Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / isdn / hisax / avm_pci.c
blob0e66af1decd43266129c4fc350ea0dbddeee111f
1 /* $Id: avm_pci.c,v 1.29.2.4 2004/02/11 13:21:32 keil Exp $
3 * low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
5 * Author Karsten Keil
6 * Copyright by Karsten Keil <keil@isdn4linux.de>
8 * This software may be used and distributed according to the terms
9 * of the GNU General Public License, incorporated herein by reference.
11 * Thanks to AVM, Berlin for information
15 #include <linux/init.h>
16 #include "hisax.h"
17 #include "isac.h"
18 #include "isdnl1.h"
19 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/isapnp.h>
22 #include <linux/interrupt.h>
24 static const char *avm_pci_rev = "$Revision: 1.29.2.4 $";
26 #define AVM_FRITZ_PCI 1
27 #define AVM_FRITZ_PNP 2
29 #define HDLC_FIFO 0x0
30 #define HDLC_STATUS 0x4
32 #define AVM_HDLC_1 0x00
33 #define AVM_HDLC_2 0x01
34 #define AVM_ISAC_FIFO 0x02
35 #define AVM_ISAC_REG_LOW 0x04
36 #define AVM_ISAC_REG_HIGH 0x06
38 #define AVM_STATUS0_IRQ_ISAC 0x01
39 #define AVM_STATUS0_IRQ_HDLC 0x02
40 #define AVM_STATUS0_IRQ_TIMER 0x04
41 #define AVM_STATUS0_IRQ_MASK 0x07
43 #define AVM_STATUS0_RESET 0x01
44 #define AVM_STATUS0_DIS_TIMER 0x02
45 #define AVM_STATUS0_RES_TIMER 0x04
46 #define AVM_STATUS0_ENA_IRQ 0x08
47 #define AVM_STATUS0_TESTBIT 0x10
49 #define AVM_STATUS1_INT_SEL 0x0f
50 #define AVM_STATUS1_ENA_IOM 0x80
52 #define HDLC_MODE_ITF_FLG 0x01
53 #define HDLC_MODE_TRANS 0x02
54 #define HDLC_MODE_CCR_7 0x04
55 #define HDLC_MODE_CCR_16 0x08
56 #define HDLC_MODE_TESTLOOP 0x80
58 #define HDLC_INT_XPR 0x80
59 #define HDLC_INT_XDU 0x40
60 #define HDLC_INT_RPR 0x20
61 #define HDLC_INT_MASK 0xE0
63 #define HDLC_STAT_RME 0x01
64 #define HDLC_STAT_RDO 0x10
65 #define HDLC_STAT_CRCVFRRAB 0x0E
66 #define HDLC_STAT_CRCVFR 0x06
67 #define HDLC_STAT_RML_MASK 0x3f00
69 #define HDLC_CMD_XRS 0x80
70 #define HDLC_CMD_XME 0x01
71 #define HDLC_CMD_RRS 0x20
72 #define HDLC_CMD_XML_MASK 0x3f00
75 /* Interface functions */
77 static u_char
78 ReadISAC(struct IsdnCardState *cs, u_char offset)
80 register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
81 register u_char val;
83 outb(idx, cs->hw.avm.cfg_reg + 4);
84 val = inb(cs->hw.avm.isac + (offset & 0xf));
85 return (val);
88 static void
89 WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
91 register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
93 outb(idx, cs->hw.avm.cfg_reg + 4);
94 outb(value, cs->hw.avm.isac + (offset & 0xf));
97 static void
98 ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
100 outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
101 insb(cs->hw.avm.isac, data, size);
104 static void
105 WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
107 outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
108 outsb(cs->hw.avm.isac, data, size);
111 static inline u_int
112 ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
114 register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
115 register u_int val;
117 outl(idx, cs->hw.avm.cfg_reg + 4);
118 val = inl(cs->hw.avm.isac + offset);
119 return (val);
122 static inline void
123 WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
125 register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
127 outl(idx, cs->hw.avm.cfg_reg + 4);
128 outl(value, cs->hw.avm.isac + offset);
131 static inline u_char
132 ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
134 register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
135 register u_char val;
137 outb(idx, cs->hw.avm.cfg_reg + 4);
138 val = inb(cs->hw.avm.isac + offset);
139 return (val);
142 static inline void
