Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / media / common / tuners / xc5000.c
blob296df05b8cda8fbe66ab430d0988f647807e5ac0
1 /*
2 * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
4 * Copyright (c) 2007 Xceive Corporation
5 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6 * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/videodev2.h>
27 #include <linux/delay.h>
28 #include <linux/dvb/frontend.h>
29 #include <linux/i2c.h>
31 #include "dvb_frontend.h"
33 #include "xc5000.h"
34 #include "tuner-i2c.h"
36 static int debug;
37 module_param(debug, int, 0644);
38 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
40 static int no_poweroff;
41 module_param(no_poweroff, int, 0644);
42 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
43 "\t\t1 keep device energized and with tuner ready all the times.\n"
44 "\t\tFaster, but consumes more power and keeps the device hotter");
46 static DEFINE_MUTEX(xc5000_list_mutex);
47 static LIST_HEAD(hybrid_tuner_instance_list);
49 #define dprintk(level, fmt, arg...) if (debug >= level) \
50 printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
52 #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
53 #define XC5000_DEFAULT_FIRMWARE_SIZE 12401
55 struct xc5000_priv {
56 struct tuner_i2c_props i2c_props;
57 struct list_head hybrid_tuner_instance_list;
59 u32 if_khz;
60 u32 freq_hz;
61 u32 bandwidth;
62 u8 video_standard;
63 u8 rf_mode;
64 u8 radio_input;
67 /* Misc Defines */
68 #define MAX_TV_STANDARD 24
69 #define XC_MAX_I2C_WRITE_LENGTH 64
71 /* Signal Types */
72 #define XC_RF_MODE_AIR 0
73 #define XC_RF_MODE_CABLE 1
75 /* Result codes */
76 #define XC_RESULT_SUCCESS 0
77 #define XC_RESULT_RESET_FAILURE 1
78 #define XC_RESULT_I2C_WRITE_FAILURE 2
79 #define XC_RESULT_I2C_READ_FAILURE 3
80 #define XC_RESULT_OUT_OF_RANGE 5
82 /* Product id */
83 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
84 #define XC_PRODUCT_ID_FW_LOADED 0x1388
86 /* Registers */
87 #define XREG_INIT 0x00
88 #define XREG_VIDEO_MODE 0x01
89 #define XREG_AUDIO_MODE 0x02
90 #define XREG_RF_FREQ 0x03
91 #define XREG_D_CODE 0x04
92 #define XREG_IF_OUT 0x05
93 #define XREG_SEEK_MODE 0x07
94 #define XREG_POWER_DOWN 0x0A /* Obsolete */
95 /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
96 #define XREG_OUTPUT_AMP 0x0B
97 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
98 #define XREG_SMOOTHEDCVBS 0x0E
99 #define XREG_XTALFREQ 0x0F
100 #define XREG_FINERFREQ 0x10
101 #define XREG_DDIMODE 0x11
103 #define XREG_ADC_ENV 0x00
104 #define XREG_QUALITY 0x01
105 #define XREG_FRAME_LINES 0x02
106 #define XREG_HSYNC_FREQ 0x03
107 #define XREG_LOCK 0x04
108 #define XREG_FREQ_ERROR 0x05
109 #define XREG_SNR 0x06
110 #define XREG_VERSION 0x07
111 #define XREG_PRODUCT_ID 0x08
112 #define XREG_BUSY 0x09
113 #define XREG_BUILD 0x0D
116 Basic firmware description. This will remain with
117 the driver for documentation purposes.
119 This represents an I2C firmware file encoded as a
120 string of unsigned char. Format is as follows:
122 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
123 char[1 ]=len0_LSB -> length of first write transaction
124 char[2 ]=data0 -> first byte to be sent
125 char[3 ]=data1
126 char[4 ]=data2
127 char[ ]=...
128 char[M ]=dataN -> last byte to be sent
129 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
130 char[M+2]=len1_LSB -> length of second write transaction
131 char[M+3]=data0
132 char[M+4]=data1
134 etc.
136 The [len] value should be interpreted as follows:
138 len= len_MSB _ len_LSB
139 len=1111_1111_1111_1111 : End of I2C_SEQUENCE
140 len=0000_0000_0000_0000 : Reset command: Do hardware reset
141 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
142 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
144 For the RESET and WAIT commands, the two following bytes will contain
145 immediately the length of the following transaction.
