2 * Copyright 2011 (c) Oracle Corp.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
29 * - Pool collects resently freed pages for reuse (and hooks up to
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
36 #include <linux/dma-mapping.h>
37 #include <linux/list.h>
38 #include <linux/seq_file.h> /* for seq_printf */
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/highmem.h>
42 #include <linux/mm_types.h>
43 #include <linux/module.h>
45 #include <linux/atomic.h>
46 #include <linux/device.h>
47 #include <linux/kthread.h>
48 #include "ttm/ttm_bo_driver.h"
49 #include "ttm/ttm_page_alloc.h"
54 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
55 #define SMALL_ALLOCATION 4
56 #define FREE_ALL_PAGES (~0U)
57 /* times are in msecs */
58 #define IS_UNDEFINED (0)
61 #define IS_CACHED (1<<3)
62 #define IS_DMA32 (1<<4)
68 POOL_IS_CACHED
= IS_CACHED
,
69 POOL_IS_WC_DMA32
= IS_WC
| IS_DMA32
,
70 POOL_IS_UC_DMA32
= IS_UC
| IS_DMA32
,
71 POOL_IS_CACHED_DMA32
= IS_CACHED
| IS_DMA32
,
74 * The pool structure. There are usually six pools:
75 * - generic (not restricted to DMA32):
76 * - write combined, uncached, cached.
77 * - dma32 (up to 2^32 - so up 4GB):
78 * - write combined, uncached, cached.
79 * for each 'struct device'. The 'cached' is for pages that are actively used.
80 * The other ones can be shrunk by the shrinker API if neccessary.
81 * @pools: The 'struct device->dma_pools' link.
82 * @type: Type of the pool
83 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
84 * used with irqsave/irqrestore variants because pool allocator maybe called
86 * @inuse_list: Pool of pages that are in use. The order is very important and
87 * it is in the order that the TTM pages that are put back are in.
88 * @free_list: Pool of pages that are free to be used. No order requirements.
89 * @dev: The device that is associated with these pools.
90 * @size: Size used during DMA allocation.
91 * @npages_free: Count of available pages for re-use.
92 * @npages_in_use: Count of pages that are in use.
93 * @nfrees: Stats when pool is shrinking.
94 * @nrefills: Stats when the pool is grown.
95 * @gfp_flags: Flags to pass for alloc_page.
96 * @name: Name of the pool.
97 * @dev_name: Name derieved from dev - similar to how dev_info works.
98 * Used during shutdown as the dev_info during release is unavailable.
101 struct list_head pools
; /* The 'struct device->dma_pools link */
104 struct list_head inuse_list
;
105 struct list_head free_list
;
108 unsigned npages_free
;
109 unsigned npages_in_use
;
110 unsigned long nfrees
; /* Stats when shrunk. */
111 unsigned long nrefills
; /* Stats when grown. */
113 char name
[13]; /* "cached dma32" */
114 char dev_name
[64]; /* Constructed from dev */
118 * The accounting page keeping track of the allocated page along with
120 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
121 * @vaddr: The virtual address of the page
122 * @dma: The bus address of the page. If the page is not allocated
123 * via the DMA API, it will be -1.
126 struct list_head page_list
;
133 * Limits for the pool. They are handled without locks because only place where
134 * they may change is in sysfs store. They won't have immediate effect anyway
135 * so forcing serialization to access them is pointless.
138 struct ttm_pool_opts
{
145 * Contains the list of all of the 'struct device' and their corresponding
146 * DMA pools. Guarded by _mutex->lock.
147 * @pools: The link to 'struct ttm_pool_manager->pools'
148 * @dev: The 'struct device' associated with the 'pool'
149 * @pool: The 'struct dma_pool' associated with the 'dev'
151 struct device_pools
{
152 struct list_head pools
;
154 struct dma_pool
*pool
;
158 * struct ttm_pool_manager - Holds memory pools for fast allocation
160 * @lock: Lock used when adding/removing from pools
161 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
162 * @options: Limits for the pool.
163 * @npools: Total amount of pools in existence.