143 WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
145 register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
147 outb(idx, cs->hw.avm.cfg_reg + 4);
148 outb(value, cs->hw.avm.isac + offset);
151 static u_char
152 ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
154 return(0xff & ReadHDLCPCI(cs, chan, offset));
157 static void
158 WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
160 WriteHDLCPCI(cs, chan, offset, value);
163 static inline
164 struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
166 if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
167 return(&cs->bcs[0]);
168 else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
169 return(&cs->bcs[1]);
170 else
171 return(NULL);
174 static void
175 write_ctrl(struct BCState *bcs, int which) {
177 if (bcs->cs->debug & L1_DEB_HSCX)
178 debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
179 'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
180 if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
181 WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
182 } else {
183 if (which & 4)
184 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
185 bcs->hw.hdlc.ctrl.sr.mode);
186 if (which & 2)
187 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
188 bcs->hw.hdlc.ctrl.sr.xml);
189 if (which & 1)
190 WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
191 bcs->hw.hdlc.ctrl.sr.cmd);
195 static void
196 modehdlc(struct BCState *bcs, int mode, int bc)
198 struct IsdnCardState *cs = bcs->cs;
199 int hdlc = bcs->channel;
201 if (cs->debug & L1_DEB_HSCX)
202 debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
203 'A' + hdlc, bcs->mode, mode, hdlc, bc);
204 bcs->hw.hdlc.ctrl.ctrl = 0;
205 switch (mode) {
206 case (-1): /* used for init */
207 bcs->mode = 1;
208 bcs->channel = bc;
209 bc = 0;
210 case (L1_MODE_NULL):
211 if (bcs->mode == L1_MODE_NULL)
212 return;
213 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
214 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
215 write_ctrl(bcs, 5);
216 bcs->mode = L1_MODE_NULL;
217 bcs->channel = bc;
218 break;
219 case (L1_MODE_TRANS):
220 bcs->mode = mode;
221 bcs->channel = bc;
222 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
223 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
224 write_ctrl(bcs, 5);
225 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
226 write_ctrl(bcs, 1);
227 bcs->hw.hdlc.ctrl.sr.cmd = 0;
228 schedule_event(bcs, B_XMTBUFREADY);
229 break;
230 case (L1_MODE_HDLC):
231 bcs->mode = mode;
232 bcs->channel = bc;
233 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
234 bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
235 write_ctrl(bcs, 5);
236 bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
237 write_ctrl(bcs, 1);
238 bcs->hw.hdlc.ctrl.sr.cmd = 0;
239 schedule_event(bcs, B_XMTBUFREADY);
240 break;
244 static inline void
245 hdlc_empty_fifo(struct BCState *bcs, int count)
247 register u_int *ptr;
248 u_char *p;
249 u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
250 int cnt=0;
251 struct IsdnCardState *cs = bcs->cs;
253 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
254 debugl1(cs, "hdlc_empty_fifo %d", count);
255 if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
256 if (cs->debug & L1_DEB_WARN)
257 debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
258 return;
260 p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
261 ptr = (u_int *)p;
262 bcs->hw.hdlc.rcvidx += count;
263 if (cs->subtyp == AVM_FRITZ_PCI) {
264 outl(idx, cs->hw.avm.cfg_reg + 4);
265 while (cnt < count) {
266 #ifdef __powerpc__
