2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state
,
32 DEFAULT_RATELIMIT_INTERVAL
,
33 DEFAULT_RATELIMIT_BURST
);
34 EXPORT_SYMBOL(dm_ratelimit_state
);
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name
= DM_NAME
;
46 static unsigned int major
= 0;
47 static unsigned int _major
= 0;
49 static DEFINE_IDR(_minor_idr
);
51 static DEFINE_SPINLOCK(_minor_lock
);
54 * One of these is allocated per bio.
57 struct mapped_device
*md
;
61 unsigned long start_time
;
62 spinlock_t endio_lock
;
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
77 * For request-based dm.
78 * One of these is allocated per request.
80 struct dm_rq_target_io
{
81 struct mapped_device
*md
;
83 struct request
*orig
, clone
;
89 * For request-based dm.
90 * One of these is allocated per bio.
92 struct dm_rq_clone_bio_info
{
94 struct dm_rq_target_io
*tio
;
97 union map_info
*dm_get_mapinfo(struct bio
*bio
)
99 if (bio
&& bio
->bi_private
)
100 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
104 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
106 if (rq
&& rq
->end_io_data
)
107 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
112 #define MINOR_ALLOCED ((void *)-1)
115 * Bits for the md->flags field.
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
126 * Work processed by per-device workqueue.
128 struct mapped_device
{
129 struct rw_semaphore io_lock
;
130 struct mutex suspend_lock
;
137 struct request_queue
*queue
;
139 /* Protect queue and type against concurrent access. */
140 struct mutex type_lock
;
142 struct target_type
*immutable_target_type
;
144 struct gendisk
*disk
;
150 * A list of ios that arrived while we were suspended.
153 wait_queue_head_t wait
;
154 struct work_struct work
;
155 struct bio_list deferred
;
156 spinlock_t deferred_lock
;
159 * Processing queue (flush)
161 struct workqueue_struct
*wq
;
164 * The current mapping.
166 struct dm_table
*map
;
169 * io objects are allocated from here.
180 wait_queue_head_t eventq
;
182 struct list_head uevent_list
;
183 spinlock_t uevent_lock
; /* Protect access to uevent_list */
186 * freeze/thaw support require holding onto a super block
188 struct super_block
*frozen_sb
;
189 struct block_device
*bdev
;
191 /* forced geometry settings */
192 struct hd_geometry geometry
;
197 /* zero-length flush that will be cloned and submitted to targets */
198 struct bio flush_bio
;
202 * For mempools pre-allocation at the table loading time.
204 struct dm_md_mempools
{
211 static struct kmem_cache
*_io_cache
;
212 static struct kmem_cache
*_tio_cache
;
213 static struct kmem_cache
*_rq_tio_cache
;
214 static struct kmem_cache
*_rq_bio_info_cache
;
216 static int __init
local_init(void)
220 /* allocate a slab for the dm_ios */
221 _io_cache
= KMEM_CACHE(dm_io
, 0);
225 /* allocate a slab for the target ios */
226 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
228 goto out_free_io_cache
;
230 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
232 goto out_free_tio_cache
;
234 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
235 if (!_rq_bio_info_cache
)
236 goto out_free_rq_tio_cache
;
238 r
= dm_uevent_init();
240 goto out_free_rq_bio_info_cache
;
243 r
= register_blkdev(_major
, _name
);
245 goto out_uevent_exit
;
254 out_free_rq_bio_info_cache
:
255 kmem_cache_destroy(_rq_bio_info_cache
);
256 out_free_rq_tio_cache
:
257 kmem_cache_destroy(_rq_tio_cache
);
259 kmem_cache_destroy(_tio_cache
);
261 kmem_cache_destroy(_io_cache
);
266 static void local_exit(void)
268 kmem_cache_destroy(_rq_bio_info_cache
);
269 kmem_cache_destroy(_rq_tio_cache
);
270 kmem_cache_destroy(_tio_cache
);
271 kmem_cache_destroy(_io_cache
);
272 unregister_blkdev(_major
, _name
);
277 DMINFO("cleaned up");
280 static int (*_inits
[])(void) __initdata
= {
290 static void (*_exits
[])(void) = {
300 static int __init
dm_init(void)
302 const int count
= ARRAY_SIZE(_inits
);
306 for (i
= 0; i
< count
; i
++) {
321 static void __exit
dm_exit(void)
323 int i
= ARRAY_SIZE(_exits
);
329 * Should be empty by this point.
331 idr_remove_all(&_minor_idr
);
332 idr_destroy(&_minor_idr
);
336 * Block device functions
338 int dm_deleting_md(struct mapped_device
*md
)
340 return test_bit(DMF_DELETING
, &md
->flags
);
343 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
345 struct mapped_device
*md
;
348 spin_lock(&_minor_lock
);
350 md
= bdev
->bd_disk
->private_data
;
356 if (test_bit(DMF_FREEING
, &md
->flags
) ||
357 dm_deleting_md(md
)) {
362 if (get_disk_ro(md
->disk
) && (mode
& FMODE_WRITE
)) {
369 atomic_inc(&md
->open_count
);
372 spin_unlock(&_minor_lock
);
377 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
379 struct mapped_device
*md
= disk
->private_data
;
381 spin_lock(&_minor_lock
);
383 atomic_dec(&md
->open_count
);
386 spin_unlock(&_minor_lock
);
391 int dm_open_count(struct mapped_device
*md
)
393 return atomic_read(&md
->open_count
);
397 * Guarantees nothing is using the device before it's deleted.
399 int dm_lock_for_deletion(struct mapped_device
*md
)
403 spin_lock(&_minor_lock
);
405 if (dm_open_count(md
))
408 set_bit(DMF_DELETING
, &md
->flags
);
410 spin_unlock(&_minor_lock
);
415 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
417 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
419 return dm_get_geometry(md
, geo
);
422 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
423 unsigned int cmd
, unsigned long arg
)
425 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
426 struct dm_table
*map
= dm_get_live_table(md
);
427 struct dm_target
*tgt
;
430 if (!map
|| !dm_table_get_size(map
))
433 if (dm_suspended_md(md
)) {
438 if (cmd
== BLKRRPART
) {
439 /* Emulate Re-read partitions table */
440 kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, KOBJ_CHANGE
);
443 /* We only support devices that have a single target */
444 if (dm_table_get_num_targets(map
) != 1)
447 tgt
= dm_table_get_target(map
, 0);
449 if (tgt
->type
->ioctl
)
450 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
459 static struct dm_io
*alloc_io(struct mapped_device
*md
)
461 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
464 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
466 mempool_free(io
, md
->io_pool
);
469 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
471 mempool_free(tio
, md
->tio_pool
);
474 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
477 return mempool_alloc(md
->tio_pool
, gfp_mask
);
480 static void free_rq_tio(struct dm_rq_target_io
*tio
)
482 mempool_free(tio
, tio
->md
->tio_pool
);
485 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
487 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
490 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
492 mempool_free(info
, info
->tio
->md
->io_pool
);
495 static int md_in_flight(struct mapped_device
*md
)
497 return atomic_read(&md
->pending
[READ
]) +
498 atomic_read(&md
->pending
[WRITE
]);
501 static void start_io_acct(struct dm_io
*io
)
503 struct mapped_device
*md
= io
->md
;
505 int rw
= bio_data_dir(io
->bio
);
507 io
->start_time
= jiffies
;
509 cpu
= part_stat_lock();
510 part_round_stats(cpu
, &dm_disk(md
)->part0
);
512 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
513 atomic_inc_return(&md
->pending
[rw
]));
516 static void end_io_acct(struct dm_io
*io
)
518 struct mapped_device
*md
= io
->md
;
519 struct bio
*bio
= io
->bio
;
520 unsigned long duration
= jiffies
- io
->start_time
;
522 int rw
= bio_data_dir(bio
);
524 cpu
= part_stat_lock();
525 part_round_stats(cpu
, &dm_disk(md
)->part0
);
526 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
530 * After this is decremented the bio must not be touched if it is
533 pending
= atomic_dec_return(&md
->pending
[rw
]);
534 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
535 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
537 /* nudge anyone waiting on suspend queue */
543 * Add the bio to the list of deferred io.