164 * @shrinker: The structure used by [un|]register_shrinker
166 struct ttm_pool_manager
{
168 struct list_head pools
;
169 struct ttm_pool_opts options
;
171 struct shrinker mm_shrink
;
175 static struct ttm_pool_manager
*_manager
;
177 static struct attribute ttm_page_pool_max
= {
178 .name
= "pool_max_size",
179 .mode
= S_IRUGO
| S_IWUSR
181 static struct attribute ttm_page_pool_small
= {
182 .name
= "pool_small_allocation",
183 .mode
= S_IRUGO
| S_IWUSR
185 static struct attribute ttm_page_pool_alloc_size
= {
186 .name
= "pool_allocation_size",
187 .mode
= S_IRUGO
| S_IWUSR
190 static struct attribute
*ttm_pool_attrs
[] = {
192 &ttm_page_pool_small
,
193 &ttm_page_pool_alloc_size
,
197 static void ttm_pool_kobj_release(struct kobject
*kobj
)
199 struct ttm_pool_manager
*m
=
200 container_of(kobj
, struct ttm_pool_manager
, kobj
);
204 static ssize_t
ttm_pool_store(struct kobject
*kobj
, struct attribute
*attr
,
205 const char *buffer
, size_t size
)
207 struct ttm_pool_manager
*m
=
208 container_of(kobj
, struct ttm_pool_manager
, kobj
);
211 chars
= sscanf(buffer
, "%u", &val
);
215 /* Convert kb to number of pages */
216 val
= val
/ (PAGE_SIZE
>> 10);
218 if (attr
== &ttm_page_pool_max
)
219 m
->options
.max_size
= val
;
220 else if (attr
== &ttm_page_pool_small
)
221 m
->options
.small
= val
;
222 else if (attr
== &ttm_page_pool_alloc_size
) {
223 if (val
> NUM_PAGES_TO_ALLOC
*8) {
224 printk(KERN_ERR TTM_PFX
225 "Setting allocation size to %lu "
226 "is not allowed. Recommended size is "
228 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 7),
229 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
231 } else if (val
> NUM_PAGES_TO_ALLOC
) {
232 printk(KERN_WARNING TTM_PFX
233 "Setting allocation size to "
234 "larger than %lu is not recommended.\n",
235 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
237 m
->options
.alloc_size
= val
;
243 static ssize_t
ttm_pool_show(struct kobject
*kobj
, struct attribute
*attr
,
246 struct ttm_pool_manager
*m
=
247 container_of(kobj
, struct ttm_pool_manager
, kobj
);
250 if (attr
== &ttm_page_pool_max
)
251 val
= m
->options
.max_size
;
252 else if (attr
== &ttm_page_pool_small
)
253 val
= m
->options
.small
;
254 else if (attr
== &ttm_page_pool_alloc_size
)
255 val
= m
->options
.alloc_size
;
257 val
= val
* (PAGE_SIZE
>> 10);
259 return snprintf(buffer
, PAGE_SIZE
, "%u\n", val
);
262 static const struct sysfs_ops ttm_pool_sysfs_ops
= {
263 .show
= &ttm_pool_show
,
264 .store
= &ttm_pool_store
,
267 static struct kobj_type ttm_pool_kobj_type
= {
268 .release
= &ttm_pool_kobj_release
,
269 .sysfs_ops
= &ttm_pool_sysfs_ops
,
270 .default_attrs
= ttm_pool_attrs
,
274 static int set_pages_array_wb(struct page
**pages
, int addrinarray
)
279 for (i
= 0; i
< addrinarray
; i
++)
280 unmap_page_from_agp(pages
[i
]);
285 static int set_pages_array_wc(struct page
**pages
, int addrinarray
)
290 for (i
= 0; i
< addrinarray
; i
++)
291 map_page_into_agp(pages
[i
]);
296 static int set_pages_array_uc(struct page
**pages
, int addrinarray
)
301 for (i
= 0; i
< addrinarray
; i
++)
302 map_page_into_agp(pages
[i
]);
306 #endif /* for !CONFIG_X86 */
308 static int ttm_set_pages_caching(struct dma_pool
*pool
,
309 struct page
**pages
, unsigned cpages
)
312 /* Set page caching */
313 if (pool
->type
& IS_UC
) {
314 r
= set_pages_array_uc(pages
, cpages
);
317 "%s: Failed to set %d pages to uc!\n",
318 pool
->dev_name
, cpages
);
320 if (pool