267 *ptr++ = in_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
268 #else
269 *ptr++ = inl(cs->hw.avm.isac);
270 #endif /* __powerpc__ */
271 cnt += 4;
273 } else {
274 outb(idx, cs->hw.avm.cfg_reg + 4);
275 while (cnt < count) {
276 *p++ = inb(cs->hw.avm.isac);
277 cnt++;
280 if (cs->debug & L1_DEB_HSCX_FIFO) {
281 char *t = bcs->blog;
283 if (cs->subtyp == AVM_FRITZ_PNP)
284 p = (u_char *) ptr;
285 t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
286 bcs->channel ? 'B' : 'A', count);
287 QuickHex(t, p, count);
288 debugl1(cs, bcs->blog);
292 static inline void
293 hdlc_fill_fifo(struct BCState *bcs)
295 struct IsdnCardState *cs = bcs->cs;
296 int count, cnt =0;
297 int fifo_size = 32;
298 u_char *p;
299 u_int *ptr;
301 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
302 debugl1(cs, "hdlc_fill_fifo");
303 if (!bcs->tx_skb)
304 return;
305 if (bcs->tx_skb->len <= 0)
306 return;
308 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
309 if (bcs->tx_skb->len > fifo_size) {
310 count = fifo_size;
311 } else {
312 count = bcs->tx_skb->len;
313 if (bcs->mode != L1_MODE_TRANS)
314 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
316 if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
317 debugl1(cs, "hdlc_fill_fifo %d/%u", count, bcs->tx_skb->len);
318 p = bcs->tx_skb->data;
319 ptr = (u_int *)p;
320 skb_pull(bcs->tx_skb, count);
321 bcs->tx_cnt -= count;
322 bcs->hw.hdlc.count += count;
323 bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
324 write_ctrl(bcs, 3); /* sets the correct index too */
325 if (cs->subtyp == AVM_FRITZ_PCI) {
326 while (cnt<count) {
327 #ifdef __powerpc__
328 out_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
329 #else
330 outl(*ptr++, cs->hw.avm.isac);
331 #endif /* __powerpc__ */
332 cnt += 4;
334 } else {
335 while (cnt<count) {
336 outb(*p++, cs->hw.avm.isac);
337 cnt++;
340 if (cs->debug & L1_DEB_HSCX_FIFO) {
341 char *t = bcs->blog;
343 if (cs->subtyp == AVM_FRITZ_PNP)
344 p = (u_char *) ptr;
345 t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
346 bcs->channel ? 'B' : 'A', count);
347 QuickHex(t, p, count);
348 debugl1(cs, bcs->blog);
352 static void
353 HDLC_irq(struct BCState *bcs, u_int stat) {
354 int len;
355 struct sk_buff *skb;
357 if (bcs->cs->debug & L1_DEB_HSCX)
358 debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
359 if (stat & HDLC_INT_RPR) {
360 if (stat & HDLC_STAT_RDO) {
361 if (bcs->cs->debug & L1_DEB_HSCX)
362 debugl1(bcs->cs, "RDO");
363 else
364 debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
365 bcs->hw.hdlc.ctrl.sr.xml = 0;
366 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
367 write_ctrl(bcs, 1);
368 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
369 write_ctrl(bcs, 1);
370 bcs->hw.hdlc.rcvidx = 0;
371 } else {
372 if (!(len = (stat & HDLC_STAT_RML_MASK)>>8))
373 len = 32;
374 hdlc_empty_fifo(bcs, len);
375 if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
376 if (((stat & HDLC_STAT_CRCVFRRAB)==HDLC_STAT_CRCVFR) ||
377 (bcs->mode == L1_MODE_TRANS)) {
378 if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
379 printk(KERN_WARNING "HDLC: receive out of memory\n");
380 else {
381 memcpy(skb_put(skb, bcs->hw.hdlc.rcvidx),
382 bcs->hw.hdlc.rcvbuf, bcs->hw.hdlc.rcvidx);
383 skb_queue_tail(&bcs->rqueue, skb);
385 bcs->hw.hdlc.rcvidx = 0;
386 schedule_event(bcs, B_RCVBUFREADY);
387 } else {
388 if (bcs->cs->debug & L1_DEB_HSCX)
389 debugl1(bcs->cs, "invalid frame");
390 else
391 debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
392 bcs->hw.hdlc.rcvidx = 0;
397 if (stat & HDLC_INT_XDU) {
398 /* Here we lost an TX interrupt, so
399 * restart transmitting the whole frame.