148 struct XC_TV_STANDARD {
149 char *Name;
150 u16 AudioMode;
151 u16 VideoMode;
154 /* Tuner standards */
155 #define MN_NTSC_PAL_BTSC 0
156 #define MN_NTSC_PAL_A2 1
157 #define MN_NTSC_PAL_EIAJ 2
158 #define MN_NTSC_PAL_Mono 3
159 #define BG_PAL_A2 4
160 #define BG_PAL_NICAM 5
161 #define BG_PAL_MONO 6
162 #define I_PAL_NICAM 7
163 #define I_PAL_NICAM_MONO 8
164 #define DK_PAL_A2 9
165 #define DK_PAL_NICAM 10
166 #define DK_PAL_MONO 11
167 #define DK_SECAM_A2DK1 12
168 #define DK_SECAM_A2LDK3 13
169 #define DK_SECAM_A2MONO 14
170 #define L_SECAM_NICAM 15
171 #define LC_SECAM_NICAM 16
172 #define DTV6 17
173 #define DTV8 18
174 #define DTV7_8 19
175 #define DTV7 20
176 #define FM_Radio_INPUT2 21
177 #define FM_Radio_INPUT1 22
178 #define FM_Radio_INPUT1_MONO 23
180 static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
181 {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
182 {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
183 {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
184 {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
185 {"B/G-PAL-A2", 0x0A00, 0x8049},
186 {"B/G-PAL-NICAM", 0x0C04, 0x8049},
187 {"B/G-PAL-MONO", 0x0878, 0x8059},
188 {"I-PAL-NICAM", 0x1080, 0x8009},
189 {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
190 {"D/K-PAL-A2", 0x1600, 0x8009},
191 {"D/K-PAL-NICAM", 0x0E80, 0x8009},
192 {"D/K-PAL-MONO", 0x1478, 0x8009},
193 {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
194 {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
195 {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
196 {"L-SECAM-NICAM", 0x8E82, 0x0009},
197 {"L'-SECAM-NICAM", 0x8E82, 0x4009},
198 {"DTV6", 0x00C0, 0x8002},
199 {"DTV8", 0x00C0, 0x800B},
200 {"DTV7/8", 0x00C0, 0x801B},
201 {"DTV7", 0x00C0, 0x8007},
202 {"FM Radio-INPUT2", 0x9802, 0x9002},
203 {"FM Radio-INPUT1", 0x0208, 0x9002},
204 {"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
207 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
208 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
209 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
210 static int xc5000_TunerReset(struct dvb_frontend *fe);
212 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
214 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
215 .flags = 0, .buf = buf, .len = len };
217 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
218 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
219 return XC_RESULT_I2C_WRITE_FAILURE;
221 return XC_RESULT_SUCCESS;
224 #if 0
225 /* This routine is never used because the only time we read data from the
226 i2c bus is when we read registers, and we want that to be an atomic i2c
227 transaction in case we are on a multi-master bus */
228 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
230 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
231 .flags = I2C_M_RD, .buf = buf, .len = len };
233 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
234 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
235 return -EREMOTEIO;
237 return 0;
239 #endif
241 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
243 u8 buf[2] = { reg >> 8, reg & 0xff };
244 u8 bval[2] = { 0, 0 };
245 struct i2c_msg msg[2] = {
246 { .addr = priv->i2c_props.addr,
247 .flags = 0, .buf = &buf[0], .len = 2 },
248 { .addr = priv->i2c_props.addr,
249 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
252 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
253 printk(KERN_WARNING "xc5000: I2C read failed\n");
254 return -EREMOTEIO;
257 *val = (bval[0] << 8) | bval[1];
258 return XC_RESULT_SUCCESS;
261 static void xc_wait(int wait_ms)
263 msleep(wait_ms);
266 static int xc5000_TunerReset(struct dvb_frontend *fe)
268 struct xc5000_priv *priv = fe->tuner_priv;
269 int ret;
271 dprintk(1, "%s()\n", __func__);
273 if (fe->callback) {
274 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
275 fe->dvb->priv :
276 priv->i2c_props.adap->algo_data,
277 DVB_FRONTEND_COMPONENT_TUNER,
278 XC5000_TUNER_RESET, 0);