->type
& IS_WC
) {
321 r
= set_pages_array_wc(pages
, cpages
);
324 "%s: Failed to set %d pages to wc!\n",
325 pool
->dev_name
, cpages
);
330 static void __ttm_dma_free_page(struct dma_pool
*pool
, struct dma_page
*d_page
)
332 dma_addr_t dma
= d_page
->dma
;
333 dma_free_coherent(pool
->dev
, pool
->size
, d_page
->vaddr
, dma
);
338 static struct dma_page
*__ttm_dma_alloc_page(struct dma_pool
*pool
)
340 struct dma_page
*d_page
;
342 d_page
= kmalloc(sizeof(struct dma_page
), GFP_KERNEL
);
346 d_page
->vaddr
= dma_alloc_coherent(pool
->dev
, pool
->size
,
350 d_page
->p
= virt_to_page(d_page
->vaddr
);
357 static enum pool_type
ttm_to_type(int flags
, enum ttm_caching_state cstate
)
359 enum pool_type type
= IS_UNDEFINED
;
361 if (flags
& TTM_PAGE_FLAG_DMA32
)
363 if (cstate
== tt_cached
)
365 else if (cstate
== tt_uncached
)
373 static void ttm_pool_update_free_locked(struct dma_pool
*pool
,
374 unsigned freed_pages
)
376 pool
->npages_free
-= freed_pages
;
377 pool
->nfrees
+= freed_pages
;
381 /* set memory back to wb and free the pages. */
382 static void ttm_dma_pages_put(struct dma_pool
*pool
, struct list_head
*d_pages
,
383 struct page
*pages
[], unsigned npages
)
385 struct dma_page
*d_page
, *tmp
;
387 /* Don't set WB on WB page pool. */
388 if (npages
&& !(pool
->type
& IS_CACHED
) &&
389 set_pages_array_wb(pages
, npages
))
390 pr_err(TTM_PFX
"%s: Failed to set %d pages to wb!\n",
391 pool
->dev_name
, npages
);
393 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
) {
394 list_del(&d_page
->page_list
);
395 __ttm_dma_free_page(pool
, d_page
);
399 static void ttm_dma_page_put(struct dma_pool
*pool
, struct dma_page
*d_page
)
401 /* Don't set WB on WB page pool. */
402 if (!(pool
->type
& IS_CACHED
) && set_pages_array_wb(&d_page
->p
, 1))
403 pr_err(TTM_PFX
"%s: Failed to set %d pages to wb!\n",
406 list_del(&d_page
->page_list
);
407 __ttm_dma_free_page(pool
, d_page
);
411 * Free pages from pool.
413 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
414 * number of pages in one go.
416 * @pool: to free the pages from
417 * @nr_free: If set to true will free all pages in pool
419 static unsigned ttm_dma_page_pool_free(struct dma_pool
*pool
, unsigned nr_free
)
421 unsigned long irq_flags
;
422 struct dma_page
*dma_p
, *tmp
;
423 struct page
**pages_to_free
;
424 struct list_head d_pages
;
425 unsigned freed_pages
= 0,
426 npages_to_free
= nr_free
;
428 if (NUM_PAGES_TO_ALLOC
< nr_free
)
429 npages_to_free
= NUM_PAGES_TO_ALLOC
;
432 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
433 pool
->dev_name
, pool
->name
, current
->pid
,
434 npages_to_free
, nr_free
);
437 pages_to_free
= kmalloc(npages_to_free
* sizeof(struct page
*),
440 if (!pages_to_free
) {
442 "%s: Failed to allocate memory for pool free operation.\n",
446 INIT_LIST_HEAD(&d_pages
);
448 spin_lock_irqsave(&pool
->lock
, irq_flags
);
450 /* We picking the oldest ones off the list */
451 list_for_each_entry_safe_reverse(dma_p
, tmp
, &pool
->free_list
,
453 if (freed_pages
>= npages_to_free
)
456 /* Move the dma_page from one list to another. */
457 list_move(&dma_p
->page_list
, &d_pages
);
459 pages_to_free
[freed_pages
++] = dma_p
->p
;
460 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
461 if (freed_pages
>= NUM_PAGES_TO_ALLOC
) {
463 ttm_pool_update_free_locked(pool
, freed_pages
);
465 * Because changing page caching is costly
466 * we unlock the pool to prevent stalling.