401 if (bcs->tx_skb) {
402 skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
403 bcs->tx_cnt += bcs->hw.hdlc.count;
404 bcs->hw.hdlc.count = 0;
405 if (bcs->cs->debug & L1_DEB_WARN)
406 debugl1(bcs->cs, "ch%d XDU", bcs->channel);
407 } else if (bcs->cs->debug & L1_DEB_WARN)
408 debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
409 bcs->hw.hdlc.ctrl.sr.xml = 0;
410 bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
411 write_ctrl(bcs, 1);
412 bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
413 write_ctrl(bcs, 1);
414 hdlc_fill_fifo(bcs);
415 } else if (stat & HDLC_INT_XPR) {
416 if (bcs->tx_skb) {
417 if (bcs->tx_skb->len) {
418 hdlc_fill_fifo(bcs);
419 return;
420 } else {
421 if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
422 (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
423 u_long flags;
424 spin_lock_irqsave(&bcs->aclock, flags);
425 bcs->ackcnt += bcs->hw.hdlc.count;
426 spin_unlock_irqrestore(&bcs->aclock, flags);
427 schedule_event(bcs, B_ACKPENDING);
429 dev_kfree_skb_irq(bcs->tx_skb);
430 bcs->hw.hdlc.count = 0;
431 bcs->tx_skb = NULL;
434 if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
435 bcs->hw.hdlc.count = 0;
436 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
437 hdlc_fill_fifo(bcs);
438 } else {
439 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
440 schedule_event(bcs, B_XMTBUFREADY);
445 static inline void
446 HDLC_irq_main(struct IsdnCardState *cs)
448 u_int stat;
449 struct BCState *bcs;
451 if (cs->subtyp == AVM_FRITZ_PCI) {
452 stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
453 } else {
454 stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
455 if (stat & HDLC_INT_RPR)
456 stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS+1))<<8;
458 if (stat & HDLC_INT_MASK) {
459 if (!(bcs = Sel_BCS(cs, 0))) {
460 if (cs->debug)
461 debugl1(cs, "hdlc spurious channel 0 IRQ");
462 } else
463 HDLC_irq(bcs, stat);
465 if (cs->subtyp == AVM_FRITZ_PCI) {
466 stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
467 } else {
468 stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
469 if (stat & HDLC_INT_RPR)
470 stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS+1))<<8;
472 if (stat & HDLC_INT_MASK) {
473 if (!(bcs = Sel_BCS(cs, 1))) {
474 if (cs->debug)
475 debugl1(cs, "hdlc spurious channel 1 IRQ");
476 } else
477 HDLC_irq(bcs, stat);
481 static void
482 hdlc_l2l1(struct PStack *st, int pr, void *arg)
484 struct BCState *bcs = st->l1.bcs;
485 struct sk_buff *skb = arg;
486 u_long flags;
488 switch (pr) {
489 case (PH_DATA | REQUEST):
490 spin_lock_irqsave(&bcs->cs->lock, flags);
491 if (bcs->tx_skb) {
492 skb_queue_tail(&bcs->squeue, skb);
493 } else {
494 bcs->tx_skb = skb;
495 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
496 bcs->hw.hdlc.count = 0;
497 bcs->cs->BC_Send_Data(bcs);
499 spin_unlock_irqrestore(&bcs->cs->lock, flags);
500 break;
501 case (PH_PULL | INDICATION):
502 spin_lock_irqsave(&bcs->cs->lock, flags);
503 if (bcs->tx_skb) {
504 printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
505 } else {
506 test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
507 bcs->tx_skb = skb;
508 bcs->hw.hdlc.count = 0;
509 bcs->cs->BC_Send_Data(bcs);
511 spin_unlock_irqrestore(&bcs->cs->lock, flags);
512 break;
513 case (PH_PULL | REQUEST):
514 if (!bcs->tx_skb) {
515 test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