545 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
549 spin_lock_irqsave(&md
->deferred_lock
, flags
);
550 bio_list_add(&md
->deferred
, bio
);
551 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
552 queue_work(md
->wq
, &md
->work
);
556 * Everyone (including functions in this file), should use this
557 * function to access the md->map field, and make sure they call
558 * dm_table_put() when finished.
560 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
565 read_lock_irqsave(&md
->map_lock
, flags
);
569 read_unlock_irqrestore(&md
->map_lock
, flags
);
575 * Get the geometry associated with a dm device
577 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
585 * Set the geometry of a device.
587 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
589 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
591 if (geo
->start
> sz
) {
592 DMWARN("Start sector is beyond the geometry limits.");
601 /*-----------------------------------------------------------------
603 * A more elegant soln is in the works that uses the queue
604 * merge fn, unfortunately there are a couple of changes to
605 * the block layer that I want to make for this. So in the
606 * interests of getting something for people to use I give
607 * you this clearly demarcated crap.
608 *---------------------------------------------------------------*/
610 static int __noflush_suspending(struct mapped_device
*md
)
612 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
616 * Decrements the number of outstanding ios that a bio has been
617 * cloned into, completing the original io if necc.
619 static void dec_pending(struct dm_io
*io
, int error
)
624 struct mapped_device
*md
= io
->md
;
626 /* Push-back supersedes any I/O errors */
627 if (unlikely(error
)) {
628 spin_lock_irqsave(&io
->endio_lock
, flags
);
629 if (!(io
->error
> 0 && __noflush_suspending(md
)))
631 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
634 if (atomic_dec_and_test(&io
->io_count
)) {
635 if (io
->error
== DM_ENDIO_REQUEUE
) {
637 * Target requested pushing back the I/O.
639 spin_lock_irqsave(&md
->deferred_lock
, flags
);
640 if (__noflush_suspending(md
))
641 bio_list_add_head(&md
->deferred
, io
->bio
);
643 /* noflush suspend was interrupted. */
645 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
648 io_error
= io
->error
;
653 if (io_error
== DM_ENDIO_REQUEUE
)
656 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_size
) {
658 * Preflush done for flush with data, reissue
661 bio
->bi_rw
&= ~REQ_FLUSH
;
664 /* done with normal IO or empty flush */
665 trace_block_bio_complete(md
->queue
, bio
, io_error
);
666 bio_endio(bio
, io_error
);
671 static void clone_endio(struct bio
*bio
, int error
)
674 struct dm_target_io
*tio
= bio
->bi_private
;
675 struct dm_io
*io
= tio
->io
;
676 struct mapped_device
*md
= tio
->io
->md
;
677 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
679 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
683 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
684 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
686 * error and requeue request are handled
690 else if (r
== DM_ENDIO_INCOMPLETE
)
691 /* The target will handle the io */
694 DMWARN("unimplemented target endio return value: %d", r
);
700 * Store md for cleanup instead of tio which is about to get freed.
702 bio
->bi_private
= md
->bs
;
706 dec_pending(io
, error
);
710 * Partial completion handling for request-based dm
712 static void end_clone_bio(struct bio
*clone
, int error
)
714 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
715 struct dm_rq_target_io
*tio
= info
->tio
;
716 struct bio
*bio
= info
->orig
;
717 unsigned int nr_bytes
= info
->orig
->bi_size
;
723 * An error has already been detected on the request.
724 * Once error occurred, just let clone->end_io() handle
730 * Don't notice the error to the upper layer yet.
731 * The error handling decision is made by the target driver,
732 * when the request is completed.
739 * I/O for the bio successfully completed.
740 * Notice the data completion to the upper layer.
744 * bios are processed from the head of the list.
745 * So the completing bio should always be rq->bio.
746 * If it's not, something wrong is happening.
748 if (tio
->orig
->bio
!= bio
)
749 DMERR("bio completion is going in the middle of the request");
752 * Update the original request.
753 * Do not use blk_end_request() here, because it may complete
754 * the original request before the clone, and break the ordering.
756 blk_update_request(tio
->orig
, 0, nr_bytes
);
760 * Don't touch any member of the md after calling this function because
761 * the md may be freed in dm_put() at the end of this function.
762 * Or do dm_get() before calling this function and dm_put() later.
764 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
766 atomic_dec(&md
->pending
[rw
]);
768 /* nudge anyone waiting on suspend queue */
769 if (!md_in_flight(md
))
773 blk_run_queue(md
->queue
);
776 * dm_put() must be at the end of this function. See the comment above
781 static void free_rq_clone(struct request
*clone
)
783 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
785 blk_rq_unprep_clone(clone
);
790 * Complete the clone and the original request.
791 * Must be called without queue lock.
793 static void dm_end_request(struct request
*clone
, int error
)
795 int rw
= rq_data_dir(clone
);
796 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
797 struct mapped_device
*md
= tio
->md
;
798 struct request
*rq
= tio
->orig
;
800 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
801 rq
->errors
= clone
->errors
;
802 rq
->resid_len
= clone
->resid_len
;
806 * We are using the sense buffer of the original
808 * So setting the length of the sense data is enough.
810 rq
->sense_len
= clone
->sense_len
;
813 free_rq_clone(clone
);
814 blk_end_request_all(rq
, error
);
815 rq_completed(md
, rw
, true);
818 static void dm_unprep_request(struct request
*rq
)
820 struct request
*clone
= rq
->special
;
823 rq
->cmd_flags
&= ~REQ_DONTPREP
;
825 free_rq_clone(clone
);
829 * Requeue the original request of a clone.