279 if (ret) {
280 printk(KERN_ERR "xc5000: reset failed\n");
281 return XC_RESULT_RESET_FAILURE;
283 } else {
284 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
285 return XC_RESULT_RESET_FAILURE;
287 return XC_RESULT_SUCCESS;
290 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
292 u8 buf[4];
293 int WatchDogTimer = 100;
294 int result;
296 buf[0] = (regAddr >> 8) & 0xFF;
297 buf[1] = regAddr & 0xFF;
298 buf[2] = (i2cData >> 8) & 0xFF;
299 buf[3] = i2cData & 0xFF;
300 result = xc_send_i2c_data(priv, buf, 4);
301 if (result == XC_RESULT_SUCCESS) {
302 /* wait for busy flag to clear */
303 while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
304 result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
305 if (result == XC_RESULT_SUCCESS) {
306 if ((buf[0] == 0) && (buf[1] == 0)) {
307 /* busy flag cleared */
308 break;
309 } else {
310 xc_wait(5); /* wait 5 ms */
311 WatchDogTimer--;
316 if (WatchDogTimer < 0)
317 result = XC_RESULT_I2C_WRITE_FAILURE;
319 return result;
322 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
324 struct xc5000_priv *priv = fe->tuner_priv;
326 int i, nbytes_to_send, result;
327 unsigned int len, pos, index;
328 u8 buf[XC_MAX_I2C_WRITE_LENGTH];
330 index = 0;
331 while ((i2c_sequence[index] != 0xFF) ||
332 (i2c_sequence[index + 1] != 0xFF)) {
333 len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
334 if (len == 0x0000) {
335 /* RESET command */
336 result = xc5000_TunerReset(fe);
337 index += 2;
338 if (result != XC_RESULT_SUCCESS)
339 return result;
340 } else if (len & 0x8000) {
341 /* WAIT command */
342 xc_wait(len & 0x7FFF);
343 index += 2;
344 } else {
345 /* Send i2c data whilst ensuring individual transactions
346 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
348 index += 2;
349 buf[0] = i2c_sequence[index];
350 buf[1] = i2c_sequence[index + 1];
351 pos = 2;
352 while (pos < len) {
353 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
354 nbytes_to_send =
355 XC_MAX_I2C_WRITE_LENGTH;
356 else
357 nbytes_to_send = (len - pos + 2);
358 for (i = 2; i < nbytes_to_send; i++) {
359 buf[i] = i2c_sequence[index + pos +
360 i - 2];
362 result = xc_send_i2c_data(priv, buf,
363 nbytes_to_send);
365 if (result != XC_RESULT_SUCCESS)
366 return result;
368 pos += nbytes_to_send - 2;
370 index += len;
373 return XC_RESULT_SUCCESS;
376 static int xc_initialize(struct xc5000_priv *priv)
378 dprintk(1, "%s()\n", __func__);
379 return xc_write_reg(priv, XREG_INIT, 0);
382 static int xc_SetTVStandard(struct xc5000_priv *priv,
383 u16 VideoMode, u16 AudioMode)
385 int ret;
386 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
387 dprintk(1, "%s() Standard = %s\n",
388 __func__,
389 XC5000_Standard[priv->video_standard].Name);
391 ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
392 if (ret == XC_RESULT_SUCCESS)
393 ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
395 return ret;
398 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
400 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
401 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
403 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
404 rf_mode = XC_RF_MODE_CABLE;
405 printk(KERN_ERR
406 "%s(), Invalid mode, defaulting to CABLE",
407 __func__);
409 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
412 static const struct dvb_tuner_ops xc5000_tuner_ops;
414 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
416 u16 freq_code;
418 dprintk(1, "%s(%u)\n", __func__, freq_hz);
420 if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
421 (freq_hz < xc5000_tuner_ops.info.frequency_min))
422 return XC_RESULT_OUT_OF_RANGE;
424 freq_code = (u16)(freq_hz / 15625);
426 /* Starting in firmware version 1.1.44, Xceive recommends using the
427 FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
428 only be used for fast scanning for channel lock) */
429 return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
433 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