516 st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
517 } else
518 test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
519 break;
520 case (PH_ACTIVATE | REQUEST):
521 spin_lock_irqsave(&bcs->cs->lock, flags);
522 test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
523 modehdlc(bcs, st->l1.mode, st->l1.bc);
524 spin_unlock_irqrestore(&bcs->cs->lock, flags);
525 l1_msg_b(st, pr, arg);
526 break;
527 case (PH_DEACTIVATE | REQUEST):
528 l1_msg_b(st, pr, arg);
529 break;
530 case (PH_DEACTIVATE | CONFIRM):
531 spin_lock_irqsave(&bcs->cs->lock, flags);
532 test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
533 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
534 modehdlc(bcs, 0, st->l1.bc);
535 spin_unlock_irqrestore(&bcs->cs->lock, flags);
536 st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
537 break;
541 static void
542 close_hdlcstate(struct BCState *bcs)
544 modehdlc(bcs, 0, 0);
545 if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
546 kfree(bcs->hw.hdlc.rcvbuf);
547 bcs->hw.hdlc.rcvbuf = NULL;
548 kfree(bcs->blog);
549 bcs->blog = NULL;
550 skb_queue_purge(&bcs->rqueue);
551 skb_queue_purge(&bcs->squeue);
552 if (bcs->tx_skb) {
553 dev_kfree_skb_any(bcs->tx_skb);
554 bcs->tx_skb = NULL;
555 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
560 static int
561 open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
563 if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
564 if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
565 printk(KERN_WARNING
566 "HiSax: No memory for hdlc.rcvbuf\n");
567 return (1);
569 if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
570 printk(KERN_WARNING
571 "HiSax: No memory for bcs->blog\n");
572 test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
573 kfree(bcs->hw.hdlc.rcvbuf);
574 bcs->hw.hdlc.rcvbuf = NULL;
575 return (2);
577 skb_queue_head_init(&bcs->rqueue);
578 skb_queue_head_init(&bcs->squeue);
580 bcs->tx_skb = NULL;
581 test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
582 bcs->event = 0;
583 bcs->hw.hdlc.rcvidx = 0;
584 bcs->tx_cnt = 0;
585 return (0);
588 static int
589 setstack_hdlc(struct PStack *st, struct BCState *bcs)
591 bcs->channel = st->l1.bc;
592 if (open_hdlcstate(st->l1.hardware, bcs))
593 return (-1);
594 st->l1.bcs = bcs;
595 st->l2.l2l1 = hdlc_l2l1;
596 setstack_manager(st);
597 bcs->st = st;
598 setstack_l1_B(st);
599 return (0);
602 #if 0
603 void __init
604 clear_pending_hdlc_ints(struct IsdnCardState *cs)
606 u_int val;
608 if (cs->subtyp == AVM_FRITZ_PCI) {
609 val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
610 debugl1(cs, "HDLC 1 STA %x", val);
611 val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
612 debugl1(cs, "HDLC 2 STA %x", val);
613 } else {
614 val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
615 debugl1(cs, "HDLC 1 STA %x", val);
616 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
617 debugl1(cs, "HDLC 1 RML %x", val);
618 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
619 debugl1(cs, "HDLC 1 MODE %x", val);
620 val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
621 debugl1(cs, "HDLC 1 VIN %x", val);
622 val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
623 debugl1(cs, "HDLC 2 STA %x", val);
624 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
625 debugl1(cs, "HDLC 2 RML %x", val);
626 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
627 debugl1(cs, "HDLC 2 MODE %x", val);