831 void dm_requeue_unmapped_request(struct request
*clone
)
833 int rw
= rq_data_dir(clone
);
834 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
835 struct mapped_device
*md
= tio
->md
;
836 struct request
*rq
= tio
->orig
;
837 struct request_queue
*q
= rq
->q
;
840 dm_unprep_request(rq
);
842 spin_lock_irqsave(q
->queue_lock
, flags
);
843 blk_requeue_request(q
, rq
);
844 spin_unlock_irqrestore(q
->queue_lock
, flags
);
846 rq_completed(md
, rw
, 0);
848 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
850 static void __stop_queue(struct request_queue
*q
)
855 static void stop_queue(struct request_queue
*q
)
859 spin_lock_irqsave(q
->queue_lock
, flags
);
861 spin_unlock_irqrestore(q
->queue_lock
, flags
);
864 static void __start_queue(struct request_queue
*q
)
866 if (blk_queue_stopped(q
))
870 static void start_queue(struct request_queue
*q
)
874 spin_lock_irqsave(q
->queue_lock
, flags
);
876 spin_unlock_irqrestore(q
->queue_lock
, flags
);
879 static void dm_done(struct request
*clone
, int error
, bool mapped
)
882 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
883 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
885 if (mapped
&& rq_end_io
)
886 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
889 /* The target wants to complete the I/O */
890 dm_end_request(clone
, r
);
891 else if (r
== DM_ENDIO_INCOMPLETE
)
892 /* The target will handle the I/O */
894 else if (r
== DM_ENDIO_REQUEUE
)
895 /* The target wants to requeue the I/O */
896 dm_requeue_unmapped_request(clone
);
898 DMWARN("unimplemented target endio return value: %d", r
);
904 * Request completion handler for request-based dm
906 static void dm_softirq_done(struct request
*rq
)
909 struct request
*clone
= rq
->completion_data
;
910 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
912 if (rq
->cmd_flags
& REQ_FAILED
)
915 dm_done(clone
, tio
->error
, mapped
);
919 * Complete the clone and the original request with the error status
920 * through softirq context.
922 static void dm_complete_request(struct request
*clone
, int error
)
924 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
925 struct request
*rq
= tio
->orig
;
928 rq
->completion_data
= clone
;
929 blk_complete_request(rq
);
933 * Complete the not-mapped clone and the original request with the error status
934 * through softirq context.
935 * Target's rq_end_io() function isn't called.
936 * This may be used when the target's map_rq() function fails.
938 void dm_kill_unmapped_request(struct request
*clone
, int error
)
940 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
941 struct request
*rq
= tio
->orig
;
943 rq
->cmd_flags
|= REQ_FAILED
;
944 dm_complete_request(clone
, error
);
946 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
949 * Called with the queue lock held
951 static void end_clone_request(struct request
*clone
, int error
)
954 * For just cleaning up the information of the queue in which
955 * the clone was dispatched.
956 * The clone is *NOT* freed actually here because it is alloced from
957 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
959 __blk_put_request(clone
->q
, clone
);
962 * Actual request completion is done in a softirq context which doesn't
963 * hold the queue lock. Otherwise, deadlock could occur because:
964 * - another request may be submitted by the upper level driver
965 * of the stacking during the completion
966 * - the submission which requires queue lock may be done
969 dm_complete_request(clone
, error
);
973 * Return maximum size of I/O possible at the supplied sector up to the current
976 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
978 sector_t target_offset
= dm_target_offset(ti
, sector
);
980 return ti
->len
- target_offset
;
983 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
985 sector_t len
= max_io_len_target_boundary(sector
, ti
);
988 * Does the target need to split even further ?
992 sector_t offset
= dm_target_offset(ti
, sector
);
993 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
1002 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
1003 struct dm_target_io
*tio
)
1007 struct mapped_device
*md
;
1009 clone
->bi_end_io
= clone_endio
;
1010 clone
->bi_private
= tio
;
1013 * Map the clone. If r == 0 we don't need to do
1014 * anything, the target has assumed ownership of
1017 atomic_inc(&tio
->io
->io_count
);
1018 sector
= clone
->bi_sector
;
1019 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
1020 if (r
== DM_MAPIO_REMAPPED
) {
1021 /* the bio has been remapped so dispatch it */
1023 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1024 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1026 generic_make_request(clone
);
1027 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1028 /* error the io and bail out, or requeue it if needed */
1030 dec_pending(tio
->io
, r
);
1032 * Store bio_set for cleanup.
1034 clone
->bi_private
= md
->bs
;
1038 DMWARN("unimplemented target map return value: %d", r
);
1044 struct mapped_device
*md
;
1045 struct dm_table
*map
;
1049 sector_t sector_count
;
1053 static void dm_bio_destructor(struct bio
*bio
)
1055 struct bio_set
*bs
= bio
->bi_private
;
1061 * Creates a little bio that just does part of a bvec.
1063 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1064 unsigned short idx
, unsigned int offset
,
1065 unsigned int len
, struct bio_set
*bs
)
1068 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1070 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1071 clone
->bi_destructor
= dm_bio_destructor
;
1072 *clone
->bi_io_vec
= *bv
;
1074 clone
->bi_sector
= sector
;
1075 clone
->bi_bdev
= bio
->bi_bdev
;
1076 clone
->bi_rw
= bio
->bi_rw
;
1078 clone
->bi_size
= to_bytes(len
);
1079 clone
->bi_io_vec
->bv_offset
= offset
;
1080 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1081 clone
->bi_flags
|= 1 << BIO_CLONED
;
1083 if (bio_integrity(bio
)) {
1084 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1085 bio_integrity_trim(clone
,
1086 bio_sector_offset(bio
, idx
, offset
), len
);
1093 * Creates a bio that consists of range of complete bvecs.
1095 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1096 unsigned short idx
, unsigned short bv_count
,
1097 unsigned int len
, struct bio_set
*bs
)
1101 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1102 __bio_clone(clone
, bio
);
1103 clone
->bi_destructor
= dm_bio_destructor
;
1104 clone
->bi_sector
= sector
;
1105 clone
->bi_idx
= idx
;
1106 clone
->bi_vcnt
= idx
+ bv_count
;
1107 clone
->bi_size
= to_bytes(len
);
1108 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1110 if (bio_integrity(bio
)) {
1111 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1113 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1114 bio_integrity_trim(clone
,
1115 bio_sector_offset(bio
, idx
, 0), len
);
1121 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1122 struct dm_target
*ti
)
1124 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1128 memset(&tio
->info
, 0, sizeof(tio
->info
));
1133 static void __issue_target_request(struct clone_info
*ci
, struct dm_target
*ti
,
1134 unsigned request_nr
, sector_t len
)
1136 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1139 tio
->info
.target_request_nr
= request_nr
;
1142 * Discard requests require the bio's inline iovecs be initialized.
1143 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1144 * and discard, so no need for concern about wasted bvec allocations.