468 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
470 ttm_dma_pages_put(pool
, &d_pages
, pages_to_free
,
473 INIT_LIST_HEAD(&d_pages
);
475 if (likely(nr_free
!= FREE_ALL_PAGES
))
476 nr_free
-= freed_pages
;
478 if (NUM_PAGES_TO_ALLOC
>= nr_free
)
479 npages_to_free
= nr_free
;
481 npages_to_free
= NUM_PAGES_TO_ALLOC
;
485 /* free all so restart the processing */
489 /* Not allowed to fall through or break because
490 * following context is inside spinlock while we are
498 /* remove range of pages from the pool */
500 ttm_pool_update_free_locked(pool
, freed_pages
);
501 nr_free
-= freed_pages
;
504 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
507 ttm_dma_pages_put(pool
, &d_pages
, pages_to_free
, freed_pages
);
509 kfree(pages_to_free
);
513 static void ttm_dma_free_pool(struct device
*dev
, enum pool_type type
)
515 struct device_pools
*p
;
516 struct dma_pool
*pool
;
521 mutex_lock(&_manager
->lock
);
522 list_for_each_entry_reverse(p
, &_manager
->pools
, pools
) {
526 if (pool
->type
!= type
)
534 list_for_each_entry_reverse(pool
, &dev
->dma_pools
, pools
) {
535 if (pool
->type
!= type
)
537 /* Takes a spinlock.. */
538 ttm_dma_page_pool_free(pool
, FREE_ALL_PAGES
);
539 WARN_ON(((pool
->npages_in_use
+ pool
->npages_free
) != 0));
540 /* This code path is called after _all_ references to the
541 * struct device has been dropped - so nobody should be
542 * touching it. In case somebody is trying to _add_ we are
543 * guarded by the mutex. */
544 list_del(&pool
->pools
);
548 mutex_unlock(&_manager
->lock
);
552 * On free-ing of the 'struct device' this deconstructor is run.
553 * Albeit the pool might have already been freed earlier.
555 static void ttm_dma_pool_release(struct device
*dev
, void *res
)
557 struct dma_pool
*pool
= *(struct dma_pool
**)res
;
560 ttm_dma_free_pool(dev
, pool
->type
);
563 static int ttm_dma_pool_match(struct device
*dev
, void *res
, void *match_data
)
565 return *(struct dma_pool
**)res
== match_data
;
568 static struct dma_pool
*ttm_dma_pool_init(struct device
*dev
, gfp_t flags
,
571 char *n
[] = {"wc", "uc", "cached", " dma32", "unknown",};
572 enum pool_type t
[] = {IS_WC
, IS_UC
, IS_CACHED
, IS_DMA32
, IS_UNDEFINED
};
573 struct device_pools
*sec_pool
= NULL
;
574 struct dma_pool
*pool
= NULL
, **ptr
;
582 ptr
= devres_alloc(ttm_dma_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
588 pool
= kmalloc_node(sizeof(struct dma_pool
), GFP_KERNEL
,
593 sec_pool
= kmalloc_node(sizeof(struct device_pools
), GFP_KERNEL
,
598 INIT_LIST_HEAD(&sec_pool
->pools
);
600 sec_pool
->pool
= pool
;
602 INIT_LIST_HEAD(&pool
->free_list
);
603 INIT_LIST_HEAD(&pool
->inuse_list
);
604 INIT_LIST_HEAD(&pool
->pools
);
605 spin_lock_init(&pool
->lock
);
607 pool
->npages_free
= pool
->npages_in_use
= 0;
609 pool
->gfp_flags
= flags
;
610 pool
->size
= PAGE_SIZE
;
614 for (i
= 0; i
< 5; i
++) {
616 p
+= snprintf(p
, sizeof(pool
->name
) - (p
- pool
->name
),
621 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
622 * - the kobj->name has already been deallocated.*/
623 snprintf(pool
->dev_name
, sizeof(pool
->dev_name
), "%s %s",
624 dev_driver_string(dev
), dev_name(dev
));
625 mutex_lock(&_manager
->lock
);
626 /* You can get the dma_pool from either the global: */
627 list_add(&sec_pool
->pools
, &_manager
->pools
);
