr
*powernow_k8_attr
[] = {
1492 &cpufreq_freq_attr_scaling_available_freqs
,
1497 static struct cpufreq_driver cpufreq_amd64_driver
= {
1498 .verify
= powernowk8_verify
,
1499 .target
= powernowk8_target
,
1500 .bios_limit
= acpi_processor_get_bios_limit
,
1501 .init
= powernowk8_cpu_init
,
1502 .exit
= __devexit_p(powernowk8_cpu_exit
),
1503 .get
= powernowk8_get
,
1504 .name
= "powernow-k8",
1505 .owner
= THIS_MODULE
,
1506 .attr
= powernow_k8_attr
,
1510 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1511 * cannot block the remaining ones from boosting. On the CPU_UP path we
1512 * simply keep the boost-disable flag in sync with the current global
1515 static int cpb_notify(struct notifier_block
*nb
, unsigned long action
,
1518 unsigned cpu
= (long)hcpu
;
1522 case CPU_UP_PREPARE
:
1523 case CPU_UP_PREPARE_FROZEN
:
1526 rdmsr_on_cpu(cpu
, MSR_K7_HWCR
, &lo
, &hi
);
1528 wrmsr_on_cpu(cpu
, MSR_K7_HWCR
, lo
, hi
);
1532 case CPU_DOWN_PREPARE
:
1533 case CPU_DOWN_PREPARE_FROZEN
:
1534 rdmsr_on_cpu(cpu
, MSR_K7_HWCR
, &lo
, &hi
);
1536 wrmsr_on_cpu(cpu
, MSR_K7_HWCR
, lo
, hi
);
1546 static struct notifier_block cpb_nb
= {
1547 .notifier_call
= cpb_notify
,
1550 /* driver entry point for init */
1551 static int __cpuinit
powernowk8_init(void)
1553 unsigned int i
, supported_cpus
= 0, cpu
;
1556 for_each_online_cpu(i
) {
1558 smp_call_function_single(i
, check_supported_cpu
, &rc
, 1);
1563 if (supported_cpus
!= num_online_cpus())
1566 printk(KERN_INFO PFX
"Found %d %s (%d cpu cores) (" VERSION
")\n",
1567 num_online_nodes(), boot_cpu_data
.x86_model_id
, supported_cpus
);
1569 if (boot_cpu_has(X86_FEATURE_CPB
)) {
1573 msrs
= msrs_alloc();
1575 printk(KERN_ERR
"%s: Error allocating msrs!\n", __func__
);
1579 register_cpu_notifier(&cpb_nb
);
1581 rdmsr_on_cpus(cpu_online_mask
, MSR_K7_HWCR
, msrs
);
1583 for_each_cpu(cpu
, cpu_online_mask
) {
1584 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
1585 cpb_enabled
|= !(!!(reg
->l
& BIT(25)));
1588 printk(KERN_INFO PFX
"Core Performance Boosting: %s.\n",
1589 (cpb_enabled
? "on" : "off"));
1592 rv
= cpufreq_register_driver(&cpufreq_amd64_driver
);
1593 if (rv
< 0 && boot_cpu_has(X86_FEATURE_CPB
)) {
1594 unregister_cpu_notifier(&cpb_nb
);
1601 /* driver entry point for term */
1602 static void __exit
powernowk8_exit(void)
1606 if (boot_cpu_has(X86_FEATURE_CPB
)) {
1610 unregister_cpu_notifier(&cpb_nb
);
1613 cpufreq_unregister_driver(&cpufreq_amd64_driver
);
1616 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1617 "Mark Langsdorf <mark.langsdorf@amd.com>");
1618 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1619 MODULE_LICENSE("GPL");
1621 late_initcall(powernowk8_init
);
1622 module_exit(powernowk8_exit
);