1146 clone
= bio_alloc_bioset(GFP_NOIO
, ci
->bio
->bi_max_vecs
, ci
->md
->bs
);
1147 __bio_clone(clone
, ci
->bio
);
1148 clone
->bi_destructor
= dm_bio_destructor
;
1150 clone
->bi_sector
= ci
->sector
;
1151 clone
->bi_size
= to_bytes(len
);
1154 __map_bio(ti
, clone
, tio
);
1157 static void __issue_target_requests(struct clone_info
*ci
, struct dm_target
*ti
,
1158 unsigned num_requests
, sector_t len
)
1160 unsigned request_nr
;
1162 for (request_nr
= 0; request_nr
< num_requests
; request_nr
++)
1163 __issue_target_request(ci
, ti
, request_nr
, len
);
1166 static int __clone_and_map_empty_flush(struct clone_info
*ci
)
1168 unsigned target_nr
= 0;
1169 struct dm_target
*ti
;
1171 BUG_ON(bio_has_data(ci
->bio
));
1172 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1173 __issue_target_requests(ci
, ti
, ti
->num_flush_requests
, 0);
1179 * Perform all io with a single clone.
1181 static void __clone_and_map_simple(struct clone_info
*ci
, struct dm_target
*ti
)
1183 struct bio
*clone
, *bio
= ci
->bio
;
1184 struct dm_target_io
*tio
;
1186 tio
= alloc_tio(ci
, ti
);
1187 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1188 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1190 __map_bio(ti
, clone
, tio
);
1191 ci
->sector_count
= 0;
1194 static int __clone_and_map_discard(struct clone_info
*ci
)
1196 struct dm_target
*ti
;
1200 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1201 if (!dm_target_is_valid(ti
))
1205 * Even though the device advertised discard support,
1206 * that does not mean every target supports it, and
1207 * reconfiguration might also have changed that since the
1208 * check was performed.
1210 if (!ti
->num_discard_requests
)
1213 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1215 __issue_target_requests(ci
, ti
, ti
->num_discard_requests
, len
);
1218 } while (ci
->sector_count
-= len
);
1223 static int __clone_and_map(struct clone_info
*ci
)
1225 struct bio
*clone
, *bio
= ci
->bio
;
1226 struct dm_target
*ti
;
1227 sector_t len
= 0, max
;
1228 struct dm_target_io
*tio
;
1230 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1231 return __clone_and_map_discard(ci
);
1233 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1234 if (!dm_target_is_valid(ti
))
1237 max
= max_io_len(ci
->sector
, ti
);
1239 if (ci
->sector_count
<= max
) {
1241 * Optimise for the simple case where we can do all of
1242 * the remaining io with a single clone.
1244 __clone_and_map_simple(ci
, ti
);
1246 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1248 * There are some bvecs that don't span targets.
1249 * Do as many of these as possible.
1252 sector_t remaining
= max
;
1255 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1256 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1258 if (bv_len
> remaining
)
1261 remaining
-= bv_len
;
1265 tio
= alloc_tio(ci
, ti
);
1266 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1268 __map_bio(ti
, clone
, tio
);
1271 ci
->sector_count
-= len
;
1276 * Handle a bvec that must be split between two or more targets.
1278 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1279 sector_t remaining
= to_sector(bv
->bv_len
);
1280 unsigned int offset
= 0;
1284 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1285 if (!dm_target_is_valid(ti
))
1288 max
= max_io_len(ci
->sector
, ti
);
1291 len
= min(remaining
, max
);
1293 tio
= alloc_tio(ci
, ti
);
1294 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1295 bv
->bv_offset
+ offset
, len
,
1298 __map_bio(ti
, clone
, tio
);
1301 ci
->sector_count
-= len
;
1302 offset
+= to_bytes(len
);
1303 } while (remaining
-= len
);
1312 * Split the bio into several clones and submit it to targets.
1314 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1316 struct clone_info ci
;
1319 ci
.map
= dm_get_live_table(md
);
1320 if (unlikely(!ci
.map
)) {
1326 ci
.io
= alloc_io(md
);
1328 atomic_set(&ci
.io
->io_count
, 1);
1331 spin_lock_init(&ci
.io
->endio_lock
);
1332 ci
.sector
= bio
->bi_sector
;
1333 ci
.idx
= bio
->bi_idx
;
1335 start_io_acct(ci
.io
);
1336 if (bio
->bi_rw
& REQ_FLUSH
) {
1337 ci
.bio
= &ci
.md
->flush_bio
;
1338 ci
.sector_count
= 0;
1339 error
= __clone_and_map_empty_flush(&ci
);
1340 /* dec_pending submits any data associated with flush */
1343 ci
.sector_count
= bio_sectors(bio
);
1344 while (ci
.sector_count
&& !error
)
1345 error
= __clone_and_map(&ci
);
1348 /* drop the extra reference count */
1349 dec_pending(ci
.io
, error
);
1350 dm_table_put(ci
.map
);
1352 /*-----------------------------------------------------------------
1354 *---------------------------------------------------------------*/
1356 static int dm_merge_bvec(struct request_queue
*q
,
1357 struct bvec_merge_data
*bvm
,
1358 struct bio_vec
*biovec
)
1360 struct mapped_device
*md
= q
->queuedata
;
1361 struct dm_table
*map
= dm_get_live_table(md
);
1362 struct dm_target
*ti
;
1363 sector_t max_sectors
;
1369 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1370 if (!dm_target_is_valid(ti
))
1374 * Find maximum amount of I/O that won't need splitting
1376 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1377 (sector_t
) BIO_MAX_SECTORS
);
1378 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1383 * merge_bvec_fn() returns number of bytes
1384 * it can accept at this offset
1385 * max is precomputed maximal io size
1387 if (max_size
&& ti
->type
->merge
)
1388 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1390 * If the target doesn't support merge method and some of the devices
1391 * provided their merge_bvec method (we know this by looking at
1392 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1393 * entries. So always set max_size to 0, and the code below allows
1396 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1405 * Always allow an entire first page
1407 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1408 max_size
= biovec
->bv_len
;
1414 * The request function that just remaps the bio built up by
1417 static void _dm_request(struct request_queue
*q
, struct bio
*bio
)
1419 int rw
= bio_data_dir(bio
);
1420 struct mapped_device
*md
= q
->queuedata
;
1423 down_read(&md
->io_lock
);
1425 cpu
= part_stat_lock();
1426 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1427 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1430 /* if we're suspended, we have to queue this io for later */
1431 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1432 up_read(&md
->io_lock
);
1434 if (bio_rw(bio
) != READA
)
1441 __split_and_process_bio(md
, bio
);
1442 up_read(&md
->io_lock
);
1446 static int dm_request_based(struct mapped_device
*md
)
1448 return blk_queue_stackable(md
->queue
);
1451 static void dm_request(struct request_queue
*q
, struct bio
*bio
)
1453 struct mapped_device
*md
= q
->queuedata
;
1455 if (dm_request_based(md
))
1456 blk_queue_bio(q
, bio
);
1458 _dm_request(q
, bio
);
1461 void dm_dispatch_request(struct request
*rq
)
1465 if (blk_queue_io_stat(rq
->q
))
1466 rq
->cmd_flags
|= REQ_IO_STAT
;
1468 rq
->start_time
= jiffies
;
1469 r
= blk_insert_cloned_request(rq
->q
, rq
);
1471 dm_complete_request(rq
, r
);
1473 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1475 static void dm_rq_bio_destructor(struct bio
*bio
)
1477 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1478 struct mapped_device
*md
= info
->tio
->md
;
1480 free_bio_info(info
);
1481 bio_free(bio
, md
->bs
);
1484 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1487 struct dm_rq_target_io
*tio
= data
;
1488 struct mapped_device
*md
= tio
->md
;
1489 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1494 info
->orig
= bio_orig
;
1496 bio
->bi_end_io
= end_clone_bio
;
1497 bio
->bi_private
= info
;
1498 bio
->bi_destructor
= dm_rq_bio_destructor
;
1503 static int setup_clone(struct request
*clone
, struct request
*rq
,
1504 struct dm_rq_target_io
*tio
)
1508 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1509 dm_rq_bio_constructor
, tio
);
1513 clone
->cmd
= rq
->cmd
;
1514 clone
->cmd_len
= rq
->cmd_len
;
1515 clone
->sense
= rq
->sense
;
1516 clone
->buffer
= rq
->buffer
;
1517 clone
->end_io
= end_clone_request
;
1518 clone
->end_io_data
= tio
;
1523 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1526 struct request
*clone
;
1527 struct dm_rq_target_io
*tio
;
1529 tio
= alloc_rq_tio(md
, gfp_mask
);
1537 memset(&tio
->info
, 0, sizeof(tio
->info
));
1539 clone
= &tio
->clone
;
1540 if (setup_clone(clone
, rq
, tio
)) {
1550 * Called with the queue lock held.