629 /* or from 'struct device': */
630 list_add(&pool
->pools
, &dev
->dma_pools
);
631 mutex_unlock(&_manager
->lock
);
634 devres_add(dev
, ptr
);
644 static struct dma_pool
*ttm_dma_find_pool(struct device
*dev
,
647 struct dma_pool
*pool
, *tmp
, *found
= NULL
;
649 if (type
== IS_UNDEFINED
)
652 /* NB: We iterate on the 'struct dev' which has no spinlock, but
653 * it does have a kref which we have taken. The kref is taken during
654 * graphic driver loading - in the drm_pci_init it calls either
655 * pci_dev_get or pci_register_driver which both end up taking a kref
656 * on 'struct device'.
658 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
659 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
660 * thing is at that point of time there are no pages associated with the
661 * driver so this function will not be called.
663 list_for_each_entry_safe(pool
, tmp
, &dev
->dma_pools
, pools
) {
664 if (pool
->type
!= type
)
673 * Free pages the pages that failed to change the caching state. If there
674 * are pages that have changed their caching state already put them to the
677 static void ttm_dma_handle_caching_state_failure(struct dma_pool
*pool
,
678 struct list_head
*d_pages
,
679 struct page
**failed_pages
,
682 struct dma_page
*d_page
, *tmp
;
689 /* Find the failed page. */
690 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
) {
693 /* .. and then progress over the full list. */
694 list_del(&d_page
->page_list
);
695 __ttm_dma_free_page(pool
, d_page
);
705 * Allocate 'count' pages, and put 'need' number of them on the
706 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
707 * The full list of pages should also be on 'd_pages'.
708 * We return zero for success, and negative numbers as errors.
710 static int ttm_dma_pool_alloc_new_pages(struct dma_pool
*pool
,
711 struct list_head
*d_pages
,
714 struct page
**caching_array
;
715 struct dma_page
*dma_p
;
719 unsigned max_cpages
= min(count
,
720 (unsigned)(PAGE_SIZE
/sizeof(struct page
*)));
722 /* allocate array for page caching change */
723 caching_array
= kmalloc(max_cpages
*sizeof(struct page
*), GFP_KERNEL
);
725 if (!caching_array
) {
727 "%s: Unable to allocate table for new pages.",
733 pr_debug("%s: (%s:%d) Getting %d pages\n",
734 pool
->dev_name
, pool
->name
, current
->pid
,
738 for (i
= 0, cpages
= 0; i
< count
; ++i
) {
739 dma_p
= __ttm_dma_alloc_page(pool
);
741 pr_err(TTM_PFX
"%s: Unable to get page %u.\n",
744 /* store already allocated pages in the pool after
745 * setting the caching state */
747 r
= ttm_set_pages_caching(pool
, caching_array
,
750 ttm_dma_handle_caching_state_failure(
751 pool
, d_pages
, caching_array
,
758 #ifdef CONFIG_HIGHMEM
759 /* gfp flags of highmem page should never be dma32 so we
760 * we should be fine in such case
765 caching_array
[cpages
++] = p
;
766 if (cpages
== max_cpages
) {
767 /* Note: Cannot hold the spinlock */
768 r
= ttm_set_pages_caching(pool
, caching_array
,
771 ttm_dma_handle_caching_state_failure(
772 pool
, d_pages
, caching_array
,
779 list_add(&dma_p
->page_list
, d_pages
);
783 r
= ttm_set_pages_caching(pool
, caching_array
, cpages
);
785 ttm_dma_handle_caching_state_failure(pool
, d_pages
,
786 caching_array
, cpages
);
789 kfree(caching_array
);
794 * @return count of pages still required to fulfill the request.