435 u32 freq_code = (freq_khz * 1024)/1000;
436 dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
437 __func__, freq_khz, freq_code);
439 return xc_write_reg(priv, XREG_IF_OUT, freq_code);
443 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
445 return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
448 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
450 int result;
451 u16 regData;
452 u32 tmp;
454 result = xc5000_readreg(priv, XREG_FREQ_ERROR, &regData);
455 if (result != XC_RESULT_SUCCESS)
456 return result;
458 tmp = (u32)regData;
459 (*freq_error_hz) = (tmp * 15625) / 1000;
460 return result;
463 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
465 return xc5000_readreg(priv, XREG_LOCK, lock_status);
468 static int xc_get_version(struct xc5000_priv *priv,
469 u8 *hw_majorversion, u8 *hw_minorversion,
470 u8 *fw_majorversion, u8 *fw_minorversion)
472 u16 data;
473 int result;
475 result = xc5000_readreg(priv, XREG_VERSION, &data);
476 if (result != XC_RESULT_SUCCESS)
477 return result;
479 (*hw_majorversion) = (data >> 12) & 0x0F;
480 (*hw_minorversion) = (data >> 8) & 0x0F;
481 (*fw_majorversion) = (data >> 4) & 0x0F;
482 (*fw_minorversion) = data & 0x0F;
484 return 0;
487 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
489 return xc5000_readreg(priv, XREG_BUILD, buildrev);
492 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
494 u16 regData;
495 int result;
497 result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &regData);
498 if (result != XC_RESULT_SUCCESS)
499 return result;
501 (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
502 return result;
505 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
507 return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
510 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
512 return xc5000_readreg(priv, XREG_QUALITY, quality);
515 static u16 WaitForLock(struct xc5000_priv *priv)
517 u16 lockState = 0;
518 int watchDogCount = 40;
520 while ((lockState == 0) && (watchDogCount > 0)) {
521 xc_get_lock_status(priv, &lockState);
522 if (lockState != 1) {
523 xc_wait(5);
524 watchDogCount--;
527 return lockState;
530 #define XC_TUNE_ANALOG 0
531 #define XC_TUNE_DIGITAL 1
532 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
534 int found = 0;
536 dprintk(1, "%s(%u)\n", __func__, freq_hz);
538 if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
539 return 0;
541 if (mode == XC_TUNE_ANALOG) {
542 if (WaitForLock(priv) == 1)
543 found = 1;
546 return found;
550 static int xc5000_fwupload(struct dvb_frontend *fe)
552 struct xc5000_priv *priv = fe->tuner_priv;
553 const struct firmware *fw;
554 int ret;
556 /* request the firmware, this will block and timeout */
557 printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
558 XC5000_DEFAULT_FIRMWARE);
560 ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE,
561 priv->i2c_props.adap->dev.parent);
562 if (ret) {
563 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
564 ret = XC_RESULT_RESET_FAILURE;
565 goto out;
566 } else {
567 printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
568 fw->size);
569 ret = XC_RESULT_SUCCESS;
572 if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
573 printk(KERN_ERR "xc5000: firmware incorrect size\n");
574 ret = XC_RESULT_RESET_FAILURE;
575 } else {
576 printk(KERN_INFO "xc5000: firmware uploading...\n");
577 ret = xc_load_i2c_sequence(fe, fw->data);
578 printk(KERN_INFO "xc5000: firmware upload complete...\n");
581 out:
582 release_firmware(fw);
583 return ret;
586 static void xc_debug_dump(struct xc5000_priv *priv)
588 u16 adc_envelope;
589 u32 freq_error_hz = 0;
590 u16 lock_status;
591 u32 hsync_freq_hz = 0;
592 u16 frame_lines;
593 u16 quality;
594 u8 hw_majorversion = 0, hw_minorversion = 0;
595 u8 fw_majorversion = 0, fw_minorversion = 0;
596 u16 fw_buildversion = 0;
598 /* Wait for stats to stabilize.
599 * Frame Lines needs two frame times after initial lock
600 * before it is valid.