1552 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1554 struct mapped_device
*md
= q
->queuedata
;
1555 struct request
*clone
;
1557 if (unlikely(rq
->special
)) {
1558 DMWARN("Already has something in rq->special.");
1559 return BLKPREP_KILL
;
1562 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1564 return BLKPREP_DEFER
;
1566 rq
->special
= clone
;
1567 rq
->cmd_flags
|= REQ_DONTPREP
;
1574 * 0 : the request has been processed (not requeued)
1575 * !0 : the request has been requeued
1577 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1578 struct mapped_device
*md
)
1580 int r
, requeued
= 0;
1581 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1584 * Hold the md reference here for the in-flight I/O.
1585 * We can't rely on the reference count by device opener,
1586 * because the device may be closed during the request completion
1587 * when all bios are completed.
1588 * See the comment in rq_completed() too.
1593 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1595 case DM_MAPIO_SUBMITTED
:
1596 /* The target has taken the I/O to submit by itself later */
1598 case DM_MAPIO_REMAPPED
:
1599 /* The target has remapped the I/O so dispatch it */
1600 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1601 blk_rq_pos(tio
->orig
));
1602 dm_dispatch_request(clone
);
1604 case DM_MAPIO_REQUEUE
:
1605 /* The target wants to requeue the I/O */
1606 dm_requeue_unmapped_request(clone
);
1611 DMWARN("unimplemented target map return value: %d", r
);
1615 /* The target wants to complete the I/O */
1616 dm_kill_unmapped_request(clone
, r
);
1624 * q->request_fn for request-based dm.
1625 * Called with the queue lock held.
1627 static void dm_request_fn(struct request_queue
*q
)
1629 struct mapped_device
*md
= q
->queuedata
;
1630 struct dm_table
*map
= dm_get_live_table(md
);
1631 struct dm_target
*ti
;
1632 struct request
*rq
, *clone
;
1636 * For suspend, check blk_queue_stopped() and increment
1637 * ->pending within a single queue_lock not to increment the
1638 * number of in-flight I/Os after the queue is stopped in
1641 while (!blk_queue_stopped(q
)) {
1642 rq
= blk_peek_request(q
);
1646 /* always use block 0 to find the target for flushes for now */
1648 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1649 pos
= blk_rq_pos(rq
);
1651 ti
= dm_table_find_target(map
, pos
);
1652 BUG_ON(!dm_target_is_valid(ti
));
1654 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1657 blk_start_request(rq
);
1658 clone
= rq
->special
;
1659 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1661 spin_unlock(q
->queue_lock
);
1662 if (map_request(ti
, clone
, md
))
1665 BUG_ON(!irqs_disabled());
1666 spin_lock(q
->queue_lock
);
1672 BUG_ON(!irqs_disabled());
1673 spin_lock(q
->queue_lock
);
1676 blk_delay_queue(q
, HZ
/ 10);
1683 int dm_underlying_device_busy(struct request_queue
*q
)
1685 return blk_lld_busy(q
);
1687 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1689 static int dm_lld_busy(struct request_queue
*q
)
1692 struct mapped_device
*md
= q
->queuedata
;
1693 struct dm_table
*map
= dm_get_live_table(md
);
1695 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1698 r
= dm_table_any_busy_target(map
);
1705 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1708 struct mapped_device
*md
= congested_data
;
1709 struct dm_table
*map
;
1711 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1712 map
= dm_get_live_table(md
);
1715 * Request-based dm cares about only own queue for
1716 * the query about congestion status of request_queue
1718 if (dm_request_based(md
))
1719 r
= md
->queue
->backing_dev_info
.state
&
1722 r
= dm_table_any_congested(map
, bdi_bits
);
1731 /*-----------------------------------------------------------------
1732 * An IDR is used to keep track of allocated minor numbers.
1733 *---------------------------------------------------------------*/
1734 static void free_minor(int minor
)
1736 spin_lock(&_minor_lock
);
1737 idr_remove(&_minor_idr
, minor
);
1738 spin_unlock(&_minor_lock
);
1742 * See if the device with a specific minor # is free.
1744 static int specific_minor(int minor
)
1748 if (minor
>= (1 << MINORBITS
))
1751 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1755 spin_lock(&_minor_lock
);
1757 if (idr_find(&_minor_idr
, minor
)) {
1762 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1767 idr_remove(&_minor_idr
, m
);
1773 spin_unlock(&_minor_lock
);
1777 static int next_free_minor(int *minor
)
1781 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1785 spin_lock(&_minor_lock
);
1787 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1791 if (m
>= (1 << MINORBITS
)) {
1792 idr_remove(&_minor_idr
, m
);
1800 spin_unlock(&_minor_lock
);
1804 static const struct block_device_operations dm_blk_dops
;
1806 static void dm_wq_work(struct work_struct
*work
);
1808 static void dm_init_md_queue(struct mapped_device
*md
)
1811 * Request-based dm devices cannot be stacked on top of bio-based dm
1812 * devices. The type of this dm device has not been decided yet.
1813 * The type is decided at the first table loading time.
1814 * To prevent problematic device stacking, clear the queue flag
1815 * for request stacking support until then.
1817 * This queue is new, so no concurrency on the queue_flags.