796 static int ttm_dma_page_pool_fill_locked(struct dma_pool
*pool
,
797 unsigned long *irq_flags
)
799 unsigned count
= _manager
->options
.small
;
800 int r
= pool
->npages_free
;
802 if (count
> pool
->npages_free
) {
803 struct list_head d_pages
;
805 INIT_LIST_HEAD(&d_pages
);
807 spin_unlock_irqrestore(&pool
->lock
, *irq_flags
);
809 /* Returns how many more are neccessary to fulfill the
811 r
= ttm_dma_pool_alloc_new_pages(pool
, &d_pages
, count
);
813 spin_lock_irqsave(&pool
->lock
, *irq_flags
);
815 /* Add the fresh to the end.. */
816 list_splice(&d_pages
, &pool
->free_list
);
818 pool
->npages_free
+= count
;
821 struct dma_page
*d_page
;
824 pr_err(TTM_PFX
"%s: Failed to fill %s pool (r:%d)!\n",
825 pool
->dev_name
, pool
->name
, r
);
827 list_for_each_entry(d_page
, &d_pages
, page_list
) {
830 list_splice_tail(&d_pages
, &pool
->free_list
);
831 pool
->npages_free
+= cpages
;
839 * @return count of pages still required to fulfill the request.
840 * The populate list is actually a stack (not that is matters as TTM
841 * allocates one page at a time.
843 static int ttm_dma_pool_get_pages(struct dma_pool
*pool
,
844 struct ttm_dma_tt
*ttm_dma
,
847 struct dma_page
*d_page
;
848 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
849 unsigned long irq_flags
;
850 int count
, r
= -ENOMEM
;
852 spin_lock_irqsave(&pool
->lock
, irq_flags
);
853 count
= ttm_dma_page_pool_fill_locked(pool
, &irq_flags
);
855 d_page
= list_first_entry(&pool
->free_list
, struct dma_page
, page_list
);
856 ttm
->pages
[index
] = d_page
->p
;
857 ttm_dma
->dma_address
[index
] = d_page
->dma
;
858 list_move_tail(&d_page
->page_list
, &ttm_dma
->pages_list
);
860 pool
->npages_in_use
+= 1;
861 pool
->npages_free
-= 1;
863 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
868 * On success pages list will hold count number of correctly
869 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
871 int ttm_dma_populate(struct ttm_dma_tt
*ttm_dma
, struct device
*dev
)
873 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
874 struct ttm_mem_global
*mem_glob
= ttm
->glob
->mem_glob
;
875 struct dma_pool
*pool
;
881 if (ttm
->state
!= tt_unpopulated
)
884 type
= ttm_to_type(ttm
->page_flags
, ttm
->caching_state
);
885 if (ttm
->page_flags
& TTM_PAGE_FLAG_DMA32
)
886 gfp_flags
= GFP_USER
| GFP_DMA32
;
888 gfp_flags
= GFP_HIGHUSER
;
889 if (ttm
->page_flags
& TTM_PAGE_FLAG_ZERO_ALLOC
)
890 gfp_flags
|= __GFP_ZERO
;
892 pool
= ttm_dma_find_pool(dev
, type
);
894 pool
= ttm_dma_pool_init(dev
, gfp_flags
, type
);
895 if (IS_ERR_OR_NULL(pool
)) {
900 INIT_LIST_HEAD(&ttm_dma
->pages_list
);
901 for (i
= 0; i
< ttm
->num_pages
; ++i
) {
902 ret
= ttm_dma_pool_get_pages(pool
, ttm_dma
, i
);
904 ttm_dma_unpopulate(ttm_dma