602 xc_wait(100);
604 xc_get_ADC_Envelope(priv, &adc_envelope);
605 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
607 xc_get_frequency_error(priv, &freq_error_hz);
608 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
610 xc_get_lock_status(priv, &lock_status);
611 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
612 lock_status);
614 xc_get_version(priv, &hw_majorversion, &hw_minorversion,
615 &fw_majorversion, &fw_minorversion);
616 xc_get_buildversion(priv, &fw_buildversion);
617 dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
618 hw_majorversion, hw_minorversion,
619 fw_majorversion, fw_minorversion, fw_buildversion);
621 xc_get_hsync_freq(priv, &hsync_freq_hz);
622 dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
624 xc_get_frame_lines(priv, &frame_lines);
625 dprintk(1, "*** Frame lines = %d\n", frame_lines);
627 xc_get_quality(priv, &quality);
628 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
631 static int xc5000_set_params(struct dvb_frontend *fe)
633 int ret, b;
634 struct xc5000_priv *priv = fe->tuner_priv;
635 u32 bw = fe->dtv_property_cache.bandwidth_hz;
636 u32 freq = fe->dtv_property_cache.frequency;
637 u32 delsys = fe->dtv_property_cache.delivery_system;
639 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
640 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
641 dprintk(1, "Unable to load firmware and init tuner\n");
642 return -EINVAL;
646 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
648 switch (delsys) {
649 case SYS_ATSC:
650 dprintk(1, "%s() VSB modulation\n", __func__);
651 priv->rf_mode = XC_RF_MODE_AIR;
652 priv->freq_hz = freq - 1750000;
653 priv->video_standard = DTV6;
654 break;
655 case SYS_DVBC_ANNEX_B:
656 dprintk(1, "%s() QAM modulation\n", __func__);
657 priv->rf_mode = XC_RF_MODE_CABLE;
658 priv->freq_hz = freq - 1750000;
659 priv->video_standard = DTV6;
660 break;
661 case SYS_DVBT:
662 case SYS_DVBT2:
663 dprintk(1, "%s() OFDM\n", __func__);
664 switch (bw) {
665 case 6000000:
666 priv->video_standard = DTV6;
667 priv->freq_hz = freq - 1750000;
668 break;
669 case 7000000:
670 priv->video_standard = DTV7;
671 priv->freq_hz = freq - 2250000;
672 break;
673 case 8000000:
674 priv->video_standard = DTV8;
675 priv->freq_hz = freq - 2750000;
676 break;
677 default:
678 printk(KERN_ERR "xc5000 bandwidth not set!\n");
679 return -EINVAL;
681 priv->rf_mode = XC_RF_MODE_AIR;
682 case SYS_DVBC_ANNEX_A:
683 case SYS_DVBC_ANNEX_C:
684 dprintk(1, "%s() QAM modulation\n", __func__);
685 priv->rf_mode = XC_RF_MODE_CABLE;
686 if (bw <= 6000000) {
687 priv->video_standard = DTV6;
688 priv->freq_hz = freq - 1750000;
689 b = 6;
690 } else if (bw <= 7000000) {
691 priv->video_standard = DTV7;
692 priv->freq_hz = freq - 2250000;
693 b = 7;
694 } else {
695 priv->video_standard = DTV7_8;
696 priv->freq_hz = freq - 2750000;
697 b = 8;
699 dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
700 b, bw);
701 break;
702 default:
703 printk(KERN_ERR "xc5000: delivery system is not supported!\n");
704 return -EINVAL;
707 dprintk(1, "%s() frequency=%d (compensated to %d)\n",
708 __func__, freq, priv->freq_hz);
710 ret = xc_SetSignalSource(priv, priv->rf_mode);
711 if (ret != XC_RESULT_SUCCESS) {
712 printk(KERN_ERR
713 "xc5000: xc_SetSignalSource(%d) failed\n",
714 priv->rf_mode);
715 return -EREMOTEIO;
718 ret = xc_SetTVStandard(priv,
719 XC5000_Standard[priv->video_standard].VideoMode,
720 XC5000_Standard[priv->video_standard].AudioMode);
721 if (ret != XC_RESULT_SUCCESS) {
722 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
723 return -EREMOTEIO;
726 ret = xc_set_IF_frequency(priv, priv->if_khz);
727 if (ret != XC_RESULT_SUCCESS) {
728 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
729 priv->if_khz);
730 return -EIO;
733 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);
735 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
737 if (debug)
738 xc_debug_dump(priv);
740 priv->bandwidth = bw;
742 return 0;
745 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
747 struct xc5000_priv *priv = fe->tuner_priv;
748 int ret;
749 u16 id;
751 ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
752 if (ret == XC_RESULT_SUCCESS) {
753 if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
754 ret = XC_RESULT_RESET_FAILURE;
755 else
756 ret = XC_RESULT_SUCCESS;
759 dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
760 ret == XC_RESULT_SUCCESS ? "True" : "False", id);
761 return ret;
764 static int xc5000_set_tv_freq(struct dvb_frontend *fe,
765 struct analog_parameters *params)
767 struct xc5000_priv *priv = fe->tuner_priv;
768 int ret;
770 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
771 __func__, params->frequency);
773 /* Fix me: it could be air. */
774 priv->rf_mode = params->mode;
775 if (params->mode > XC_RF_MODE_CABLE)
776 priv->rf_mode = XC_RF_MODE_CABLE;
778 /* params->frequency is in units of 62.5khz */
779 priv->freq_hz = params->frequency * 62500;
781 /* FIX ME: Some video standards may have several possible audio
782 standards. We simply default to one of them here.