1819 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1821 md
->queue
->queuedata
= md
;
1822 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1823 md
->queue
->backing_dev_info
.congested_data
= md
;
1824 blk_queue_make_request(md
->queue
, dm_request
);
1825 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1826 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1830 * Allocate and initialise a blank device with a given minor.
1832 static struct mapped_device
*alloc_dev(int minor
)
1835 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1839 DMWARN("unable to allocate device, out of memory.");
1843 if (!try_module_get(THIS_MODULE
))
1844 goto bad_module_get
;
1846 /* get a minor number for the dev */
1847 if (minor
== DM_ANY_MINOR
)
1848 r
= next_free_minor(&minor
);
1850 r
= specific_minor(minor
);
1854 md
->type
= DM_TYPE_NONE
;
1855 init_rwsem(&md
->io_lock
);
1856 mutex_init(&md
->suspend_lock
);
1857 mutex_init(&md
->type_lock
);
1858 spin_lock_init(&md
->deferred_lock
);
1859 rwlock_init(&md
->map_lock
);
1860 atomic_set(&md
->holders
, 1);
1861 atomic_set(&md
->open_count
, 0);
1862 atomic_set(&md
->event_nr
, 0);
1863 atomic_set(&md
->uevent_seq
, 0);
1864 INIT_LIST_HEAD(&md
->uevent_list
);
1865 spin_lock_init(&md
->uevent_lock
);
1867 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1871 dm_init_md_queue(md
);
1873 md
->disk
= alloc_disk(1);
1877 atomic_set(&md
->pending
[0], 0);
1878 atomic_set(&md
->pending
[1], 0);
1879 init_waitqueue_head(&md
->wait
);
1880 INIT_WORK(&md
->work
, dm_wq_work
);
1881 init_waitqueue_head(&md
->eventq
);
1883 md
->disk
->major
= _major
;
1884 md
->disk
->first_minor
= minor
;
1885 md
->disk
->fops
= &dm_blk_dops
;
1886 md
->disk
->queue
= md
->queue
;
1887 md
->disk
->private_data
= md
;
1888 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1890 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1892 md
->wq
= alloc_workqueue("kdmflush",
1893 WQ_NON_REENTRANT
| WQ_MEM_RECLAIM
, 0);
1897 md
->bdev
= bdget_disk(md
->disk
, 0);
1901 bio_init(&md
->flush_bio
);
1902 md
->flush_bio
.bi_bdev
= md
->bdev
;
1903 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1905 /* Populate the mapping, nobody knows we exist yet */
1906 spin_lock(&_minor_lock
);
1907 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1908 spin_unlock(&_minor_lock
);
1910 BUG_ON(old_md
!= MINOR_ALLOCED
);
1915 destroy_workqueue(md
->wq
);
1917 del_gendisk(md
->disk
);
1920 blk_cleanup_queue(md
->queue
);
1924 module_put(THIS_MODULE
);
1930 static void unlock_fs(struct mapped_device
*md
);
1932 static void free_dev(struct mapped_device
*md
)
1934 int minor
= MINOR(disk_devt(md
->disk
));
1938 destroy_workqueue(md
->wq
);
1940 mempool_destroy(md
->tio_pool
);
1942 mempool_destroy(md
->io_pool
);
1944 bioset_free(md
->bs
);
1945 blk_integrity_unregister(md
->disk
);
1946 del_gendisk(md
->disk
);
1949 spin_lock(&_minor_lock
);
1950 md
->disk
->private_data
= NULL
;
1951 spin_unlock(&_minor_lock
);
1954 blk_cleanup_queue(md
->queue
);
1955 module_put(THIS_MODULE
);
1959 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1961 struct dm_md_mempools
*p
;
1963 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
1964 /* the md already has necessary mempools */
1967 p
= dm_table_get_md_mempools(t
);
1968 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
1970 md
->io_pool
= p
->io_pool
;
1972 md
->tio_pool
= p
->tio_pool
;
1978 /* mempool bind completed, now no need any mempools in the table */
1979 dm_table_free_md_mempools(t
);
1983 * Bind a table to the device.
1985 static void event_callback(void *context
)
1987 unsigned long flags
;
1989 struct mapped_device
*md
= (struct mapped_device
*) context
;
1991 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1992 list_splice_init(&md
->uevent_list
, &uevents
);
1993 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1995 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1997 atomic_inc(&md
->event_nr
);
1998 wake_up(&md
->eventq
);
2002 * Protected by md->suspend_lock obtained by dm_swap_table().
2004 static void __set_size(struct mapped_device
*md
, sector_t size
)
2006 set_capacity(md
->disk
, size
);
2008 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2012 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2014 * If this function returns 0, then the device is either a non-dm
2015 * device without a merge_bvec_fn, or it is a dm device that is
2016 * able to split any bios it receives that are too big.
2018 int dm_queue_merge_is_compulsory(struct request_queue
*q
)
2020 struct mapped_device
*dev_md
;
2022 if (!q
->merge_bvec_fn
)
2025 if (q
->make_request_fn
== dm_request
) {
2026 dev_md
= q
->queuedata
;
2027 if (test_bit(DMF_MERGE_IS_OPTIONAL
, &dev_md
->flags
))
2034 static int dm_device_merge_is_compulsory(struct dm_target
*ti
,
2035 struct dm_dev
*dev
, sector_t start
,
2036 sector_t len
, void *data
)
2038 struct block_device
*bdev
= dev
->bdev
;
2039 struct request_queue
*q
= bdev_get_queue(bdev
);
2041 return dm_queue_merge_is_compulsory(q
);
2045 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2046 * on the properties of the underlying devices.
2048 static int dm_table_merge_is_optional(struct dm_table
*table
)
2051 struct dm_target
*ti
;
2053 while (i
< dm_table_get_num_targets(table
)) {
2054 ti
= dm_table_get_target(table
, i
++);
2056 if (ti
->type
->iterate_devices
&&
2057 ti
->type
->iterate_devices(ti
, dm_device_merge_is_compulsory
, NULL
))
2065 * Returns old map, which caller must destroy.
2067 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2068 struct queue_limits
*limits
)
2070 struct dm_table
*old_map
;
2071 struct request_queue
*q
= md
->queue
;
2073 unsigned long flags
;
2074 int merge_is_optional
;
2076 size
= dm_table_get_size(t
);
2079 * Wipe any geometry if the size of the table changed.
2081 if (size
!= get_capacity(md
->disk
))
2082 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2084 __set_size(md
, size
);
2086 dm_table_event_callback(t
, event_callback
, md
);
2089 * The queue hasn't been stopped yet, if the old table type wasn't
2090 * for request-based during suspension. So stop it to prevent
2091 * I/O mapping before resume.
2092 * This must be done before setting the queue restrictions,
2093 * because request-based dm may be run just after the setting.