, dev
);
908 ret
= ttm_mem_global_alloc_page(mem_glob
, ttm
->pages
[i
],
910 if (unlikely(ret
!= 0)) {
911 ttm_dma_unpopulate(ttm_dma
, dev
);
916 if (unlikely(ttm
->page_flags
& TTM_PAGE_FLAG_SWAPPED
)) {
917 ret
= ttm_tt_swapin(ttm
);
918 if (unlikely(ret
!= 0)) {
919 ttm_dma_unpopulate(ttm_dma
, dev
);
924 ttm
->state
= tt_unbound
;
927 EXPORT_SYMBOL_GPL(ttm_dma_populate
);
929 /* Get good estimation how many pages are free in pools */
930 static int ttm_dma_pool_get_num_unused_pages(void)
932 struct device_pools
*p
;
935 mutex_lock(&_manager
->lock
);
936 list_for_each_entry(p
, &_manager
->pools
, pools
)
937 total
+= p
->pool
->npages_free
;
938 mutex_unlock(&_manager
->lock
);
942 /* Put all pages in pages list to correct pool to wait for reuse */
943 void ttm_dma_unpopulate(struct ttm_dma_tt
*ttm_dma
, struct device
*dev
)
945 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
946 struct dma_pool
*pool
;
947 struct dma_page
*d_page
, *next
;
949 bool is_cached
= false;
950 unsigned count
= 0, i
, npages
= 0;
951 unsigned long irq_flags
;
953 type
= ttm_to_type(ttm
->page_flags
, ttm
->caching_state
);
954 pool
= ttm_dma_find_pool(dev
, type
);
958 is_cached
= (ttm_dma_find_pool(pool
->dev
,
959 ttm_to_type(ttm
->page_flags
, tt_cached
)) == pool
);
961 /* make sure pages array match list and count number of pages */
962 list_for_each_entry(d_page
, &ttm_dma
->pages_list
, page_list
) {
963 ttm
->pages
[count
] = d_page
->p
;
967 spin_lock_irqsave(&pool
->lock
, irq_flags
);
968 pool
->npages_in_use
-= count
;
970 pool
->nfrees
+= count
;
972 pool
->npages_free
+= count
;
973 list_splice(&ttm_dma
->pages_list
, &pool
->free_list
);
975 if (pool
->npages_free
> _manager
->options
.max_size
) {
976 npages
= pool
->npages_free
- _manager
->options
.max_size
;
977 /* free at least NUM_PAGES_TO_ALLOC number of pages
978 * to reduce calls to set_memory_wb */
979 if (npages
< NUM_PAGES_TO_ALLOC
)
980 npages
= NUM_PAGES_TO_ALLOC
;
983 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
986 list_for_each_entry_safe(d_page
, next
, &ttm_dma
->pages_list
, page_list
) {
987 ttm_mem_global_free_page(ttm
->glob
->mem_glob
,
989 ttm_dma_page_put(pool
, d_page
);
992 for (i
= 0; i
< count
; i
++) {
993 ttm_mem_global_free_page(ttm
->glob
->mem_glob
,
998 INIT_LIST_HEAD(&ttm_dma
->pages_list
);
999 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1000 ttm
->pages
[i
] = NULL
;
1001 ttm_dma
->dma_address
[i
] = 0;
1004 /* shrink pool if necessary (only on !is_cached pools)*/
1006 ttm_dma_page_pool_free(pool
, npages
);
1007 ttm
->state
= tt_unpopulated
;
1009 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate
);
1012 * Callback for mm to request pool to reduce number of page held.