784 if (params->std & V4L2_STD_MN) {
785 /* default to BTSC audio standard */
786 priv->video_standard = MN_NTSC_PAL_BTSC;
787 goto tune_channel;
790 if (params->std & V4L2_STD_PAL_BG) {
791 /* default to NICAM audio standard */
792 priv->video_standard = BG_PAL_NICAM;
793 goto tune_channel;
796 if (params->std & V4L2_STD_PAL_I) {
797 /* default to NICAM audio standard */
798 priv->video_standard = I_PAL_NICAM;
799 goto tune_channel;
802 if (params->std & V4L2_STD_PAL_DK) {
803 /* default to NICAM audio standard */
804 priv->video_standard = DK_PAL_NICAM;
805 goto tune_channel;
808 if (params->std & V4L2_STD_SECAM_DK) {
809 /* default to A2 DK1 audio standard */
810 priv->video_standard = DK_SECAM_A2DK1;
811 goto tune_channel;
814 if (params->std & V4L2_STD_SECAM_L) {
815 priv->video_standard = L_SECAM_NICAM;
816 goto tune_channel;
819 if (params->std & V4L2_STD_SECAM_LC) {
820 priv->video_standard = LC_SECAM_NICAM;
821 goto tune_channel;
824 tune_channel:
825 ret = xc_SetSignalSource(priv, priv->rf_mode);
826 if (ret != XC_RESULT_SUCCESS) {
827 printk(KERN_ERR
828 "xc5000: xc_SetSignalSource(%d) failed\n",
829 priv->rf_mode);
830 return -EREMOTEIO;
833 ret = xc_SetTVStandard(priv,
834 XC5000_Standard[priv->video_standard].VideoMode,
835 XC5000_Standard[priv->video_standard].AudioMode);
836 if (ret != XC_RESULT_SUCCESS) {
837 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
838 return -EREMOTEIO;
841 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
843 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
845 if (debug)
846 xc_debug_dump(priv);
848 return 0;
851 static int xc5000_set_radio_freq(struct dvb_frontend *fe,
852 struct analog_parameters *params)
854 struct xc5000_priv *priv = fe->tuner_priv;
855 int ret = -EINVAL;
856 u8 radio_input;
858 dprintk(1, "%s() frequency=%d (in units of khz)\n",
859 __func__, params->frequency);
861 if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
862 dprintk(1, "%s() radio input not configured\n", __func__);
863 return -EINVAL;
866 if (priv->radio_input == XC5000_RADIO_FM1)
867 radio_input = FM_Radio_INPUT1;
868 else if (priv->radio_input == XC5000_RADIO_FM2)
869 radio_input = FM_Radio_INPUT2;
870 else if (priv->radio_input == XC5000_RADIO_FM1_MONO)
871 radio_input = FM_Radio_INPUT1_MONO;
872 else {
873 dprintk(1, "%s() unknown radio input %d\n", __func__,
874 priv->radio_input);
875 return -EINVAL;
878 priv->freq_hz = params->frequency * 125 / 2;
880 priv->rf_mode = XC_RF_MODE_AIR;
882 ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode,
883 XC5000_Standard[radio_input].AudioMode);
885 if (ret != XC_RESULT_SUCCESS) {
886 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
887 return -EREMOTEIO;
890 ret = xc_SetSignalSource(priv, priv->rf_mode);
891 if (ret != XC_RESULT_SUCCESS) {
892 printk(KERN_ERR
893 "xc5000: xc_SetSignalSource(%d) failed\n",
894 priv->rf_mode);
895 return -EREMOTEIO;
898 if ((priv->radio_input == XC5000_RADIO_FM1) ||
899 (priv->radio_input == XC5000_RADIO_FM2))
900 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
901 else if (priv->radio_input == XC5000_RADIO_FM1_MONO)
902 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);
904 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
906 return 0;
909 static int xc5000_set_analog_params(struct dvb_frontend *fe,