628 val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
629 debugl1(cs, "HDLC 2 VIN %x", val);
632 #endif /* 0 */
634 static void
635 inithdlc(struct IsdnCardState *cs)
637 cs->bcs[0].BC_SetStack = setstack_hdlc;
638 cs->bcs[1].BC_SetStack = setstack_hdlc;
639 cs->bcs[0].BC_Close = close_hdlcstate;
640 cs->bcs[1].BC_Close = close_hdlcstate;
641 modehdlc(cs->bcs, -1, 0);
642 modehdlc(cs->bcs + 1, -1, 1);
645 static irqreturn_t
646 avm_pcipnp_interrupt(int intno, void *dev_id)
648 struct IsdnCardState *cs = dev_id;
649 u_long flags;
650 u_char val;
651 u_char sval;
653 spin_lock_irqsave(&cs->lock, flags);
654 sval = inb(cs->hw.avm.cfg_reg + 2);
655 if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
656 /* possible a shared IRQ reqest */
657 spin_unlock_irqrestore(&cs->lock, flags);
658 return IRQ_NONE;
660 if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
661 val = ReadISAC(cs, ISAC_ISTA);
662 isac_interrupt(cs, val);
664 if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
665 HDLC_irq_main(cs);
667 WriteISAC(cs, ISAC_MASK, 0xFF);
668 WriteISAC(cs, ISAC_MASK, 0x0);
669 spin_unlock_irqrestore(&cs->lock, flags);
670 return IRQ_HANDLED;
673 static void
674 reset_avmpcipnp(struct IsdnCardState *cs)
676 printk(KERN_INFO "AVM PCI/PnP: reset\n");
677 outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
678 mdelay(10);
679 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
680 outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
681 mdelay(10);
682 printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
685 static int
686 AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
688 u_long flags;
690 switch (mt) {
691 case CARD_RESET:
692 spin_lock_irqsave(&cs->lock, flags);
693 reset_avmpcipnp(cs);
694 spin_unlock_irqrestore(&cs->lock, flags);
695 return(0);
696 case CARD_RELEASE:
697 outb(0, cs->hw.avm.cfg_reg + 2);
698 release_region(cs->hw.avm.cfg_reg, 32);
699 return(0);
700 case CARD_INIT:
701 spin_lock_irqsave(&cs->lock, flags);
702 reset_avmpcipnp(cs);
703 clear_pending_isac_ints(cs);
704 initisac(cs);
705 inithdlc(cs);
706 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
707 cs->hw.avm.cfg_reg + 2);
708 WriteISAC(cs, ISAC_MASK, 0);
709 outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
710 AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
711 /* RESET Receiver and Transmitter */
712 WriteISAC(cs, ISAC_CMDR, 0x41);
713 spin_unlock_irqrestore(&cs->lock, flags);
714 return(0);
715 case CARD_TEST:
716 return(0);
718 return(0);
721 static int __devinit avm_setup_rest(struct IsdnCardState *cs)
723 u_int val, ver;
725 cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
726 if (!request_region(cs->hw.avm.cfg_reg, 32,
727 (cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP")) {
728 printk(KERN_WARNING
729 "HiSax: Fritz!PCI/PNP config port %x-%x already in use\n",
730 cs->hw.avm.cfg_reg,
731 cs->hw.avm.cfg_reg + 31);
732 return (0);
734 switch (cs->subtyp) {
735 case AVM_FRITZ_PCI:
736 val = inl(cs->hw.avm.cfg_reg);
737 printk(KERN_INFO "AVM PCI: stat %#x\n", val);
738 printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
739 val & 0xff, (val>>8) & 0xff);
740 cs->BC_Read_Reg = &ReadHDLC_s;
741 cs->BC_Write_Reg = &WriteHDLC_s;
742 break;
743 case AVM_FRITZ_PNP:
744 val = inb(cs->hw.avm.cfg_reg);
745 ver = inb(cs->hw.avm.cfg_reg + 1);
746 printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
747 cs->BC_Read_Reg = &ReadHDLCPnP;