1014 static int ttm_dma_pool_mm_shrink(struct shrinker
*shrink
,
1015 struct shrink_control
*sc
)
1017 static atomic_t start_pool
= ATOMIC_INIT(0);
1019 unsigned pool_offset
= atomic_add_return(1, &start_pool
);
1020 unsigned shrink_pages
= sc
->nr_to_scan
;
1021 struct device_pools
*p
;
1023 if (list_empty(&_manager
->pools
))
1026 mutex_lock(&_manager
->lock
);
1027 pool_offset
= pool_offset
% _manager
->npools
;
1028 list_for_each_entry(p
, &_manager
->pools
, pools
) {
1033 if (shrink_pages
== 0)
1035 /* Do it in round-robin fashion. */
1036 if (++idx
< pool_offset
)
1038 nr_free
= shrink_pages
;
1039 shrink_pages
= ttm_dma_page_pool_free(p
->pool
, nr_free
);
1040 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1041 p
->pool
->dev_name
, p
->pool
->name
, current
->pid
, nr_free
,
1044 mutex_unlock(&_manager
->lock
);
1045 /* return estimated number of unused pages in pool */
1046 return ttm_dma_pool_get_num_unused_pages();
1049 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager
*manager
)
1051 manager
->mm_shrink
.shrink
= &ttm_dma_pool_mm_shrink
;
1052 manager
->mm_shrink
.seeks
= 1;
1053 register_shrinker(&manager
->mm_shrink
);
1056 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager
*manager
)
1058 unregister_shrinker(&manager
->mm_shrink
);
1061 int ttm_dma_page_alloc_init(struct ttm_mem_global
*glob
, unsigned max_pages
)
1067 printk(KERN_INFO TTM_PFX
"Initializing DMA pool allocator.\n");
1069 _manager
= kzalloc(sizeof(*_manager
), GFP_KERNEL
);
1073 mutex_init(&_manager
->lock
);
1074 INIT_LIST_HEAD(&_manager
->pools
);
1076 _manager
->options
.max_size
= max_pages
;
1077 _manager
->options
.small
= SMALL_ALLOCATION
;
1078 _manager
->options
.alloc_size
= NUM_PAGES_TO_ALLOC
;
1080 /* This takes care of auto-freeing the _manager */
1081 ret
= kobject_init_and_add(&_manager
->kobj
, &ttm_pool_kobj_type
,
1082 &glob
->kobj
, "dma_pool");
1083 if (unlikely(ret
!= 0)) {
1084 kobject_put(&_manager
->kobj
);
1087 ttm_dma_pool_mm_shrink_init(_manager
);
1096 void ttm_dma_page_alloc_fini(void)
1098 struct device_pools
*p
, *t
;
1100 printk(KERN_INFO TTM_PFX
"Finalizing DMA pool allocator.\n");
1101 ttm_dma_pool_mm_shrink_fini(_manager
);
1103 list_for_each_entry_safe_reverse(p
, t
, &_manager
->pools
, pools
) {
1104 dev_dbg(p
->dev
, "(%s:%d) Freeing.\n", p
->pool
->name
,
1106 WARN_ON(devres_destroy(p
->dev
, ttm_dma_pool_release
,
1107 ttm_dma_pool_match
, p
->pool
));
1108 ttm_dma_free_pool(p
->dev
, p
->pool
->type
);
1110 kobject_put(&_manager
->kobj
);
1114 int ttm_dma_page_alloc_debugfs(struct seq_file
*m
, void *data
)
1116 struct device_pools
*p
;
1117 struct dma_pool
*pool
= NULL
;
1118 char *h
[] = {"pool", "refills", "pages freed", "inuse", "available",
1119 "name", "virt", "busaddr"};
1122 seq_printf(m
, "No pool allocator running.\n");
1125 seq_printf(m
, "%13s %12s %13s %8s %8s %8s\n",
1126 h
[0], h
[1], h
[2], h
[3], h
[4], h
[5]);
1127 mutex_lock(&_manager
->lock
);
1128 list_for_each_entry(p
, &_manager
->pools
, pools
) {
1129 struct device
*dev
= p
->dev
;
1133 seq_printf(m
, "%13s %12ld %13ld %8d %8d %8s\n",
1134 pool
->name
, pool
->nrefills
,
1135 pool
->nfrees
, pool
->npages_in_use
,
1139 mutex_unlock(&_manager
->lock
);
1142 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs
);