2095 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2098 __bind_mempools(md
, t
);
2100 merge_is_optional
= dm_table_merge_is_optional(t
);
2102 write_lock_irqsave(&md
->map_lock
, flags
);
2105 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2107 dm_table_set_restrictions(t
, q
, limits
);
2108 if (merge_is_optional
)
2109 set_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2111 clear_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2112 write_unlock_irqrestore(&md
->map_lock
, flags
);
2114 dm_table_get(md
->map
);
2115 if (!(dm_table_get_mode(t
) & FMODE_WRITE
))
2116 set_disk_ro(md
->disk
, 1);
2118 set_disk_ro(md
->disk
, 0);
2119 dm_table_put(md
->map
);
2125 * Returns unbound table for the caller to free.
2127 static struct dm_table
*__unbind(struct mapped_device
*md
)
2129 struct dm_table
*map
= md
->map
;
2130 unsigned long flags
;
2135 dm_table_event_callback(map
, NULL
, NULL
);
2136 write_lock_irqsave(&md
->map_lock
, flags
);
2138 write_unlock_irqrestore(&md
->map_lock
, flags
);
2144 * Constructor for a new device.
2146 int dm_create(int minor
, struct mapped_device
**result
)
2148 struct mapped_device
*md
;
2150 md
= alloc_dev(minor
);
2161 * Functions to manage md->type.
2162 * All are required to hold md->type_lock.
2164 void dm_lock_md_type(struct mapped_device
*md
)
2166 mutex_lock(&md
->type_lock
);
2169 void dm_unlock_md_type(struct mapped_device
*md
)
2171 mutex_unlock(&md
->type_lock
);
2174 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2179 unsigned dm_get_md_type(struct mapped_device
*md
)
2184 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2186 return md
->immutable_target_type
;
2190 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2192 static int dm_init_request_based_queue(struct mapped_device
*md
)
2194 struct request_queue
*q
= NULL
;
2196 if (md
->queue
->elevator
)
2199 /* Fully initialize the queue */
2200 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2205 dm_init_md_queue(md
);
2206 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2207 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2208 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2210 elv_register_queue(md
->queue
);
2216 * Setup the DM device's queue based on md's type
2218 int dm_setup_md_queue(struct mapped_device
*md
)
2220 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2221 !dm_init_request_based_queue(md
)) {
2222 DMWARN("Cannot initialize queue for request-based mapped device");
2229 static struct mapped_device
*dm_find_md(dev_t dev
)
2231 struct mapped_device
*md
;
2232 unsigned minor
= MINOR(dev
);
2234 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2237 spin_lock(&_minor_lock
);
2239 md
= idr_find(&_minor_idr
, minor
);
2240 if (md
&& (md
== MINOR_ALLOCED
||
2241 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2242 dm_deleting_md(md
) ||
2243 test_bit(DMF_FREEING
, &md
->flags
))) {
2249 spin_unlock(&_minor_lock
);
2254 struct mapped_device
*dm_get_md(dev_t dev
)
2256 struct mapped_device
*md
= dm_find_md(dev
);
2263 EXPORT_SYMBOL_GPL(dm_get_md
);
2265 void *dm_get_mdptr(struct mapped_device
*md
)
2267 return md
->interface_ptr
;
2270 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2272 md
->interface_ptr
= ptr
;
2275 void dm_get(struct mapped_device
*md
)
2277 atomic_inc(&md
->holders
);
2278 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2281 const char *dm_device_name(struct mapped_device
*md
)
2285 EXPORT_SYMBOL_GPL(dm_device_name
);
2287 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2289 struct dm_table
*map
;
2293 spin_lock(&_minor_lock
);
2294 map
= dm_get_live_table(md
);
2295 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2296 set_bit(DMF_FREEING
, &md
->flags
);
2297 spin_unlock(&_minor_lock
);
2299 if (!dm_suspended_md(md
)) {
2300 dm_table_presuspend_targets(map
);
2301 dm_table_postsuspend_targets(map
);
2305 * Rare, but there may be I/O requests still going to complete,
2306 * for example. Wait for all references to disappear.
2307 * No one should increment the reference count of the mapped_device,
2308 * after the mapped_device state becomes DMF_FREEING.
2311 while (atomic_read(&md
->holders
))
2313 else if (atomic_read(&md
->holders
))
2314 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2315 dm_device_name(md
), atomic_read(&md
->holders
));
2319 dm_table_destroy(__unbind(md
));
2323 void dm_destroy(struct mapped_device
*md
)
2325 __dm_destroy(md
, true);
2328 void dm_destroy_immediate(struct mapped_device
*md
)
2330 __dm_destroy(md
, false);
2333 void dm_put(struct mapped_device
*md
)
2335 atomic_dec(&md
->holders
);
2337 EXPORT_SYMBOL_GPL(dm_put
);
2339 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2342 DECLARE_WAITQUEUE(wait
, current
);
2344 add_wait_queue(&md
->wait
, &wait
);
2347 set_current_state(interruptible
);
2349 if (!md_in_flight(md
))
2352 if (interruptible
== TASK_INTERRUPTIBLE
&&
2353 signal_pending(current
)) {
2360 set_current_state(TASK_RUNNING
);
2362 remove_wait_queue(&md
->wait
, &wait
);
2368 * Process the deferred bios
2370 static void dm_wq_work(struct work_struct
*work
)
2372 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2376 down_read(&md
->io_lock
);
2378 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2379 spin_lock_irq(&md
->deferred_lock
);
2380 c
= bio_list_pop(&md
->deferred
);
2381 spin_unlock_irq(&md
->deferred_lock
);
2386 up_read(&md
->io_lock
);
2388 if (dm_request_based(md
))
2389 generic_make_request(c
);
2391 __split_and_process_bio(md
, c
);
2393 down_read(&md
->io_lock
);
2396 up_read(&md
->io_lock
);
2399 static void dm_queue_flush(struct mapped_device
*md
)
2401 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2402 smp_mb__after_clear_bit();
2403 queue_work(md
->wq
, &md
->work
);
2407 * Swap in a new table, returning the old one for the caller to destroy.
2409 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2411 struct dm_table
*map
= ERR_PTR(-EINVAL
);
2412 struct queue_limits limits
;
2415 mutex_lock(&md
->suspend_lock
);
2417 /* device must be suspended */
2418 if (!dm_suspended_md(md
))
2421 r
= dm_calculate_queue_limits(table
, &limits
);
2427 map
= __bind(md
, table
, &limits
);
2430 mutex_unlock(&md
->suspend_lock
);
2435 * Functions to lock and unlock any filesystem running on the
2438 static int lock_fs(struct mapped_device
*md
)
2442 WARN_ON(md
->frozen_sb
);
2444 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2445 if (IS_ERR(md
->frozen_sb
)) {
2446 r
= PTR_ERR(md
->frozen_sb
);
2447 md
->frozen_sb
= NULL
;
2451 set_bit(DMF_FROZEN
, &md
->flags
);
2456 static void unlock_fs(struct mapped_device
*md
)
2458 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2461 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2462 md
->frozen_sb
= NULL
;
2463 clear_bit(DMF_FROZEN
, &md
->flags
);
2467 * We need to be able to change a mapping table under a mounted
2468 * filesystem. For example we might want to move some data in
2469 * the background. Before the table can be swapped with
2470 * dm_bind_table, dm_suspend must be called to flush any in
2471 * flight bios and ensure that any further io gets deferred.