748 cs->BC_Write_Reg = &WriteHDLCPnP;
749 break;
750 default:
751 printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
752 return(0);
754 printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
755 (cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
756 cs->irq, cs->hw.avm.cfg_reg);
758 setup_isac(cs);
759 cs->readisac = &ReadISAC;
760 cs->writeisac = &WriteISAC;
761 cs->readisacfifo = &ReadISACfifo;
762 cs->writeisacfifo = &WriteISACfifo;
763 cs->BC_Send_Data = &hdlc_fill_fifo;
764 cs->cardmsg = &AVM_card_msg;
765 cs->irq_func = &avm_pcipnp_interrupt;
766 cs->writeisac(cs, ISAC_MASK, 0xFF);
767 ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
768 return (1);
771 #ifndef __ISAPNP__
773 static int __devinit avm_pnp_setup(struct IsdnCardState *cs)
775 return(1); /* no-op: success */
778 #else
780 static struct pnp_card *pnp_avm_c __devinitdata = NULL;
782 static int __devinit avm_pnp_setup(struct IsdnCardState *cs)
784 struct pnp_dev *pnp_avm_d = NULL;
786 if (!isapnp_present())
787 return(1); /* no-op: success */
789 if ((pnp_avm_c = pnp_find_card(
790 ISAPNP_VENDOR('A', 'V', 'M'),
791 ISAPNP_FUNCTION(0x0900), pnp_avm_c))) {
792 if ((pnp_avm_d = pnp_find_dev(pnp_avm_c,
793 ISAPNP_VENDOR('A', 'V', 'M'),
794 ISAPNP_FUNCTION(0x0900), pnp_avm_d))) {
795 int err;
797 pnp_disable_dev(pnp_avm_d);
798 err = pnp_activate_dev(pnp_avm_d);
799 if (err<0) {
800 printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
801 __func__, err);
802 return(0);
804 cs->hw.avm.cfg_reg =
805 pnp_port_start(pnp_avm_d, 0);
806 cs->irq = pnp_irq(pnp_avm_d, 0);
807 if (!cs->irq) {
808 printk(KERN_ERR "FritzPnP:No IRQ\n");
809 return(0);
811 if (!cs->hw.avm.cfg_reg) {
812 printk(KERN_ERR "FritzPnP:No IO address\n");
813 return(0);
815 cs->subtyp = AVM_FRITZ_PNP;
817 return (2); /* goto 'ready' label */
821 return (1);
824 #endif /* __ISAPNP__ */
826 #ifndef CONFIG_PCI
828 static int __devinit avm_pci_setup(struct IsdnCardState *cs)
830 return(1); /* no-op: success */
833 #else
835 static struct pci_dev *dev_avm __devinitdata = NULL;
837 static int __devinit avm_pci_setup(struct IsdnCardState *cs)
839 if ((dev_avm = hisax_find_pci_device(PCI_VENDOR_ID_AVM,
840 PCI_DEVICE_ID_AVM_A1, dev_avm))) {
842 if (pci_enable_device(dev_avm))
843 return(0);
845 cs->irq = dev_avm->irq;
846 if (!cs->irq) {
847 printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
848 return(0);
851 cs->hw.avm.cfg_reg = pci_resource_start(dev_avm, 1);
852 if (!cs->hw.avm.cfg_reg) {
853 printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
854 return(0);
857 cs->subtyp = AVM_FRITZ_PCI;
858 } else {
859 printk(KERN_WARNING "FritzPCI: No PCI card found\n");
860 return(0);
863 cs->irq_flags |= IRQF_SHARED;
865 return (1);
868 #endif /* CONFIG_PCI */
870 int __devinit
871 setup_avm_pcipnp(struct IsdnCard *card)
873 struct IsdnCardState *cs = card->cs;
874 char tmp[64];
875 int rc;
877 strcpy(tmp, avm_pci_rev);
878 printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
880 if (cs->typ != ISDN_CTYPE_FRITZPCI)
881 return (0);
883 if (card->para[1]) {
884 /* old manual method */
885 cs->hw.avm.cfg_reg = card->para[1];
886 cs->irq = card->para[0];
887 cs->subtyp = AVM_FRITZ_PNP;
888 goto ready;
891 rc = avm_pnp_setup(cs);
892 if (rc < 1)
893 return (0);
894 if (rc == 2)
895 goto ready;
897 rc = avm_pci_setup(cs);
898 if (rc < 1)
899 return (0);
901 ready:
902 return avm_setup_rest(cs);