910 struct analog_parameters *params)
912 struct xc5000_priv *priv = fe->tuner_priv;
913 int ret = -EINVAL;
915 if (priv->i2c_props.adap == NULL)
916 return -EINVAL;
918 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
919 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
920 dprintk(1, "Unable to load firmware and init tuner\n");
921 return -EINVAL;
925 switch (params->mode) {
926 case V4L2_TUNER_RADIO:
927 ret = xc5000_set_radio_freq(fe, params);
928 break;
929 case V4L2_TUNER_ANALOG_TV:
930 case V4L2_TUNER_DIGITAL_TV:
931 ret = xc5000_set_tv_freq(fe, params);
932 break;
935 return ret;
939 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
941 struct xc5000_priv *priv = fe->tuner_priv;
942 dprintk(1, "%s()\n", __func__);
943 *freq = priv->freq_hz;
944 return 0;
947 static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
949 struct xc5000_priv *priv = fe->tuner_priv;
950 dprintk(1, "%s()\n", __func__);
951 *freq = priv->if_khz * 1000;
952 return 0;
955 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
957 struct xc5000_priv *priv = fe->tuner_priv;
958 dprintk(1, "%s()\n", __func__);
960 *bw = priv->bandwidth;
961 return 0;
964 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
966 struct xc5000_priv *priv = fe->tuner_priv;
967 u16 lock_status = 0;
969 xc_get_lock_status(priv, &lock_status);
971 dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
973 *status = lock_status;
975 return 0;
978 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
980 struct xc5000_priv *priv = fe->tuner_priv;
981 int ret = 0;
983 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
984 ret = xc5000_fwupload(fe);
985 if (ret != XC_RESULT_SUCCESS)
986 return ret;
989 /* Start the tuner self-calibration process */
990 ret |= xc_initialize(priv);
992 /* Wait for calibration to complete.
993 * We could continue but XC5000 will clock stretch subsequent
994 * I2C transactions until calibration is complete. This way we
995 * don't have to rely on clock stretching working.
997 xc_wait(100);
999 /* Default to "CABLE" mode */
1000 ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
1002 return ret;
1005 static int xc5000_sleep(struct dvb_frontend *fe)
1007 int ret;
1009 dprintk(1, "%s()\n", __func__);
1011 /* Avoid firmware reload on slow devices */
1012 if (no_poweroff)
1013 return 0;
1015 /* According to Xceive technical support, the "powerdown" register
1016 was removed in newer versions of the firmware. The "supported"
1017 way to sleep the tuner is to pull the reset pin low for 10ms */
1018 ret = xc5000_TunerReset(fe);
1019 if (ret != XC_RESULT_SUCCESS) {
1020 printk(KERN_ERR
1021 "xc5000: %s() unable to shutdown tuner\n",
1022 __func__);
1023 return -EREMOTEIO;
1024 } else
1025 return XC_RESULT_SUCCESS;
1028 static int xc5000_init(struct dvb_frontend *fe)
1030 struct xc5000_priv *priv = fe->tuner_priv;
1031 dprintk(1, "%s()\n", __func__);
1033 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
1034 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
1035 return -EREMOTEIO;
1038 if (debug)
1039 xc_debug_dump(priv);
1041 return 0;
1044 static int xc5000_release(struct dvb_frontend *fe)
1046 struct xc5000_priv *priv = fe->tuner_priv;
1048 dprintk(1, "%s()\n", __func__);
1050 mutex_lock(&xc5000_list_mutex);
1052 if (priv)
1053 hybrid_tuner_release_state(priv);