2474 * Suspend mechanism in request-based dm.
2476 * 1. Flush all I/Os by lock_fs() if needed.
2477 * 2. Stop dispatching any I/O by stopping the request_queue.
2478 * 3. Wait for all in-flight I/Os to be completed or requeued.
2480 * To abort suspend, start the request_queue.
2482 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2484 struct dm_table
*map
= NULL
;
2486 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2487 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2489 mutex_lock(&md
->suspend_lock
);
2491 if (dm_suspended_md(md
)) {
2496 map
= dm_get_live_table(md
);
2499 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2500 * This flag is cleared before dm_suspend returns.
2503 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2505 /* This does not get reverted if there's an error later. */
2506 dm_table_presuspend_targets(map
);
2509 * Flush I/O to the device.
2510 * Any I/O submitted after lock_fs() may not be flushed.
2511 * noflush takes precedence over do_lockfs.
2512 * (lock_fs() flushes I/Os and waits for them to complete.)
2514 if (!noflush
&& do_lockfs
) {
2521 * Here we must make sure that no processes are submitting requests
2522 * to target drivers i.e. no one may be executing
2523 * __split_and_process_bio. This is called from dm_request and
2526 * To get all processes out of __split_and_process_bio in dm_request,
2527 * we take the write lock. To prevent any process from reentering
2528 * __split_and_process_bio from dm_request and quiesce the thread
2529 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2530 * flush_workqueue(md->wq).
2532 down_write(&md
->io_lock
);
2533 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2534 up_write(&md
->io_lock
);
2537 * Stop md->queue before flushing md->wq in case request-based
2538 * dm defers requests to md->wq from md->queue.
2540 if (dm_request_based(md
))
2541 stop_queue(md
->queue
);
2543 flush_workqueue(md
->wq
);
2546 * At this point no more requests are entering target request routines.
2547 * We call dm_wait_for_completion to wait for all existing requests
2550 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2552 down_write(&md
->io_lock
);
2554 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2555 up_write(&md
->io_lock
);
2557 /* were we interrupted ? */
2561 if (dm_request_based(md
))
2562 start_queue(md
->queue
);
2565 goto out
; /* pushback list is already flushed, so skip flush */
2569 * If dm_wait_for_completion returned 0, the device is completely
2570 * quiescent now. There is no request-processing activity. All new
2571 * requests are being added to md->deferred list.
2574 set_bit(DMF_SUSPENDED
, &md
->flags
);
2576 dm_table_postsuspend_targets(map
);
2582 mutex_unlock(&md
->suspend_lock
);
2586 int dm_resume(struct mapped_device
*md
)
2589 struct dm_table
*map
= NULL
;
2591 mutex_lock(&md
->suspend_lock
);
2592 if (!dm_suspended_md(md
))
2595 map
= dm_get_live_table(md
);
2596 if (!map
|| !dm_table_get_size(map
))
2599 r
= dm_table_resume_targets(map
);
2606 * Flushing deferred I/Os must be done after targets are resumed
2607 * so that mapping of targets can work correctly.
2608 * Request-based dm is queueing the deferred I/Os in its request_queue.
2610 if (dm_request_based(md
))
2611 start_queue(md
->queue
);
2615 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2620 mutex_unlock(&md
->suspend_lock
);
2625 /*-----------------------------------------------------------------
2626 * Event notification.
2627 *---------------------------------------------------------------*/
2628 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2631 char udev_cookie
[DM_COOKIE_LENGTH
];
2632 char *envp
[] = { udev_cookie
, NULL
};
2635 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2637 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2638 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2639 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2644 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2646 return atomic_add_return(1, &md
->uevent_seq
);
2649 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2651 return atomic_read(&md
->event_nr
);
2654 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2656 return wait_event_interruptible(md
->eventq
,
2657 (event_nr
!= atomic_read(&md
->event_nr
)));
2660 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2662 unsigned long flags
;
2664 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2665 list_add(elist
, &md
->uevent_list
);
2666 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2670 * The gendisk is only valid as long as you have a reference
2673 struct gendisk
*dm_disk(struct mapped_device
*md
)
2677 EXPORT_SYMBOL_GPL(dm_disk
);
2679 struct kobject
*dm_kobject(struct mapped_device
*md
)
2685 * struct mapped_device should not be exported outside of dm.c
2686 * so use this check to verify that kobj is part of md structure
2688 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2690 struct mapped_device
*md
;
2692 md
= container_of(kobj
, struct mapped_device
, kobj
);
2693 if (&md
->kobj
!= kobj
)
2696 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2704 int dm_suspended_md(struct mapped_device
*md
)
2706 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2709 int dm_suspended(struct dm_target
*ti
)
2711 return dm_suspended_md(dm_table_get_md(ti
->table
));
2713 EXPORT_SYMBOL_GPL(dm_suspended
);
2715 int dm_noflush_suspending(struct dm_target
*ti
)
2717 return __noflush_suspending(dm_table_get_md(ti
->table
));
2719 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2721 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
, unsigned integrity
)
2723 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2724 unsigned int pool_size
= (type
== DM_TYPE_BIO_BASED
) ? 16 : MIN_IOS
;
2729 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2730 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2731 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2732 if (!pools
->io_pool
)
2733 goto free_pools_and_out
;
2735 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2736 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2737 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2738 if (!pools
->tio_pool
)
2739 goto free_io_pool_and_out
;
2741 pools
->bs
= bioset_create(pool_size
, 0);
2743 goto free_tio_pool_and_out
;
2745 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2746 goto free_bioset_and_out
;
2750 free_bioset_and_out
:
2751 bioset_free(pools
->bs
);
2753 free_tio_pool_and_out
:
2754 mempool_destroy(pools
->tio_pool
);
2756 free_io_pool_and_out
:
2757 mempool_destroy(pools
->io_pool
);
2765 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2771 mempool_destroy(pools
->io_pool
);
2773 if (pools
->tio_pool
)
2774 mempool_destroy(pools
->tio_pool
);
2777 bioset_free(pools
->bs
);
2782 static const struct block_device_operations dm_blk_dops
= {
2783 .open
= dm_blk_open
,
2784 .release
= dm_blk_close
,
2785 .ioctl
= dm_blk_ioctl
,
2786 .getgeo
= dm_blk_getgeo
,
2787 .owner
= THIS_MODULE
2790 EXPORT_SYMBOL(dm_get_mapinfo
);
2795 module_init(dm_init
);
2796 module_exit(dm_exit
);
2798 module_param(major
, uint
, 0);
2799 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2800 MODULE_DESCRIPTION(DM_NAME
" driver");
2801 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2802 MODULE_LICENSE("GPL");