1055 mutex_unlock(&xc5000_list_mutex);
1057 fe->tuner_priv = NULL;
1059 return 0;
1062 static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
1064 struct xc5000_priv *priv = fe->tuner_priv;
1065 struct xc5000_config *p = priv_cfg;
1067 dprintk(1, "%s()\n", __func__);
1069 if (p->if_khz)
1070 priv->if_khz = p->if_khz;
1072 if (p->radio_input)
1073 priv->radio_input = p->radio_input;
1075 return 0;
1079 static const struct dvb_tuner_ops xc5000_tuner_ops = {
1080 .info = {
1081 .name = "Xceive XC5000",
1082 .frequency_min = 1000000,
1083 .frequency_max = 1023000000,
1084 .frequency_step = 50000,
1087 .release = xc5000_release,
1088 .init = xc5000_init,
1089 .sleep = xc5000_sleep,
1091 .set_config = xc5000_set_config,
1092 .set_params = xc5000_set_params,
1093 .set_analog_params = xc5000_set_analog_params,
1094 .get_frequency = xc5000_get_frequency,
1095 .get_if_frequency = xc5000_get_if_frequency,
1096 .get_bandwidth = xc5000_get_bandwidth,
1097 .get_status = xc5000_get_status
1100 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
1101 struct i2c_adapter *i2c,
1102 const struct xc5000_config *cfg)
1104 struct xc5000_priv *priv = NULL;
1105 int instance;
1106 u16 id = 0;
1108 dprintk(1, "%s(%d-%04x)\n", __func__,
1109 i2c ? i2c_adapter_id(i2c) : -1,
1110 cfg ? cfg->i2c_address : -1);
1112 mutex_lock(&xc5000_list_mutex);
1114 instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
1115 hybrid_tuner_instance_list,
1116 i2c, cfg->i2c_address, "xc5000");
1117 switch (instance) {
1118 case 0:
1119 goto fail;
1120 break;
1121 case 1:
1122 /* new tuner instance */
1123 priv->bandwidth = 6000000;
1124 fe->tuner_priv = priv;
1125 break;
1126 default:
1127 /* existing tuner instance */
1128 fe->tuner_priv = priv;
1129 break;
1132 if (priv->if_khz == 0) {
1133 /* If the IF hasn't been set yet, use the value provided by
1134 the caller (occurs in hybrid devices where the analog
1135 call to xc5000_attach occurs before the digital side) */
1136 priv->if_khz = cfg->if_khz;
1139 if (priv->radio_input == 0)
1140 priv->radio_input = cfg->radio_input;
1142 /* Check if firmware has been loaded. It is possible that another
1143 instance of the driver has loaded the firmware.
1145 if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
1146 goto fail;
1148 switch (id) {
1149 case XC_PRODUCT_ID_FW_LOADED:
1150 printk(KERN_INFO
1151 "xc5000: Successfully identified at address 0x%02x\n",
1152 cfg->i2c_address);
1153 printk(KERN_INFO
1154 "xc5000: Firmware has been loaded previously\n");
1155 break;
1156 case XC_PRODUCT_ID_FW_NOT_LOADED:
1157 printk(KERN_INFO
1158 "xc5000: Successfully identified at address 0x%02x\n",
1159 cfg->i2c_address);
1160 printk(KERN_INFO
1161 "xc5000: Firmware has not been loaded previously\n");
1162 break;
1163 default:
1164 printk(KERN_ERR
1165 "xc5000: Device not found at addr 0x%02x (0x%x)\n",
1166 cfg->i2c_address, id);
1167 goto fail;
1170 mutex_unlock(&xc5000_list_mutex);
1172 memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1173 sizeof(struct dvb_tuner_ops));
1175 return fe;
1176 fail:
1177 mutex_unlock(&xc5000_list_mutex);
1179 xc5000_release(fe);
1180 return NULL;
1182 EXPORT_SYMBOL(xc5000_attach);
1184 MODULE_AUTHOR("Steven Toth");
1185 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1186 MODULE_LICENSE("GPL");